JP2017219526A - Syringe type sensor - Google Patents

Syringe type sensor Download PDF

Info

Publication number
JP2017219526A
JP2017219526A JP2016126024A JP2016126024A JP2017219526A JP 2017219526 A JP2017219526 A JP 2017219526A JP 2016126024 A JP2016126024 A JP 2016126024A JP 2016126024 A JP2016126024 A JP 2016126024A JP 2017219526 A JP2017219526 A JP 2017219526A
Authority
JP
Japan
Prior art keywords
piston
light
fluorescent probe
sensor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016126024A
Other languages
Japanese (ja)
Inventor
晴夫 牛山
Haruo Ushiyama
晴夫 牛山
周太郎 石川
Shutaro Ishikawa
周太郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Able Corp
Original Assignee
Able Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Able Corp filed Critical Able Corp
Priority to JP2016126024A priority Critical patent/JP2017219526A/en
Publication of JP2017219526A publication Critical patent/JP2017219526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor capable of simply and rapidly measuring a concentration of the component by simply collecting a solution to be inspected when required.SOLUTION: A syringe sensor optically measures concentration of the component of a solution to be inspected, and includes: an external cylinder having an inlet of the solution to be inspected at the top end and opened at the other end; and a piston partially reciprocable from an opening side into the external cylinder and fluid-tightly inserted. The top end part of a liquid-contacting side of the piston is attached with a fluorescent probe including a fluorescent material for emitting fluorescent light corresponding to the concentration of the component of the solution to be inspected by irradiated exciting light so as to come into contact each other. In the piston, an irradiation end part of the exciting light to the fluorescent probe and a light reception end part of the fluorescent light from the fluorescent probe are arranged on the opposite side of the liquid-contacting side of the fluorescent probe. The irradiation end part and the light reception end part are connected to light emitting and receiving/measurement means of the external side of the piston through inside of the piston.SELECTED DRAWING: Figure 1

Description

本発明は、被検液の成分の濃度、例えば、酸素濃度、炭酸ガス濃度、水素イオン濃度(pH)等を光学的に計測するセンサ、特に、計測が簡易なシリンジ式センサに関する。  The present invention relates to a sensor that optically measures the concentration of a component of a test solution, for example, oxygen concentration, carbon dioxide concentration, hydrogen ion concentration (pH), and the like, and particularly relates to a syringe type sensor that can be easily measured.

化学や微生物・動植物細胞培養等の生化学の技術分野において、反応液や培養液等の被検液の成分の濃度(特性)、例えば、酸素(溶存酸素)濃度、炭酸ガス(溶存炭酸ガス)濃度、水素イオン濃度等を計測して、反応や培養等の環境条件の適正化管理が行われており、これらの計測手段の一つに、蛍光物質(発光物質)を含む蛍光プローブを用いて光学的に計測するセンサがある。  Concentrations (characteristics) of components of test liquids such as reaction solutions and culture solutions, such as oxygen (dissolved oxygen) concentration, carbon dioxide (dissolved carbon dioxide) Concentration, hydrogen ion concentration, etc. are measured and appropriate management of environmental conditions such as reaction and culture is performed. One of these measuring means uses a fluorescent probe containing a fluorescent substance (luminescent substance). There are sensors that measure optically.

このような光学的に計測するセンサとして、例えば、培養槽から被検液をポンプで抜き取りつつ酸素濃度等の特性を計測する、蛍光プローブを備えたフローセル型センサが知られている。
また、本特許出願人は、他の特許出願人と共に、培養槽の側面に備えるポートに嵌合可能なセンサコネクタの培養液側の壁部に成分の濃度に対応した蛍光を発光する蛍光物質を含む蛍光プローブを固着させ、先端を該培養液の反対側の該壁部に接する光ファイバーを介して励起光の照射及び蛍光の受光を行うようにしたセンサを提案している(特許文献1参照)。
As such an optical measurement sensor, for example, a flow cell type sensor equipped with a fluorescent probe that measures characteristics such as oxygen concentration while extracting a test solution from a culture tank with a pump is known.
In addition, the present applicant, together with other patent applicants, a fluorescent substance that emits fluorescence corresponding to the concentration of the component on the culture solution side wall of the sensor connector that can be fitted to the port provided on the side surface of the culture tank. A sensor has been proposed in which a fluorescent probe is fixed, and excitation light is emitted and fluorescence is received through an optical fiber whose tip is in contact with the opposite wall of the culture solution (see Patent Document 1). .

特開2014−135940号公報  JP 2014-135940 A

しかしながら、上記したフローセル型センサの場合には、酸素濃度等の特性を計測する際に、培養槽と該センサとの間に一定の距離があるため、ある所定量の被検液を必要とする。
また、上記した培養槽のセンサコネクタにより構成されるセンサの場合には、培養槽の側面にそれ専用のポートを必要とする。
さらには、このような被検液を必要時に簡単に採取してその成分の濃度を簡易に、しかも迅速に計測して反応や培養等の環境条件の適正化管理を図りたいとする要望がある。
However, in the case of the above-described flow cell type sensor, when measuring characteristics such as oxygen concentration, there is a certain distance between the culture tank and the sensor, and thus a certain predetermined amount of test liquid is required. .
Moreover, in the case of the sensor comprised by the sensor connector of an above-mentioned culture tank, the port for exclusive use is required on the side surface of a culture tank.
Furthermore, there is a demand to easily collect such test liquids when necessary and to measure the concentration of the components easily and quickly to optimize the environmental conditions such as reaction and culture. .

本発明は、上記の問題点を解消するために、また、要望に応えるためになされたものであり、その目的とするところは、被検液を必要時に簡単に採取してその成分の濃度を少量の被検液で簡易に、しかも迅速に計測できるセンサを提供することにある。  The present invention has been made in order to solve the above-mentioned problems and to meet demands. The purpose of the present invention is to simply collect a test solution when necessary and to determine the concentration of the component. An object of the present invention is to provide a sensor that can be measured easily and quickly with a small amount of test liquid.

本発明者らは、上記目的を達成するために鋭意検討した結果、被検液の成分の濃度を計測するに際し、通常、培養槽等の側面に備える被検液採取用のポートや天板に備える被検液採取用のセプタム等より細くて短いホース等を介してシリンジ(注射器)の外筒とピストンとで被検液を吸引して採取すると共に、該ピストンの接液側の先端部に、照射された励起光により被検液の成分の濃度に対応した蛍光を発光する蛍光物質(発光物質)を含む蛍光プローブを接液するようにして装着させておき、該蛍光プローブへの励起光の照射及び該蛍光プローブからの蛍光の受光を、該ピストン内に配置の発光端部及び受光端部を介して該ピストンの外側の受発光・計測装置で行うと同時に成分の濃度を計測することにより、成分の濃度を少量の被検液で光学的に簡易に、しかも迅速に計測し得ること等の新知見を得、これらの知見に基づき本発明を完成するに至った。  As a result of intensive studies to achieve the above-mentioned object, the present inventors usually measured the concentration of the components of the test liquid, usually on the test liquid collection port or top plate provided on the side of the culture tank or the like. A sample solution is sucked and collected with an outer cylinder of a syringe (syringe) and a piston through a short hose etc. that is thinner than a septum for collecting the sample solution provided, and at the tip of the piston on the liquid contact side A fluorescent probe containing a fluorescent substance (luminescent substance) that emits fluorescence corresponding to the concentration of the component of the test solution is irradiated with the irradiated excitation light so as to be in contact with the fluorescent probe, and the excitation light to the fluorescent probe is attached. The concentration of the component is measured at the same time that the irradiation and the light reception of the fluorescence from the fluorescent probe are performed by the light emitting / receiving / measuring device outside the piston through the light emitting end and the light receiving end disposed in the piston. To reduce the concentration of the component Optically simple, yet quickly obtain a new knowledge such that may measure, the present invention has been completed based on these findings.

すなわち、本発明は、下記の発明を包含する。
(1)被検液の成分の濃度を光学的に計測するシリンジ式センサであって、先端に前記被検液の吸入口を有し他端が開口する外筒と、前記外筒内に開口側からその一部が往復動自在で液密的に挿入されるピストンと、を備え、該ピストンの接液側の先端部には、照射された励起光により前記被検液の成分の濃度に対応した蛍光を発光する蛍光物質を含む蛍光プローブが該蛍光物質が接液するようにして装着されており、前記ピストン内には、前記蛍光プローブへの前記励起光の照射端部及び該蛍光プローブからの前記蛍光の受光端部が該蛍光プローブの接液側の反対側に対向して配置されており、前記照射端部及び受光端部は、前記ピストン内を通して該ピストンの外側の受発光・計測装置に接続される、前記センサ。
That is, the present invention includes the following inventions.
(1) A syringe-type sensor for optically measuring the concentration of a component of a test liquid, the outer cylinder having a suction port for the test liquid at the tip and having the other end opened, and opening in the outer cylinder A piston part of which is reciprocally movable from the side and inserted in a liquid-tight manner. The tip of the piston on the liquid contact side is adjusted to the concentration of the component of the test liquid by irradiated excitation light. A fluorescent probe containing a fluorescent substance that emits corresponding fluorescence is mounted so that the fluorescent substance comes into contact with the fluorescent substance, and an irradiation end of the excitation light to the fluorescent probe and the fluorescent probe are installed in the piston. The fluorescent light receiving end from the fluorescent probe is disposed opposite to the liquid contact side of the fluorescent probe, and the irradiation end and the light receiving end pass through the piston and receive and emit light outside the piston. The sensor connected to a measuring device.

(2)前記照射端部及び受光端部は、前記ピストン内を軸線方向に貫通する光伝送媒体の先端部であり、該光伝送媒体の他端が光ファイバーを介して前記受発光・計測装置に光学的に接続される、(1)に記載のセンサ。(2) The irradiation end and the light receiving end are tip portions of an optical transmission medium penetrating the piston in the axial direction, and the other end of the optical transmission medium is connected to the light emitting / receiving / measurement device via an optical fiber. The sensor according to (1), which is optically connected.

(3)前記光伝送媒体が光透過性のガラス若しくはプラスチック、又は光ファイバーである、(2)に記載のセンサ。(3) The sensor according to (2), wherein the optical transmission medium is light transmissive glass or plastic, or an optical fiber.

(4)前記照射端部は発光素子であり、また、前記受光端部は受光素子であって、それぞれの素子に備えるリード線が前記受発光・計測装置に電気的に接続される、(1)に記載のセンサ。(4) The irradiation end portion is a light emitting element, and the light receiving end portion is a light receiving element, and a lead wire included in each element is electrically connected to the light receiving and emitting / measuring device. ) Sensor.

(5)前記発光素子は発光ダイオードであり、また、前記受光素子はフォトダイオードである、(4)に記載のセンサ。(5) The sensor according to (4), wherein the light emitting element is a light emitting diode, and the light receiving element is a photodiode.

(6)前記ピストンの他端にコネクタの取付部を備え、該コネクタによって前記照射端部及び受光端部と前記受発光・計測装置とが接続される、(1)〜(5)のいずれかに記載のセンサ。(6) Any one of (1) to (5), wherein the other end of the piston is provided with a connector mounting portion, and the irradiation end portion and the light receiving end portion are connected to the light emitting / receiving / measurement device by the connector. Sensor.

(7)前記蛍光プローブは、酸素濃度、炭酸ガス濃度又は水素イオン濃度の測定用である、(1)〜(6)のいずれかに記載のセンサ。(7) The sensor according to any one of (1) to (6), wherein the fluorescent probe is for measuring an oxygen concentration, a carbon dioxide gas concentration, or a hydrogen ion concentration.

本発明によれば、培養槽等の側壁に備えるポートや天板に備えるセプタム等より細くて短いホース等を介してシリンジの外筒とピストンとで被検液を吸引して採取すると共に、該ピストンの接液側の先端部に、上記した蛍光物質(発光物質)を含む蛍光プローブを接液するようにして装着させておき、該蛍光プローブへの励起光の照射及び該蛍光プローブからの蛍光の受光を、該ピストン内に配置の発光端部及び受光端部を介して該ピストンの外側の受発光・計測装置で行うと同時に成分の濃度を計測する等としたため、被検液を必要時に簡単に採取してその成分の濃度を少量の被検液で光学的に簡易に、しかも迅速に計測し得るシリンジ式センサを提供することができる。  According to the present invention, the sample liquid is aspirated and collected with the outer cylinder of the syringe and the piston through a hose that is thinner and shorter than the port provided on the side wall of the culture tank or the like or the septum provided on the top plate, etc. A fluorescent probe containing the above-described fluorescent substance (luminescent substance) is attached to the tip of the liquid contact side of the piston so as to be in contact with the liquid, and the fluorescent probe is irradiated with excitation light and the fluorescence from the fluorescent probe. Is received by a light emitting / receiving / measuring device outside the piston via a light emitting end and a light receiving end arranged in the piston, and the concentration of the component is measured at the same time. It is possible to provide a syringe type sensor that can be easily collected and the concentration of the component can be measured optically simply and quickly with a small amount of test liquid.

は、本発明のシリンジ式センサの第1の実施形態を示す縦断面図である。These are the longitudinal cross-sectional views which show 1st Embodiment of the syringe type sensor of this invention. は、本発明のシリンジ式センサの蛍光プローブの一実施形態を示す縦断面図である。These are the longitudinal cross-sectional views which show one Embodiment of the fluorescent probe of the syringe type sensor of this invention. は、本発明のシリンジ式センサの第2の実施形態を示す縦断面図である。These are the longitudinal cross-sectional views which show 2nd Embodiment of the syringe type sensor of this invention.

本発明のシリンジ式センサ(以下、単にセンサということもある。)は、上記のごとく、採取された化学反応液あるいは微生物や動植物細胞の培養液等の被検液の成分の濃度を計測するのに用いられる。  As described above, the syringe-type sensor of the present invention (hereinafter sometimes simply referred to as a sensor) measures the concentration of a component of a test solution such as a collected chemical reaction solution or a culture solution of microorganisms or animal and plant cells. Used for.

先ず、本発明のセンサは、特に、被検液の採取にシリンジ(注射筒)方式を採用したこと、及びこれに伴い該シリンジの外筒内に挿入されているピストン(内筒)の接液側の先端部に蛍光プローブを装着し、接液側の反対側より該蛍プローブへの励起光の照射及び該蛍光プローブからの蛍光の受光を、該ピストン内に配置の照射端部及び受光端部を介して行うことを構造的な特徴としている。
そして、上記照射端部及び受光端部は、光ファイバー等の光伝送媒体の先端部、又はそれぞれ発光素子及び受光素子であって、上記ピストン内を通して(経由して)、前者も場合は上記ピストンの外側の受発光・計測装置に光学的に接続され、また、後者の場合は該受発光・計測装置に電気的に接続される。
First, the sensor of the present invention employs, in particular, a syringe (injection cylinder) system for collecting a test liquid, and a liquid contact with a piston (inner cylinder) inserted in the outer cylinder of the syringe accordingly. A fluorescent probe is attached to the tip of the side, and the irradiation end and the light receiving end are arranged in the piston for irradiating the fluorescent probe with the excitation light and receiving the fluorescent light from the fluorescent probe from the opposite side of the liquid contact side. It is a structural feature that is performed through the section.
The irradiation end portion and the light receiving end portion are a front end portion of an optical transmission medium such as an optical fiber, or a light emitting element and a light receiving element, respectively, and pass through (via) the piston. It is optically connected to the outer light emitting / receiving / measuring device, and in the latter case, it is electrically connected to the light emitting / receiving / measuring device.

被検液の成分の濃度、例えば、酸素(溶存酸素)濃度、炭酸ガス(溶存炭酸ガス)濃度、水素イオン濃度(以下「pH」という。)等を光学的に計測する一般的なセンサとしては、例えば、独国プレセンス社から市販されているパッチ型(チップ、スポット)の蛍光プローブ(酸素濃度や炭酸ガス濃度やpH値に応じて蛍光特性が変化する性質をもつ蛍光物質(発光物質)が塗布等されたパッチ形状(パッチ型)(例えば、円形状等の適宜形状の薄手小片のもの)のもの)と、光ファイバーを介して蛍光プローブへ励起光を照射し且つ蛍光プローブからの蛍光を受光するための受発光部を備えた計測器(受発光・計測装置)とを別部品としたシステム(センサ)が知られている。
また、日本国エイブル社から市販されている蛍光式溶存酸素センサーユニットが知られている。
As a general sensor for optically measuring the concentration of a component of a test liquid, for example, oxygen (dissolved oxygen) concentration, carbon dioxide (dissolved carbon dioxide) concentration, hydrogen ion concentration (hereinafter referred to as “pH”), etc. For example, a patch-type (chip, spot) fluorescent probe (a fluorescent substance (luminescent substance) having a property that the fluorescent characteristics change depending on the oxygen concentration, carbon dioxide concentration, and pH value) commercially available from Presense, Germany The applied patch shape (patch type) (for example, a thin thin piece having an appropriate shape such as a circular shape) and the fluorescent probe are irradiated with excitation light via an optical fiber, and the fluorescence from the fluorescent probe is received. There is known a system (sensor) in which a measuring instrument (light emitting / receiving / measuring device) provided with a light emitting / receiving unit is a separate component.
Further, a fluorescent dissolved oxygen sensor unit commercially available from Able Japan is known.

上記したパッチ型の蛍光プローブは、光透過性の透明なガラス板や樹脂の板、あるいは透明な樹脂フィルム等の表面又は内部に蛍光物質を塗布又は分散する等の手法で構成されており、該蛍光プローブの板面やフィルム(シート)面が、例えば、接液する培養槽内壁等に張り付けられていて、蛍光物質は接液するように配置されている。そして、この場合、張り付け面の外側から透明な培養槽壁及び光ファイバーを介して受発光・計測装置より励起光を照射すると、蛍光物質が励起して蛍光を発し、この蛍光を同光ファイバーを介して該受発光・計測装置で受光すると共に蛍光の強度(位相角)を計測すること等で、溶存酸素濃度、溶存炭酸ガス濃度、pH等の成分の濃度(特性)を計測することができるというものである。  The patch-type fluorescent probe described above is constituted by a technique such as applying or dispersing a fluorescent substance on the surface or inside of a light-transmitting transparent glass plate or resin plate, or a transparent resin film. The plate surface and film (sheet) surface of the fluorescent probe are attached to, for example, the inner wall of the culture tank in contact with the liquid, and the fluorescent material is disposed so as to come into contact with the liquid. In this case, when the excitation light is emitted from the light receiving / emitting / measuring device through the transparent culture vessel wall and the optical fiber from the outside of the pasting surface, the fluorescent substance is excited to emit fluorescence, and this fluorescence is transmitted through the optical fiber. It is possible to measure the concentration (characteristics) of components such as dissolved oxygen concentration, dissolved carbon dioxide concentration, pH, etc. by measuring the intensity (phase angle) of fluorescence while receiving light with the light emitting and receiving / measuring device. It is.

本発明のセンサにおいて用いられる蛍光プローブや受発光・計測装置としては、照射端部及び受光端部が光ファイバー等の光伝送媒体の先端部である場合には、上記したような市販品が挙げられる。
また、照射端部及び受光端部がそれぞれ発光素子及び受光素子である場合の受発光・計測装置については、上記したような市販の受発光・計測装置の発光素子及び受光素子をピストン内に配置することで光ファイバーなしで構成できる。
As the fluorescent probe and the light emitting / receiving / measuring device used in the sensor of the present invention, when the irradiation end portion and the light receiving end portion are the front end portion of an optical transmission medium such as an optical fiber, the above-mentioned commercially available products may be mentioned. .
For the light emitting / receiving / measuring device when the irradiation end and the light receiving end are a light emitting element and a light receiving element, respectively, the light emitting element and the light receiving element of a commercially available light emitting / receiving device as described above are arranged in the piston. By doing so, it can be configured without an optical fiber.

以下、本発明につき、図面を参照しつつ、さらに詳細に説明する。
(第1の実施形態)
図1は、本発明のシリンジ式センサの第1の実施形態を示す縦断面図である。
同図において、シリンジ式センサ1は、先端に被検液の吸入口2aを有し他端が開口する円筒状の外筒2と、外筒2内に開口側からその一部が往復動自在でOリング等のパッキン3aを介して液密的に挿入される棒状のピストン(内筒)3とを備えている。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
(First embodiment)
FIG. 1 is a longitudinal sectional view showing a first embodiment of the syringe type sensor of the present invention.
In the figure, a syringe-type sensor 1 has a cylindrical outer cylinder 2 having a test liquid suction port 2a at the tip and an opening at the other end, and a part of the outer cylinder 2 can reciprocate from the opening side. And a rod-like piston (inner cylinder) 3 inserted in a liquid-tight manner through a packing 3a such as an O-ring.

外筒2の吸入口2aには、被検液の採取時には採取のための、例えば、シリコンゴム等の弾性管2bが連結されるが、あらかじめ連結されていてもよい。
また、弾性管2bは、採取する被検液量を最小とすべく、細く、かつ短いものが好ましい。
本発明のセンサ1では、被検液の採取量が0.3ml以上であればよく、少量の被検液で上記の成分の濃度を計測することができる。
また、被検液を採取した際には、直ちにセンサ1の吸入口2a側を上方に向け、ピストン3を上方向に少し押して空気を抜いたのち、計測を行うようにすればよい。
The suction port 2a of the outer cylinder 2 is connected to an elastic tube 2b made of, for example, silicon rubber for collecting the test liquid, but may be connected in advance.
The elastic tube 2b is preferably thin and short so as to minimize the amount of sample liquid to be collected.
In the sensor 1 of the present invention, the amount of the sample liquid to be collected should be 0.3 ml or more, and the concentration of the above components can be measured with a small amount of the sample liquid.
Further, when the sample liquid is collected, the measurement may be performed immediately after the suction port 2a side of the sensor 1 is directed upward and the piston 3 is slightly pushed upward to evacuate the air.

外筒2及びピストン3の材料は、特に制限されないが、例えば、合成樹脂、ガラス、ステンレス鋼等が挙げられるが、ピストンについては、例えば、ステンレス鋼等が好ましい。
なお、外筒2については、市販のシリンジの外筒がそのまま有効に用いられる。
The material of the outer cylinder 2 and the piston 3 is not particularly limited, and examples thereof include synthetic resin, glass, stainless steel, and the like. For the piston, for example, stainless steel is preferable.
In addition, about the outer cylinder 2, the outer cylinder of a commercially available syringe is used effectively as it is.

ピストン(材料例示:ステンレス鋼)3には、その先端部3bに、例えば、円形状のパッチ型等の蛍光プローブ4が装着されている。この蛍光プローブ4には、照射された励起光により被検液の成分の濃度に対応した蛍光を発光する蛍光物質が含まれている。
この場合、蛍光プローブ4は、その蛍光物質が被検液に接液するようにして装着されている。
なお、蛍光プローブ4としては、上記のごとく、例えば、酸素濃度、炭酸ガス濃度、pH等の測定用が挙げられる。
For example, a circular patch type fluorescent probe 4 is attached to the tip 3b of the piston (material example: stainless steel) 3. The fluorescent probe 4 contains a fluorescent substance that emits fluorescence corresponding to the concentration of the component of the test liquid by the irradiated excitation light.
In this case, the fluorescent probe 4 is mounted so that the fluorescent substance is in contact with the test solution.
As described above, the fluorescent probe 4 may be used for measuring oxygen concentration, carbon dioxide concentration, pH, and the like.

蛍光プローブ4をピストン3の接液側の先端部3bに装着するには、適宜の方法が採用される。例えば、パッチ型の蛍光ブローブ4の接液側の反対側の面の周縁部をピストン3の周縁部に位置させ、その間にOリング等のガスケット10aを介装して袋ナット10とピストン3の先端部3b近傍の外周との螺合により、液密的に固定して装着することができる。
なお、パッチ型の蛍光プローブの大きさは、ピストンの先端部3bの外径と略同径にすればよい。
In order to attach the fluorescent probe 4 to the tip 3b on the liquid contact side of the piston 3, an appropriate method is employed. For example, the peripheral part of the surface opposite to the liquid contact side of the patch-type fluorescent probe 4 is positioned at the peripheral part of the piston 3, and a gasket 10 a such as an O-ring is interposed between the peripheral parts of the cap nut 10 and the piston 3. By screwing with the outer periphery in the vicinity of the tip 3b, it can be fixed and mounted in a liquid-tight manner.
The size of the patch-type fluorescent probe may be approximately the same as the outer diameter of the piston tip 3b.

ピストン3内には、ピストン3内を軸線方向に貫通する丸棒状の後記する光伝送媒体5の先端部が、蛍光プローブ4への励起光の照射端部6として蛍光プローブ4の接液側の反対側に対向して配置され、また、この先端部が蛍光プローブ4からの蛍光の受光端部7としても機能する。
このときの蛍光プローブと照射端部及び受光端部との対向間隔は特に制限されないが、0mm(接触)〜2mmが好ましい。
なお、この態様において、励起光の照射と蛍光の受光とが、後記のごとく、一定時間毎に交互に行われることから、光伝送媒体5の先端部が照射端部6及び受光端部7を兼ねることになる。
In the piston 3, a tip portion of a light transmission medium 5, which will be described later, is formed in a round bar shape penetrating the inside of the piston 3 in the axial direction, and serves as an irradiation end portion 6 of excitation light to the fluorescent probe 4. It is arranged to face the opposite side, and this tip part also functions as a light receiving end part 7 for fluorescence from the fluorescent probe 4.
The facing distance between the fluorescent probe and the irradiation end and the light receiving end is not particularly limited, but is preferably 0 mm (contact) to 2 mm.
In this aspect, since the excitation light irradiation and the fluorescence light reception are alternately performed at regular intervals as described later, the front end portion of the optical transmission medium 5 is connected to the irradiation end portion 6 and the light receiving end portion 7. I will also serve.

そして、照射端部6及び受光端部7(光伝送媒体5の先端部)は、光伝送媒体5の他端で光ファイバー8を介してピストン3の外側の受発光・計測装置(不図示)に光学的に接続される。この場合、ピストン3の他端に螺合等により固定された円筒状の取付部材(キャップ)9の端部に光コネクタ8aの取付部9aを設け、これにより、光ファイバー8を介して光伝送媒体5の他端と受発光・計測装置とを接続することもできる。
なお、9bは、接続される光ファイバー8が挿入される中空部である。
また、光伝送媒体5は、接着剤等でピストン3内に固定するのが好ましい。
The irradiation end 6 and the light receiving end 7 (the tip of the optical transmission medium 5) are connected to a light emitting / receiving / measuring device (not shown) outside the piston 3 via the optical fiber 8 at the other end of the optical transmission medium 5. Optically connected. In this case, the mounting portion 9a of the optical connector 8a is provided at the end of the cylindrical mounting member (cap) 9 fixed to the other end of the piston 3 by screwing or the like, whereby the optical transmission medium is transmitted via the optical fiber 8. The other end of 5 and the light emitting / receiving / measuring device can also be connected.
In addition, 9b is a hollow part into which the optical fiber 8 to be connected is inserted.
The optical transmission medium 5 is preferably fixed in the piston 3 with an adhesive or the like.

本発明のセンサ1は、光コネクタ8aの取付部9aで受発光・計測装置に接続する光ファイバー8を切り離すことができるようにすることもできることから、この場合には、被検液の採取時にはセンサ1単独で操作し、次いで、光コネクタ8aの取付部9aに光ファイバー8の光コネクタ8aを取付けることで成分の濃度を計測することができ、取り扱い上好都合である。
なお、光伝送媒体5として、特に下記の被覆した光ファイバーを用いるような場合には、光コネクタ8aを介することなく、光伝送媒体を直接受発光・計測装置に接続しても勿論よい。
また、後記のごとく、センサ1を蒸気滅菌処理する場合には、ピストン3内に蒸気が侵入するのを防ぐために取付部9aに蓋用キャップ(不図示)を螺合して取り付けることができる。
The sensor 1 of the present invention can also be configured such that the optical fiber 8 connected to the light emitting / receiving / measuring device can be disconnected by the mounting portion 9a of the optical connector 8a. 1 is operated alone, and then the concentration of the component can be measured by attaching the optical connector 8a of the optical fiber 8 to the attachment portion 9a of the optical connector 8a, which is convenient in handling.
Of course, when the following coated optical fiber is used as the optical transmission medium 5, the optical transmission medium may be directly connected to the light emitting / receiving / measuring device without using the optical connector 8a.
Further, as will be described later, when the sensor 1 is subjected to steam sterilization treatment, a lid cap (not shown) can be screwed onto the mounting portion 9a in order to prevent steam from entering the piston 3.

図2は、蛍光プローブ14をピストン3の接液側の先端部3bに蛍光物質が接液するようにして装着される別の実施形態を示す縦断面図である。
同図において、内周にねじを有する蛍光プローブ用キャップ20の少なくとも上部は、光透過性の透明な材料、例えば、ポリカーボネート等からなり、また、その上部の表面に備える蛍光プローブ14は、光透過性の接着剤、例えば、シリコン接着剤等で固着される。
そして、蛍光プローブ用キャップ20とピストン3の先端部3b近傍の外周とを、Oリング等のガスケットを介装して螺合することにより、蛍光プローブ4がピストン3の接液側の先端部3bに液密的に固定して装着される。
この場合、蛍光ブローブ14が固着される蛍光プローブ用キャップ20の上部の厚さは、計測される蛍光の強度に影響を与えることから、約3mm未満とするのが好ましい。
FIG. 2 is a longitudinal sectional view showing another embodiment in which the fluorescent probe 14 is mounted so that the fluorescent substance comes into contact with the tip 3 b on the liquid contact side of the piston 3.
In this figure, at least the upper part of the fluorescent probe cap 20 having a screw on the inner periphery is made of a light-transmitting transparent material, such as polycarbonate, and the fluorescent probe 14 provided on the upper surface of the cap has a light transmission property. It is fixed with an adhesive such as a silicon adhesive.
Then, the fluorescent probe cap 20 and the outer periphery in the vicinity of the tip 3b of the piston 3 are screwed together via a gasket such as an O-ring so that the fluorescent probe 4 is in contact with the tip 3b on the liquid contact side of the piston 3. It is fixed in a liquid-tight manner.
In this case, the thickness of the upper portion of the fluorescent probe cap 20 to which the fluorescent probe 14 is fixed affects the measured fluorescence intensity, and is preferably less than about 3 mm.

さらに、蛍光プローブ4をピストン3の先端部3bに備える他の方法として、ピストン3の先端部3bに位置する光伝送部材5の先端面に直接蛍光物質を塗布する方法を採ることもできる。
なお、蛍光プローブの作製例については、後記する。
Furthermore, as another method of providing the fluorescent probe 4 at the tip 3b of the piston 3, a method of directly applying a fluorescent material to the tip of the light transmission member 5 located at the tip 3b of the piston 3 can be adopted.
An example of producing a fluorescent probe will be described later.

ピストン3内で蛍光プローブ4にその先端部を対向して配置する光伝送媒体5としては、例えば、透明なガラス(例示:石英系ガラスなど)、透明なプラスチック(例示:完全フッ素化ポリマー、ポリカーボネートなど)、コアとクラッドからなる二重構造の光ファイバー(ガラス製又はプラスチック製光ファイバー)、この二重構造のものを被覆した光ファイバー等が好適であり、特に、これらの光ファイバーが好ましい。
なお、ピストン3内を光伝送媒体5が貫通することから、ピストン3の材料は、例えば、ステンレス鋼等の遮光性のものが好適であるが、光透過性の材料の場合には、上記の被覆した光ファイバーは別として、光伝送媒体5を、例えば、遮光性のもので被覆したり塗装したり等すればよい。
Examples of the optical transmission medium 5 in which the tip of the fluorescent probe 4 is disposed facing the fluorescent probe 4 in the piston 3 include transparent glass (example: quartz glass) and transparent plastic (example: fully fluorinated polymer, polycarbonate). Etc.), a double-structured optical fiber (glass or plastic optical fiber) composed of a core and a clad, an optical fiber coated with this dual structure, and the like are preferred, and these optical fibers are particularly preferred.
In addition, since the optical transmission medium 5 penetrates through the piston 3, the material of the piston 3 is preferably a light-shielding material such as stainless steel. However, in the case of a light-transmitting material, the above-described material is used. Apart from the coated optical fiber, the light transmission medium 5 may be coated or coated with a light shielding material, for example.

光伝送媒体5の太さについては、特に制限されないが、その直径(光ファイバーの場合ではコアとクラッドとの二重構造の直径)が、例えば、1〜3mm等であるのが好ましい。
また、光伝送媒体5に接続する光ファイバー8の直径についても、特に制限されないが、被覆を除いたコアとクラッドとの二重構造の直径が、例えば、1〜3mm等であるのが好適である。
The thickness of the optical transmission medium 5 is not particularly limited, but the diameter (in the case of an optical fiber, the diameter of the double structure of the core and the clad) is preferably, for example, 1 to 3 mm.
Further, the diameter of the optical fiber 8 connected to the optical transmission medium 5 is not particularly limited, but the diameter of the double structure of the core and the clad excluding the coating is preferably 1 to 3 mm, for example. .

本発明のセンサ1は、これを用いて、例えば、雑菌による汚染を防止しつつ培養した培養液又は培養途中の培養液を被検液として採取する場合には、121℃で30分等の蒸気滅菌処理を可能とするものが好ましい。
このときには、センサ1を構成する部材として耐熱性のものを採用すればよい。
なお、下記の作製例の蛍光プローブは、蒸気滅菌処理が可能であり、また、光伝送部材としては、ガラスやガラス製の二重構造の光ファイバーを用いれば、蒸気滅菌処理が可能である。
When the sensor 1 of the present invention is used to collect, for example, a culture solution cultured while preventing contamination by various bacteria or a culture solution in the middle of culture as a test solution, steam such as 30 minutes at 121 ° C. Those that allow sterilization are preferred.
At this time, a heat-resistant member may be employed as a member constituting the sensor 1.
Note that the fluorescent probe of the following production example can be subjected to steam sterilization, and can be steam sterilized by using glass or a double-structured optical fiber made of glass as the optical transmission member.

このように、本発明のシリンジ式センサ1は、被検液を必要時に簡単に採取してその成分の濃度を少量の被検液で簡易に、しかも迅速に計測できる有効なセンサである。  Thus, the syringe type sensor 1 of the present invention is an effective sensor that can easily and quickly measure the concentration of the component with a small amount of the test liquid by simply collecting the test liquid when necessary.

(第2の実施態様)
図3は、本発明のシリンジ式センサの第2の実施形態を示す縦断面図である。
本実施態様において、第1の実施態様の場合と実質的に同一の部材・箇所には同一の符号を付し、その説明を省略する。
同図において、シリンジ式センサ21は、ピストン3内の照射端部26及び受光端部27がそれぞれ発光素子及び受光素子である点で第1の実施態様のセンサ1と異なる。
(Second Embodiment)
FIG. 3 is a longitudinal sectional view showing a second embodiment of the syringe type sensor of the present invention.
In this embodiment, substantially the same members / locations as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the figure, a syringe type sensor 21 is different from the sensor 1 of the first embodiment in that an irradiation end portion 26 and a light receiving end portion 27 in the piston 3 are a light emitting element and a light receiving element, respectively.

センサ21において、外筒2内に挿入されたピストン3の先端部3bには、第1の実施態様に記載したと同様にして、蛍光プローブ4が液密的に固定して装着されている。  In the sensor 21, the fluorescent probe 4 is mounted in a liquid-tight manner on the tip 3 b of the piston 3 inserted into the outer cylinder 2 in the same manner as described in the first embodiment.

ピストン3内には、蛍光プローブ4への励起光の照射端部26及び蛍光プローブ4からの蛍光の受光端部27が蛍光プローブ4の接液側の反対側に対向して配置されている。
そして、照射端部26及び受光端部27は、ピストン3を軸線方向に貫通する中空部分30内に適宜の支持部材31で固定されており、また、照射端部26及び受光端部27にそれぞれ備えられているリード線26a、27a(各2本)が、ピストン3の他端に螺合等により固定された円筒状の取付部(キャップ)9の端部に設けた端子32(端子コネクタの取付部9a)を介して、又は直接受発光・計測装置(不図示)に電気的に接続される。
照射端部26としては、例えば、発光ダイオード(LED)等の発光素子が用いられ、また、受光端部27としては、例えば、フォトダイオード(PD)等の受光素子が用いられる。
In the piston 3, an irradiation end portion 26 of excitation light to the fluorescent probe 4 and a light receiving end portion 27 of fluorescence from the fluorescent probe 4 are arranged opposite to the opposite side of the fluorescent probe 4 on the liquid contact side.
The irradiation end portion 26 and the light receiving end portion 27 are fixed to the irradiation end portion 26 and the light receiving end portion 27 by an appropriate support member 31 in a hollow portion 30 penetrating the piston 3 in the axial direction. The lead wires 26a, 27a (two each) provided are terminals 32 (terminal connector terminals) provided at the end of a cylindrical mounting portion (cap) 9 fixed to the other end of the piston 3 by screwing or the like. It is electrically connected to the light emitting / receiving / measuring device (not shown) via the mounting portion 9a).
As the irradiation end portion 26, for example, a light emitting element such as a light emitting diode (LED) is used. As the light receiving end portion 27, for example, a light receiving element such as a photodiode (PD) is used.

本発明のセンサ21は、第1の実施形態に記載したと同様に、被検液を必要時に簡単に採取してその成分の濃度を少量の被検液で簡易に、しかも迅速に計測できる有効なセンサである。  As described in the first embodiment, the sensor 21 of the present invention is effective in that a test solution can be easily collected when necessary and the concentration of the component can be easily and quickly measured with a small amount of the test solution. Sensor.

ここで、第1の実施形態における本発明のセンサ1の弾性管2bを介して培養槽等のポート等より外筒2内に採取された培養液(被検液)について、下記の製造例による酸素濃度測定用蛍光プローブを用いて酸素濃度を測定する方法を例示して説明するが、この測定方法自体は公知である。  Here, the culture solution (test solution) collected in the outer cylinder 2 from the port of the culture tank or the like via the elastic tube 2b of the sensor 1 of the present invention in the first embodiment is as follows. A method for measuring oxygen concentration using a fluorescent probe for measuring oxygen concentration will be described as an example, but this measurement method itself is known.

公知の受発光・計測装置(例えば、Fibox3(独国 プレセンス(Presens)社製商品名)、DBF−1131(日本国 エイブル社製商品名)等)を用い、ピストン3の先端部3bの、被検液に接液している蛍光プローブ4に対して該受発光・計測装置より光ファイバー8及び光伝送媒体5を介して光伝送媒体5の先端部の照射端部6から、例えば、波長400〜600nm等の励起光が、適宜の照射時間、例えば、500ミリ秒(msec.)〜1秒(sec.)等と適宜の照射間隔、例えば、500ミリ秒(msec.)〜60秒(sec.)等で間歇的に照射される。  Using a known light emitting / receiving device (for example, Fibox 3 (trade name made by Germany Presense), DBF-1131 (trade name made by Able, Japan), etc.), the tip 3b of the piston 3 is covered. From the irradiation end 6 of the tip of the optical transmission medium 5 to the fluorescent probe 4 in contact with the test solution via the optical fiber 8 and the optical transmission medium 5 from the light emitting / receiving / measuring device, for example, wavelengths 400 to The excitation light of 600 nm or the like has an appropriate irradiation time, for example, 500 milliseconds (msec.) To 1 second (sec.), And an appropriate irradiation interval, for example, 500 milliseconds (msec.) To 60 seconds (sec.). ) Etc. and intermittently irradiated.

この励起光の照射によって励起された蛍光プローブ4の蛍光物質から発光する蛍光が、上記の励起光の照射のない時間帯(照射と次の照射の合間)に光伝送媒体5の先端部の受光端部7で受光され、受発光・計測装置に伝送されて光強度(位相角)が間歇的に計測される(受発光・計測装置では励起光の照射と受光が交互に繰り返される)。
このとき、酸素の存在により発光強度が低下することから、受光された光強度の計測値と、別にあらかじめ作成された既知酸素濃度の検量線とから、酸素濃度が算出され、測定されることになる。
The fluorescence emitted from the fluorescent material of the fluorescent probe 4 excited by the irradiation of the excitation light is received at the tip of the optical transmission medium 5 during the time period (between irradiation and the next irradiation) when the excitation light is not irradiated. The light is received at the end 7 and transmitted to the light emitting / receiving / measuring device, and the light intensity (phase angle) is measured intermittently (in the light emitting / receiving / measuring device, irradiation with excitation light and light reception are repeated alternately).
At this time, since the emission intensity is reduced due to the presence of oxygen, the oxygen concentration is calculated and measured from the measured value of the received light intensity and the calibration curve of the known oxygen concentration separately prepared in advance. Become.

次に、蛍光プローブの作製例について説明する。
本発明に用いられる蛍光プローブとしては、上記のごとく、被検液の成分の濃度に対応した蛍光を発光する蛍光物質が塗布等された公知のものが有効に使用されるが、本特許出願人が先に提案した蛍光プローブの一例である酸素濃度測定用蛍光プローブについて説明する(特開2014−153348号公報参照)。
Next, an example of manufacturing a fluorescent probe will be described.
As the fluorescent probe used in the present invention, as described above, a known probe coated with a fluorescent substance that emits fluorescence corresponding to the concentration of the component of the test solution is effectively used. Will describe a fluorescent probe for measuring oxygen concentration, which is an example of the previously proposed fluorescent probe (see Japanese Patent Application Laid-Open No. 2014-153348).

酸素濃度測定用蛍光プローブの作製例
(1)蛍光物質(発光物質)のPtT975(米国 フロンティア サイエンティフィック(Frontier Scientific)社製商品名、白金(II)−テトラ(ペンタフルオロフェニル)ポルフィリン(Pt(II)meso−Tetra(pentafluorophenyl)Porphine)(金属ポルフィリン錯体)5.6mgに有機溶媒のアセトン5mlを加え、撹拌して懸濁液を調製した。
Example of Preparation of Fluorescent Probe for Oxygen Concentration Measurement (1) Fluorescent substance (luminescent substance) PtT975 (trade name, platinum (II) -tetra (pentafluorophenyl) porphyrin (Pt (US Frontier Scientific)) II) 5 ml of organic solvent acetone was added to 5.6 mg of meso-Tetra (pentafluorophenyl) Porphine) (metal porphyrin complex) and stirred to prepare a suspension.

(2)ロータリーエバポレーターの専用試験管に下記の方法で得たポリカーボネート(PC)の粒体260mgを入れ、あらかじめ、回転させながらブロアーの熱風によりPCを60℃に予熱しておき、次いで、該試験管に(1)で調製された懸濁液を回転させつつ手早く入れ、直ちに試験管外からブロアーの熱風で試験管内の温度が約70℃になるように加熱して接触時間10秒でアセトンを急速に気化させ、蛍光物質がPCの粒体の表面に、しかも適度の分散状態で付着、固定された粒体状の調製物を調製した。(2) Put 260 mg of polycarbonate (PC) granules obtained by the following method in a dedicated test tube of a rotary evaporator, preheat the PC to 60 ° C with hot air from a blower while rotating, and then perform the test The suspension prepared in (1) is quickly put into a tube while rotating, and immediately heated from outside the test tube with hot air from a blower so that the temperature in the test tube becomes about 70 ° C., and acetone is added for 10 seconds in contact time. A granular preparation was prepared, which was rapidly vaporized and the fluorescent material adhered and fixed to the surface of the PC granules in an appropriate dispersion state.

透明なポリカーボネート(PC)の粉末化:
PCのチップ8gを自動乳鉢器に採り、300rpmで5.5時間粉砕を続け、次いで、乳鉢内等に付着した粒体を集め、PCの粒体を得た。
続いて、このPC粒体につき、ステンレス鋼製の200メッシュ(目開き 75μm)篩通過の粒体を採取し、また、不通過の粒体は上記乳鉢器に戻してさらに300rpmで1時間粉砕し、同様にして200メッシュ篩通過の粒体を採取した。
そして、これらを合わせてPCの粒体とした。
Transparent polycarbonate (PC) powdered:
8 g of PC chips were taken in an automatic mortar and pulverized at 300 rpm for 5.5 hours, and then the granules adhered to the inside of the mortar and the like were collected to obtain PC granules.
Subsequently, for this PC granule, a stainless steel 200-mesh (aperture 75 μm) sieve granule was collected, and the non-passed granule was returned to the mortar and further pulverized at 300 rpm for 1 hour. In the same manner, granules passing through a 200 mesh sieve were collected.
These were combined into a PC granule.

(3)(2)で調製された蛍光物質とPCの粒体との粒体状の調製物に、光透過性及び酸素透過性の合成接着剤(例示:シリコンRTVゴム(モーメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製 TSE389W))を加えて均一になるように約1分程度で素早く混和し、混和物を調製した。(3) A light-transmitting and oxygen-permeable synthetic adhesive (example: silicon RTV rubber (Momentive Performance Performance) is added to the granular preparation of the fluorescent substance prepared in (2) and PC granules. Materials Japan GK TSE389W)) was added and mixed quickly in about 1 minute so as to be uniform to prepare a mixture.

(4)光透過性の膜として厚さ2mil(0.05mm)のFEP膜(四フッ化エチレン・六フッ化プロピレン共重合体)(例示:ダイキン工業株式会社製 ネオフロンFEPフィルム(片面親水化処理)NF−0050B−1)を用い、その処理面に(3)で調製された混和物を薄く塗布し、続いて、降塵等を避け、24時間以上室温で放置して完全に固化させることにより、固化物を得た。(4) FEP film (tetrafluoroethylene / hexafluoropropylene copolymer) having a thickness of 2 mil (0.05 mm) as a light-transmitting film (example: Neofron FEP film (single-side hydrophilization treatment) manufactured by Daikin Industries, Ltd.) ) Using NF-0050B-1), thinly apply the mixture prepared in (3) to the treated surface, and then avoid solid dusting and leave it at room temperature for 24 hours or more to completely solidify A solidified product was obtained.

(5)(4)で得た固化物をポンチ等による適宜の方法により円形状等パッチ型(例示:直径4mmの円形状パッチ)に成形して薄い膜厚の蛍光プローグが作製された。
こうして作製された蛍光プローブの応答速度は95%で60秒と良好であった。
なお、上記蛍光プローブの性能を示す応答速度は、測定セル(容器)内の酸素濃度0%(空気を窒素ガスで完全置換)及び酸素濃度21%(空気100%)の2点で測定される。
(5) The solidified product obtained in (4) was molded into a circular-like patch type (example: circular patch having a diameter of 4 mm) by an appropriate method using a punch or the like to produce a fluorescent probing with a thin film thickness.
The response speed of the thus prepared fluorescent probe was 95%, which was good at 60 seconds.
The response speed indicating the performance of the fluorescent probe is measured at two points: an oxygen concentration in the measurement cell (container) of 0% (air is completely replaced with nitrogen gas) and an oxygen concentration of 21% (air 100%). .

また、第2の実施形態における本発明のセンサ21を用いる酸素濃度の測定方法については、センサ21が、上記のごとく、受発光・計測装置の発光素子及び受光素子をピストン内のそれぞれ照射端部及び受光端部として位置変えして配置し、また、該発光素子及び該受光素子のリード線を該受発光・計測装置に電気的に接続する以外は、上記センサ1と実質的に同様の構成であることから、該センサ1を用いる酸素濃度の測定方法の場合と同様にして、酸素濃度を測定することができる。  Moreover, about the measuring method of the oxygen concentration using the sensor 21 of the present invention in the second embodiment, as described above, the sensor 21 is configured so that the light emitting element and the light receiving element of the light emitting / receiving / measuring device are respectively irradiated end portions in the piston. The configuration is substantially the same as that of the sensor 1 except that the light receiving element and the light receiving element are repositioned, and the light emitting element and the lead wire of the light receiving element are electrically connected to the light receiving / emitting / measuring device. Therefore, the oxygen concentration can be measured in the same manner as in the method of measuring the oxygen concentration using the sensor 1.

1、21 シリンジ式センサ
2 外筒
2a 吸入口
2b 弾性管
3 ピストン
3a パッキン
3b 先端部
4、14 蛍光プローブ
5 光伝送媒体
6、26 照射端部
7、27 受光端部
8 光ファイバー
8a 光コネクタ
9 取付部材(キャップ)
9a 取付部
9b 中空部
10 袋ナット
20 蛍光プローブ用キャップ
26a リード線
27a リード線
30 中空部分
31 支持部材
32 端子
DESCRIPTION OF SYMBOLS 1, 21 Syringe type sensor 2 Outer cylinder 2a Suction port 2b Elastic pipe 3 Piston 3a Packing 3b Tip part 4, 14 Fluorescent probe 5 Optical transmission medium 6, 26 Irradiation end part 7, 27 Light reception end part 8 Optical fiber 8a Optical connector 9 Attachment Member (cap)
9a Mounting portion 9b Hollow portion 10 Cap nut 20 Cap for fluorescent probe 26a Lead wire 27a Lead wire 30 Hollow portion 31 Support member 32 Terminal

Claims (7)

被検液の成分の濃度を光学的に計測するシリンジ式センサであって、
先端に前記被検液の吸入口を有し、他端が開口する外筒と、
前記外筒内に開口側からその一部が往復動自在で液密的に挿入されるピストンと、
を備え、
前記ピストンの接液側の先端部には、照射された励起光により前記被検液の成分の濃度に対応した蛍光を発光する蛍光物質を含む蛍光プローブが該蛍光物質が接液するようにして装着されており、
前記ピストン内には、前記蛍光プローブへの前記励起光の照射端部及び該蛍光プローブからの前記蛍光の受光端部が該蛍光プローブの接液側の反対側に対向して配置されており、
前記照射端部及び受光端部は、前記ピストン内を通して該ピストンの外側の受発光・計測装置に接続される、前記センサ。
A syringe type sensor that optically measures the concentration of a component of a test liquid,
An outer cylinder having a suction port for the test liquid at the tip and having the other end opened;
A piston part of which is reciprocally movable in the outer cylinder from the opening side and is fluid-tightly inserted;
With
A fluorescent probe containing a fluorescent substance that emits fluorescence corresponding to the concentration of the component of the test liquid by irradiated excitation light is in contact with the front end of the piston on the liquid contact side. Is installed,
In the piston, an irradiation end portion of the excitation light to the fluorescent probe and a light receiving end portion of the fluorescence from the fluorescent probe are arranged opposite to the liquid contact side of the fluorescent probe,
The sensor, wherein the irradiation end and the light receiving end are connected to a light emitting / receiving / measuring device outside the piston through the piston.
前記照射端部及び受光端部は、前記ピストン内を軸線方向に貫通する光伝送媒体の先端部であり、該光伝送媒体の他端が光ファイバーを介して前記受発光・計測装置に光学的に接続される、請求項1記載のセンサ。  The irradiation end portion and the light receiving end portion are tip portions of an optical transmission medium that penetrates the piston in the axial direction, and the other end of the optical transmission medium is optically connected to the light emitting / receiving / measurement device via an optical fiber. The sensor of claim 1 connected. 前記光伝送媒体が光透過性のガラス若しくはプラスチック、又は光ファイバーである、請求項2記載のセンサ。  The sensor according to claim 2, wherein the optical transmission medium is light transmissive glass or plastic, or an optical fiber. 前記照射端部は発光素子であり、また、前記受光端部は受光素子であって、それぞれの素子に備えるリード線が前記受発光・計測装置に電気的に接続される、請求項1記載のセンサ。  The said irradiation end part is a light emitting element, Moreover, the said light receiving end part is a light receiving element, The lead wire with which each element is equipped is electrically connected to the said light emitting / receiving and measuring apparatus. Sensor. 前記発光素子は発光ダイオードであり、また、前記受光素子はフォトダイオードである、請求項4記載のセンサ。  The sensor according to claim 4, wherein the light emitting element is a light emitting diode, and the light receiving element is a photodiode. 前記ピストンの他端にコネクタの取付部を備え、該コネクタによって前記照射端部及び受光端部と前記受発光・計測装置とが接続される、請求項1〜5のいずれか1項に記載のセンサ。  The other end of the piston is provided with a connector mounting portion, and the irradiation end portion and the light receiving end portion are connected to the light emitting / receiving / measurement device by the connector. Sensor. 前記蛍光プローブは、酸素濃度、炭酸ガス濃度又は水素イオン濃度の測定用である、請求項1〜6のいずれか1項に記載のセンサ。  The sensor according to claim 1, wherein the fluorescent probe is used for measuring an oxygen concentration, a carbon dioxide concentration, or a hydrogen ion concentration.
JP2016126024A 2016-06-09 2016-06-09 Syringe type sensor Pending JP2017219526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126024A JP2017219526A (en) 2016-06-09 2016-06-09 Syringe type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126024A JP2017219526A (en) 2016-06-09 2016-06-09 Syringe type sensor

Publications (1)

Publication Number Publication Date
JP2017219526A true JP2017219526A (en) 2017-12-14

Family

ID=60656361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126024A Pending JP2017219526A (en) 2016-06-09 2016-06-09 Syringe type sensor

Country Status (1)

Country Link
JP (1) JP2017219526A (en)

Similar Documents

Publication Publication Date Title
US5266486A (en) Method and apparatus for detecting biological activities in a specimen
KR101971024B1 (en) Composite sensor assemblies for single-use bioreactor
JP7203673B2 (en) Sensor supports for bioreactors and bioreactors with sensor supports and methods of propagating or culturing biological material
JP2013545451A5 (en)
US7824902B2 (en) Optical interface for disposable bioreactors
JP5669087B2 (en) Fluorescence measurement method and fluorescence measurement apparatus
JPS6022649A (en) Optical method and device for measuring characteristic of substance by fluorescence of said substance
EP0448923A1 (en) Method and apparatus for detecting biological activities in a specimen
US20140273052A1 (en) Chemical sensing apparatus having multiple immobilized reagents
US11971360B2 (en) Optochemical sensor and method for measured value correction
KR20080064422A (en) Optical sensor probes and detection methods using the same
EP2304419A1 (en) Electrode with integrated optical sensor
CN101438145A (en) Optical probe
JP7074305B2 (en) Optical detection cells and systems for detecting inorganic analytes
CN111678899A (en) Fluorescence method dissolved oxygen sensor
JPWO2005106433A1 (en) Optical information reader
KR0178397B1 (en) Apparatus for detection of microorganisms
JPH10512668A (en) Device for measuring the partial pressure of gas dissolved in liquid
JP2017219526A (en) Syringe type sensor
Pawar et al. Current and future technologies for monitoring cultured meat: a review
CN101427120B (en) Body fluid collection device and body fluid measurement device using the same
CN201974383U (en) Pulse optical source fibre oxygen detector
AU732530B2 (en) Device for measuring the partial pressure of gases dissolved in liquids
CN213302014U (en) Fluorescence method dissolved oxygen sensor
CN105891184A (en) Single liquid drop-electrochemical fluorescent detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728