JP2017218609A - Aluminum alloy-made high strength fastener and manufacturing method therefor - Google Patents

Aluminum alloy-made high strength fastener and manufacturing method therefor Download PDF

Info

Publication number
JP2017218609A
JP2017218609A JP2016111570A JP2016111570A JP2017218609A JP 2017218609 A JP2017218609 A JP 2017218609A JP 2016111570 A JP2016111570 A JP 2016111570A JP 2016111570 A JP2016111570 A JP 2016111570A JP 2017218609 A JP2017218609 A JP 2017218609A
Authority
JP
Japan
Prior art keywords
aluminum alloy
plating layer
alloy
strength fastener
fastener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016111570A
Other languages
Japanese (ja)
Inventor
松岡 秀明
Hideaki Matsuoka
秀明 松岡
近藤 幹夫
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016111570A priority Critical patent/JP2017218609A/en
Publication of JP2017218609A publication Critical patent/JP2017218609A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy-made high strength fastener capable of stably maintaining high fastening force (axial force) even when used under high temperature environment.SOLUTION: There is provided a high strength fastener made of an Al ally containing Fe:1.5 to 6%, Zr:0.2 to 1.5%, Ti:0.15 to 1.2% and the balance: Al with inevitable impurities based on 100 mass% in total. The Al alloy preferably further contains Mg:0.2 to 2.5%. Such Al alloy does not permanently grow practically and is extremely excellent in dimensional stability. Therefor the fastener (bolt, nut or washer) contributes to stable maintenance of high fastening force (axial force) even when used under high temperature environment. By coating at least a slide contact face of the fastener with a burned Ni-P plating layer, increase of wear resistance or corrosion resistance of the fastener can be achieved.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金(単に「Al合金」ともいう。)からなる高強度締結具およびその製造方法に関する。   The present invention relates to a high-strength fastener made of an aluminum alloy (also simply referred to as “Al alloy”) and a method for manufacturing the same.

ボルト、ナットまたは座金などの締結具は、通常、低コストで高強度な鋼材からなるが、使用数に応じてその占める総重量も大きくなる。そこで、締結具を用いて組み立てられる部品点数が多く、軽量化の要請も強い航空機、自動車、二輪車等では、鋼製締結具に替えてAl合金製締結具が利用されていたり、その利用が検討されたりしている。   Fasteners such as bolts, nuts, and washers are usually made of low-cost, high-strength steel, but the total weight of the fasteners increases with the number of uses. Therefore, for aircraft, automobiles, motorcycles, etc., where there are many parts to be assembled using fasteners and there is a strong demand for weight reduction, aluminum alloy fasteners are used instead of steel fasteners, and their use is considered. Have been.

このような締結具には、A5000系(JIS)の非熱処理型Al合金やA6000系またはA7000系の熱処理型Al合金が用いられる。低強度ボルト等には非熱処理型Al合金が用いられるが、高強度ボルト等には熱処理型Al合金が用いられる。このような熱処理型Al合金からなる高強度ボルトに関連する記載が、例えば、下記の特許文献1、2にある。   For such fasteners, an A5000-based (JIS) non-heat-treatable Al alloy or an A6000-based or A7000-based heat-treatable Al alloy is used. Non-heat-treatable Al alloys are used for low-strength bolts and the like, while heat-treatable Al alloys are used for high-strength bolts and the like. The description related to such high-strength bolts made of heat-treatable Al alloy is, for example, in Patent Documents 1 and 2 below.

特開2013−234389号公報JP 2013-234389 A 特開2015−74009号公報JP2015-74009A 特許5867332号公報Japanese Patent No. 5867332

熱処理型Al合金は時効処理により高強度化されるため、ボルト等の使用環境がその時効処理温度(120〜220℃)と同等以上になると、母材中に分散している強化相が粗大化して、強度が低下し得る。このため従来のAl合金製高強度ボルト等は、使用環境(使用温度域)が限定的であった。   Since heat-treated Al alloy is strengthened by aging treatment, when the usage environment such as bolts becomes equal to or higher than the aging treatment temperature (120 to 220 ° C), the strengthening phase dispersed in the base material becomes coarse. Thus, the strength can be reduced. For this reason, conventional Al alloy high-strength bolts have a limited use environment (use temperature range).

また、熱処理型Al合金であっても、A7000系(Al−Zn−Mg−Cu系)合金は、A6000系(Al−Mg−Si系)合金よりも高強度であるものの、耐食性(耐応力腐食割れ性)に劣る。そこで耐食性や耐摩耗性の向上を図るために、ボルトやナットのねじ面や端面等(摺接面)に陽極酸化被膜が施されることも多い。しかし、陽極酸化被膜は、高温域(例えば80℃超)で、基材(Al合金)との熱膨張差によって膜全体に割れを生じる。このため陽極酸化被膜によって耐食性や耐摩耗性を改善できる範囲は限定的であった。   Moreover, even if it is a heat treatment type Al alloy, although A7000 type | system | group (Al-Zn-Mg-Cu type | system | group) alloy is higher intensity | strength than an A6000 type | system | group (Al-Mg-Si type | system | group) alloy, corrosion resistance (stress corrosion resistance) It is inferior to crackability. Therefore, in order to improve corrosion resistance and wear resistance, an anodized film is often applied to the screw surfaces and end surfaces (sliding contact surfaces) of bolts and nuts. However, the anodized film is cracked in the entire film at a high temperature range (for example, higher than 80 ° C.) due to a difference in thermal expansion from the base material (Al alloy). For this reason, the range which can improve corrosion resistance and abrasion resistance with an anodic oxide film was limited.

さらに本発明者が研究したところ、従来のAl合金製高強度ボルト等は、熱履歴や自然時効等によって寸法変化(永久生長)を生じる。このため、従来のAl合金製高強度ボルト等は、高温域で使用する場合は勿論、そうでないとしても、締付力(軸力)を長期にわたって安定的に保持することが困難であった。   Further, when the present inventor has studied, conventional Al alloy high-strength bolts and the like undergo dimensional changes (permanent growth) due to thermal history, natural aging, and the like. For this reason, the conventional high strength bolts made of Al alloy, etc., when used in a high temperature range, of course, it has been difficult to stably maintain the tightening force (axial force) over a long period of time.

なお、特許文献3にはアルミニウム合金からなる基体上に、結晶質Ni−P層からなる被覆層を設けた耐摩耗性部材に関する記載がある。しかし、特許文献3には、締結具や永久生長等に関する具体的な記載は全くない。   Patent Document 3 describes a wear-resistant member in which a coating layer made of a crystalline Ni-P layer is provided on a base made of an aluminum alloy. However, Patent Document 3 has no specific description regarding fasteners, permanent growth, and the like.

本発明は、このような事情に鑑みて為されたものであり、種々の使用環境下で、高い締付力を安定して保持できるアルミニウム合金製高強度締結具と、その製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a high-strength fastener made of aluminum alloy that can stably maintain a high clamping force under various usage environments, and a method for manufacturing the same. For the purpose.

本発明者はこの課題を解決すべく鋭意研究した結果、特有のAl合金が高温特性(強度、硬さ等)に優れることに加えて、実質的に永久生長しないという未知の属性を発見した。この発見に基づき、使用環境(特に使用温度域)が変化しても、安定的に高い締付力(軸力)を保持できるAl合金を締結具を新たに発想した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor has found an unknown attribute that a specific Al alloy does not substantially grow permanently in addition to being excellent in high-temperature characteristics (strength, hardness, etc.). Based on this discovery, we have newly conceived a fastener made of an Al alloy that can stably maintain a high tightening force (axial force) even when the use environment (especially the use temperature range) changes. By developing this result, the present invention described below has been completed.

《アルミニウム合金製高強度締結具》
(1)本発明のアルミニウム合金製高強度締結具(単に「高強度締結具」または「締結具」という。)は、全体を100質量%(単に「%」という。)としたときに、Fe:1.5〜6%、Zr:0.2〜1.5%、Ti:0.15〜1.2%、残部:Alと不可避不純物からなるアルミニウム合金からなり、第一部材と第二部材を固定するために用いられる。
《Aluminum alloy high strength fasteners》
(1) The aluminum alloy high-strength fastener (simply referred to as “high-strength fastener” or “fastener”) according to the present invention has a total Fe content of 100% by mass (simply referred to as “%”). 1.5 to 6%, Zr: 0.2 to 1.5%, Ti: 0.15 to 1.2%, balance: aluminum alloy composed of Al and inevitable impurities, first member and second member Used to fix.

(2)本発明に係るAl合金は、実質的に永久生長せず寸法安定性に優れると共に、室温域のみならず高温域でも、高強度を安定して発揮する。従って本発明の締結具によれば、仮に環境(特に温度)が変動し易い環境下で使用されても、安定した高い締付力が確保され得る。 (2) The Al alloy according to the present invention does not substantially grow permanently and is excellent in dimensional stability, and stably exhibits high strength not only in a room temperature range but also in a high temperature range. Therefore, according to the fastener of the present invention, a stable and high tightening force can be ensured even when used in an environment where the environment (particularly temperature) is likely to fluctuate.

(3)さらに本発明の締結具は、少なくとも摺接面(ねじ面や座面等)を構成するアルミニウム合金(基材)の表面に、耐摩耗性や耐食性等に優れた被覆層を有すると好ましい。このような被覆層として、例えば、めっき層または陽極酸化層がある。めっき層は、電解めっき層でも無電解めっき層でもよいが、均一性や生産性等の観点から無電解めっき層であると好ましい。特に、無電解めっき層は、耐食性等に優れる無電解Ni−Pめっき層が好ましい。さらに、本発明に係るめっき層は、無電解ニッケルめっき層の中でも、無電解Ni−Pめっき層を焼成等して得られる硬質で耐摩耗性に優れた焼成Ni−Pめっき層であると好ましい。このような被覆層を設けることにより、本発明の締結具は、上述した寸法安定性に加えて、優れた耐食性や耐摩耗性をも発揮し得る。 (3) Furthermore, the fastener of the present invention has a coating layer excellent in wear resistance, corrosion resistance, etc. on the surface of an aluminum alloy (base material) constituting at least a sliding contact surface (screw surface, seat surface, etc.). preferable. Examples of such a covering layer include a plating layer and an anodized layer. The plating layer may be an electrolytic plating layer or an electroless plating layer, but is preferably an electroless plating layer from the viewpoint of uniformity and productivity. In particular, the electroless plating layer is preferably an electroless Ni—P plating layer having excellent corrosion resistance and the like. Furthermore, the plating layer according to the present invention is preferably a hard Ni-P plating layer that is hard and has excellent wear resistance obtained by baking the electroless Ni-P plating layer among the electroless nickel plating layers. . By providing such a coating layer, the fastener of the present invention can exhibit excellent corrosion resistance and wear resistance in addition to the dimensional stability described above.

《アルミニウム合金製高強度締結具の製造方法》
上述した締結具は、例えば、本発明に係るAl合金からなる素材を鍛造したり、さらにねじ溝を転造したりすることにより得られる。そのAl合金(素材)は、広い温度域で高い加工性を発揮するため、それらの塑性加工は冷間加工でも、温間加工でも、450℃以下の熱間加工でもよい。
《Method for manufacturing high strength fastener made of aluminum alloy》
The fastener described above can be obtained, for example, by forging a material made of an Al alloy according to the present invention or rolling a screw groove. Since the Al alloy (raw material) exhibits high workability in a wide temperature range, the plastic processing may be cold processing, warm processing, or hot processing at 450 ° C. or less.

また締結具の表面に上述した焼成Ni−Pめっき層を形成する場合、例えば、次のような本発明の製造方法を用いることができる。つまり、アルミニウム合金からなる素材を鍛造した鍛造基材または該鍛造基材にねじ溝を転造した転造基材に、無電解Ni−Pめっき層を形成するめっき工程と、該無電解Ni−Pめっき層を300〜450℃で加熱して焼成Ni−Pめっき層とする焼成工程とを備えるアルミニウム合金製高強度締結具の製造方法である。   Moreover, when forming the baking Ni-P plating layer mentioned above on the surface of a fastener, the following manufacturing methods of this invention can be used, for example. That is, a plating step of forming an electroless Ni—P plating layer on a forged base material forged from a material made of an aluminum alloy or a rolled base material obtained by rolling thread grooves on the forged base material, and the electroless Ni— It is a manufacturing method of the aluminum alloy high intensity | strength fastener provided with the baking process which heats P plating layer at 300-450 degreeC, and makes it a baking Ni-P plating layer.

《その他》
(1)本発明に係るAl合金の寸法安定性は、例えば永久生長率で指標される。そのAl合金は実質的に永久生長しないため、その永久生長率は±0.05%以内さらには±0.01%以内といえる。ここでいう永久生長率は、試料(試験前の長さ:L)を室温から350℃まで昇温して10分間保持した後に室温まで降温したときに生じる長さの変化量(ΔL=L−L/試料の試験後の長さ:L)を、初期長さ(L)に対する割合(100×ΔL/L)で示したものである。
<Others>
(1) The dimensional stability of the Al alloy according to the present invention is indicated by, for example, the permanent growth rate. Since the Al alloy does not substantially grow permanently, the permanent growth rate can be said to be within ± 0.05% or even within ± 0.01%. The permanent growth rate here is the amount of change in length (ΔL = L) that occurs when the sample (length before the test: L 0 ) is heated from room temperature to 350 ° C. and held for 10 minutes and then cooled to room temperature. -L 0 / length after test of sample: L) is expressed as a ratio (100 × ΔL / L 0 ) to the initial length (L 0 ).

(2)本発明に係るAl合金は、室温域のみならず高温域でも、大きな強度や硬さを安定して発揮する。例えば、室温域の引張強さは、400MPa以上、450MPa以上さらには500MPa以上となり得る。そして高温域(350℃)の引張強さは、200MPa以上、250MPa以上さらには300MPa以上となり得る。さらに本発明に係るAl合金は、室温から高温域(350℃)にわたって硬さが殆ど変化せず、150Hv以上、155Hv以上さらには160Hv以上の硬さを安定的に維持し得る。その際の硬さの変動幅は30Hv以内、15Hv以内さらには10Hv以内ともなり得る。 (2) The Al alloy according to the present invention stably exhibits high strength and hardness not only at room temperature but also at high temperatures. For example, the tensile strength in the room temperature region can be 400 MPa or more, 450 MPa or more, and further 500 MPa or more. And the tensile strength of a high temperature range (350 degreeC) can be 200 Mpa or more, 250 Mpa or more, and also 300 Mpa or more. Furthermore, the Al alloy according to the present invention hardly changes in hardness from room temperature to a high temperature range (350 ° C.), and can stably maintain a hardness of 150 Hv or higher, 155 Hv or higher, or 160 Hv or higher. In this case, the variation range of the hardness can be within 30 Hv, within 15 Hv, or even within 10 Hv.

(3)本発明の締結具は、種々の形態が考えられるが、例えば、ボルト、ナットまたは座金が代表的である。本明細書でいう摺接面は、例えば、ねじ面(ねじ溝の螺旋面)、ボルトの頭部裏面(首下面)、ナットの端面、座金の座面(ボルトまたはナットとの当接面)等である。 (3) Although various forms can be considered for the fastener of the present invention, for example, a bolt, a nut, or a washer is representative. The sliding contact surface referred to in this specification includes, for example, a screw surface (a spiral surface of a thread groove), a bolt head rear surface (a neck lower surface), a nut end surface, and a washer seat surface (a contact surface with a bolt or a nut). Etc.

(4)特に断らない限り本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような数値範囲を新設し得る。 (4) Unless otherwise specified, “x to y” in this specification includes the lower limit value x and the upper limit value y. Any numerical value included in the various numerical values or numerical ranges described in the present specification can be newly established as a new lower limit value or upper limit value such as “ab”.

130℃の保持時間と永久生長率の関係を示すグラフである。It is a graph which shows the relationship between 130 degreeC holding time and a permanent growth rate. 加熱温度と変位の関係を示すグラフである。It is a graph which shows the relationship between heating temperature and displacement. 室温(RT)から各温度まで加熱したときの線膨張係数の変化を示すグラフである。It is a graph which shows the change of a linear expansion coefficient when it heats from room temperature (RT) to each temperature. 焼成温度と基材の硬さとの関係を示すグラフである。It is a graph which shows the relationship between a baking temperature and the hardness of a base material. 焼成温度とめっき層の硬さとの関係を示すグラフである。It is a graph which shows the relationship between a calcination temperature and the hardness of a plating layer.

本明細書で説明する内容は、本発明の締結具のみならず、その製造方法にも該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。方法に関する構成要素も、一定の場合、物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be applied not only to the fastener of the present invention but also to the manufacturing method thereof. One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. A component related to a method can also be a component related to an object in certain cases. Which embodiment is the best depends on the target, required performance, and the like.

《Al合金》
(1)成分組成
本発明に係るAl合金は、主成分であるAlの他、Fe、Zr、Tiを必須元素とし、さらに、Mgを含むと好ましい。各元素について具体的にいうと次の通りである。なお、各元素の組成範囲はAl合金全体を100質量%として示した。
<< Al alloy >>
(1) Component composition The Al alloy according to the present invention preferably contains Fe, Zr and Ti as essential elements in addition to Al as a main component, and further contains Mg. Specifically, each element is as follows. In addition, the composition range of each element was shown with the whole Al alloy as 100 mass%.

Feは1.5〜6%さらには2.5〜5.5%含まれると好ましい。FeはAlとの金属間化合物(Al−Fe系金属間化合物:第一化合物相)を、母相(α−Al相)中に形成する。この第一化合物相がAl合金の強度や硬さを高める。Feが過少では十分な強度や硬さが得られず、Feが過多では延性が低下し、鍛造性や転造性等の加工性が低下し得る。   Fe is preferably contained in an amount of 1.5 to 6%, more preferably 2.5 to 5.5%. Fe forms an intermetallic compound with Al (Al—Fe-based intermetallic compound: first compound phase) in the parent phase (α-Al phase). This first compound phase increases the strength and hardness of the Al alloy. If Fe is insufficient, sufficient strength and hardness cannot be obtained, and if Fe is excessive, ductility is lowered and workability such as forgeability and rollability can be lowered.

また、FeはAl合金の強度等の向上に有効なだけではなく、無電解Ni−Pめっきを行う際の触媒元素(活性化元素)としても機能し得る。具体的にいうと、Al合金(基材、母材)表面から部分的に露出しているFeが起点となってNi−Pめっき層の形成を促す。この結果、締結具の表面(特に摺接面)に、密着性や均一性等に優れたNi−Pめっき層が形成され易くなる。この傾向はFeが1%以上のときに顕著である。   Fe is not only effective for improving the strength and the like of the Al alloy, but can also function as a catalyst element (activation element) when performing electroless Ni—P plating. Specifically, Fe partially exposed from the surface of the Al alloy (base material, base material) is used as a starting point to promote the formation of a Ni—P plating layer. As a result, a Ni—P plating layer having excellent adhesion and uniformity can be easily formed on the surface of the fastener (particularly the sliding contact surface). This tendency is remarkable when Fe is 1% or more.

ZrおよびTiは、Alとの間でL1型構造のAl−(Zr、Ti)系金属間化合物(第二化合物相または析出相)を形成し、Al合金の耐熱性を高める。この理由は次のように考えられる。前述した第一化合物相は、高温雰囲気に長時間曝されると、相変態や形状変化(粗大化)などを生じ、必ずしも熱的に安定ではない。一方、第二化合物相は、母相に整合的であると共に、第一化合物相と母相の境界(界面)近傍に出現し、高温域まで安定している。このため、Al合金の強度や硬さを担う第一化合物相の高温時における相変態や形状変化等が第二化合物相により安定的に抑止(いわばピン留め)され得る。このように第一化合物相と第二化合物相が相乗的に作用することにより、本発明に係るAl合金は優れた高温特性(耐軟化性、耐熱性)を発揮するようになったと考えられる。 Zr and Ti, Al- (Zr, Ti) of L1 2 -type structure between the Al-based intermetallic compounds (second compound phase or precipitated phase) is formed, enhances the heat resistance of Al alloy. The reason is considered as follows. When the first compound phase described above is exposed to a high temperature atmosphere for a long time, it undergoes phase transformation or shape change (coarse), and is not necessarily thermally stable. On the other hand, the second compound phase is consistent with the parent phase, appears near the boundary (interface) between the first compound phase and the parent phase, and is stable up to a high temperature range. For this reason, the phase transformation and shape change of the first compound phase responsible for the strength and hardness of the Al alloy at a high temperature can be stably suppressed (so-called pinned) by the second compound phase. Thus, it is considered that the Al alloy according to the present invention has exhibited excellent high-temperature characteristics (softening resistance, heat resistance) by the synergistic action of the first compound phase and the second compound phase.

Zrは0.2〜1.5%さらには0.6〜1.2%含まれると好ましい。またTiは0.15〜1.2%さらには0.3〜0.8%含まれると好ましい。ZrまたはTiが過少になると、上述した効果が乏しく、ZrまたはTiが過多になると、Al合金の加工性が低下し得る。なお、ZrがTiよりも多く存在し、特にTiに対するZrの質量比(Zr/Ti)が1.1〜1.5さらには1.15〜1.4であると、第二化合物相の形成によるAl合金の高温特性の向上がより顕著となる。   Zr is preferably contained in an amount of 0.2 to 1.5%, more preferably 0.6 to 1.2%. Further, Ti is preferably contained in an amount of 0.15 to 1.2%, more preferably 0.3 to 0.8%. When Zr or Ti is too small, the above-described effects are poor, and when Zr or Ti is excessive, the workability of the Al alloy can be lowered. When the amount of Zr is larger than that of Ti, and the mass ratio of Zr to Ti (Zr / Ti) is 1.1 to 1.5, more preferably 1.15 to 1.4, the second compound phase is formed. The improvement of the high temperature characteristics of the Al alloy due to is more remarkable.

さらにMgが0.2〜2.5%さらには0.6〜1.8%含まれると好ましい。Mgは、Al合金の強度(特に室温強度)の向上に有効な元素である。Mgが過少ではその効果が乏しく、過多ではAl合金材の加工性の低下を招く。   Further, Mg is preferably contained in an amount of 0.2 to 2.5%, more preferably 0.6 to 1.8%. Mg is an element effective for improving the strength (particularly room temperature strength) of the Al alloy. If Mg is too small, the effect is poor, and if it is excessive, workability of the Al alloy material is lowered.

上述した内容を踏まえて、本発明に係るAl合金は、Fe:1.5〜6%、Zr:0.2〜1.5%、Ti:0.15〜1.2%、残部:Alと不可避不純物からなる好ましい。また、Tiに対するZrの質量比(Zr/Ti):1.1〜1.5であると好ましい。さらにAl合金は、Mg:0.2〜2.5%、その他の改質元素を含んでもよい。   In light of the above-described contents, the Al alloy according to the present invention has Fe: 1.5-6%, Zr: 0.2-1.5%, Ti: 0.15-1.2%, and the balance: Al. Preferably consisting of inevitable impurities. The mass ratio of Zr to Ti (Zr / Ti) is preferably 1.1 to 1.5. Further, the Al alloy may contain Mg: 0.2 to 2.5% and other modifying elements.

Al、Fe、Zr、TiおよびMg以外の元素であってAl合金の特性(強度、硬さ、靱性、延性、寸法安定性など)の改善に有効な改質元素として、Cr、Co、Mn、Ni、Sc、Y、La、V、Hf、Nbなどがある。各元素の含有量は、通常、微量である。ちなみに、「不可避不純物」は、溶解原料中に含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な元素であり、例えば、シリコン(Si)等である。   Elements other than Al, Fe, Zr, Ti and Mg that are effective for improving the properties (strength, hardness, toughness, ductility, dimensional stability, etc.) of the Al alloy include Cr, Co, Mn, There are Ni, Sc, Y, La, V, Hf, Nb, and the like. The content of each element is usually a very small amount. Incidentally, “inevitable impurities” are impurities contained in the dissolved raw material, impurities mixed in at each step, etc., and are elements that are difficult to remove due to cost or technical reasons. For example, silicon (Si) and the like.

(2)金属組織
本発明に係るAl合金は、Alの母相(α相)と、Al−Fe系金属間化合物相(第一化合物相)と、Al−(Zr、Ti)系金属間化合物(第二化合物相)を少なくとも有する複合組織からなると好ましい。
(2) Metallographic structure The Al alloy according to the present invention includes an Al matrix (α phase), an Al—Fe intermetallic compound phase (first compound phase), and an Al— (Zr, Ti) intermetallic compound. It is preferable that it consists of a composite structure having at least (second compound phase).

特に、第二化合物相はナノ粒子状であり、その中央部でZr濃度が高く、その外郭部でTi濃度が高くなっていると好ましい。つまり、Al(Zr、Ti)中のZrおよびTiの濃度が、中央から外殻にかけて傾斜していると好ましい。このような第二化合物相は、質量比(Zr/Ti)が上述した範囲内にあるときに形成され易い。 In particular, the second compound phase is in the form of nanoparticles, preferably having a high Zr concentration at the center and a high Ti concentration at the outer portion. That is, it is preferable that the concentration of Zr and Ti in Al 3 (Zr, Ti) is inclined from the center to the outer shell. Such a second compound phase is easily formed when the mass ratio (Zr / Ti) is in the above-described range.

第二化合物相の平均サイズは、1〜30、2〜20nmさらには3〜15nmであると好ましい。このサイズが過小でも過大でも、第二化合物相によるAl合金の耐熱性の向上効果が低下し得る。なお平均サイズとは、Al合金中より無作為に抽出したサンプルを透過電子顕微鏡(TEM)で観察し、30個以上の分散する第二化合物相の平均直径を画像処理法により解析して求まる。   The average size of the second compound phase is preferably 1 to 30, 2 to 20 nm, and more preferably 3 to 15 nm. Even if this size is too small or too large, the effect of improving the heat resistance of the Al alloy by the second compound phase can be lowered. The average size is obtained by observing a sample randomly extracted from the Al alloy with a transmission electron microscope (TEM) and analyzing the average diameter of 30 or more dispersed second compound phases by an image processing method.

本発明に係るAl合金は、上述したように微細な金属組織からなることにより、永久生長率が実質的に零(近傍)となり、高温特性に優れると共に、広い温度域で高い塑性加工性も発揮し得る。このため例えば、加工温度:室温(RT)〜400℃、加工率:10〜90%とすることも可能である。従って本発明に係るAl合金からなる締結具は、生産性や設計自由度等にも優れたものである。   As described above, the Al alloy according to the present invention is composed of a fine metal structure, so that the permanent growth rate is substantially zero (near), excellent in high temperature characteristics, and also exhibits high plastic workability in a wide temperature range. Can do. For this reason, for example, it is also possible to set the processing temperature: room temperature (RT) to 400 ° C. and the processing rate: 10 to 90%. Therefore, the fastener made of an Al alloy according to the present invention is excellent in productivity, design freedom, and the like.

《Al合金の製造》
上述したAl合金の製造方法は種々考えられる。例えば、合金溶湯を100℃/秒以上の冷却速度で急冷凝固させた凝固体(粉末、薄片等)からなる成形体(ビレット)を、300〜500℃で熱間塑性加工することにより得られる。
<Manufacture of Al alloy>
Various methods for producing the Al alloy described above are conceivable. For example, it can be obtained by hot plastic working at 300 to 500 ° C. a molded body (billet) made of a solidified body (powder, flakes, etc.) obtained by rapidly solidifying an alloy melt at a cooling rate of 100 ° C./second or more.

熱間塑性加工は、例えば、押出加工や鍛造加工等である。熱間塑性加工は、締結具の鍛造に供される素材(鍛造素材)を成形する工程でも、締結具を成形する鍛造自体でもよい。鍛造素材を鍛造する場合、鍛造性とAl合金の特性維持を考慮して、鍛造温度は150〜450℃とするとよい(鍛造工程)。   The hot plastic working is, for example, extrusion or forging. The hot plastic working may be a step of forming a material (forged material) to be used for forging a fastener, or a forging itself for forming a fastener. In the case of forging a forging material, the forging temperature is preferably 150 to 450 ° C. in consideration of forgeability and maintaining the characteristics of the Al alloy (forging process).

《被覆層/焼成Ni−Pめっき層》
本発明に係る被覆層は、上述したように種々考えられるが、以下では、その代表例である焼成Ni−Pめっき層について詳しく説明する。
<< Coating layer / Firing Ni-P plating layer >>
Various coating layers according to the present invention are conceivable as described above. Hereinafter, a fired Ni—P plating layer, which is a representative example, will be described in detail.

(1)本発明に係る焼成Ni−Pめっき層(単に「焼成めっき層」ともいう。)は、例えば、無電解Ni−Pめっき層(単に「無電解めっき層」ともいう。)を300〜450℃さらには350〜400℃で加熱して得られる。無電解めっき層は、昇温過程中の200〜300℃で加熱される際に、基材に対する密着性が高まる。これはめっき層が生成される過程で取り込まれた水素が放出され、基材とめっき層界面の密着性が向上するためと考えられる(ベーキング処理)。そのめっき層をさらに300℃以上で加熱することにより超硬質化した焼成めっき層が得られる。これはめっき層内にNiP化合物が析出することによる分散強化のためと考えられる。こうして得られた焼成めっき層の表面硬さは、900Hv以上、1000Hv以上さらには1100Hv以上となり得る。 (1) The fired Ni—P plating layer (also simply referred to as “fired plating layer”) according to the present invention is, for example, an electroless Ni—P plating layer (also simply referred to as “electroless plating layer”) of 300 to 300. It is obtained by heating at 450 ° C., further 350 to 400 ° C. When the electroless plating layer is heated at 200 to 300 ° C. during the temperature raising process, the adhesion to the substrate is enhanced. This is considered to be because hydrogen taken in in the process of forming the plating layer is released and the adhesion between the substrate and the plating layer interface is improved (baking treatment). By further heating the plating layer at 300 ° C. or higher, a fired plating layer that has been made extremely hard can be obtained. This is considered to be due to dispersion strengthening due to precipitation of the Ni 3 P compound in the plating layer. The surface hardness of the fired plating layer thus obtained can be 900 Hv or higher, 1000 Hv or higher, or even 1100 Hv or higher.

(2)焼成めっき層は、非晶質なNi−P層ではなく、主にNi(結晶相)とNiP(析出相)からなる結晶質なNi−P層からなる。このため本発明に係る焼成めっき層は結晶質Ni−P層ともいい得る。但し、結晶質Ni−P層は、めっき層全体が完全な結晶質である必要はない。X線で検出される程度に結晶部分が存在すれば足る。なお、めっき層に硬度を要求しない場合は、密着性を高めるためのベーキング処理を施すだけでも良い。 (2) The fired plating layer is not an amorphous Ni—P layer but a crystalline Ni—P layer mainly composed of Ni (crystalline phase) and Ni 3 P (precipitated phase). For this reason, the fired plating layer according to the present invention can also be referred to as a crystalline Ni-P layer. However, the crystalline Ni-P layer does not need to be completely crystalline throughout the plating layer. It suffices if there is a crystal part that can be detected by X-ray. In addition, when hardness is not requested | required of a plating layer, you may just perform the baking process for improving adhesiveness.

焼成めっき層に含まれるPは、例えば、めっき層全体を100質量%として、Pが1〜13%、5〜10%、6〜9%さらには7〜8%であると好ましい。なお、本発明に係る焼成めっき層は、電解Ni−Pめっき層を焼成したものでもよい。   P contained in the fired plating layer is preferably, for example, P in the range of 1 to 13%, 5 to 10%, 6 to 9%, or 7 to 8% with the entire plating layer being 100% by mass. The fired plating layer according to the present invention may be obtained by firing an electrolytic Ni-P plating layer.

《焼成めっき層の形成》
本発明に係る焼成めっき層は、例えば、無電解めっき層を形成するめっき工程と、その無電解めっき層を焼成させる焼成工程とにより得られる。
<Formation of baked plating layer>
The fired plating layer according to the present invention is obtained, for example, by a plating process for forming an electroless plating layer and a baking process for firing the electroless plating layer.

めっき工程は、前処理した基材表面に無電解めっき処理する工程であると好ましい。無電解めっき液の組成、めっき液の温度、めっき時間等は適宜調整される。前処理には、基材表面にある酸化皮膜や油汚れ等を除去する清浄工程、難めっき材であるAl合金からなる基材表面でめっきを促進させるジンケート処理工程や活性化工程などがある。これらの詳細については、特許2648716号公報、特許5867332号公報等に詳しく記載されている。   The plating step is preferably a step of electroless plating treatment on the pretreated substrate surface. The composition of the electroless plating solution, the temperature of the plating solution, the plating time, and the like are adjusted as appropriate. The pretreatment includes a cleaning process for removing an oxide film and oil stains on the substrate surface, a zincate treatment process for activating plating on the substrate surface made of an Al alloy that is a difficult plating material, an activation process, and the like. Details thereof are described in detail in Japanese Patent No. 2648716, Japanese Patent No. 5867332, and the like.

焼成工程は、無電解めっき層を300〜450℃さらには350〜400℃で加熱すると好ましい。めっき直後の無電解めっき層は非晶質で密着性や硬さが十分とは言い難く、上述したように、焼成工程により高密着性で超硬質な焼成めっき層が形成され得る。なお、その加熱時間は0.5〜5時間程度でよい。   In the firing step, it is preferable to heat the electroless plating layer at 300 to 450 ° C, further 350 to 400 ° C. The electroless plating layer immediately after plating is amorphous and it is difficult to say that the adhesion and hardness are sufficient, and as described above, a highly adhesive and ultra-hard fired plating layer can be formed by the firing process. The heating time may be about 0.5 to 5 hours.

《用途》
(1)本発明の締結具は、種々の部材の締結に用いることができる。もっとも、本発明の締結具は、軽量であることに加えて、実質的に永久生長せず、高温特性に優れる。このため本発明の締結具は、軽量化が要求される機械や装置の少なくとも一部を構成すると共に、高温域で使用される部材の締結に用いられると好ましい。例えば、内燃機関(ガソリンエンジンまたはディーゼルエンジン)の構成部材やその補機類の締結に使用されると好ましい。
<Application>
(1) The fastener of the present invention can be used for fastening various members. However, in addition to being lightweight, the fastener of the present invention does not substantially grow permanently and is excellent in high temperature characteristics. For this reason, the fastener of the present invention preferably constitutes at least a part of a machine or apparatus that is required to be reduced in weight, and is preferably used for fastening a member used in a high temperature range. For example, it is preferably used for fastening components of an internal combustion engine (gasoline engine or diesel engine) and its auxiliary equipment.

本発明の締結具により締結される第一部材と第二部材(「被締結部材」という。)は、例えば、鋼材製、鋳鉄製、軽合金製、樹脂等のいずれでもよい。もっとも、被締結部材も純AlまたはAl合金(Al系材料)からなると、本発明の締結具との間で電解腐食を抑止できて好ましい。   The first member and the second member (referred to as “fastened members”) fastened by the fastener of the present invention may be made of steel, cast iron, light alloy, resin, or the like, for example. However, it is preferable that the member to be fastened is also made of pure Al or an Al alloy (Al-based material) because electrolytic corrosion can be suppressed with the fastener of the present invention.

さらに、焼成Ni−Pめっき層で被覆されている締結具(「被覆締結具」という。)は、耐食性や耐摩耗性に優れるため、腐食環境下でも繰返し使用可能である。また、被覆締結具は、被締結部材がAl系材料以外(特に鉄系材料)からなるときでも、電解腐食が抑止されるため、より多種多様な部材の締結に利用され得る。   Furthermore, fasteners coated with a fired Ni—P plating layer (referred to as “coated fasteners”) are excellent in corrosion resistance and wear resistance, and can be used repeatedly even in corrosive environments. Moreover, since the electrolytic corrosion is suppressed even when the member to be fastened is made of a material other than an Al-based material (particularly an iron-based material), the coated fastener can be used for fastening a wider variety of members.

Al合金からなる試験片を製作して、その寸法変化と熱履歴の関係を明らかにした。また、熱履歴によるAl合金とその表面に形成した焼成Ni−Pめっき層との特性変化を評価した。これらの具体例に基づいて、本発明をさらに詳しく説明する。   A test piece made of an Al alloy was manufactured, and the relationship between the dimensional change and the thermal history was clarified. Moreover, the characteristic change of Al alloy by the heat history and the baking Ni-P plating layer formed in the surface was evaluated. Based on these specific examples, the present invention will be described in more detail.

《寸法変化と熱履歴》
(1)試料の製造
表1に示す組成のAl合金の溶湯を調製した(溶湯調製工程)。この合金溶湯を真空雰囲気中に噴霧してエアアトマイズ粉末(凝固体)を得た(凝固工程)。得られたエアアトマイズ粉末の粒子(アトマイズ粒子)を分級して粒径:150μm以下のアトマイズ粉末を用意した。ちなみに、エアアトマイズにより得られる粉末粒子のサイズと冷却速度の関係は公知であり、上記アトマイズ粉末は10℃/秒以上の冷却速度で急冷凝固した粒子からなるといえる。
<Dimensional change and thermal history>
(1) Manufacture of sample A molten Al alloy having the composition shown in Table 1 was prepared (melt preparation step). This molten alloy was sprayed in a vacuum atmosphere to obtain an air atomized powder (solidified body) (solidification step). The obtained air atomized powder particles (atomized particles) were classified to prepare atomized powder having a particle size of 150 μm or less. Incidentally, the relationship between the size of the powder particles obtained by air atomization and the cooling rate is known, and it can be said that the atomized powder consists of particles rapidly cooled and solidified at a cooling rate of 10 4 ° C / second or more.

アトマイズ粉末を冷間静水等方圧プレス成形(CIP)して、φ39mm×40mm、相対密度85%のビレット(原素材)を得た。このビレットを押出成形機のコンテナ内に装填し、370℃で押出成形して、ボルト等の鍛造に供される素材を得た(熱間塑性加工)。このときの押出比(原素材の断面積/素材の断面積)は11とした。この素材をさらに冷間スエージ加工、外周切削してφ8mm×25mmの試験片(締結具となる基材)を得た(鍛造工程)。この試験片を試料1とする。   The atomized powder was cold isostatically pressed (CIP) to obtain a billet (raw material) having a diameter of 39 mm × 40 mm and a relative density of 85%. This billet was loaded into a container of an extruder and extruded at 370 ° C. to obtain a material for forging such as a bolt (hot plastic working). The extrusion ratio (cross-sectional area of the raw material / cross-sectional area of the raw material) at this time was 11. This material was further subjected to cold swaging and outer peripheral cutting to obtain a φ8 mm × 25 mm test piece (base material serving as a fastener) (forging process). This test piece is designated as sample 1.

比較試料として、一般的な複数種のAl合金からなる同形状の試験片も用意し、試料C1(A7050合金)、試料C2(A6056合金)、試料C3(A2618合金)、試料C4(A6061合金)、試料C5(Al−12%Si合金)とした。   As a comparative sample, test pieces having the same shape made of a plurality of general types of Al alloys are also prepared. Sample C1 (A7050 alloy), Sample C2 (A6056 alloy), Sample C3 (A2618 alloy), Sample C4 (A6061 alloy) Sample C5 (Al-12% Si alloy).

(2)加熱試験
各試験片を130℃の大気雰囲気中で、6時間単位または12時間単位で加熱した後、室温まで冷却する工程を繰返し行った。各加熱工程毎に、試験片の長さ(Ln)を測定し、試験片の初期長さ(L)に対する変化量(Ln−L)の割合(永久生長率/%)を算出した。各試料に係る永久生長率と累積した加熱時間(保持時間)との関係を図1に示した。
(2) Heating test Each test piece was heated in the air atmosphere at 130 ° C. in units of 6 hours or 12 hours, and then the process of cooling to room temperature was repeated. For each heating step, the length (Ln) of the test piece was measured, and the ratio (permanent growth rate /%) of the change amount (Ln−L 0 ) to the initial length (L 0 ) of the test piece was calculated. The relationship between the permanent growth rate of each sample and the accumulated heating time (holding time) is shown in FIG.

また、図2に示す熱履歴を加えたときの各試験片の長さの変化を熱応力歪測定装置(セイコーインスツルメンツ株式会社製 TMA/SS6000)で測定した。この結果を図2に併せて示した。   Moreover, the change of the length of each test piece when the heat history shown in FIG. 2 was added was measured with a thermal stress strain measuring apparatus (Seiko Instruments Co., Ltd. TMA / SS6000). The results are also shown in FIG.

さらに、各試験片を室温(RT)から100℃、200℃、300℃または400℃へ加熱して、各加熱過程における線膨張係数(CTE)を熱応力歪測定装置(セイコーインスツルメンツ株式会社製 TMA/SS6000)で測定して求めた。この結果を図3に示した。   Furthermore, each test piece is heated from room temperature (RT) to 100 ° C., 200 ° C., 300 ° C. or 400 ° C., and the coefficient of linear expansion (CTE) in each heating process is determined by a thermal stress strain measuring device (TMA manufactured by Seiko Instruments Inc.). / SS6000). The results are shown in FIG.

(3)評価
図1から明らかなように、試料1は保持時間が長くなっても、永久生長率は略0%のままであった。一方、従来の熱処理型Al合金からなる試料C1、試料C2は、加熱初期に永久生長率が正側へ大きく変化した後、逆に、永久生長率が負側へ遷移して安定しなかった。
(3) Evaluation As is clear from FIG. 1, the permanent growth rate of Sample 1 remained substantially 0% even when the holding time was increased. On the other hand, in the samples C1 and C2 made of the conventional heat-treatable Al alloy, the permanent growth rate greatly changed to the positive side in the initial stage of heating, and then the permanent growth rate changed to the negative side and was not stable.

同様のことは図2からも明らかである。つまり試料1は、室温(RT)→高温(350℃)→室温という熱履歴を受けても寸法変化(永久生長)はなかった。一方、試料C1、試料C5は、同様な熱履歴により、初期長さから10〜30μm程度も長くなった。永久生長率でいうと、試料1:略0%(0.001%以下)、試料C1:0.06%、試料C5:0.1%となった。これらの結果から、試料1に係る締結具を用いることにより、熱履歴を受ける場合でも安定した締付力または軸力の確保を図れることがわかった。一方、試料C1や試料C5に係る締結具では、緩みや脱着困難な状況を招き得ることもわかった。   The same is apparent from FIG. That is, the sample 1 did not change in dimensions (permanent growth) even when subjected to a thermal history of room temperature (RT) → high temperature (350 ° C.) → room temperature. On the other hand, Sample C1 and Sample C5 were about 10-30 μm longer from the initial length due to the similar thermal history. In terms of the permanent growth rate, sample 1 was approximately 0% (0.001% or less), sample C1: 0.06%, and sample C5: 0.1%. From these results, it was found that by using the fastener according to Sample 1, it was possible to secure a stable tightening force or axial force even when receiving a thermal history. On the other hand, it has also been found that the fasteners according to the sample C1 and the sample C5 can lead to a situation where it is loose or difficult to remove.

図3からわかるように、CTEの温度依存性は、試料1も試料C1、C5とほぼ同様な傾向を示すことも確認できた。   As can be seen from FIG. 3, it was also confirmed that the temperature dependence of CTE showed a tendency similar to that of samples 1 and C5.

《焼成めっき層の形成》
(1)清浄工程
上述した素材を同様に冷間スエージ加工、外周切削した基材(φ8mm×25mm)を、水酸化ナトリウム水溶液(濃度50g/L)でアルカリエッチングして、その表面に形成されていた酸化皮膜を除去した(エッチング工程)。これを水洗した後、その表面にできたスマットを硝酸水溶液(濃度30%)で除去し、さらに水洗した(デスマット工程)。こうして基材表面を清浄化した(清浄工程)。
<Formation of baked plating layer>
(1) Cleaning process A base material (φ8 mm × 25 mm) obtained by performing cold swaging on the above-mentioned material in the same manner and cutting the outer periphery is alkali-etched with a sodium hydroxide aqueous solution (concentration 50 g / L) and formed on the surface. The oxidized film was removed (etching process). After this was washed with water, the smut formed on the surface was removed with an aqueous nitric acid solution (concentration 30%) and further washed with water (desmutting step). Thus, the substrate surface was cleaned (cleaning process).

(2)活性化工程
清浄化した基材を、さらに、pH11.5の炭酸ナトリウム水溶液に浸漬して活性化処理をした。この活性化処理を基材の標準(自然)電極電位が−1.4〜−1.35V(vsAg/AgCl)にシフトするまで継続した。なお、標準電極電位は該測定液に活性化処理後の基材及びAg/AgCl電極を浸漬、電位差計により測定した。こうしてジンケート処理をせずに直接めっきをするための前処理を行った。
(2) Activation process The cleaned base material was further immersed in an aqueous sodium carbonate solution having a pH of 11.5 for activation treatment. This activation treatment was continued until the standard (natural) electrode potential of the substrate shifted to -1.4 to -1.35 V (vsAg / AgCl). The standard electrode potential was measured with a potentiometer after immersing the substrate after activation treatment and the Ag / AgCl electrode in the measurement solution. Thus, a pretreatment was carried out for direct plating without carrying out the zincate treatment.

(3)めっき工程
前処理をした基材を、90℃のめっき液中に60分間浸漬した。めっき液には、市販されている無電解ニッケルリンめっき液(奥野製薬工業株式会社製トップニコロンBL)を用いた。こうして基材表面に無電解めっき層を形成した。
(3) Plating step The pretreated substrate was immersed in a 90 ° C. plating solution for 60 minutes. A commercially available electroless nickel phosphorus plating solution (Okuno Pharmaceutical Co., Ltd. Top Nicolon BL) was used as the plating solution. Thus, an electroless plating layer was formed on the substrate surface.

(4)焼成工程
無電解めっき処理後の基材を加熱炉に入れて大気圧雰囲気中で1時間加熱した。加熱温度(焼成温度)は、250℃、300℃、350℃または400℃とした。こうして基材表面に焼成めっき層が形成された試験片を得た。試験片(焼成温度:350℃)の断面を走査型電子顕微鏡(SEM)で観察したところ、焼成めっき層の膜厚は約10μmであった。
(4) Firing step The substrate after the electroless plating treatment was placed in a heating furnace and heated in an atmospheric pressure atmosphere for 1 hour. The heating temperature (firing temperature) was 250 ° C., 300 ° C., 350 ° C. or 400 ° C. Thus, a test piece having a fired plating layer formed on the substrate surface was obtained. When the cross section of the test piece (firing temperature: 350 ° C.) was observed with a scanning electron microscope (SEM), the film thickness of the fired plating layer was about 10 μm.

《基材とめっき層の特性》
(1)硬さ
異なる焼成温度で加熱した各試験片を切断して、切断面の基材部分とめっき層部分との硬さをそれぞれ、室温状態でマイクロビッカース硬度計(株式会社アカシ製MVK−E)により測定した。このとき、試験荷重:0.245N、保持時間:20秒とした。この測定をそれぞれ5回行い、各部の硬さの平均値を図4と図5にそれぞれ示した。
<Characteristics of base material and plating layer>
(1) Hardness Each test piece heated at a different firing temperature was cut, and the hardness of the base material portion and the plating layer portion of the cut surface was measured at room temperature using a micro Vickers hardness meter (MVK- manufactured by Akashi Co., Ltd.). E). At this time, the test load was 0.245 N and the holding time was 20 seconds. This measurement was performed five times, and the average values of the hardness of each part are shown in FIGS. 4 and 5, respectively.

なお、参考までに、図4には、試料C3と試料C4を同様な温度で加熱したときの硬さの変化も併せて示した。また、めっき層の硬さを示した図5には、基材上に形成した溶射アルミナ層とクロムめっき層の一般的な表面硬さも併せて示した。   For reference, FIG. 4 also shows the change in hardness when samples C3 and C4 are heated at similar temperatures. FIG. 5 showing the hardness of the plating layer also shows the general surface hardness of the sprayed alumina layer and the chromium plating layer formed on the substrate.

(2)評価
図4から明らかなように、試料1に係るAl合金は、他の試料のAl合金とは異なり、400℃まで加熱しても硬さが155〜175Hv内(変化幅:5〜15Hv)で安定しており、殆ど変化しなかった。
(2) Evaluation As is apparent from FIG. 4, the Al alloy according to the sample 1 has a hardness of 155 to 175 Hv (change width: 5 to 5) even when heated to 400 ° C., unlike the Al alloys of other samples. 15 Hv), stable and hardly changed.

図5から明らかなように、無電解めっき層を250℃位まで加熱しても、その硬さは450〜550Hv程度で殆ど変化しなかった。しかし、そのめっき層を250℃以上(特に300℃以上)に加熱すると、硬さが950〜1350Hv位まで急激に上昇した。   As is clear from FIG. 5, even when the electroless plating layer was heated to about 250 ° C., its hardness was about 450 to 550 Hv and hardly changed. However, when the plating layer was heated to 250 ° C. or higher (particularly 300 ° C. or higher), the hardness rapidly increased to about 950 to 1350 Hv.

250℃で加熱しためっき層の表面をX線を用いて測定したところ、X線回折ピークはブロードであり、そのめっき層は非晶質状態にあることがわかった。一方、400℃で加熱しためっき層を同様に測定したところ、明確なX線回折ピークが現れ、そのめっき層は結晶質状態にあることがわかった。なお、そのX線回折ピークは、主にNiとNiPを示すものであった。 When the surface of the plating layer heated at 250 ° C. was measured using X-rays, it was found that the X-ray diffraction peak was broad and the plating layer was in an amorphous state. On the other hand, when the plating layer heated at 400 ° C. was measured in the same manner, a clear X-ray diffraction peak appeared, and it was found that the plating layer was in a crystalline state. The X-ray diffraction peak mainly showed Ni and Ni 3 P.

(3)考察
以上のことを踏まえて、試料1に係るAl合金は、寸法安定性に優れ、高温環境下で使用されても、大きな強度や硬さを安定的に発揮し得ることが明らかなとなった。従って、このようなAl合金からなる締結具は、仮に高温環境下(素材の製造温度未満/熱間押出温度未満)で使用されても、大きな締付力(軸力)を安定的に維持し得ることが明らかとなった。
(3) Consideration Based on the above, it is clear that the Al alloy according to Sample 1 is excellent in dimensional stability and can stably exhibit high strength and hardness even when used in a high temperature environment. It became. Accordingly, such a fastener made of an Al alloy stably maintains a large clamping force (axial force) even if used in a high temperature environment (below the production temperature of the material / less than the hot extrusion temperature). It became clear to get.

また、そのようなAl合金からなる基材表面に形成されるめっき層は、300℃以上の加熱により、非常に硬質な焼成めっき層となるため、焼成めっき層で被覆された締結具は、優れた高温特性に加えて、高い耐摩耗性や耐食性を発揮し得ることも明らかとなった。   Moreover, since the plating layer formed on the base material surface made of such an Al alloy becomes a very hard fired plating layer by heating at 300 ° C. or higher, the fastener covered with the fired plating layer is excellent. In addition to the high temperature characteristics, it has also been revealed that it can exhibit high wear resistance and corrosion resistance.

(4)Al合金
試料1と組成が異なるAl合金についても、試料1の場合と同様な結果が得られることを確認した。そのようなAl合金組成を表1に例示した。
(4) Al alloy It confirmed that the same result as the case of the sample 1 was obtained also about the Al alloy whose composition differs from the sample 1. Such an Al alloy composition is illustrated in Table 1.

Figure 2017218609
Figure 2017218609

Claims (12)

全体を100質量%(単に「%」という。)としたときに、Fe:1.5〜6%、Zr:0.2〜1.5%、Ti:0.15〜1.2%、残部:Alと不可避不純物からなるアルミニウム合金からなり、
第一部材と第二部材を固定するために用いられるアルミニウム合金製高強度締結具。
When the total is 100 mass% (simply referred to as “%”), Fe: 1.5-6%, Zr: 0.2-1.5%, Ti: 0.15-1.2%, balance : Made of aluminum alloy consisting of Al and inevitable impurities,
An aluminum alloy high strength fastener used to fix the first member and the second member.
前記アルミニウム合金は、さらに、Mg:0.2〜2.5%を含む請求項1に記載のアルミニウム合金製高強度締結具。   The aluminum alloy high strength fastener according to claim 1, wherein the aluminum alloy further includes Mg: 0.2 to 2.5%. 前記アルミニウム合金は、永久生長率が±0.05%以内である請求項1または2に記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to claim 1 or 2, wherein the aluminum alloy has a permanent growth rate within ± 0.05%. 前記アルミニウム合金は、引張強さが400MPa以上である請求項1〜3のいずれかに記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to any one of claims 1 to 3, wherein the aluminum alloy has a tensile strength of 400 MPa or more. 前記アルミニウム合金は、室温から400℃まで加熱した後の室温における硬さが150Hv以上ある請求項1〜4のいずれかに記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to any one of claims 1 to 4, wherein the aluminum alloy has a hardness at room temperature of 150 Hv or more after being heated from room temperature to 400 ° C. さらに、少なくとも摺接面となる前記アルミニウム合金の表面を被覆する被覆層を有する請求項1〜5のいずれかに記載のアルミニウム合金製高強度締結具。   Furthermore, the aluminum alloy high intensity | strength fastener in any one of Claims 1-5 which has a coating layer which coat | covers the surface of the said aluminum alloy used as a sliding contact surface at least. 前記被覆層は、めっき層または陽極酸化層である請求項6に記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to claim 6, wherein the coating layer is a plating layer or an anodized layer. 前記めっき層は、無電解Ni−Pめっき層または焼成Ni−Pめっき層である請求項7に記載のアルミニウム合金製高強度締結具。   The high strength fastener made of aluminum alloy according to claim 7, wherein the plating layer is an electroless Ni-P plating layer or a fired Ni-P plating layer. 前記焼成Ni−Pめっき層は、表面硬さが900Hv以上である請求項8に記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to claim 8, wherein the fired Ni—P plating layer has a surface hardness of 900 Hv or more. ボルト、ナットまたは座金のいずれかである請求項1〜9のいずれかに記載のアルミニウム合金製高強度締結具。   The aluminum alloy high-strength fastener according to any one of claims 1 to 9, which is a bolt, a nut, or a washer. 前記第一部材または前記第二部材は、アルミニウム合金部材である請求項1〜10のいずれかに記載のアルミニウム合金製高強度締結具。   The high-strength fastener made of aluminum alloy according to any one of claims 1 to 10, wherein the first member or the second member is an aluminum alloy member. アルミニウム合金からなる素材を鍛造した鍛造基材または該鍛造基材にねじ溝を転造した転造基材に、無電解Ni−Pめっき層を形成するめっき工程と、
該無電解Ni−Pめっき層を300〜450℃で加熱して焼成Ni−Pめっき層とする焼成工程と、
を備える請求項9に記載したアルミニウム合金製高強度締結具の製造方法。
A plating step of forming an electroless Ni-P plating layer on a forged base material forged from a material made of an aluminum alloy or a rolled base material obtained by rolling a thread groove on the forged base material;
A firing step of heating the electroless Ni—P plating layer at 300 to 450 ° C. to form a firing Ni—P plating layer;
The manufacturing method of the high strength fastener made from an aluminum alloy of Claim 9 provided with these.
JP2016111570A 2016-06-03 2016-06-03 Aluminum alloy-made high strength fastener and manufacturing method therefor Pending JP2017218609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111570A JP2017218609A (en) 2016-06-03 2016-06-03 Aluminum alloy-made high strength fastener and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111570A JP2017218609A (en) 2016-06-03 2016-06-03 Aluminum alloy-made high strength fastener and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017218609A true JP2017218609A (en) 2017-12-14

Family

ID=60656885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111570A Pending JP2017218609A (en) 2016-06-03 2016-06-03 Aluminum alloy-made high strength fastener and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017218609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103123A1 (en) * 2019-11-19 2021-05-21 C-Tec Constellium Technology Center Manufacturing process of an aluminum alloy part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103123A1 (en) * 2019-11-19 2021-05-21 C-Tec Constellium Technology Center Manufacturing process of an aluminum alloy part
WO2021099735A1 (en) * 2019-11-19 2021-05-27 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
CN114728340A (en) * 2019-11-19 2022-07-08 肯联铝业技术中心 Method for manufacturing aluminum alloy parts

Similar Documents

Publication Publication Date Title
Rübner et al. Aluminium–aluminium compound fabrication by high pressure die casting
US10494701B2 (en) Composite material for a sliding bearing
JP5289941B2 (en) Sliding bearing composite material, use of sliding bearing composite material, and manufacturing method of sliding bearing composite material
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
WO2013031483A1 (en) Abrasion-resistant member made from aluminum alloy, and method for producing same
JP2012207283A (en) Heat resistant and high strength aluminum alloy and method for producing the same
US20120034490A1 (en) Article for improved adhesion of fatigue-prone components
EP3257957A1 (en) Aluminum alloy forging and method of producing the same
WO2015022821A1 (en) Al-coated steel sheet having excellent total reflection properties and corrosion resistance, and method for manufacturing same
JP4511156B2 (en) Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
WO2020081157A1 (en) Improved aluminum alloy products and methods for making the same
JP2017218609A (en) Aluminum alloy-made high strength fastener and manufacturing method therefor
JP7041407B2 (en) Sliding member
JPH01198444A (en) Aluminum alloy material, especially, rod material having improved fatique strength
JP2003531727A (en) Mold walls of continuous casting molds for steel, especially wide side walls
US20160298254A1 (en) Anodized metal matrix composite
KR20180078565A (en) High strength aluminum alloy and method of fabricating the same
JP2017066526A (en) Method for manufacturing member having metal composite layer and member having aluminum nickel composite layer
RU2410456C2 (en) Titanium alloy and engine exhaust pipe
JP6394475B2 (en) Titanium member and manufacturing method thereof
KR102014035B1 (en) High strength aluminum alloy and method of fabricating the same
JP6086444B2 (en) Alloy composition for aluminum die-cast mold and method for producing the same
JP2005330560A (en) Aluminum alloy, bar-shaped material, forging-formed part, machining-formed part, wear resistant aluminum alloy having excellent anodized coating hardness using the same, sliding component and their production method
JP2017223116A (en) Forged piston for internal combustion engine and manufacturing method of the same
JP7063398B2 (en) Thermal spray coating