JP2017218669A - Residual stress imparting device and residual stress imparting method - Google Patents

Residual stress imparting device and residual stress imparting method Download PDF

Info

Publication number
JP2017218669A
JP2017218669A JP2017003319A JP2017003319A JP2017218669A JP 2017218669 A JP2017218669 A JP 2017218669A JP 2017003319 A JP2017003319 A JP 2017003319A JP 2017003319 A JP2017003319 A JP 2017003319A JP 2017218669 A JP2017218669 A JP 2017218669A
Authority
JP
Japan
Prior art keywords
residual stress
coil spring
peripheral surface
inscribed
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003319A
Other languages
Japanese (ja)
Other versions
JP6969100B2 (en
Inventor
守 早川
Mamoru Hayakawa
守 早川
小澤 修司
Shuji Ozawa
修司 小澤
真也 寺本
Shinya Teramoto
真也 寺本
泰三 牧野
Taizo Makino
泰三 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2017218669A publication Critical patent/JP2017218669A/en
Application granted granted Critical
Publication of JP6969100B2 publication Critical patent/JP6969100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method capable of imparting residual stress to a coil spring.SOLUTION: A residual stress imparting device 10 for imparting residual stress to a coil spring 20 is provided that comprises: a circumscribing member 1 which has a radially unexpandable inner circumferential surface 1a having a circular cross section, and in which the coil spring 20 is clearance-fit; an inscribing member 2 which is inserted into the coil spring 20 inside the inner circumferential surface 1a of the circumscribing member 1 and has a radially expandable outer circumferential surface 2a having a circular cross section; and an expansion member 3 for diametrically expanding the outer circumferential surface 2a of the inscribing member 2.SELECTED DRAWING: Figure 1

Description

本発明は、コイルばねに残留応力を付与する装置および方法に関する。   The present invention relates to an apparatus and method for applying a residual stress to a coil spring.

コイルばねは、らせん構造の内側部分から疲労破壊が生じることが知られている。従来、コイルばねの疲労破壊を防ぐため、ショットピーニング等による鋼線表面への残留応力の付与、または窒化処理等を用いた鋼線の表面硬化によるコイルばねの強化が行われてきた。   Coil springs are known to experience fatigue failure from the inner portion of the helical structure. Conventionally, in order to prevent fatigue failure of a coil spring, residual stress is applied to the surface of the steel wire by shot peening or the like, or the coil spring is strengthened by surface hardening of the steel wire using nitriding treatment or the like.

しかし、コイルばねを構成する鋼線の表面ではなく、表面より少し鋼線の中心に近い内部から疲労破壊が生じる事例が報告されている。すなわち、コイルばねの疲労破壊を防止するためには、コイルばねの表面だけではなく、表面より0.1〜0.5mm程度の内部の領域に圧縮残留応力を付与する必要がある。   However, there have been reports of cases in which fatigue failure occurs not from the surface of the steel wire that constitutes the coil spring, but from the inside that is slightly closer to the center of the steel wire than the surface. That is, in order to prevent fatigue failure of the coil spring, it is necessary to apply compressive residual stress not only to the surface of the coil spring but also to an internal region of about 0.1 to 0.5 mm from the surface.

しかしながら、ショットピーニングでは、表面には高い圧縮残留応力を付与することが可能であるものの、表面より0.1〜0.5mm程度の内部の領域には、疲労強度を低下させる引張残留応力を発生させることが多い。   However, in shot peening, although high compressive residual stress can be applied to the surface, tensile residual stress that reduces the fatigue strength is generated in the inner region of about 0.1 to 0.5 mm from the surface. Often.

例えば、特許文献1には、金属材料に外力を加えてその表面に引張応力を付与した状態でこの表面を粒子打撃し、その後前記外力を除去することにより、この表面に高い圧縮残留応力層を得る高圧縮残留応力層付与方法が開示されている。   For example, Patent Document 1 discloses that a high compressive residual stress layer is formed on a surface of the metal material by applying external force to the surface in a state where tensile stress is applied to the surface of the metal material and then removing the external force. A method for providing a high compressive residual stress layer is disclosed.

また、特許文献2には、コイルばねの内周面に圧縮残留応力を均一に付与するとともに処理時間を短縮して、コイルばねの疲労特性を向上することが可能なコイルばねの超音波打撃処理装置及びコイルばねの超音波打撃処理方法が開示されている。   Further, Patent Document 2 discloses an ultrasonic hammering process for a coil spring that can uniformly apply compressive residual stress to the inner peripheral surface of the coil spring and shorten the processing time to improve the fatigue characteristics of the coil spring. An apparatus and an ultrasonic hitting method for a coil spring are disclosed.

さらに、特許文献3には、複雑な形状の金属製被加工部材であってもその表面に対して均質に表面強化処理を行うことができる金属表面強化処理方法が開示されている。   Furthermore, Patent Document 3 discloses a metal surface strengthening treatment method capable of performing a surface strengthening treatment uniformly on the surface of a metal workpiece having a complicated shape.

特開昭59−30670号公報JP 59-30670 A 特開2012−117119号公報JP 2012-117119 A 特開平5−148536号公報Japanese Patent Laid-Open No. 5-148536

特許文献1に記載の技術によれば、張力付加状態で粒子打撃することで表面圧縮残留応力値および疲労寿命が大幅に向上するとされている。しかしながら、張力を付加した状態であっても、ショットピーニング等の粒子打撃では、十分な深さまで圧縮残留応力を付与することはできない。   According to the technique described in Patent Document 1, it is said that the surface compressive residual stress value and the fatigue life are greatly improved by hitting the particles in a tensioned state. However, even when tension is applied, compressive residual stress cannot be applied to a sufficient depth by particle hitting such as shot peening.

特許文献2に記載の技術によれば、コイルばねのコイル内側に挿入された棒状の打撃治具に超音波振動を付与することによって、コイル内周面が繰り返し打撃され、コイル内周面に圧縮残留応力が付与される。しかしながら、この方法では設備コストがかかるという問題があり、改善の余地が残されている。   According to the technique described in Patent Document 2, by applying ultrasonic vibration to a rod-shaped striking jig inserted inside the coil of the coil spring, the inner peripheral surface of the coil is repeatedly hit and compressed to the inner peripheral surface of the coil. Residual stress is applied. However, this method has a problem that the equipment cost is high, and there is still room for improvement.

また、特許文献3に記載の技術によれば、金属製被加工部材を粉粒体に埋設し、粒体に外部から圧力を加えて圧縮することによって、金属製被加工部材の形状にかかわらずその表面には均質な表面強化処理を行うことができるとされている。しかしながら、この方法では、すべての表面に均質な応力を付与することはできるが、例えば、コイルばねの内側部分により多くの残留応力を付与するという制御を行うことは不可能である。   Moreover, according to the technique of patent document 3, regardless of the shape of a metal workpiece, by embedding a metal workpiece in a granular material and compressing a granule by applying pressure from the outside, It is said that the surface can be subjected to a uniform surface strengthening treatment. However, in this method, uniform stress can be applied to all surfaces, but it is impossible to perform control such that more residual stress is applied to the inner portion of the coil spring, for example.

本発明は、上記の問題を解決し、コイルばねに残留応力を付与することが可能な装置および方法を提供することを目的とする。   An object of the present invention is to provide an apparatus and method capable of solving the above-described problems and applying a residual stress to a coil spring.

本発明は、上記の課題を解決するためになされたものであり、下記の残留応力付与装置および残留応力付与方法を要旨とする。   The present invention has been made in order to solve the above-described problems, and provides the following residual stress applying apparatus and residual stress applying method.

(1)コイルばねに残留応力を付与する装置であって、
径方向への拡張が不能な断面円形の内周面を有し、前記コイルばねが隙間ばめされる外接部材と、
前記外接部材の前記内周面の内側において、前記コイルばねに挿入され、かつ、径方向への拡張が可能な断面円形の外周面を有する内接部材と、
前記内接部材の前記外周面を径方向に拡張させる拡張部材と、を備える、
残留応力付与装置。
(1) A device for applying residual stress to a coil spring,
A circumscribing member having a circular inner peripheral surface that cannot be expanded in the radial direction, and the coil spring is fitted in a gap;
An inscribed member having an outer peripheral surface with a circular cross section that is inserted into the coil spring and can be expanded in the radial direction inside the inner peripheral surface of the circumscribed member;
An expansion member that expands the outer peripheral surface of the inscribed member in a radial direction,
Residual stress applying device.

(2)前記内接部材は、断面C字形状の内周面を有し、
前記拡張部材は、前記内接部材の前記内周面の直径より大きい外径を有する拡張部を含む、
上記(1)に記載の残留応力付与装置。
(2) The inscribed member has an inner peripheral surface having a C-shaped cross section,
The expansion member includes an expansion portion having an outer diameter larger than a diameter of the inner peripheral surface of the inscribed member.
The residual stress applying apparatus according to (1) above.

(3)前記コイルばねに軸方向の力を付加し弾性変形させる変形部材をさらに備える、
上記(1)または(2)に記載の残留応力付与装置。
(3) It further includes a deformable member that applies an axial force to the coil spring and elastically deforms the coil spring.
The residual stress applying apparatus according to the above (1) or (2).

(4)上記(1)または(2)に記載の装置を用いてコイルばねに残留応力を付与する方法であって、
前記コイルばねを前記外接部材内に隙間ばめするとともに、前記コイルばねの内側に前記内接部材を挿入する、配置工程と、
前記内接部材の前記外周面を径方向に拡張させる、拡張工程と、を備える、
残留応力付与方法。
(4) A method of applying a residual stress to a coil spring using the device according to (1) or (2) above,
An arrangement step of fitting the coil spring into the circumscribed member with a gap and inserting the inscribed member inside the coil spring;
Expanding the outer peripheral surface of the inscribed member in the radial direction,
Residual stress application method.

(5)上記(3)に記載の装置を用いてコイルばねに残留応力を付与する方法であって、
前記コイルばねを前記外接部材内に隙間ばめするとともに、前記コイルばねの内側に前記内接部材を挿入する、配置工程と、
前記変形部材により前記コイルばねを弾性変形させた状態で、前記内接部材の前記外周面を径方向に拡張させる、拡張工程と、を備える、
残留応力付与方法。
(5) A method of applying a residual stress to a coil spring using the apparatus described in (3) above,
An arrangement step of fitting the coil spring into the circumscribed member with a gap and inserting the inscribed member inside the coil spring;
Expanding the outer peripheral surface of the inscribed member in the radial direction in a state where the coil spring is elastically deformed by the deformable member,
Residual stress application method.

(6)前記拡張工程において、前記コイルばねを前記外接部材の前記内周面と前記内接部材の前記外周面とで挟み、前記拡張部材を、前記内接部材の内周面と接触するように前記内接部材内に通過させることによって、前記内接部材を拡張させる、
上記(4)または(5)に記載の残留応力付与方法。
(6) In the expanding step, the coil spring is sandwiched between the inner peripheral surface of the circumscribed member and the outer peripheral surface of the inscribed member, and the expanded member is brought into contact with the inner peripheral surface of the inscribed member. Expanding the inscribed member by passing it through the inscribed member.
The residual stress imparting method according to the above (4) or (5).

本発明によれば、コイルばねに対して、表面性状を大きく劣化させることなく、かつ低コストで、内部の領域まで圧縮残留応力を付与することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to give a compression residual stress to an internal area | region at low cost, without significantly deteriorating the surface property with respect to a coil spring.

本発明の一実施形態に係る残留応力付与装置の基準状態の一例を示した断面図(a)ならびに(a)における外接部材および内接部材のa−a線断面図(b)である。It is sectional drawing (a) which showed an example of the reference | standard state of the residual stress provision apparatus which concerns on one Embodiment of this invention, and the aa sectional view (b) of the circumscribed member and inscribed member in (a). 本発明の一実施形態に係る残留応力付与装置の使用状態の一例を示した断面図(a)ならびに(a)における外接部材および内接部材のb−b線断面図(b)である。It is sectional drawing (a) which showed an example of the use condition of the residual stress provision apparatus which concerns on one Embodiment of this invention, and the bb sectional view (b) of the circumscribed member and inscribed member in (a). 本発明の他の実施形態に係る残留応力付与装置が備える拡張部材の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the expansion member with which the residual stress provision apparatus which concerns on other embodiment of this invention is provided. 本発明の他の実施形態に係る残留応力付与装置の基準状態の一例を示した断面図(a)ならびに(a)における外接部材および内接部材のc−c線断面図(b)である。It is sectional drawing (a) which showed an example of the reference | standard state of the residual stress provision apparatus which concerns on other embodiment of this invention, and the cc line sectional drawing (b) of the circumscribed member and inscribed member in (a). 本発明の他の実施形態に係る残留応力付与装置の使用状態の一例を示した断面図(a)ならびに(a)における外接部材および内接部材のd−d線断面図(b)である。It is sectional drawing (a) which showed an example of the use condition of the residual stress provision apparatus which concerns on other embodiment of this invention, and the dd line sectional drawing (b) of the circumscribed member and inscribed member in (a). 本発明の他の実施形態に係る残留応力付与装置の基準状態の一例を示した断面図である。It is sectional drawing which showed an example of the reference | standard state of the residual stress provision apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る残留応力付与装置において、コイルばねに軸方向の力を付加して縮ませた状態の一例を示した断面図である。FIG. 6 is a cross-sectional view showing an example of a state in which an axial force is applied to a coil spring and contracted in a residual stress applying apparatus according to another embodiment of the present invention. 本発明の他の実施形態に係る残留応力付与装置の使用状態の一例を示した断面図である。It is sectional drawing which showed an example of the use condition of the residual stress provision apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る残留応力付与装置の基準状態の一例を示した断面図である。It is sectional drawing which showed an example of the reference | standard state of the residual stress provision apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る残留応力付与装置において、コイルばねに軸方向の力を付加して伸ばした状態の一例を示した断面図である。FIG. 6 is a cross-sectional view showing an example of a state in which an axial force is applied to a coil spring and extended in a residual stress applying apparatus according to another embodiment of the present invention. 本発明の他の実施形態に係る残留応力付与装置の使用状態の一例を示した断面図である。It is sectional drawing which showed an example of the use condition of the residual stress provision apparatus which concerns on other embodiment of this invention. 残留応力の測定位置および測定方向を説明するための図である。It is a figure for demonstrating the measurement position and measurement direction of a residual stress.

添付した図面を参照して、本発明の一実施形態について、詳細に説明する。   An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1(a)は、本発明の一実施形態に係る残留応力付与装置10の基準状態の一例を示した断面図であり、図1(b)は、図1(a)における外接部材および内接部材のa−a線断面図である。また、図2(a)は、本発明の一実施形態に係る残留応力付与装置10の使用状態の一例を示した断面図であり、図2(b)は、図2(a)における外接部材および内接部材のb−b線断面図である。なお、本発明においては、後述する内接部材が拡張されていない状態を基準状態といい、内接部材が径方向に拡張された状態を使用状態という。   FIG. 1A is a cross-sectional view showing an example of a reference state of a residual stress applying apparatus 10 according to an embodiment of the present invention, and FIG. It is an aa sectional view of a contact member. 2A is a cross-sectional view showing an example of a usage state of the residual stress applying apparatus 10 according to the embodiment of the present invention, and FIG. 2B is a circumscribed member in FIG. FIG. 6 is a cross-sectional view taken along line bb of the inscribed member. In the present invention, a state in which an inscribed member described later is not expanded is referred to as a reference state, and a state in which the inscribed member is expanded in a radial direction is referred to as a use state.

本発明の一実施形態に係る残留応力付与装置10は、コイルばね20に残留応力を付与する装置であって、外接部材1と内接部材2と拡張部材3とを備える。各構成要素について説明する。ただし、本発明は下記の実施形態に限定されるものではない。   A residual stress applying apparatus 10 according to an embodiment of the present invention is an apparatus that applies a residual stress to a coil spring 20, and includes a circumscribed member 1, an inscribed member 2, and an expansion member 3. Each component will be described. However, the present invention is not limited to the following embodiments.

外接部材1は、断面円形の内周面1aを有し、コイルばね20が隙間ばめされる部材である。すなわち、図1に示すように、コイルばね20が外接部材1の内部に配置された状態において、コイルばね20の外側部分20aと外接部材1の内周面1aとが当接している。そして、外接部材1の内周面1aは径方向へ拡張不能であり、コイルばね20の外側部分20aが径方向に拡張されるのを規制する。   The circumscribed member 1 has a circular inner peripheral surface 1a and is a member into which the coil spring 20 is fitted into a gap. That is, as shown in FIG. 1, the outer portion 20 a of the coil spring 20 and the inner peripheral surface 1 a of the outer member 1 are in contact with each other in a state where the coil spring 20 is disposed inside the outer member 1. And the inner peripheral surface 1a of the circumscribed member 1 cannot be expanded in the radial direction, and restricts the outer portion 20a of the coil spring 20 from being expanded in the radial direction.

内接部材2は、外接部材1の内周面1aの内側において、コイルばね20に挿入され、かつ、径方向への拡張が可能な外周面2aを有する円筒状の部材である。具体的には、図1および2に示すように、内接部材2は、断面C字形状の内周面2bを有する。上記の構成では、内接部材2は断面の一部が切断されているため、径方向への拡張が可能となる。なお、本発明において、「円形」には、円の一部が切断された形状も含まれるものとする。また、「断面C字形状」とは、円の一部が切断されている形状を意味し、切断されている一端と他端とが接触していてもよく、離れていてもよい。   The inscribed member 2 is a cylindrical member having an outer peripheral surface 2 a that is inserted into the coil spring 20 and can be expanded in the radial direction inside the inner peripheral surface 1 a of the circumscribed member 1. Specifically, as shown in FIGS. 1 and 2, the inscribed member 2 has an inner peripheral surface 2b having a C-shaped cross section. In the above configuration, since the inscribed member 2 is partially cut, it can be expanded in the radial direction. In the present invention, the “circular shape” includes a shape obtained by cutting a part of the circle. Further, the “C-shaped cross section” means a shape in which a part of a circle is cut, and the cut one end and the other end may be in contact with each other or may be separated from each other.

拡張部材3は、内接部材2を径方向に拡張させる部材である。具体的には、図1および2に示すように、拡張部材3は、球体状を呈しており、基準状態における内接部材2の内周面2bの直径より大きい外径を有する拡張部3aを含んでいる。なお、拡張部材3は、内接部材2を拡張する際に塑性変形しないよう、内接部材2より硬い材料を用いることが好ましい。   The expansion member 3 is a member that expands the inscribed member 2 in the radial direction. Specifically, as shown in FIGS. 1 and 2, the expansion member 3 has a spherical shape, and has an expansion portion 3a having an outer diameter larger than the diameter of the inner peripheral surface 2b of the inscribed member 2 in the reference state. Contains. The expansion member 3 is preferably made of a material harder than the inscribed member 2 so as not to be plastically deformed when the inscribed member 2 is expanded.

次に、図1および2を用いて、本発明の一実施形態に係る残留応力付与装置を用いてコイルばねに残留応力を付与する方法の一例について説明する。   Next, an example of a method for applying a residual stress to a coil spring using a residual stress applying apparatus according to an embodiment of the present invention will be described with reference to FIGS.

まず、コイルばね20を外接部材1内に隙間ばめするとともに、コイルばね20の内側に内接部材2を挿入する(配置工程)。その後、内接部材2を径方向に拡張させる(拡張工程)。なお、配置工程において、コイルばね20を外接部材1内に隙間ばめする工程と、コイルばね20の内側に内接部材2を挿入する工程とは、どちらを先に行ってもよいし、同時に行ってもよい。また、配置工程において、内接部材2はコイルばね20内に隙間ばめすることが好ましい。   First, the coil spring 20 is fitted into the outer member 1 with a gap, and the inner member 2 is inserted inside the coil spring 20 (arrangement step). Thereafter, the inscribed member 2 is expanded in the radial direction (expansion step). In the arrangement step, either the step of fitting the coil spring 20 into the circumscribed member 1 or the step of inserting the inscribed member 2 inside the coil spring 20 may be performed first or simultaneously. You may go. In the arrangement step, the inscribed member 2 is preferably fitted into the coil spring 20 with a gap.

拡張工程では、図1に示すように、まず、拡張部材3を内接部材2の一端側に接触させ、その後、拡張部材3を押し込む。そして、図2に示すように、コイルばね20を外接部材1の内周面1aと内接部材2の外周面2aとで挟んだ状態において、拡張部3aが内接部材2の内周面2bと接触するように、内接部材2内を通過させる。上述のように、拡張部材3の拡張部3aにおける外径は、内接部材2の内周面2bの直径より大きい。そのため、拡張部材3が内接部材2内を通過することによって、内接部材2は押し広げられ、径方向に拡張される。   In the expansion step, as shown in FIG. 1, first, the expansion member 3 is brought into contact with one end side of the inscribed member 2, and then the expansion member 3 is pushed in. As shown in FIG. 2, in the state where the coil spring 20 is sandwiched between the inner peripheral surface 1 a of the circumscribed member 1 and the outer peripheral surface 2 a of the inscribed member 2, the expanded portion 3 a is the inner peripheral surface 2 b of the inscribed member 2. To pass through the inscribed member 2 so as to come into contact. As described above, the outer diameter of the expansion portion 3 a of the expansion member 3 is larger than the diameter of the inner peripheral surface 2 b of the inscribed member 2. Therefore, when the expansion member 3 passes through the inscribed member 2, the inscribed member 2 is expanded and expanded in the radial direction.

そして、コイルばね20の外側部分20aを外接部材1の内周面1aによって固定した状態で、コイルばね20の内側部分20bを拡張させることによって、コイルばね20に応力を付与し、塑性変形させることが可能となる。その後、コイルばね20に付与した応力を除荷すると、コイルばね20には残留圧縮応力が生じることとなる。   Then, in a state where the outer portion 20a of the coil spring 20 is fixed by the inner peripheral surface 1a of the circumscribed member 1, the inner portion 20b of the coil spring 20 is expanded to apply stress to the coil spring 20 and cause plastic deformation. Is possible. Thereafter, when the stress applied to the coil spring 20 is unloaded, a residual compressive stress is generated in the coil spring 20.

ショットピーニングを用いる場合、コイルばねに対して加えられる圧力は、衝撃的なものとなる。これに対して、本発明に係る方法を用いる場合、コイルばね20に対して外接部材1の内周面1aおよび内接部材2の外周面2aで圧力を加えるため、準静的な圧力が加わり、コイルばね20の深い領域まで圧縮残留応力を付与すること可能となる。   When shot peening is used, the pressure applied to the coil spring is shocking. On the other hand, when the method according to the present invention is used, pressure is applied to the coil spring 20 on the inner peripheral surface 1a of the circumscribed member 1 and the outer peripheral surface 2a of the inscribed member 2, so that a quasi-static pressure is applied. It becomes possible to apply compressive residual stress to the deep region of the coil spring 20.

また、コイルばね20は、拡張部材3と接触することがなく、内接部材2から径方向の応力が付与されるだけである。そのため、拡張部材3が内接部材2内を通過する際に、コイルばね20の表面に擦り傷などが生じることも防止できる。   Further, the coil spring 20 does not come into contact with the expansion member 3, and only the radial stress is applied from the inscribed member 2. For this reason, it is possible to prevent the surface of the coil spring 20 from being scratched when the expansion member 3 passes through the inscribed member 2.

本発明は上述の実施形態に限定されるものではない。例えば上述の例では、拡張部材3は球体状であるが、図3に示すように、先端が半球状または円錐状の棒であってもよい。   The present invention is not limited to the above-described embodiment. For example, in the above-described example, the expansion member 3 has a spherical shape. However, as shown in FIG. 3, the tip may be a hemispherical or conical rod.

また、上述の実施形態では、内接部材2は断面C字形状の外周面2aおよび内周面2bを有する円筒状であるが、例えば、図4および5に示すような構成であってもよい。すなわち、内接部材2は、断面円形の外周面2aおよび断面四角形の内周面2bを有しており、4つに分割されている。そして、垂直断面が台形で、水平断面が正方形の棒状の拡張部材3を、内接部材2の内周面2bに接触するように押し込むことによって、内接部材2を径方向に拡張させる。   In the above-described embodiment, the inscribed member 2 has a cylindrical shape having an outer peripheral surface 2a and an inner peripheral surface 2b having a C-shaped cross section, but may be configured as shown in FIGS. 4 and 5, for example. . That is, the inscribed member 2 has an outer peripheral surface 2a having a circular cross section and an inner peripheral surface 2b having a square cross section, and is divided into four. Then, the inscribed member 2 is expanded in the radial direction by pushing the rod-shaped expansion member 3 having a trapezoidal vertical section and a square horizontal section so as to contact the inner peripheral surface 2b of the inscribed member 2.

さらに、上述の例では、球体状または棒状の器具である拡張部材3を内接部材2の内側に押し込むことによって、内接部材2を径方向に拡張させる構成としているが、これに限定されず、例えば、水圧または油圧によって内接部材2を拡張させる構成としてもよい。   Furthermore, in the above-described example, the inscribed member 2 is expanded in the radial direction by pushing the expanding member 3 which is a spherical or rod-shaped instrument into the inside of the inscribed member 2, but the present invention is not limited thereto. For example, the inscribed member 2 may be expanded by water pressure or hydraulic pressure.

図6は、本発明の他の実施形態に係る残留応力付与装置10の基準状態の一例を示した断面図である。また、図7は、本発明の他の実施形態に係る残留応力付与装置10において、コイルばね20に軸方向の力を付加して縮ませた状態の一例を示した断面図である。さらに、図8は、本発明の他の実施形態に係る残留応力付与装置10の使用状態の一例を示した断面図である。   FIG. 6 is a cross-sectional view showing an example of a reference state of the residual stress applying apparatus 10 according to another embodiment of the present invention. FIG. 7 is a cross-sectional view showing an example of a state in which the axial force is applied to the coil spring 20 and contracted in the residual stress applying apparatus 10 according to another embodiment of the present invention. Further, FIG. 8 is a cross-sectional view showing an example of a usage state of the residual stress applying apparatus 10 according to another embodiment of the present invention.

本発明の他の実施形態に係る残留応力付与装置10は、上述の外接部材1、内接部材2および拡張部材3に加えて、変形部材4をさらに備える。変形部材4は、コイルばね20に軸方向の力を付加し弾性変形させる部材である。図6〜8に示す構成においては、変形部材4は円筒状の部材であり、外径が外接部材1の内径より小さく、内径が内接部材2の外径より大きい。   The residual stress applying apparatus 10 according to another embodiment of the present invention further includes a deformable member 4 in addition to the above-described circumscribed member 1, inscribed member 2, and expansion member 3. The deformable member 4 is a member that applies an axial force to the coil spring 20 to be elastically deformed. 6 to 8, the deformable member 4 is a cylindrical member, and the outer diameter is smaller than the inner diameter of the circumscribed member 1, and the inner diameter is larger than the outer diameter of the inscribed member 2.

変形部材4を備えた残留応力付与装置10を用いてコイルばね20に残留応力を付与する場合においては、上述の拡張工程において、まず、図7に示すように変形部材4によってコイルばね20に軸方向の力を付加して縮ませる。そして、コイルばね20を弾性変形させた状態で、内接部材2を径方向に拡張させる。   In the case where the residual stress is applied to the coil spring 20 using the residual stress applying device 10 provided with the deformable member 4, in the above-described expansion process, first, as shown in FIG. Apply direction force to shrink. Then, the inscribed member 2 is expanded in the radial direction while the coil spring 20 is elastically deformed.

コイルばね20に軸方向の力を付加して弾性変形させた状態で、径方向に圧力を加えて塑性変形させることにより、コイルばね20のより深い領域まで圧縮残留応力を付与すること可能となる。   It is possible to apply compressive residual stress to a deeper region of the coil spring 20 by plastically deforming the coil spring 20 by applying pressure in the radial direction in a state where the coil spring 20 is elastically deformed by applying an axial force. .

上述の図6〜8に示す構成においては、コイルばね20を縮ませた状態で径方向に圧力を加えているが、図9〜11に示すように、コイルばね20を伸ばした状態で径方向に圧力を加えてもよい。   In the configuration shown in FIGS. 6 to 8 described above, pressure is applied in the radial direction with the coil spring 20 contracted, but as shown in FIGS. 9 to 11, the radial direction is applied with the coil spring 20 extended. Pressure may be applied to the.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

コイルばねとして、Daytona製JIS SWOSC−V鋼ばね(ショットピーニングによる強化、スーパークラッチセンタースプリング74040、自由高さ:100mm、コイル平均径:53mm、線径:4mm)を用いた。使用したばねの総巻数は5、有効巻数は3とした。上記のコイルばねに対し、残留応力除去を目的として、400℃の温度で30分間保持する焼鈍処理を施した。   A JIS SWOSC-V steel spring manufactured by Daytona (reinforced by shot peening, super clutch center spring 74040, free height: 100 mm, average coil diameter: 53 mm, wire diameter: 4 mm) was used as the coil spring. The total number of turns of the spring used was 5, and the effective number of turns was 3. The coil spring was annealed for 30 minutes at a temperature of 400 ° C. for the purpose of removing residual stress.

残留応力除去焼鈍した後、本発明に係る方法を用いて残留応力の付与を行った。具体的には、まず、外径70mm、内径57mm(+0.05〜0)、長さ100mmのパイプ状の外接部材内にコイルばねを隙間ばめした後、外径49mm(0〜−0.02)、内径31.25mm±0.02、長さ100mmであり、断面C字形状の内周面を有する円筒状の内接部材をコイルばねに挿入した。その後、直径31.75mmの硬球である拡張部材を内接部材内に通過させ押し広げることによって、コイルばねの内径を1%拡張(コイル内径49mmに対して内径を0.5mm拡張)した。   After the residual stress removal annealing, the residual stress was applied using the method according to the present invention. Specifically, first, after fitting a coil spring into a pipe-shaped circumscribed member having an outer diameter of 70 mm, an inner diameter of 57 mm (+0.05 to 0), and a length of 100 mm, an outer diameter of 49 mm (0 to −0. 02), a cylindrical inscribed member having an inner diameter of 31.25 mm ± 0.02 and a length of 100 mm and having a C-shaped inner peripheral surface was inserted into the coil spring. Thereafter, the expansion member, which is a hard sphere having a diameter of 31.75 mm, was passed through the inscribed member and pushed to expand, thereby expanding the inner diameter of the coil spring by 1% (the inner diameter was expanded by 0.5 mm with respect to the coil inner diameter of 49 mm).

上記のショットピーニングを施した状態(試験No.1)、ショットピーニング後に焼鈍処理を施した状態(試験No.2)、および、焼鈍後にさらに本発明の方法により残留応力を施した状態(試験No.3)の3つの状態のコイルばねについて、残留応力の測定を行った。残留応力の測定には、X線応力測定装置(株式会社リガク製PSPC-RSF)を用いた。図12に残留応力の測定位置および測定方向を示すように、各々のコイルばねを円弧の90°周期で切断し、一巻分を4等分にした線素を対象に、直径3mmの範囲について電解研磨を行い、内面側から所定の深さまで表層を取り除いた後、測定を実施した。残留応力の測定は、表面、深さ0.15mm位置および深さ0.5mm位置の3か所について行った。   State in which the above shot peening was performed (test No. 1), state in which annealing treatment was performed after shot peening (test No. 2), and state in which residual stress was further applied by the method of the present invention after annealing (test no. .3) Residual stress was measured for the coil springs in the three states. For the measurement of residual stress, an X-ray stress measurement device (PSPC-RSF manufactured by Rigaku Corporation) was used. As shown in FIG. 12, the measurement position and direction of the residual stress, each coil spring is cut in a 90 ° cycle of a circular arc, and a wire element in which one turn is divided into four equal parts is targeted for a range of 3 mm in diameter. Electrolytic polishing was performed, and after removing the surface layer from the inner surface side to a predetermined depth, measurement was performed. The residual stress was measured at three locations on the surface, a depth of 0.15 mm position and a depth of 0.5 mm position.

残留応力測定結果を表1に示す。ショットピーニングにより強化された試験No.1のばねでは、測定位置が0.15mm、0.5mmと深くなるに従い、圧縮残留応力が低下し、深さ0.5mmでは引張残留応力が発生している。また、低温焼戻し後の試験No.2のばねについては、結果的には残留応力が完全には除去されていなかったが、ショットピーニング後のばねに比べると圧縮残留応力は低くなっていた。   The residual stress measurement results are shown in Table 1. Test No. reinforced by shot peening In the spring No. 1, the compressive residual stress decreases as the measurement position becomes deeper at 0.15 mm and 0.5 mm, and tensile residual stress is generated at a depth of 0.5 mm. In addition, Test No. after low temperature tempering. As a result, although the residual stress was not completely removed for the spring No. 2, the compressive residual stress was lower than that of the spring after shot peening.

Figure 2017218669
Figure 2017218669

これらに対して、本発明の方法で処理した試験No.3のばねは、深さ0.15mmおよび0.5mmの位置ともに圧縮残留応力が付与されていることが分かる。特に、深さ0.15mm位置では、表層同様の高い圧縮残留応力が付与されていた。また、外表面部もショットピーニング後のばね表面と同等の高い圧縮残留応力が発生していることが分かる。以上のことから、本発明に係る方法を用いることで、高く深い圧縮残留応力を付与することができることが分かった。   In contrast to these, test Nos. Processed by the method of the present invention. It can be seen that compression residual stress is applied to the spring No. 3 at depths of 0.15 mm and 0.5 mm. In particular, at a depth of 0.15 mm, a high compressive residual stress similar to the surface layer was applied. Moreover, it turns out that the high compressive residual stress equivalent to the spring surface after shot peening has generate | occur | produced also in the outer surface part. From the above, it was found that high and deep compressive residual stress can be applied by using the method according to the present invention.

実施例1と同じコイルばねに対し、残留応力除去を目的として、450℃の温度で30分間保持する焼鈍処理を施した。残留応力除去焼鈍した後、本発明に係る方法を用いて残留応力の付与を行った。   The same coil spring as in Example 1 was subjected to an annealing treatment for 30 minutes at a temperature of 450 ° C. for the purpose of removing residual stress. After the residual stress removal annealing, the residual stress was applied using the method according to the present invention.

具体的には、まず、外径70mm、内径57mm(+0.05〜0)、長さ100mmのパイプ状の外接部材内にコイルばねを隙間ばめした後、外径49mm(0〜−0.02)、内径31.25mm±0.02、長さ100mmであり、断面C字形状の内周面を有する円筒状の内接部材をコイルばねに挿入した。   Specifically, first, after fitting a coil spring into a pipe-shaped circumscribed member having an outer diameter of 70 mm, an inner diameter of 57 mm (+0.05 to 0), and a length of 100 mm, an outer diameter of 49 mm (0 to −0. 02), a cylindrical inscribed member having an inner diameter of 31.25 mm ± 0.02 and a length of 100 mm and having a C-shaped inner peripheral surface was inserted into the coil spring.

その後、外径57mm、内径50mmのパイプ状の変形部材を用いてコイルばねを軸方向に25.5mm縮ませてた。この時にコイルばねの外表面に付与されるせん断応力はおよそ500MPaである。この程度の応力ではばねの外表面では降伏は生じず、弾性変形するのみである。そして、直径31.75mmの硬球である拡張部材を内接部材内に通過させ押し広げることによって、コイルばねの内径を1%拡張(コイル内径49mmに対して内径を0.5mm拡張)した。   Thereafter, the coil spring was contracted by 25.5 mm in the axial direction using a pipe-shaped deformable member having an outer diameter of 57 mm and an inner diameter of 50 mm. At this time, the shear stress applied to the outer surface of the coil spring is approximately 500 MPa. With this level of stress, yielding does not occur on the outer surface of the spring, but only elastic deformation. Then, the expansion member, which is a hard sphere having a diameter of 31.75 mm, was passed through the inscribed member and expanded to expand the inner diameter of the coil spring by 1% (the inner diameter was expanded by 0.5 mm with respect to the coil inner diameter of 49 mm).

上記のショットピーニングを施した状態(試験No.4)、ショットピーニング後に焼鈍処理を施した状態(試験No.5)、および、焼鈍後にさらに本発明の方法により残留応力を施した状態(試験No.6)の3つの状態のコイルばねについて、残留応力の測定を行った。残留応力の測定は実施例1と同様に行った。   State subjected to the above shot peening (Test No. 4), state subjected to annealing treatment after shot peening (Test No. 5), and state subjected to residual stress by the method of the present invention after annealing (Test No. 5) .6) Residual stress was measured for the coil springs in the three states. The residual stress was measured in the same manner as in Example 1.

残留応力測定結果を表2に示す。実施例1と同様に、低温焼戻し後の試験No.5のばねについては、残留応力が完全には除去されていなかったが、ショットピーニング後のばねに比べると圧縮残留応力は低くなっていた。また、本実施例では実施例1に比べて焼戻し温度を高くしたため、試験No.2に比べて試験No.5の表面における圧縮残留応力はより低くなった。   Table 2 shows the results of residual stress measurement. Similar to Example 1, the test No. 1 after low temperature tempering. Regarding the spring No. 5, the residual stress was not completely removed, but the compressive residual stress was lower than that of the spring after shot peening. In this example, since the tempering temperature was higher than that in Example 1, the test No. Compared to test No. 2, test no. The compressive residual stress at the surface of 5 was lower.

Figure 2017218669
Figure 2017218669

また、弾性変形させた状態で径方向に圧力を加えた試験No.6のばねでは、弾性変形させずに径方向に拡張させた試験No.3のばねと比較して、表面から0.15mmの深さまでの圧縮残留応力は同等であるのに対して、0.5mmの深さにおいては圧縮残留応力が顕著に高くなる結果となった。このことから、ばねを弾性変形させた状態で、径方向に圧力を加えて塑性変形させることにより、より深い領域まで圧縮残留応力を付与できることが分かった。   In addition, test No. 1 in which pressure was applied in the radial direction in an elastically deformed state. In the spring No. 6, the test No. 1 was expanded in the radial direction without being elastically deformed. Compared with the spring No. 3, the compressive residual stress from the surface to a depth of 0.15 mm was equivalent, whereas the compressive residual stress was remarkably increased at a depth of 0.5 mm. From this, it was found that compressive residual stress can be applied to a deeper region by applying pressure in the radial direction and plastically deforming the spring in an elastically deformed state.

本発明によれば、コイルばねに対して、表面性状を大きく劣化させることなく、かつ低コストで、内部の領域まで圧縮残留応力を付与することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to give a compression residual stress to an internal area | region at low cost, without significantly deteriorating the surface property with respect to a coil spring.

1.外接部材
1a.内周面
2.内接部材
2a.外周面
2b.内周面
3.拡張部材
3a.拡張部
4.変形部材
10.残留応力付与装置
20.コイルばね
20a.外側部分
20b.内側部分
1. Circumscribed member 1a. 1. Inner peripheral surface Inscribed member 2a. Outer peripheral surface 2b. 2. Inner peripheral surface Expansion member 3a. Expansion unit 4. Deformation member 10. Residual stress applying device 20. Coil spring 20a. Outer part 20b. Inner part

Claims (6)

コイルばねに残留応力を付与する装置であって、
径方向への拡張が不能な断面円形の内周面を有し、前記コイルばねが隙間ばめされる外接部材と、
前記外接部材の前記内周面の内側において、前記コイルばねに挿入され、かつ、径方向への拡張が可能な断面円形の外周面を有する内接部材と、
前記内接部材の前記外周面を径方向に拡張させる拡張部材と、を備える、
残留応力付与装置。
A device for applying residual stress to a coil spring,
A circumscribing member having a circular inner peripheral surface that cannot be expanded in the radial direction, and the coil spring is fitted in a gap;
An inscribed member having an outer peripheral surface with a circular cross section that is inserted into the coil spring and can be expanded in the radial direction inside the inner peripheral surface of the circumscribed member;
An expansion member that expands the outer peripheral surface of the inscribed member in a radial direction,
Residual stress applying device.
前記内接部材は、断面C字形状の内周面を有し、
前記拡張部材は、前記内接部材の前記内周面の直径より大きい外径を有する拡張部を含む、
請求項1に記載の残留応力付与装置。
The inscribed member has an inner peripheral surface having a C-shaped cross section,
The expansion member includes an expansion portion having an outer diameter larger than a diameter of the inner peripheral surface of the inscribed member.
The residual stress applying apparatus according to claim 1.
前記コイルばねに軸方向の力を付加し弾性変形させる変形部材をさらに備える、
請求項1または請求項2に記載の残留応力付与装置。
A deformation member that elastically deforms by applying an axial force to the coil spring;
The residual stress applying apparatus according to claim 1 or 2.
請求項1または請求項2に記載の装置を用いてコイルばねに残留応力を付与する方法であって、
前記コイルばねを前記外接部材内に隙間ばめするとともに、前記コイルばねの内側に前記内接部材を挿入する、配置工程と、
前記内接部材の前記外周面を径方向に拡張させる、拡張工程と、を備える、
残留応力付与方法。
A method of applying a residual stress to a coil spring using the apparatus according to claim 1 or 2,
An arrangement step of fitting the coil spring into the circumscribed member with a gap and inserting the inscribed member inside the coil spring;
Expanding the outer peripheral surface of the inscribed member in the radial direction,
Residual stress application method.
請求項3に記載の装置を用いてコイルばねに残留応力を付与する方法であって、
前記コイルばねを前記外接部材内に隙間ばめするとともに、前記コイルばねの内側に前記内接部材を挿入する、配置工程と、
前記変形部材により前記コイルばねを弾性変形させた状態で、前記内接部材の前記外周面を径方向に拡張させる、拡張工程と、を備える、
残留応力付与方法。
A method of applying a residual stress to a coil spring using the apparatus according to claim 3,
An arrangement step of fitting the coil spring into the circumscribed member with a gap and inserting the inscribed member inside the coil spring;
Expanding the outer peripheral surface of the inscribed member in a radial direction in a state in which the coil spring is elastically deformed by the deformable member,
Residual stress application method.
前記拡張工程において、前記コイルばねを前記外接部材の前記内周面と前記内接部材の前記外周面とで挟み、前記拡張部材を、前記内接部材の内周面と接触するように前記内接部材内に通過させることによって、前記内接部材を拡張させる、
請求項4または請求項5に記載の残留応力付与方法。
In the expanding step, the coil spring is sandwiched between the inner peripheral surface of the circumscribed member and the outer peripheral surface of the inscribed member, and the inner member is in contact with the inner peripheral surface of the inscribed member. Expanding the inscribed member by passing it through the inscribed member;
The method for imparting residual stress according to claim 4 or 5.
JP2017003319A 2016-06-07 2017-01-12 Residual stress application method Active JP6969100B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113645 2016-06-07
JP2016113645 2016-06-07

Publications (2)

Publication Number Publication Date
JP2017218669A true JP2017218669A (en) 2017-12-14
JP6969100B2 JP6969100B2 (en) 2021-11-24

Family

ID=60657276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003319A Active JP6969100B2 (en) 2016-06-07 2017-01-12 Residual stress application method

Country Status (1)

Country Link
JP (1) JP6969100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622825A (en) * 2018-12-13 2019-04-16 上海航天精密机械研究所 A kind of compact spring is quiet to suppress mode and its device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878963U (en) * 1981-11-24 1983-05-28 加藤発条株式会社 coil spring
JPS6127135A (en) * 1984-07-14 1986-02-06 Chuo Spring Co Ltd Surface processing method of tension coil spring
US8069881B1 (en) * 2004-12-02 2011-12-06 Barnes Group Inc. Spring and spring processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878963U (en) * 1981-11-24 1983-05-28 加藤発条株式会社 coil spring
JPS6127135A (en) * 1984-07-14 1986-02-06 Chuo Spring Co Ltd Surface processing method of tension coil spring
US8069881B1 (en) * 2004-12-02 2011-12-06 Barnes Group Inc. Spring and spring processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622825A (en) * 2018-12-13 2019-04-16 上海航天精密机械研究所 A kind of compact spring is quiet to suppress mode and its device

Also Published As

Publication number Publication date
JP6969100B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP5503608B2 (en) Fatigue fracture evaluation method for cylindrical metal materials
US7818986B1 (en) Multiple autofrettage
US5520376A (en) Pre-twisted metal torsion bar and method of making same
KR102000859B1 (en) Shear working method
US20100139883A1 (en) Surgical needle swage tool
JP2017218669A (en) Residual stress imparting device and residual stress imparting method
KR100676333B1 (en) Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
Mueller Stress peening—A sophisticated way of normal shot peening
JP6669546B2 (en) Setting device
US10639704B2 (en) Self-aligning swaging punch and method for swaging
JP4706024B2 (en) Crack growth suppression method
JP2015036147A (en) Punch for burring processing and burring processing method
JP5609594B2 (en) Coil spring ultrasonic hitting apparatus and coil spring ultrasonic hitting method
Yeh et al. Finite element analysis of blanking process by superimposing ultrasonic vibrations
Jweeg et al. Improving fatigue life of bolt adapter of prosthetic SACH foot
CN114025896B (en) Hollow spring and method for manufacturing same
JP2009270150A (en) Method for manufacturing coil spring
WO2019217980A1 (en) Method of ensuring controlled failure of rock bolt bar
RU2714571C1 (en) Method of cylindrical spring recovery and device for its implementation
JP2005095960A (en) Method for preventing stress corrosion cracking of metal
WO2023112390A1 (en) Method for suppressing fatigue crack progression in bent section of metal plate and automobile component
Houjou et al. Improvement of fatigue limit by overload for high-tensile strength steel containing a crack in the stress concentration zone
KR102491312B1 (en) twisted pair
JP2020126031A (en) Test piece for ultrasonic fatigue test, and ultrasonic fatigue test method
JP6123461B2 (en) Ultrasonic shock treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210705

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151