JP2017219405A - Vehicle and vehicle battery state detection system - Google Patents

Vehicle and vehicle battery state detection system Download PDF

Info

Publication number
JP2017219405A
JP2017219405A JP2016113499A JP2016113499A JP2017219405A JP 2017219405 A JP2017219405 A JP 2017219405A JP 2016113499 A JP2016113499 A JP 2016113499A JP 2016113499 A JP2016113499 A JP 2016113499A JP 2017219405 A JP2017219405 A JP 2017219405A
Authority
JP
Japan
Prior art keywords
battery
deterioration
active material
vehicle
increment value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016113499A
Other languages
Japanese (ja)
Other versions
JP6607353B2 (en
JP2017219405A5 (en
Inventor
前田 謙一
Kenichi Maeda
謙一 前田
孟光 大沼
Takemitsu Onuma
孟光 大沼
近藤 隆文
Takafumi Kondo
隆文 近藤
哲也 松本
Tetsuya Matsumoto
哲也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016113499A priority Critical patent/JP6607353B2/en
Publication of JP2017219405A publication Critical patent/JP2017219405A/en
Publication of JP2017219405A5 publication Critical patent/JP2017219405A5/ja
Application granted granted Critical
Publication of JP6607353B2 publication Critical patent/JP6607353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle and vehicle battery state detection system that can accurately estimate SOH while suppressing the number of steps for engineering/development.SOLUTION: A DOD calculation unit 102 calculates a discharge depth (DOD) upon travelling. In a deterioration level increment value map 103, a relation between the discharge depth DOD in a standard battery and deterioration level increment value ΔSOH therein is registered for each temperature T. In an active material density correction coefficient map 104, a relation between the discharge depth DOD and an active material density correction coefficient P is preliminarily registered for each positive electrode active material density. A deterioration level increment value correction unit 105 is configured to calculate a post-corrected deterioration increment value ΔSOH_r on the basis of the deterioration increment value ΔSOH corresponding to a calculation result of the DOD and the temperature T, a correction coefficient P corresponding to the DOD and active material density of an on-board lead battery 12, and a full charge capacity C0 of the standard battery. A deterioration level calculation unit 106 is configured to calculate a deterioration level SOH_M on the basis of an amount of discharge ΣI and the post-corrected deterioration level increment value ΔSOH_r.SELECTED DRAWING: Figure 2

Description

本発明は、車両およびその電池状態検知システムに係り、特に、電池の型式や仕様に固有の正極活物質密度を考慮して、車両走行時の放電積算量および単位放電量当たりの劣化度増分値に基づいて車両走行中の車載鉛電池の劣化度を求める車両およびその電池状態検知システムに関する。   The present invention relates to a vehicle and a battery state detection system thereof, and in particular, taking into account the positive electrode active material density specific to the battery type and specifications, the accumulated discharge amount during vehicle travel and the deterioration degree increment value per unit discharge amount The present invention relates to a vehicle for determining the degree of deterioration of an in-vehicle lead battery during traveling of the vehicle and a battery state detection system thereof.

近年、エンジン自動車による排ガスの削減に対応するため、エンジンの自動停止および再始動(ISS:アイドルストップ・スタート)の機能を備えた車両が普及し、車載の鉛電池をアイドルストップ可能な状態に保つ技術が望まれている。   In recent years, vehicles equipped with automatic engine stop and restart (ISS: idle stop / start) functions have become widespread in order to cope with the reduction of exhaust gas generated by engine cars, and in-vehicle lead-acid batteries are kept in a state where idling can be stopped. Technology is desired.

すなわち、ISSを搭載する自動車(車両)では、エンジン停止中のエアコン、カーステレオなどの負荷は全て鉛電池からの電力で賄われる。このため、従来に較べて鉛電池の深い放電が増加し、鉛電池の充電状態が低下する傾向にある。   That is, in an automobile (vehicle) equipped with an ISS, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by power from the lead battery. For this reason, the deep discharge of a lead battery increases compared with the past, and it exists in the tendency for the charge condition of a lead battery to fall.

鉛電池の出力はその充電状態に依存するため、エンジン停止中に鉛電池の充電状態が低下すると、エンジンを始動するのに充分な出力が得られなくなり、エンジン停止後の再始動ができなくなるおそれがある。   Since the output of the lead battery depends on its state of charge, if the state of charge of the lead battery drops while the engine is stopped, it will not be possible to obtain sufficient output to start the engine, making it impossible to restart after stopping the engine. There is.

そのため、エンジンの再始動が可能な状態を保つためには、鉛電池の充電状態(例えば、SOC:State Of Charge)を演算(推定)してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合にはアイドルストップを許可する一方、エンジン始動に必要な出力がない場合にはアイドルストップを禁止すると共に鉛電池を充電するなどの信号を車両側のコンピュータに送信する必要がある。   Therefore, in order to maintain a state where the engine can be restarted, the charge state of the lead battery (for example, SOC: State Of Charge) is calculated (estimated) and the presence or absence of output necessary for engine start is monitored. When there is an output required for starting, idling stop is permitted, but when there is no output necessary for starting the engine, idling stop is prohibited and a signal such as charging a lead battery is transmitted to the vehicle computer. There is a need.

また、鉛電池は充放電を繰り返すことで劣化が進み、劣化の進んだ鉛電池はさらに走行時の残存容量が少なくなることが予想されるため、新品状態の鉛電池に比べ、エンジンを再始動できないおそれが高くなる。従って、鉛電池の劣化度を算出して、エンジン始動に必要な電気容量を鉛電池が保持するかを判定し、保持しない場合は交換を促す旨の信号を車両側のコンピュータもしくはユーザ側に伝えることが望ましい。   In addition, since lead batteries deteriorate due to repeated charge and discharge, and the deteriorated lead batteries are expected to have a smaller remaining capacity during driving, the engine is restarted compared to new lead batteries. The risk of being unable to do so increases. Therefore, by calculating the degree of deterioration of the lead battery, it is determined whether the lead battery holds the electric capacity necessary for starting the engine, and if not, a signal for prompting replacement is transmitted to the computer on the vehicle side or the user side. It is desirable.

車載鉛電池の劣化判定技術として、特許文献1には、鉛電池に流れる充電電流と放電電流とを別々に積算し、充放電収支から劣化度ないし健康状態(SOH)を算出する技術が開示されている。しかしながら、特許文献1では鉛電池の劣化が放電深度DODおよび周囲温度の影響を受けることが考慮されていないため、劣化度SOHを精度よく推定することができない。   As a technology for judging deterioration of an in-vehicle lead battery, Patent Document 1 discloses a technique for separately calculating a charge current and a discharge current flowing through a lead battery and calculating a deterioration degree or a health condition (SOH) from a charge / discharge balance. ing. However, since Patent Document 1 does not consider that the deterioration of the lead battery is affected by the depth of discharge DOD and the ambient temperature, the degree of deterioration SOH cannot be accurately estimated.

このような技術課題に対して、特許文献2には、鉛電池の放電量と単位放電量あたりの劣化度増分とを用いて鉛電池の放電による劣化度を算出するに際して、劣化度増分を車両走行時の放電深度DODおよび温度の関数として求める技術が開示されている。   In response to such a technical problem, Patent Document 2 discloses that the deterioration degree increment is calculated when the deterioration degree due to the discharge of the lead battery is calculated using the discharge amount of the lead battery and the deterioration degree increment per unit discharge amount. A technique for determining the depth of discharge DOD during travel as a function of temperature and temperature is disclosed.

特開2006-10601号公報Japanese Unexamined Patent Publication No. 2006-10601 特許第5338807号公報Japanese Patent No. 5338807

特許文献2では、劣化度増分が車両走行時の放電深度DODおよび温度の関数として求まるが、発明者等の実験結果によれば、劣化度増分は鉛電池の正極活物質密度にも依存し、また同種の電池であってもサイズや容量が異なれば正極活物質密度も異なる。   In Patent Literature 2, the deterioration degree increment is obtained as a function of the depth of discharge DOD and the temperature when the vehicle travels, but according to the results of experiments by the inventors, the deterioration degree increase also depends on the positive electrode active material density of the lead battery, Even if the batteries are the same type, the density of the positive electrode active material is different if the size and capacity are different.

したがって、車載鉛電池のサイズや容量すなわち正極活物質密度の相違にかかわらず、劣化度増分を一律に放電深度および温度の関数として計算してしまうと、依然として劣化度SOHを精度よく推定することができない。   Therefore, regardless of the difference in the size and capacity of the lead-acid battery in the vehicle, that is, the positive electrode active material density, if the deterioration degree increment is uniformly calculated as a function of the depth of discharge and the temperature, the deterioration degree SOH can still be estimated accurately. Can not.

本発明の目的は、上記の技術課題を解決し、設計・開発の工数を最小限に抑えながら、鉛電池の劣化度増分の計算にその正極活物質密度を反映させることで劣化状態を精度よく推定できる車両およびその電池状態検知システムを提供することにある。   The object of the present invention is to solve the above technical problem and minimize the man-hours for design and development, while accurately reflecting the density of the positive electrode active material in the calculation of the increase in the degree of deterioration of the lead battery. An object of the present invention is to provide a vehicle that can be estimated and a battery state detection system thereof.

上記の目的を達成するために、本発明は、車両走行時の放電量と単位放電量当たりの劣化度増分値とに基づいて車載電池の劣化度を求める電池状態検知システムにおいて、以下の構成を具備した点に特徴がある。   In order to achieve the above object, the present invention provides a battery state detection system that obtains the degree of deterioration of an in-vehicle battery based on the amount of discharge during vehicle travel and the degree of deterioration per unit discharge amount. It is characterized in that it is equipped.

(1) 車載電池を標準電池と想定して車両走行時の劣化度増分値を求める手段と、車載電池に固有の正極活物質密度に基づいて前記劣化度増分値を補正する手段と、前記補正後の劣化度増分値に基づいて車載電池の劣化度を求める手段とを具備した。   (1) Means for obtaining a deterioration degree increment value during vehicle traveling assuming that the in-vehicle battery is a standard battery, means for correcting the deterioration degree increment value based on the positive electrode active material density specific to the in-vehicle battery, and the correction And means for determining the degree of deterioration of the in-vehicle battery based on the subsequent deterioration degree increment value.

(2) 車載電池の車両走行時の放電深度を求める手段と、標準電池の放電深度と劣化度増分値との関係を温度ごとに記憶した劣化度増分値マップとを具備し、前記劣化度増分値を求める手段は、車載電池の温度および前記放電深度を前記劣化度増分値マップに適用して劣化度増分値を求めるようにした。   (2) comprising a means for determining the depth of discharge of the in-vehicle battery when the vehicle is running, and a deterioration degree increment value map storing the relationship between the discharge depth of the standard battery and the deterioration degree increment value for each temperature, the deterioration degree increment The means for obtaining a value obtains the deterioration degree increment value by applying the temperature of the in-vehicle battery and the depth of discharge to the deterioration degree increment value map.

(3) 放電深度と活物質密度補正係数との関係を正極活物質密度ごとに記憶した活物質密度補正係数マップを具備し、前記劣化度増分値を補正する手段は、車載電池の正極活物質密度および前記放電深度を前記活物質密度補正係数マップに適用して活物質密度補正係数を求め、当該活物質密度補正係数、標準電池の満充電容量および車載電池の満充電容量に基づいて前記劣化度増分値を補正するようにした。   (3) The active material density correction coefficient map storing the relationship between the discharge depth and the active material density correction coefficient for each positive electrode active material density is provided, and the means for correcting the deterioration degree increment value is a positive electrode active material of an in-vehicle battery. The density and the depth of discharge are applied to the active material density correction coefficient map to obtain an active material density correction coefficient, and the deterioration based on the active material density correction coefficient, the full charge capacity of the standard battery, and the full charge capacity of the in-vehicle battery The degree increment value was corrected.

本発明によれば、以下のような効果が達成される。   According to the present invention, the following effects are achieved.

(1) 鉛電池の劣化度を放電量と単位放電量あたりの劣化度増分とを用いて算出するにあたり、劣化度増分に車載電池の正極活物質密度を反映できるので、車載鉛電池の劣化度をより精度よく算出できるようになる。   (1) When calculating the degree of deterioration of a lead battery using the discharge amount and the increment of deterioration per unit discharge amount, the density of the positive electrode active material of the in-vehicle battery can be reflected in the increment of deterioration. Can be calculated more accurately.

(2) 鉛電池の劣化度を放電量と単位放電量あたりの劣化度増分とを用いて算出するにあたり、劣化度増分を車両走行時の放電深度DODおよび温度の関数として求めると共に、放電深度DODに鉛電池の正極活物質密度が反映されるようしたので、車載鉛電池の劣化度を、その正極活物質密度にかかわらず精度よく算出できるようになる。   (2) In calculating the deterioration level of the lead battery using the discharge amount and the deterioration degree increment per unit discharge amount, the deterioration degree increment is obtained as a function of the discharge depth DOD and the temperature when the vehicle travels, and the discharge depth DOD Since the positive electrode active material density of the lead battery is reflected in the above, the deterioration degree of the in-vehicle lead battery can be accurately calculated regardless of the positive electrode active material density.

(3) 放電深度DODと温度から劣化度増分を求めるマップは標準電池に関してのみ作成し、この標準電池と正極活物質密度が異なる他のサイズ、容量の車載電池に関しては、当該車載電池の正極活物質密度および放電深度DODから求まる補正係数を用いて標準電池における劣化度増分を補正することで求めるようにしたので、正極活物質密度の異なる鉛電池ごとにマップを設計する工数が不要になる。   (3) A map for obtaining the degree of deterioration increment from the depth of discharge DOD and temperature is created only for the standard battery.For in-vehicle batteries of other sizes and capacities that differ from the standard battery and positive electrode active material density, the positive electrode active Since the correction factor obtained from the material density and the discharge depth DOD is used to correct the increase in the deterioration degree of the standard battery, the man-hour for designing the map for each lead battery having a different positive electrode active material density is not required.

本発明の一実施形態に係る電池状態検知システムの構成を示した機能ブロック図である。It is the functional block diagram which showed the structure of the battery state detection system which concerns on one Embodiment of this invention. 車載電池の放電量、放電回数、温度、満充電容量に基づいて、その劣化度SOHを推定する機能を示したブロック図である。It is the block diagram which showed the function which estimates the degradation degree SOH based on the discharge amount of an vehicle-mounted battery, the frequency | count of discharge, temperature, and a full charge capacity. 劣化度増分値マップの一例を示した図である。It is the figure which showed an example of the deterioration degree increment value map. 活物質密度補正係数マップの一例を示した図である。It is the figure which showed an example of the active material density correction coefficient map.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る電池状態検知システム1の主要部の構成を示した機能ブロック図であり、ここでは、ISS機能を備えて鉛電池12を搭載するガソリンエンジン車への適用を例にして説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing a configuration of a main part of a battery state detection system 1 according to an embodiment of the present invention. Here, a gasoline engine vehicle equipped with a lead battery 12 having an ISS function is shown. Application will be described as an example.

電池状態検知システム1は、鉛電池12の温度を測定するサーミスタ等の温度センサ2、差動増幅回路等を有して鉛電池12の外部端子に接続された電圧測定部3、ホール素子等の電流センサ4および鉛電池12の電池状態を検知するマイクロコンピュータ(以下、マイコン)10を主要な構成としている。   The battery state detection system 1 includes a temperature sensor 2 such as a thermistor for measuring the temperature of the lead battery 12, a voltage measuring unit 3 having a differential amplifier circuit or the like and connected to an external terminal of the lead battery 12, a hall element, and the like. A microcomputer (hereinafter referred to as a microcomputer) 10 that detects the battery state of the current sensor 4 and the lead battery 12 is a main component.

鉛電池12は、電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂を用いることができる。各極板群は複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vである。このため、鉛電池12の公称電圧は12Vとされている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池12を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。なお、上述した温度センサは電槽の側面部または底面部に固定されている。   The lead battery 12 has a substantially rectangular battery case serving as a battery container, and a total of six electrode plate groups are accommodated in the battery case. As the material of the battery case, for example, a polymer resin such as polyethylene (PE) can be used. Each electrode plate group is formed by laminating a plurality of negative plates and positive plates with a separator interposed therebetween, and the cell voltage is 2.0V. For this reason, the nominal voltage of the lead battery 12 is set to 12V. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as PE that seals the upper opening of the battery case. A rod-like positive electrode terminal and a negative electrode terminal for supplying electric power to the outside using the lead battery 12 as a power source are erected on the upper lid. In addition, the temperature sensor mentioned above is being fixed to the side part or bottom face part of a battery case.

鉛電池12の正極端子は、電流センサ4を介してイグニッションスイッチ(以下、IGN)5の中央端子に接続されている。IGN5は、中央端子とは別にOFF端子、ON/ACC端子およびSTART端子を有しており、中央端子とOFF,ON/ACCおよびSTARTの各端子のいずれかとはロータリ式に切り替え接続が可能である。   A positive terminal of the lead battery 12 is connected to a central terminal of an ignition switch (hereinafter, IGN) 5 through a current sensor 4. The IGN5 has an OFF terminal, ON / ACC terminal, and START terminal in addition to the central terminal, and the central terminal and any of the OFF, ON / ACC, and START terminals can be switched in a rotary manner. .

START端子はエンジン始動用セルモータ(スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6および一方向への電流の流れを許容する整流素子を含むレギュレータを介してエンジン8の回転により発電する発電機7の一端に接続されている。すなわち、レギュレータのアノード側は発電機7の一端に、カソード側はON/ACC端子に接続されている。   The START terminal is connected to an engine starting cell motor (starter) 9. The cell motor 9 can transmit a rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown). The ON / ACC terminal is connected to one end of a generator 7 that generates electricity by the rotation of the engine 8 through an auxiliary device 6 such as an air conditioner, a radio, and a lamp, and a regulator including a rectifying element that allows a current flow in one direction. ing. That is, the anode side of the regulator is connected to one end of the generator 7, and the cathode side is connected to the ON / ACC terminal.

エンジン8の回転軸は、図示しないクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、クラッチ機構を介して発電機7が作動し、その発電電力が補機6や鉛電池12に供給(充電)される。OFF端子はいずれにも接続されていない。   The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 is operated via the clutch mechanism, and the generated power is supplied (charged) to the auxiliary machine 6 and the lead battery 12. The OFF terminal is not connected to either.

電圧測定部3の出力は、マイコン10に内蔵されたA/Dコンバータに接続されている。また、温度センサ2および電流センサ4の出力は、マイコン10に内蔵されたA/Dコンバータにそれぞれ接続されている。このため、マイコン10は、鉛電池12の電圧、温度および鉛電池12に流れる電流を所定時間毎にデジタル値で取り込むことができる。なお、マイコン10は、I/Oを介して上位の車両制御システム11と通信可能である。   The output of the voltage measuring unit 3 is connected to an A / D converter built in the microcomputer 10. The outputs of the temperature sensor 2 and the current sensor 4 are connected to an A / D converter built in the microcomputer 10, respectively. For this reason, the microcomputer 10 can take in the voltage and temperature of the lead battery 12 and the current flowing through the lead battery 12 as digital values every predetermined time. The microcomputer 10 can communicate with the host vehicle control system 11 via the I / O.

マイコン10は、中央演算処理装置として機能するCPU、電池状態検知システム12の基本制御プログラムや後述するマップや数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、不揮発性のEEPROM等を含んで構成される。   The microcomputer 10 functions as a CPU that functions as a central processing unit, a ROM that stores basic control programs for the battery state detection system 12, program data such as maps and mathematical formulas described later, and a work area for the CPU and temporarily stores the data. It is configured to include RAM to store, nonvolatile EEPROM, etc.

発電機7、セルモータ9および補機6の他端、鉛電池12の負極端子およびマイコン10は、それぞれグランド(自動車のシャーシと同電位)に接続されている。なお、本実施形態のマイコン10は、電圧、電流および温度を所定時間毎に(例えば、電圧、電流をそれぞれ2m秒間隔、温度を1秒間隔で)それぞれサンプリングし、サンプリング結果をRAMに格納する。また、電流については、放電電流と充電電流とに分けて、それぞれの積算値を算出している。   The other end of the generator 7, the cell motor 9 and the auxiliary machine 6, the negative terminal of the lead battery 12, and the microcomputer 10 are each connected to the ground (the same potential as the chassis of the automobile). Note that the microcomputer 10 of the present embodiment samples the voltage, current, and temperature at predetermined time intervals (for example, the voltage and current are each 2 milliseconds and the temperature is 1 second), and the sampling result is stored in the RAM. . Further, regarding the current, the integrated values are calculated separately for the discharge current and the charge current.

マイコン10に実装されたCPUは、IGN5の電圧に基づいて、その端子位置を判断し、さらにはエンジン状態を検知する。なお、IGN5が端子位置を代表する信号を出力するタイプであれば、その信号または車両制御システム11からの信号によりエンジン状態を検知してもよい。一般に、ガソリンエンジン車やディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給しセルモータを回して、エンジンを始動する。   The CPU mounted on the microcomputer 10 determines the terminal position based on the voltage of the IGN 5, and further detects the engine state. If the IGN 5 is a type that outputs a signal representative of the terminal position, the engine state may be detected based on the signal or a signal from the vehicle control system 11. In general, in an automobile having an internal combustion engine such as a gasoline engine car or a diesel engine car, electric power is supplied from a lead battery and a cell motor is rotated to start the engine.

CPUは、エンジン停止後、鉛電池12の分極反応が解消する所定時間が経過すると、電圧測定部3を介して測定した鉛電池12の端子電圧を開回路電圧OCVとして取り込み、それ以降、所定の周期でタイマ割り込みによりOCVの取り込みを繰り返し、それ以外のタイミングでは、タイマのみを作動させそれ制御動作を行わない省電力モードに入る。   When a predetermined time for eliminating the polarization reaction of the lead battery 12 elapses after the engine is stopped, the CPU takes in the terminal voltage of the lead battery 12 measured through the voltage measuring unit 3 as an open circuit voltage OCV. The OCV is repeatedly fetched by a timer interrupt at a cycle, and at other timings, only the timer is activated and the power saving mode is entered in which no control operation is performed.

図2は、前記マイコン10が鉛電池12の放電量、放電回数、温度あるいは満充電容量等に基づいて、その劣化度SOHを推定する機能を示したブロック図であり、マイコン10のCPUがROMあるいはEEPROMに予め記憶されているプログラムおよび各種のデータに基づいて動作することで実現される。   FIG. 2 is a block diagram showing a function in which the microcomputer 10 estimates the deterioration degree SOH based on the discharge amount, the number of discharges, the temperature or the full charge capacity of the lead battery 12, and the CPU of the microcomputer 10 is a ROM. Or it implement | achieves by operate | moving based on the program previously stored in EEPROM and various data.

放電量計算部101は、1走行当たりの鉛電池12の放電量ΣIを計算する。DOD算出部102は、1走行当たりの放電量ΣI、1走行当たりの放電回数nおよび鉛電池12の満充電容量Cを次式(1)に適用して走行時の放電深度(DOD)を算出する。   The discharge amount calculation unit 101 calculates the discharge amount ΣI of the lead battery 12 per one run. The DOD calculation unit 102 calculates the discharge depth (DOD) during travel by applying the discharge amount ΣI per travel, the number n of discharges per travel, and the full charge capacity C of the lead battery 12 to the following equation (1). To do.

劣化度増分値マップ103には、図3に一例を示したように、標準電池(本実施形態では、型式が55D23の鉛電池を想定)における放電深度DODと劣化度増分値ΔSOHとの典型的な関係が温度Tごとに予め登録されている。活物質密度補正係数マップ104には、図4に一例を示したように、鉛電池における放電深度DODと活物質密度補正係数Pとの関係が正極活物質密度ごとに予め登録されている。   In the deterioration degree increment value map 103, as shown in an example in FIG. 3, typical values of the discharge depth DOD and the deterioration degree increment value ΔSOH in a standard battery (in this embodiment, a lead battery of model 55D23 is assumed). The relationship is registered in advance for each temperature T. In the active material density correction coefficient map 104, as shown in FIG. 4, for example, the relationship between the discharge depth DOD and the active material density correction coefficient P in the lead battery is registered in advance for each positive electrode active material density.

劣化度増分値補正部105は、前記DOD算出部102が算出したDODおよび前記温度センサ2により計測された温度Tに対応した劣化度増分値ΔSOHを前記劣化度増分値マップ103から抽出し、さらに前記DODおよび車載鉛電池12の既知の活物質密度に対応した補正係数Pを補正係数マップ104から抽出する。そして、これらを標準電池の満充電容量C0と共に次式(2)に適用して補正後劣化度増分値ΔSOH_rを求める。   The deterioration degree increment correction unit 105 extracts the deterioration degree increment value ΔSOH corresponding to the DOD calculated by the DOD calculation part 102 and the temperature T measured by the temperature sensor 2 from the deterioration degree increment value map 103, and A correction coefficient P corresponding to the DOD and the known active material density of the in-vehicle lead battery 12 is extracted from the correction coefficient map 104. Then, these are applied to the following equation (2) together with the full charge capacity C0 of the standard battery to obtain the corrected deterioration degree increment value ΔSOH_r.

劣化度計算部106は、前記1走行当たりの放電量ΣI,前記補正後劣化度増分値ΔSOH_rおよび走行前の劣化度SOH_M(前回)を次式(3)に適用して、車載鉛電池12の活物質密度が反映された車両走行後の劣化度SOH_M(今回)を計算する。   The deterioration degree calculation unit 106 applies the discharge amount ΣI per driving, the corrected deterioration degree increment ΔSOH_r and the deterioration degree SOH_M (previous) before driving to the following equation (3), and the in-vehicle lead battery 12 Calculate the degree of degradation SOH_M (this time) after traveling the vehicle reflecting the active material density.

本実施形態によれば、鉛電池の劣化度を放電量と単位放電量あたりの劣化度増分とを用いて算出するにあたり、劣化度増分に車載電池の正極活物質密度を反映できるので、車載電池の劣化度をより精度よく算出できるようになる。   According to the present embodiment, when calculating the deterioration degree of the lead battery using the discharge amount and the deterioration degree increment per unit discharge amount, the density of the positive electrode active material of the vehicle battery can be reflected in the deterioration degree increment. It becomes possible to calculate the deterioration degree of the above with higher accuracy.

また、本実施形態によれば、鉛電池の劣化度を放電量と単位放電量あたりの劣化度増分とを用いて算出するにあたり、劣化度増分を車両走行時の放電深度DODおよび温度の関数として求めるとともに、放電深度DODに車載鉛電池の正極活物質密度が反映されるので、車載鉛電池の劣化度を、その正極活物質密度にかかわらず精度よく算出できるようになる。   Further, according to the present embodiment, in calculating the deterioration degree of the lead battery using the discharge amount and the deterioration degree increment per unit discharge amount, the deterioration degree increment is used as a function of the discharge depth DOD and the temperature during vehicle travel. In addition, since the positive electrode active material density of the in-vehicle lead battery is reflected in the discharge depth DOD, the deterioration degree of the in-vehicle lead battery can be accurately calculated regardless of the positive electrode active material density.

さらに、本実施形態によれば、放電深度DODおよび温度から劣化度増分を求めるマップ(劣化度増分値マップ)は標準電池に関してのみ作成し、この標準電池と正極活物質密度が異なる他のサイズ、容量の車載電池に関しては、放電深度DODおよび正極活物質密度から求まる補正係数を用いて標準電池における劣化度増分を補正することで求めるようにしたので、正極活物質密度の異なる鉛電池ごとに予めマップを設計する工数が不要になる。   Furthermore, according to the present embodiment, a map for determining the deterioration degree increment from the discharge depth DOD and temperature (degradation degree increment value map) is created only for the standard battery, and other sizes having different positive electrode active material densities from this standard battery, For in-vehicle batteries with a capacity, the correction factor obtained from the depth of discharge DOD and the positive electrode active material density was used to correct the increment of deterioration in the standard battery. Eliminates the need to design a map.

1…電池状態検知システム,2…温度センサ,3…電圧測定部,4…電流センサ,5…IGN,6…補機,7…発電機,8…エンジン,9…エンジン始動用セルモータ,10…マイコン,12…鉛電池,101…放電量計算部,102…DOD算出部,103…劣化度増分値マップ,104…活物質密度補正係数マップ,105…劣化度増分値補正部,106…劣化度計算部   DESCRIPTION OF SYMBOLS 1 ... Battery state detection system, 2 ... Temperature sensor, 3 ... Voltage measuring part, 4 ... Current sensor, 5 ... IGN, 6 ... Auxiliary machine, 7 ... Generator, 8 ... Engine, 9 ... Cell motor for engine starting, 10 ... Microcomputer, 12 ... lead battery, 101 ... discharge amount calculation unit, 102 ... DOD calculation unit, 103 ... deterioration degree increment value map, 104 ... active material density correction coefficient map, 105 ... deterioration degree increment value correction part, 106 ... deterioration degree Calculation part

Claims (5)

車両走行時の放電量と単位放電量当たりの劣化度増分値とに基づいて車載電池の劣化度を求める電池状態検知システムにおいて、
車載電池を標準電池と想定して車両走行時の劣化度増分値を求める手段と、
車載電池に固有の正極活物質密度に基づいて前記劣化度増分値を補正する手段と、
前記補正後の劣化度増分値に基づいて車載電池の劣化度を求める手段とを具備したことを特徴とする電池状態検知システム。
In the battery state detection system for obtaining the degree of deterioration of the in-vehicle battery based on the amount of discharge during vehicle travel and the deterioration degree increment per unit discharge amount
Means to obtain the deterioration degree increment value when driving the vehicle assuming that the vehicle battery is a standard battery,
Means for correcting the deterioration degree increment based on the positive electrode active material density specific to the in-vehicle battery;
A battery state detection system comprising: means for determining a deterioration degree of the in-vehicle battery based on the corrected deterioration degree increment value.
車載電池の車両走行時の放電深度を求める手段と、
標準電池の放電深度と劣化度増分値との関係を温度ごとに記憶した劣化度増分値マップとを具備し、
前記劣化度増分値を求める手段は、車載電池の温度および前記放電深度を前記劣化度増分値マップに適用して劣化度増分値を求めることを特徴とする請求項1に記載の電池状態検知システム。
Means for determining the depth of discharge of the in-vehicle battery when traveling;
A deterioration degree increment value map storing the relationship between the discharge depth of the standard battery and the deterioration degree increment value for each temperature;
The battery state detection system according to claim 1, wherein the means for obtaining the deterioration degree increment value obtains the deterioration degree increment value by applying the temperature of the in-vehicle battery and the depth of discharge to the deterioration degree increment value map. .
放電深度と活物質密度補正係数との関係を正極活物質密度ごとに記憶した活物質密度補正係数マップをさらに具備し、
前記劣化度増分値を補正する手段は、車載電池の正極活物質密度および前記放電深度を前記活物質密度補正係数マップに適用して活物質密度補正係数を求め、当該活物質密度補正係数、標準電池の満充電容量および車載電池の満充電容量に基づいて前記劣化度増分値を補正することを特徴とする請求項2に記載の電池状態検知システム。
An active material density correction coefficient map that stores the relationship between the depth of discharge and the active material density correction coefficient for each positive electrode active material density;
The means for correcting the deterioration degree increment value applies an active material density correction coefficient map to the active material density correction coefficient map by applying the positive electrode active material density of the in-vehicle battery and the discharge depth to the active material density correction coefficient map. The battery state detection system according to claim 2, wherein the deterioration degree increment value is corrected based on a full charge capacity of the battery and a full charge capacity of the on-vehicle battery.
前記車載電池の劣化度を求める手段は、前記補正された劣化度増分値と放電量との積を走行前の劣化度から減じて走行後の劣化度を求めることを特徴とする請求項1ないし3のいずれかに記載の電池状態検知システム。   The means for determining the degree of deterioration of the in-vehicle battery determines the degree of deterioration after traveling by subtracting the product of the corrected deterioration degree increment value and the discharge amount from the degree of deterioration before traveling. 4. The battery state detection system according to any one of 3. 前記請求項1ないし4のいずれかに記載の電池状態検知システムを用いて車載電池の状態を検知することを特徴とする車両。   A vehicle characterized by detecting a state of an in-vehicle battery using the battery state detection system according to any one of claims 1 to 4.
JP2016113499A 2016-06-07 2016-06-07 Vehicle and its battery state detection system Active JP6607353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113499A JP6607353B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113499A JP6607353B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Publications (3)

Publication Number Publication Date
JP2017219405A true JP2017219405A (en) 2017-12-14
JP2017219405A5 JP2017219405A5 (en) 2019-01-31
JP6607353B2 JP6607353B2 (en) 2019-11-20

Family

ID=60656052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113499A Active JP6607353B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Country Status (1)

Country Link
JP (1) JP6607353B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541473A (en) * 2018-10-18 2019-03-29 东北电力大学 Lead carbon battery health status evaluation method based on discharge capacity weighted accumulation
CN112305429A (en) * 2020-09-28 2021-02-02 合肥国轩高科动力能源有限公司 Estimation method for discharge depth of lithium ion battery
WO2023149301A1 (en) * 2022-02-03 2023-08-10 古河電気工業株式会社 Lead-acid storage battery system, and lead-acid storage battery life estimation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837008A (en) * 1994-07-21 1996-02-06 Japan Storage Battery Co Ltd Paste type lead-acid battery
WO2009118910A1 (en) * 2008-03-28 2009-10-01 新神戸電機株式会社 Battery state deciding method, and automobile
JP2011109840A (en) * 2009-11-19 2011-06-02 Lenovo Singapore Pte Ltd Charging system which guarantees lifespan of secondary battery
JP2013235660A (en) * 2012-05-07 2013-11-21 Gs Yuasa Corp Lead acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837008A (en) * 1994-07-21 1996-02-06 Japan Storage Battery Co Ltd Paste type lead-acid battery
WO2009118910A1 (en) * 2008-03-28 2009-10-01 新神戸電機株式会社 Battery state deciding method, and automobile
JP2011109840A (en) * 2009-11-19 2011-06-02 Lenovo Singapore Pte Ltd Charging system which guarantees lifespan of secondary battery
JP2013235660A (en) * 2012-05-07 2013-11-21 Gs Yuasa Corp Lead acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541473A (en) * 2018-10-18 2019-03-29 东北电力大学 Lead carbon battery health status evaluation method based on discharge capacity weighted accumulation
CN109541473B (en) * 2018-10-18 2020-12-29 东北电力大学 Lead-carbon battery health state estimation method based on discharge amount weighted accumulation
CN112305429A (en) * 2020-09-28 2021-02-02 合肥国轩高科动力能源有限公司 Estimation method for discharge depth of lithium ion battery
WO2023149301A1 (en) * 2022-02-03 2023-08-10 古河電気工業株式会社 Lead-acid storage battery system, and lead-acid storage battery life estimation method

Also Published As

Publication number Publication date
JP6607353B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
JP6674139B2 (en) Vehicle and its battery state detection system
JP4066732B2 (en) Battery remaining capacity estimation method
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP4258348B2 (en) Battery deterioration diagnosis device and on-vehicle power supply control device
JP5338807B2 (en) Battery state determination method and automobile
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP5162971B2 (en) Battery state detection system and automobile
CN106470868A (en) Controller of vehicle
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP6677177B2 (en) Control device
EP3756937B1 (en) Apparatus and method for estimating soc
JP6607353B2 (en) Vehicle and its battery state detection system
JP6604478B2 (en) Vehicle and its battery state detection system
JP2009241646A (en) Battery state determination system, and automobile having the system
JP2009106027A (en) Battery controller and control method, program to achieve the method in computer, and recording medium recording the program
JP2007053005A (en) Battery status detection system and automobile equipped with this
JP2008074257A (en) Battery deterioration determination device
JP2010139423A (en) Diagnostic device for deteriorated state of secondary cell
JP2005274214A (en) Residual capacity detection device of vehicle battery
KR100391421B1 (en) Method for estimating residual energy of battery of electric car
JP2001033532A (en) Battery state detector and charge/discharge controller
JP3687628B2 (en) Charge state detection system and automobile equipped with the system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R151 Written notification of patent or utility model registration

Ref document number: 6607353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250