JP2017218382A - Parp inhibitor containing syzygium samarangense extract - Google Patents

Parp inhibitor containing syzygium samarangense extract Download PDF

Info

Publication number
JP2017218382A
JP2017218382A JP2016111383A JP2016111383A JP2017218382A JP 2017218382 A JP2017218382 A JP 2017218382A JP 2016111383 A JP2016111383 A JP 2016111383A JP 2016111383 A JP2016111383 A JP 2016111383A JP 2017218382 A JP2017218382 A JP 2017218382A
Authority
JP
Japan
Prior art keywords
parp
parp inhibitor
extract
inhibitor
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016111383A
Other languages
Japanese (ja)
Other versions
JP6763114B2 (en
Inventor
康春 田中
Yasuharu Tanaka
康春 田中
鎌田 靖弘
Yasuhiro Kamata
靖弘 鎌田
市場 俊雄
Toshio Ichiba
俊雄 市場
智恵 前泊
Chie Maedomari
智恵 前泊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus NUC
Okinawa Prefectural Government
Original Assignee
University of the Ryukyus NUC
Okinawa Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus NUC, Okinawa Prefectural Government filed Critical University of the Ryukyus NUC
Priority to JP2016111383A priority Critical patent/JP6763114B2/en
Publication of JP2017218382A publication Critical patent/JP2017218382A/en
Application granted granted Critical
Publication of JP6763114B2 publication Critical patent/JP6763114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a poly ADP ribose polymerase (PARP) inhibitor and a BRCA1/2 gene mutation positive advanced ovarian cancer therapeutic drug by using a novel PARP inhibitory substance obtained from spontaneous plants as a source.SOLUTION: The present invention is a poly ADP ribose polymerase (PARP) inhibitor containing extract derived from syzygium samarangense leaves, a poly ADP ribose polymerase (PARP) inhibitor having at least one or more of Castalagin and Vescalagin as active ingredient, and a BRCA1/2 gene mutation positive advanced ovarian cancer therapeutic drug having the inhibitor as an active ingredient.SELECTED DRAWING: Figure 2

Description

本発明は,レンブ(オオフトモモ;Syzygium samarangense)抽出物を含むポリADPリボースポリメラーゼ(PARP)阻害剤に関する。 The present invention relates to a poly ADP ribose polymerase (PARP) inhibitor comprising a ream (Syzygium samarangense) extract.

ポリADPリボース合成酵素(poly(ADP-ribose)polymerase;PARP)ファミリーのうち,PARP1およびPARP2は,DNA切断部位に結合することで活性化され,ポリADPリボシル化反応(PARylation)を司る酵素である。
これらのPARPは,その反応を介してDNA修復の遂行に密接に関係していると考えられており,2014年12月には,PARP阻害薬オラパリブ(Olaparib)が生殖細胞系BRCA1/2遺伝子変異陽性進行卵巣がんの治療薬として,米国FDAにより承認された。
また,2016年1月,FDAは,あるタイプの遺伝子変異型前立腺癌患者に対して,オラパリブが画期的治療薬になると提唱している。
特に,PARP1は,塩基除去修復による単鎖切断(SSB)領域の修復および相同組換え(HR)による二本鎖切断領域の修復のいずれの過程においても,他の修復関連因子とともに必要とされる因子である。
二本鎖切断の修復過程には,BRCA1/2も関与し,これらの遺伝子に変異がみられる癌に対しては,DNA損傷を誘導する抗癌剤とPARP阻害薬の併用が,高い治療効果をもたらすとされており,近年,PARP1はBRCA1/2遺伝子変異陽性の卵巣癌の治療標的として注目されている(非特許文献1)。
しかしながら,オラパリブは,貧血症,疲労感,心臓に影響が出る悪心,嘔吐等,グレード3以上の重い有害事象が54%起きているとの報告もある。
また,細胞内部で損傷したDNAを修復するために,重要な2種類のタンパク質をコードするBRCA1遺伝子とBRCA2遺伝子に変異が生じると,BRCA遺伝子が胸や卵巣に癌を発達させる可能性(乳癌にかかるリスクが87%,卵巣癌にかかるリスクが50%であるといわれている。)が高くなり,最初の診断から10年以内に癌が再発するリスクも高くなる。
そのため,副作用が少なく効果が高いPARP阻害薬の開発が求められていた。
In the poly (ADP-ribose) polymerase (PARP) family, PARP1 and PARP2 are activated by binding to DNA cleavage sites and are responsible for polyADP ribosylation (PARylation). .
These PARPs are thought to be closely related to the performance of DNA repair through their responses. In December 2014, the PARP inhibitor Olaparib was developed as a germline BRCA1 / 2 mutation. Approved by the US FDA for the treatment of positive advanced ovarian cancer.
In January 2016, the FDA proposed olaparib as a breakthrough treatment for certain types of patients with genetically-mutated prostate cancer.
In particular, PARP1 is required along with other repair-related factors in both the process of single-strand break (SSB) repair by base excision repair and double-strand break repair by homologous recombination (HR). Is a factor.
BRCA1 / 2 is also involved in the repair process of double-strand breaks. For cancers with mutations in these genes, the combination of anticancer drugs that induce DNA damage and PARP inhibitors provides high therapeutic effects In recent years, PARP1 has attracted attention as a therapeutic target for BRCA1 / 2 gene mutation-positive ovarian cancer (Non-patent Document 1).
However, olaparib has been reported to cause 54% of serious adverse events of Grade 3 or higher, such as anemia, fatigue, nausea that affects the heart, and vomiting.
In addition, if a mutation occurs in the BRCA1 and BRCA2 genes that encode two important proteins to repair damaged DNA inside the cell, the BRCA gene may develop cancer in the breast and ovary (for breast cancer). It is said that the risk is 87% and the risk of ovarian cancer is 50%.), And the risk of cancer recurrence within 10 years from the first diagnosis is increased.
Therefore, the development of PARP inhibitors with high side effects and low effects has been demanded.

一方,オオフトモモは,亜熱帯もしくは熱帯気候で栽培される東南アジア原産の常緑樹である。
オオフトモモは,主にその果実が生食として利用されており,独特な見た目と酸味があり,リンゴのような味わいがある。
また,オオフトモモの葉は,長さ20cm程度の楕円形であるが,特段,利用の用途がないのが現状である。
On the other hand, the yellow peach is an evergreen tree native to Southeast Asia cultivated in a subtropical or tropical climate.
Ofo tomo, the fruit is mainly used as raw food, has a unique look and acidity, and tastes like an apple.
In addition, the white leaves are oval with a length of about 20 cm, but there are no special applications.

Andreina Peralta-Lear et al.:PARP inhibitors:New partners in the therapy of cancer and inflammatory diseases,Free Radical Biology & Medicine 47,13-26,2009Andreina Peralta-Lear et al .: PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases, Free Radical Biology & Medicine 47,13-26,2009

発明者らは,沖縄の自生植物の有効活用に関する研究を長年取り組んでおり,沖縄の自生植物を用いたPARP阻害を可能とする有用成分の提供を課題としてきた。 The inventors have been studying the effective utilization of Okinawa's native plants for many years, and have been working on providing useful components that enable PARP inhibition using Okinawa's native plants.

そして,発明者らは,およそ160種類もの沖縄の自生植物の中から,PARP阻害活性を有する有用成分を含む植物を見出すとともに,その有用成分に含まれるPARP阻害化合物の特徴を明らかにすることにより,発明を完成させたものである。 The inventors found a plant containing a useful component having PARP inhibitory activity from among approximately 160 kinds of Okinawan native plants, and clarified the characteristics of the PARP inhibitory compound contained in the useful component. , Completed the invention.

本発明は,次の構成からなる。
本発明の第一の構成は,オオフトモモの葉抽出物を含むことを特徴とするPARP阻害剤である。
本発明の第二の構成は,前記抽出物が,5つの没食子酸ならびに開環した六炭糖の構造単位を有することを特徴とする第一の構成に記載のPARP阻害剤である。
本発明の第三の構成は,前記抽出物が,C-配糖体型エラジタンニンを有することを特徴とする第一の構成に記載のPARP阻害剤である。
本発明の第四の構成は,前記抽出物が,Castalagin,Vescalaginのいずれか又は複数からなることを特徴とする第一の構成に記載のPARP阻害剤である。
本発明の第五の構成は,第一から第四の構成に記載のPARP阻害剤を有効成分とすることを特徴とするBRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤である。
The present invention has the following configuration.
The 1st structure of this invention is a PARP inhibitor characterized by including the leaf extract of a yellow peach.
A second configuration of the present invention is the PARP inhibitor according to the first configuration, wherein the extract has five gallic acids and a ring-opened hexose structural unit.
A third configuration of the present invention is the PARP inhibitor according to the first configuration, wherein the extract has C-glycoside type ellagitannin.
A fourth configuration of the present invention is the PARP inhibitor according to the first configuration, wherein the extract is composed of one or more of Castalagin and Vescalagin.
A fifth configuration of the present invention is a therapeutic agent for BRCA1 / 2 gene mutation-positive advanced ovarian cancer characterized by comprising the PARP inhibitor described in the first to fourth configurations as an active ingredient.

本発明のポリADPリボースポリメラーゼ阻害剤の特徴は,化学合成薬剤に比べて効き目が穏やかであり,沖縄では長年,食資源として親しまれてきた自生植物であるレンブから同定した成分であるため,副作用を含む安全性が比較的高い。
本発明により,BRCA1/2変異乳癌や卵巣癌で苦しんでいる患者を,一刻も早く完治させるべく有益で安全なPARP阻害剤を提供できる。
すなわち,本発明のオオフトモモの葉から抽出した成分は,PARP阻害を可能とするものであり,また,そのメカニズムから,BRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤としても期待できる。
The characteristics of the poly ADP ribose polymerase inhibitor of the present invention are milder than those of chemically synthesized drugs, and because it is a component identified from Rembu, a native plant that has been popular as a food resource for many years in Okinawa, it has side effects. High safety including
According to the present invention, a useful and safe PARP inhibitor can be provided in order to cure a patient suffering from BRCA1 / 2 mutant breast cancer or ovarian cancer as soon as possible.
That is, the component extracted from the leaves of the leaves of the present invention enables PARP inhibition, and can also be expected as a therapeutic agent for BRCA1 / 2 gene mutation-positive advanced ovarian cancer from its mechanism.

沖縄自生植物からの有用成分の抽出・保存方法を示した図Diagram showing how to extract and preserve useful components from Okinawa native plants PARP阻害活性を調べるためのスクリーニングアッセイの実験方法ならびに解析方法を示した図Diagram showing experimental and analytical methods of screening assay for examining PARP inhibitory activity 162種類の葉または実からの抽出成分のPARP阻害活性を比較検討した結果を一部抜粋して示した図Figure excerpting the results of a comparative study of the PARP inhibitory activity of 162 types of leaf or fruit extract オオフトモモ葉からの有用成分の抽出方法及びPARP阻害活性を示す画分(Castalagin:AQ2)の精製方法を示した図The figure which showed the extraction method of the useful component from the yellow peach leaf and the purification method of the fraction (Castalagin: AQ2) which shows PARP inhibitory activity オオフトモモ葉からの有用成分の抽出方法及びPARP阻害活性を示す画分(Vescalagin:AQ1)の精製方法を示した図The figure which showed the extraction method of the useful component from the yellow peach leaf and the purification method of the fraction (Vescalagin: AQ1) which shows PARP inhibitory activity AQ2のESI-MS分析結果を示した図AQ2 ESI-MS analysis results AQ1及びAQ2のESI-MS分析結果を示した図(上段:AQ2,下段:AQ1)Diagram showing ESI-MS analysis results for AQ1 and AQ2 (upper: AQ2, lower: AQ1) AQ2のNMR分析結果を示した図The figure which showed the NMR analysis result of AQ2 メチル化の前処理を行ったAQ2のNMR分析結果を示した図Figure showing the NMR analysis results of AQ2 that was pretreated for methylation AQ1及びAQ2の推定構造を示した図Diagram showing the estimated structure of AQ1 and AQ2 酸もしくはアルカリ処理による,AQ2のPARP阻害活性への影響を検討した結果を示した図Figure showing the results of examining the effects of acid or alkali treatment on PARP inhibitory activity of AQ2 ポリADPリボシル化反応の生成物(ポリADPリボシル化タンパク;PAR化タンパク)の解析手順を示したフローチャートFlow chart showing the analysis procedure of poly ADP ribosylation product (poly ADP ribosylation protein; PAR protein) 左図:PARP活性に対するAQ1ならびにAQ2のIC50の解析,右図:[図11]の手順に従ったAQ1ならびにAQ2によるPAR化タンパク形成阻害の確認Left figure: Analysis of AQ1 and AQ2 IC 50 for PARP activity, right figure: Confirmation of inhibition of PAR protein formation by AQ1 and AQ2 according to the procedure of [Figure 11] 既存のPARP阻害剤であるオラパリブのIC50値を調べた図Diagram of IC 50 values of olaparib, an existing PARP inhibitor AQ2と,既存のPARP阻害剤のPARP阻害活性を比較検討した実験結果を示した図The figure which showed the experimental result which compared AQ2 and the PARP inhibitory activity of the existing PARP inhibitor 生理的条件下における培養細胞(SH-SY5Y)のポリADPリボシル化反応に対するAQ1ならびにAQ2の阻害効果を検討した実験結果を示した図The figure which showed the experimental result which examined the inhibitory effect of AQ1 and AQ2 on the poly ADP ribosylation reaction of cultured cells (SH-SY5Y) under physiological conditions UV照射によりDNA損傷を惹起した細胞(U937)のポリADPリボシル化反応に対するAQ1ならびにAQ2の阻害効果を検討した実験結果を示した図The figure which showed the experimental result which examined the inhibitory effect of AQ1 and AQ2 on the poly ADP ribosylation reaction of the cell (U937) which caused DNA damage by UV irradiation AQ2の前処理がPARPの阻害作用を惹起するか検討した実験結果を示した図The figure which showed the experimental result which examined whether the pretreatment of AQ2 caused the inhibitory action of PARP AQ2のZn2+キレート効果についてアルカリホスファターゼ(ALP)を用いて検討を行った実験結果を示した図The figure which showed the experimental result which examined the Zn 2+ chelate effect of AQ2 using alkaline phosphatase (ALP) AQ1ならびにAQ2のMg2+キレート効果について制限酵素を用いて検討を行った実験結果を示した図The figure which showed the experimental result which examined restriction effect of Mg 2+ chelate effect of AQ1 and AQ2

本発明のPARP阻害剤等について説明を行う。   The PARP inhibitor of the present invention will be described.

本発明のPARP阻害剤は,162種類もの沖縄自生植物の葉ないしは実から,その成分の抽出を行い,オオフトモモの葉に,PARP阻害を示す成分が含まれることを発明者が見出したことによるものである。   The PARP inhibitor of the present invention is based on the discovery that the component of PARP inhibitor is included in the leaves of fruit and fruits of 162 kinds of Okinawa native plants, and the leaf of white peach contains PARP inhibition. It is.

オオフトモモからの有用成分の抽出については,有用成分の抽出が可能である限り特に限定する必要はなく,種々の抽出方法を用いることができる。
一例をあげると,オオフトモモの葉,もしくは乾燥などの前処理を行った原料試料について,有機溶媒による抽出を行うなどである。
この場合の有機溶媒として特に限定する必要はなく,種々の有機溶媒を用いることができ,典型的には,エタノールを用いることができる。
抽出した後の有効成分を含む有機溶媒については,必要に応じ遠心による夾雑物の除去や濃縮,分液などの粗精製作業を行い,液体のまま,もしくは凍結乾燥などにより固体として保存すればよい(以下,「有効成分試料」という。)。
Extraction of useful components from the black peach is not particularly limited as long as useful components can be extracted, and various extraction methods can be used.
One example is the extraction of organic peach leaves or raw material samples that have been pretreated such as drying.
The organic solvent in this case is not particularly limited, and various organic solvents can be used, and typically ethanol can be used.
The organic solvent containing the active ingredient after extraction should be stored in liquid form or as a solid by freeze-drying, etc., if necessary, after removing impurities by centrifugation, concentrating, and separating the liquid. (Hereafter referred to as “active ingredient sample”).

有効成分試料を用いる際には,5つの没食子酸ならびに開環した六炭糖の構造単位を有する画分を含むことが望ましい。
すなわち,有効成分中に含まれるPARP阻害を示す有効成分(以下,「PARP阻害化合物」)は,MSないしはNMRによる分析上,下記の構造的特徴を有するものである。
(1) 炭素原子数41,酸素原子数26以上,分子量934の化合物であり,15個の酸性水酸基を有する。
(2) NMR分析を行った際に,δ60-80に6本のシグナルが観測されるとともに,δ90-100にはシグナルが観測されない。
(3) NMR分析を行った際に,δ105-175に35本のシグナルが観測され,そのうち5本がδ165-175のカルボニル領域である。
When using the active ingredient sample, it is desirable to include a fraction having 5 gallic acids and a ring-opened hexose structural unit.
That is, an active ingredient showing PARP inhibition (hereinafter referred to as “PARP inhibitor compound”) contained in the active ingredient has the following structural characteristics in terms of analysis by MS or NMR.
(1) A compound with 41 carbon atoms, 26 or more oxygen atoms, and a molecular weight of 934 and has 15 acidic hydroxyl groups.
(2) When NMR analysis is performed, 6 signals are observed at δ60-80 and no signal is observed at δ90-100.
(3) Upon NMR analysis, 35 signals were observed at δ105-175, of which 5 were δ165-175 carbonyl regions.

これらのことから,PARP阻害化合物は,5つの没食子酸ならびに開環した六炭糖の構造単位を有することが強く推定されるものである。
しかるに,PARP阻害化合物は,必ずしも,これに限定する趣旨ではない。
すなわち,前述の(1)から(3)の特徴は,本願における実験例において確認された有効成分試料に含まれるPARP阻害化合物の一つに過ぎず,また,構造として別の異なる構造体を含む余地を残すものだからである。
From these facts, it is highly presumed that PARP-inhibiting compounds have five gallic acids and a ring-opened hexose structural unit.
However, the PARP inhibitor compound is not necessarily limited to this.
That is, the above-mentioned features (1) to (3) are only one of the PARP inhibitor compounds contained in the active ingredient samples confirmed in the experimental examples in the present application, and include different structures as structures. This is because it leaves room.

有効成分試料について,有効成分試料からPARP阻害化合物を精製して用いることができ,また,有効成分試料をそのままの形でPARP阻害剤として用いてもかまわない。
有効成分試料からのPARP阻害化合物の精製については,PARP阻害化合物の精製が可能である限り特に限定する必要はなく,種々の精製方法を用いることができる。
典型的には,HPLCにより,PARP阻害化合物を含む画分を分取し,これを必要に応じ有機溶媒の蒸散や脱塩などを行い,さらに精製を行えばよい。
With regard to the active ingredient sample, the PARP inhibitor compound can be purified from the active ingredient sample and used, or the active ingredient sample may be used as it is as a PARP inhibitor.
The purification of the PARP inhibitor compound from the active ingredient sample is not particularly limited as long as the PARP inhibitor compound can be purified, and various purification methods can be used.
Typically, a fraction containing a PARP inhibitor compound is collected by HPLC, and this is subjected to further purification by evaporating or desalting an organic solvent as necessary.

PARP阻害化合物について,具体的な化合物として,Castalagin,Vescalaginを用いることができ,これらのいずれかもしくは複数を含んだPARP阻害化合物,もしくはBRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤として構成することができる。   Regarding PARP inhibitor compounds, Castalagin and Vescalagin can be used as specific compounds, and PARP inhibitor compounds containing any one or more of these compounds, or BRCA1 / 2 gene mutation-positive advanced ovarian cancer treatment drugs can be configured. it can.

本発明においてBRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤とは,CastalaginやVescalaginをはじめとするPARP阻害化合物により生体内においてPARP阻害効果を発揮することで,BRCA1/2遺伝子変異陽性進行卵巣ガンの治療効果を示す薬剤として定義される。
かかる薬剤については,PARP阻害化合物そのものが有効成分として機能する場合に加え,本発明の趣旨に鑑み,投与後,生体内において分子形を変化させてPARP阻害化合物が有効成分として機能する,いわゆるDDS化された場合も含まれるものである。また,これらPARP阻害化合物は,オオフトモモ葉を原料として抽出・精製したものを用いることができるが,本発明の趣旨を鑑み,化学構造を明らかにしたうえで,オオフトモモ葉からの抽出物ではなく,化学的に合成したものを用いても構わない。
In the present invention, a therapeutic agent for BRCA1 / 2 gene mutation-positive advanced ovarian cancer refers to a BRCA1 / 2 gene mutation-positive advanced ovarian cancer that exhibits a PARP inhibitory effect in vivo by a PARP inhibitor compound such as Castalagin or Vescalagin. Defined as a drug that exhibits a therapeutic effect.
For such drugs, in addition to the case where the PARP inhibitor compound itself functions as an active ingredient, in view of the gist of the present invention, a so-called DDS in which the PARP inhibitor compound functions as an active ingredient by changing the molecular form in vivo after administration in view of the spirit of the present invention It is also included if In addition, these PARP-inhibiting compounds can be extracted and purified from the yellow peach leaf as a raw material, but in view of the gist of the present invention, the chemical structure is clarified and not an extract from the yellow peach leaf, Chemically synthesized products may be used.

本発明のBRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤の剤形について,特に限定する必要はなく,経口剤,錠剤,カプセル剤,散剤,経皮吸収型製剤など種々の形態を採用することができる。好ましくは,経口剤が挙げられ,実験例3(図11)に示すように,本発明の有効成分の例であるAQ1やAQ2は,酸に対して安定であることから,取扱性や服薬コンプライアンスの観点から,経口剤として構成することが好ましい。   The dosage form of the therapeutic agent for BRCA1 / 2 gene mutation-positive advanced ovarian cancer of the present invention is not particularly limited, and various forms such as oral preparations, tablets, capsules, powders, transdermal preparations can be adopted. it can. Preferably, oral preparations are used, and as shown in Experimental Example 3 (FIG. 11), AQ1 and AQ2 which are examples of the active ingredient of the present invention are stable against acids, so that they are easy to handle and compliance. From this point of view, it is preferable to configure as an oral preparation.

以下,本発明におけるPARP阻害剤について,実験例を用いて説明を行う。   Hereinafter, the PARP inhibitor in the present invention will be described using experimental examples.

<<実験例1,沖縄自生植物からのスクリーニング>>
1.162種類の沖縄自生植物の葉,実を用いて,これらからPARP阻害活性を有する成分を見出すことを目的に実験を行った。
2.図1に葉や実からの有用成分の抽出方法,図2にPARP阻害活性のアッセイ方法を示す。
<< Experimental example 1, screening from Okinawa native plants >>
1. 162 kinds of Okinawa native plants were used for the purpose of finding components having PARP inhibitory activity from the leaves and fruits.
2. Fig. 1 shows a method for extracting useful components from leaves and fruits, and Fig. 2 shows a method for assaying PARP inhibitory activity.

3.PAR合成のアッセイ法
PAR合成反応液(10μM NAD+,15μg/ml nicked DNA,50mM Tris-HCl buffer pH8.0,10mM MgCl2,0.25μg PARP1)を25℃,30分間反応させ,2MKOH,20%アセトフェノン(50μl)添加し,4℃,10分暗室で冷却後88%formic acid(225μl)を添加し,110℃で5分間熱処理して残存NAD+を蛍光誘導体化し,その蛍光強度を測定した。
4.PARP阻害活性の定義
上記PAR合成反応系を用いてPARP阻害活性を求めた。
PAR合成が進むとNAD+が消費されて蛍光強度が弱まる。
仮にPARP阻害物質を加えた場合,PARP活性が抑制され,NAD+の消費が抑えられ,結果として蛍光強度が強くなる。
そこで,PARP未添加と添加の両反応系の反応後の蛍光強度差を求め,その差をPARP活性100%(仮にA)とする。
一方,PARPとPARP阻害物質の共存下における反応後の蛍光強度と,PARP存在下の反応後の蛍光強度との差をBとする。
PARP阻害活性を便宜上B/A×100とした(図2)。
3. Assay method for PAR synthesis
PAR synthesis reaction solution (10 μM NAD + , 15 μg / ml nicked DNA, 50 mM Tris-HCl buffer pH 8.0, 10 mM MgCl 2 , 0.25 μg PARP1) is reacted at 25 ° C. for 30 minutes, and 2M KOH, 20% acetophenone (50 μl) is added Then, after cooling in a dark room at 4 ° C for 10 minutes, 88% formic acid (225 µl) was added and heat-treated at 110 ° C for 5 minutes to make the residual NAD + a fluorescent derivative, and the fluorescence intensity was measured.
4). Definition of PARP inhibitory activity PARP inhibitory activity was determined using the above PAR synthesis reaction system.
As PAR synthesis proceeds, NAD + is consumed and fluorescence intensity decreases.
If a PARP inhibitor is added, PARP activity is suppressed, consumption of NAD + is suppressed, and as a result, fluorescence intensity increases.
Therefore, the difference in the fluorescence intensity after the reaction of both the PARP non-added and the added reaction system is obtained, and the difference is defined as PARP activity 100% (temporarily A).
On the other hand, B is the difference between the fluorescence intensity after reaction in the presence of PARP and a PARP inhibitor and the fluorescence intensity after reaction in the presence of PARP.
For convenience, the PARP inhibitory activity was B / A × 100 (FIG. 2).

5.図3にPARP阻害アッセイの結果の一部を示す。
これら一連の実験により,比較的高いPARP阻害活性を示す3種類の抽出成分(63番,67番,103番)が見出され,そのうちの一つ(図3中,63番)が,オオフトモモの葉であり,以降,オオフトモモの葉に関して実験を行った。
5). FIG. 3 shows a part of the results of the PARP inhibition assay.
Through these series of experiments, three kinds of extracted components (No. 63, No. 67, No. 103) showing relatively high PARP inhibitory activity were found, and one of them (No. 63 in FIG. 3) Since then, experiments have been carried out on the leaves of the yellow peach.

<<実験例2,オオフトモモ葉抽出物の構造解析>>
1.図4及び5に,オオフトモモ葉からの成分抽出方法,ならびに有効成分の精製方法を示す。
この精製方法により,PARP阻害活性を有する画分として,2つの成分(AQ1,AQ2)を得た。
そして,2つの成分(AQ1,AQ2)についてMass,NMRによる分析を行い,その構造を明らかにすることを目的に実験を行った。
その結果,AQ1,AQ2は,それぞれVescalagin,Castalaginであることが推定されたが,AQ1,AQ2の単離は,次のとおり行った(以下,「Castalagin」はAQ2を,「Vescalagin」はAQ1を意味する。)。
(1)Castalaginの単離
レンブ(別名:オオフトモモ)の葉は,2014年に沖縄市の民家で採集し,60℃で乾燥後,粉砕(IKA社MF10,3000rpm カッターミル φ1mm篩)したものを使用した。
抽出は高速溶媒抽出装置(DIONEX社ASE-350)により,抽出試料90g(試料/セライト45:45)を100mLセル2本に45gずつ充填し,水を溶媒に,85℃,1500psi,静置時間10分,フラッシュ容量60%,パージ時間300秒で行った。
得られた水抽出液(250mL)は,室温に戻したのちODS(YMC社YMC-Pack ODS-AQ 120-S50)を充てんしたカラム(φ50mm×L100mm)で粗分離(溶媒系:0.1%ギ酸→0.1%ギ酸/アセトニトリル 80:20,流速27mL/分)を行った。
得られたcastalaginを含む画分(426mg)をゲルろ過(東ソー社TOYOPEARL HW40F,φ30mm×L300mm)により分離(水/アセトニトリル 75:25,流速6mL/分)し,粗castalagin (153mg)を得た。
この粗castalaginは最終的に向流クロマトグラフ(三鬼社CPC-LLB-M)により精製(1100rpm,水/n-ブタノール/n-プロパノール 100:45:55,上層移動相,流速2.5mL/分)し,106mgのcastalaginを薄褐色のアモルファスとして得た。
(2)Vescalaginの単離
レンブ(別名:オオフトモモ)の葉は2014年に沖縄市の民家で採集し,60℃で乾燥後,粉砕(IKA社MF10,3000rpm カッターミル φ1mm篩)したものを使用した。
試料70gを700mLのアセトン/水7:3で抽出(1日静置)したのち,遠心分離(3000rpm,30分)により固液分離した。
固体はさらに2回,700mLのアセトン/水7:3で抽出(1日静置)したのち,遠心分離(3000rpm,30分)による固液分離を行った。
3回の抽出操作により合わせて約2000mLの抽出液を得た。
この抽出液をろ過(東洋濾紙社 GA-100)後,減圧下アセトンを除去し,さらに濃縮を行い約500mLの水溶性抽出液を得た。
これを酢酸エチル500mLで分液を行い,その下相(水相)を減圧下で酢酸エチルを除去し,さらに濃縮を行い約250mLの抽出液を得た。
この抽出液をODS(YMC社YMC-Pack ODS-AQ 120-S50)を充てんしたカラム(φ50mm×L100mm)で粗分離(0.1%ギ酸→0.1%ギ酸/アセトニトリル 80:20,流速27mL/分)を行った。
得られたvescalaginを含む画分(463mg)をゲルろ過(東ソー社TOYOPEARL HW40F,φ30mm×L300mm)により分離(水/アセトニトリル 75:25,流速6mL/分)し,粗vescalagin (236mg)を得た。
この粗vescalaginは最終的にゲルろ過(東ソー社TOYOPEARL HW40F,φ30mm×L300mm)により精製(水/アセトニトリル 75:25,流速2.5mL/分)し,205mgのvescalaginを薄褐色のアモルファスとして得た。
<< Experimental example 2, structural analysis of the leaf extract of the yellow peach >>
1. 4 and 5 show a method for extracting a component from a yellow peach leaf and a method for purifying an active component.
By this purification method, two components (AQ1, AQ2) were obtained as fractions having PARP inhibitory activity.
The two components (AQ1, AQ2) were analyzed by Mass and NMR, and experiments were conducted to clarify their structures.
As a result, AQ1 and AQ2 were estimated to be Vescalagin and Castalagin, respectively, but AQ1 and AQ2 were isolated as follows (hereinafter “Castalagin” was AQ2, “Vescalagin” was AQ1). means.).
(1) Castalagin leaves are also collected from a private house in Okinawa City in 2014, dried at 60 ° C, and then ground (IKA MF10, 3000rpm cutter mill φ1mm sieve) did.
Extraction is performed using a high-speed solvent extraction system (DIONEX ASE-350), 90 g of the extraction sample (sample / Celite 45:45) is filled in 45 g into two 100 mL cells, water is used as the solvent, 85 ℃, 1500 psi, standing time 10 minutes, flush capacity 60%, purge time 300 seconds.
The resulting aqueous extract (250 mL) was returned to room temperature and then roughly separated on a column (φ50mm × L100mm) packed with ODS (YMC YMC-Pack ODS-AQ 120-S50) (solvent system: 0.1% formic acid → 0.1% formic acid / acetonitrile 80:20, flow rate 27 mL / min).
The obtained castalagin-containing fraction (426 mg) was separated by gel filtration (Tosoh Corporation TOYOPEARL HW40F, φ30 mm × L300 mm) (water / acetonitrile 75:25, flow rate 6 mL / min) to obtain crude castalagin (153 mg).
This crude castalagin was finally purified by countercurrent chromatography (Mikisha CPC-LLB-M) (1100 rpm, water / n-butanol / n-propanol 100: 45: 55, upper mobile phase, flow rate 2.5 mL / min. 106 mg of castalagin was obtained as a light brown amorphous.
(2) The leaves of Vescalagin's isolated remnants (aka: Ototomomo) were collected from a private house in Okinawa City in 2014, dried at 60 ° C, and then crushed (IKA MF10, 3000rpm cutter mill φ1mm sieve) .
70 g of sample was extracted with 700 mL of acetone / water 7: 3 (left for 1 day) and then solid-liquid separated by centrifugation (3000 rpm, 30 minutes).
The solid was extracted twice more with 700 mL of acetone / water 7: 3 (1 day standing), and then solid-liquid separation was performed by centrifugation (3000 rpm, 30 minutes).
A total of about 2000 mL of extract was obtained by three extraction operations.
The extract was filtered (Toyo Roshi Kaisha GA-100), then acetone was removed under reduced pressure and further concentrated to obtain about 500 mL of an aqueous extract.
This was separated with 500 mL of ethyl acetate, and the lower phase (aqueous phase) was subjected to removal of ethyl acetate under reduced pressure and further concentrated to obtain about 250 mL of an extract.
The extract was roughly separated (0.1% formic acid → 0.1% formic acid / acetonitrile 80:20, flow rate 27 mL / min) on a column (φ50mm × L100mm) packed with ODS (YMC YMC-Pack ODS-AQ 120-S50). went.
The obtained fraction containing vescalagin (463 mg) was separated by gel filtration (Tosoh Corporation TOYOPEARL HW40F, φ30 mm × L300 mm) (water / acetonitrile 75:25, flow rate 6 mL / min) to obtain crude vescalagin (236 mg).
This crude vescalagin was finally purified by gel filtration (Tosoh Corporation TOYOPEARL HW40F, φ30 mm × L300 mm) (water / acetonitrile 75:25, flow rate 2.5 mL / min) to obtain 205 mg of vescalagin as a light brown amorphous.

2.図6にAQ2のESI-MS分析結果,図7にAQ1とAQ2のESI-MS分析結果(上段:AQ2,下段:AQ1)を示す。
これらの分析結果から,AQ1,AQ2,いずれもその分子量は,934であると考えられる。
2. Fig. 6 shows the ESI-MS analysis results for AQ2, and Fig. 7 shows the ESI-MS analysis results for AQ1 and AQ2 (upper: AQ2, lower: AQ1).
From these analysis results, the molecular weight of both AQ1 and AQ2 is considered to be 934.

3.図8にAQ2のNMR分析結果を示す。
δ60-80に6本のシグナル,δ90-100にシグナルが観測されないことから,AQ2は,開環した六炭糖の構造を有すると考えられる(図8,下)。
δ105-175に35本のシグナルが観測され,そのうち5本がδ165-175のカルボニル領域であることから,AQ2は,没食子酸の構造単位を5つ有すると考えられる(図8,下)。
炭素原子数41,酸素原子数26以上,分子量934であることから,AQ2の分子式はC41H26O26であると推定される。
3. FIG. 8 shows the NMR analysis results of AQ2.
Since 6 signals at δ60-80 and no signal at δ90-100 are not observed, AQ2 is considered to have a ring-opened hexose structure (Fig. 8, bottom).
Since 35 signals were observed at δ105-175, of which 5 were carbonyl regions of δ165-175, AQ2 is considered to have 5 structural units of gallic acid (Fig. 8, bottom).
Since it has 41 carbon atoms, 26 or more oxygen atoms, and a molecular weight of 934, the molecular formula of AQ2 is estimated to be C 41 H 26 O 26 .

4.図9にAQ2のメチル化化合物のNMR分析結果を示す。
水酸基をメチル化するジアゾメタン処理によるNMRの分析結果から,AQ2は,酸性の水酸基(フェノール性またはカルボン酸)が15あると推定される(図9,上)。
4). FIG. 9 shows the NMR analysis results of the AQ2 methylated compound.
From the analytical results of NMR by diazomethane treatment that methylates the hydroxyl group, AQ2 is estimated to have 15 acidic hydroxyl groups (phenolic or carboxylic acid) (FIG. 9, top).

これらの結果から,AQ2は,castalaginもしくはvescalaginであることが推定された。
また,AQ1は,MSスペクトルがAQ2のそれとほぼ一致していることから,AQ2と異性体の関係にあるvescalaginもしくはcastalaginである可能性が高いと考えられた。
These results suggest that AQ2 is castalagin or vescalagin.
In addition, AQ1 is highly likely to be vescalagin or castalagin, which has an isomer relationship with AQ2, since the MS spectrum is almost identical to that of AQ2.

そこで,このことを確認するために,AQ2のNMRスペクトルデータ(表1),比旋光度([α]24 D=−94.5°)及びUVスペクトルデータ(UV λ 224nm 285nm(Sh))を基にcastalaginのそれと比較したところ一致した。 Therefore, in order to confirm this, based on NMR spectral data of AQ2 (Table 1), specific rotation ([α] 24 D = −94.5 °) and UV spectral data (UV λ 224 nm 285 nm (Sh)). It matched when compared with that of castalagin.

したがって,AQ2は,castalaginであると同定した(図10)。
また,AQ1についてもAQ2と同様に,NMRスペクトルデータ,比旋光度及びUVスペクトルデータを基にcastalaginの異性体であるvescalaginのそれと比較したところ一致した。
したがって,AQ1は,vescalaginであると同定した(図10)。
なお,vescalagin及びcastalaginは,いずれもC-配糖体型エラジタンニンである。
Therefore, AQ2 was identified as castalagin (FIG. 10).
As with AQ2, AQ1 was consistent with that of vescalagin, an isomer of castalagin, based on NMR spectral data, specific rotation, and UV spectral data.
Therefore, AQ1 was identified as vescalagin (FIG. 10).
Both vescalagin and castalagin are C-glycoside ellagitannins.

<<実験例3,AQ2のPARP阻害アッセイ>>
1.AQ2について,その構造の安定性を知ることで,経口薬としての可能性を検討することを目的に実験を行った。
表に,各前処理の方法を簡潔に示す。
<< Experimental Example 3, AQ2 PARP Inhibition Assay >>
1. An experiment was conducted with the aim of examining the potential of AQ2 as an oral drug by knowing its structural stability.
The table briefly shows each preprocessing method.

2.図11に,AQ2について前処理を行った後,PARP阻害アッセイを行った結果を示す。
(1) AQ2は,酸の前処理を行ってもPARP阻害活性は中性処理の時とほとんど変わらず,AQ2は,酸に対して安定であることが分かった。
(2) 一方,アルカリ処理の場合は,その活性が著しく低下しており,AQ2自体がアルカリ処理によりその構造が変化していることが考えられ,アルカリに対しては,不安定であることが分かった。
3.これらの結果より,AQ2は,少なくとも酸に対しては安定であることから,経口薬剤としての設計が可能であることが示唆された。
2. FIG. 11 shows the results of PARP inhibition assay after pretreatment of AQ2.
(1) It was found that AQ2 was stable to acid even when pretreated with acid, and PARP inhibitory activity was almost the same as that of neutral treatment.
(2) On the other hand, in the case of alkali treatment, the activity is remarkably reduced, and it is considered that the structure of AQ2 itself has changed due to alkali treatment, and it is unstable to alkali. I understood.
3. These results suggest that AQ2 can be designed as an oral drug because it is stable at least against acids.

<<実験例4,AQ2と既存化合物とのPARP阻害能の比較>>
1.AQ2が,既存のPARP阻害剤と比較して,どの程度のPARP阻害能を有しているかを確認することを目的に実験を行った。
<< Experimental Example 4, Comparison of PARP inhibitory ability between AQ2 and existing compounds >>
1. An experiment was conducted with the aim of confirming the degree of PARP inhibitory ability of AQ2 compared to existing PARP inhibitors.

2.図2に示したPARP活性阻害の検定方法以外のPARP阻害を調べる方法の概要を図12に示す。本方法は,ポリADPリボシル(PAR)化反応の生成物であるPAR化タンパクを免疫化学的に測定する方法である。
3.図2のPARP阻害活性の測定方法に基づいて,AQ1,AQ2の阻害活性を調べるとともに,AQ2,既存のPARP阻害剤であるオラパリブのIC50値の算出を行った。
(1) AQ1,AQ2ともに同様の阻害活性を示し,IC50値は,0.8μg/mL(856nM)であった(図13,左)。
(2) 一方,同じ実験系にてオラパリブのIC50値を算出したところ,およそ15nMであった(図14)。
(3) なお,AQ1,AQ2の構造単位として没食子酸を有する可能性が高いことを述べたが,この没食子酸についても検討を行ったところ,10μMでもPARP阻害活性を示さなかった(図14)。
2. An outline of a method for examining PARP inhibition other than the PARP activity inhibition assay method shown in FIG. 2 is shown in FIG. This method is a method for immunochemically measuring a PAR protein, which is a product of poly ADP ribosyl (PAR) reaction.
3. Based on the measurement method of PARP inhibitory activity in FIG. 2, the inhibitory activity of AQ1 and AQ2 was examined, and the IC 50 value of AQ2 and olaparib, which is an existing PARP inhibitor, was calculated.
(1) Both AQ1 and AQ2 showed the same inhibitory activity, and the IC 50 value was 0.8 μg / mL (856 nM) (FIG. 13, left).
(2) On the other hand, the IC 50 value of olaparib was calculated in the same experimental system and found to be approximately 15 nM (FIG. 14).
(3) Although it has been described that gallic acid is highly likely to be a structural unit of AQ1 and AQ2, this gallic acid was also examined and showed no PARP inhibitory activity even at 10 μM (FIG. 14). .

4.AQ2,オラパリブ,3-アミノベンズアミド,没食子酸,これらの化合物を用いたPARP阻害アッセイの結果を図15に示す。
(1) AQ2は,オラパリブよりは低く,3-アミノベンズアミドを超える阻害能を有していた。
(2) なお,没食子酸は,前述の結果(図14)と同様,PARP阻害活性を示さなかった。
4). FIG. 15 shows the results of the PARP inhibition assay using AQ2, olaparib, 3-aminobenzamide, gallic acid, and these compounds.
(1) AQ2 was lower than olaparib and had an inhibitory capacity exceeding that of 3-aminobenzamide.
(2) In addition, gallic acid did not show PARP inhibitory activity as in the above-mentioned result (FIG. 14).

<<実験例5,神経細胞芽腫細胞SH-SY5Yを用いた,AQ1,AQ2によるPARP阻害活性の確認>>
1.神経細胞芽腫細胞SH-SY5Yを対象細胞として用い,AQ1,AQ2によるPARP阻害を行った際,PAR合成がどのように変化するか調べることを目的に実験を行った。
<< Experimental Example 5, Confirmation of PARP Inhibitory Activity by AQ1 and AQ2 Using Neuroblastoma Cells SH-SY5Y >>
1. An experiment was conducted to investigate how PAR synthesis changes when PARP inhibition by AQ1 and AQ2 is performed using the neuroblastoma cell SH-SY5Y.

2.AQ1およびAQ2を添加したDMEM+10%FCS培地でSH-SY5Y細胞を一晩培養し,回収した細胞から可溶性タンパクを調製し,SDS-PAGE(SDSポリアクリルアミドゲル電気泳動)の試料とした。
電気泳動後,タンパクをPVDF膜に転写し,一次抗体に抗ポリADPリボース抗体を用いてタンパクに共有結合しているPAR鎖を検出した。
なお,PARP阻害剤のポジティブコントロールとしてオラパリブを用いた。
2. SH-SY5Y cells were cultured overnight in DMEM + 10% FCS medium supplemented with AQ1 and AQ2, and soluble proteins were prepared from the collected cells and used as samples for SDS-PAGE (SDS polyacrylamide gel electrophoresis).
After electrophoresis, the protein was transferred to a PVDF membrane, and the PAR chain covalently bound to the protein was detected using an anti-poly ADP ribose antibody as the primary antibody.
Olaparib was used as a positive control for PARP inhibitors.

3.図16に結果を示す。
(1) コントロールである一番左の濃いラダー上に示されたバンドと比較して,3μg/mL濃度のAQ1ならびにAQ2の前処理によるバンドは薄くなっており,このことからPAR合成が阻害されていることが分かった。
(2) また,3μg/mL濃度と比較して,15μg/mL濃度のAQ1ならびにAQ2のバンドは濃くなっており,PARP阻害効果は,逆に抑制されている結果となっていた。この原因については,不明である。
(3) なお,10μMのオラパリブでは,PAR合成は強く阻害されていた。
3. FIG. 16 shows the result.
(1) Compared to the band shown on the leftmost dark ladder, which is the control, the band due to pretreatment with AQ1 and AQ2 at a concentration of 3 μg / mL was thinner, which inhibited PAR synthesis. I found out.
(2) Compared with the 3μg / mL concentration, the 15μg / mL concentration of AQ1 and AQ2 bands became deeper, indicating that the PARP inhibitory effect was suppressed. The cause of this is unknown.
(3) In 10 μM olaparib, PAR synthesis was strongly inhibited.

<<実験例6,損傷DNA依存的なPAR合成に対するAQの阻害効果>>
1.紫外線照射によりDNA損傷を惹起し,このDNA損傷により誘発されるPAR合成が,AQ1等によりどのような影響を受けるかを明らかにすることを目的に実験を行った。
<< Experimental Example 6, AQ Inhibitory Effect on Damaged DNA-Dependent PAR Synthesis >>
1. Experiments were conducted with the aim of elucidating the effects of AQ1 etc. on PAR synthesis induced by DNA damage caused by UV irradiation.

2.AQ等を添加したRPMI1640+10%FCS培地でU937細胞を2時間培養し,紫外線(10mJ総量/cm2)を照射した。
回復時間2時間経過後,回収した細胞から可溶性タンパクを調製し,実験例5の方法に従ってタンパク結合PAR鎖を検出した。
2. U937 cells were cultured in RPMI1640 + 10% FCS medium supplemented with AQ, etc. for 2 hours, and irradiated with ultraviolet rays (10 mJ total amount / cm 2 ).
After 2 hours of recovery time, soluble protein was prepared from the collected cells, and protein-bound PAR chains were detected according to the method of Experimental Example 5.

3.図17に結果を示す。
(1) DNA損傷のコントロールである左から2番のバンドと比較して,AQ1,AQ2による処理については,PAR合成は抑制されていなかった。
(2) 一方,オラパリブは,PAR合成を強く抑制していた。
3. FIG. 17 shows the result.
(1) Compared with the second band from the left, which is a control of DNA damage, PAR synthesis was not suppressed by treatment with AQ1 and AQ2.
(2) On the other hand, olaparib strongly suppressed PAR synthesis.

<<実験例7,AQ2のPARP阻害メカニズムに関する検討>>
1.AQ2が,どのような機序でPARP阻害を行っているかを明らかにすることを目的に実験を行った。
<< Experimental Example 7, A Study on AQ2 PARP Inhibition Mechanism >>
1. An experiment was conducted to clarify the mechanism by which AQ2 inhibits PARP.

2.図18は,PARPをAQ2で前処理を行った後,AQ2による阻害活性を調べた結果を示す。
(1) AQ2を予めPARPと反応させる前処理の有無でAQ2の阻害活性を比較しても,その阻害活性効果はほとんど変わらなかった。
(2) また,いずれについてもAQ2の濃度依存的な阻害活性効果は変わっていなかった。
(3) これらの結果より,AQ2がPARP分子そのものに不可逆的に結合するなどの構造変化をもたらし阻害活性効果を発揮している可能性はないものと考えられた。
2. FIG. 18 shows the results of examining the inhibitory activity by AQ2 after pretreatment of PARP with AQ2.
(1) The inhibitory activity of AQ2 was almost unchanged even when the inhibitory activity of AQ2 was compared in the presence or absence of pretreatment with AQ2 previously reacted with PARP.
(2) In addition, the concentration-dependent inhibitory activity effect of AQ2 was not changed in all cases.
(3) From these results, it was considered that there is no possibility that AQ2 exerts an inhibitory activity effect due to structural changes such as irreversible binding to the PARP molecule itself.

3.図19は,AQ2のZnキレート能について検討を行った結果である。
すなわち,PARPは,Znを必要とする酵素(Zn酵素)であることから,AQ2がZnをキレートにより捕捉し,PARP活性を低下させている可能性について,Znを必要とする酵素であるアルカリホスファターゼ(ALP)を対象として検討を行ったものである。
(1) 陰性対象であるDMSOと比較して,AQ2添加によるALP活性はほとんど変化しておらず,また,濃度を変更してもその影響は全く見られなかった。
(2) なお,オラパリブの添加を行っても,ALP活性は,変化していないことが分かった。
(3) これらの結果から,AQ2が,ZnをキレートすることでPARP阻害効果を発揮している可能性はないものと考えられた。
3. FIG. 19 shows the results of studies on the Zn chelating ability of AQ2.
In other words, since PARP is an enzyme that requires Zn (Zn enzyme), the possibility that AQ2 captures Zn with a chelate and reduces PARP activity is an alkaline phosphatase that is an enzyme that requires Zn. (ALP) has been studied.
(1) Compared with DMSO, which was a negative target, ALP activity due to the addition of AQ2 hardly changed, and even when the concentration was changed, no effect was seen.
(2) It was found that ALP activity did not change even when olaparib was added.
(3) From these results, it is considered that AQ2 may not exhibit the PARP inhibitory effect by chelating Zn.

4.図20は,pcDNA3/HA-DNp73αを基質として,2種類の制限酵素NheIとXhoIによるインサートの切り出しに対して,AQ1等が阻害効果を示すのかを調べた結果である。
すなわち,PARPは,その活性の発揮に,10mM程度のMg2+を必要とする。
関与する反応は異なるものの,NheI,XhoIは,PARP同様,その活性の発揮に,10mM程度のMg2+を必要とすることから,これらを対象として検討を行ったものである。
(1) AQ1については,3μg/mL,15μg/mL,いずれの濃度でも,阻害作用は見られなかった。
(2) 一方,AQ2について,3μg/mLでは阻害作用は見られなかったものの,15μg/mLでは,部分的な阻害作用が見られた。
(3) なお,オラパリブについて,5μMの濃度で検討を行ったが,阻害作用は見られなかった(不図示)。
4). FIG. 20 shows the results of examining whether AQ1 or the like has an inhibitory effect on the excision of inserts by two types of restriction enzymes NheI and XhoI using pcDNA3 / HA-DNp73α as a substrate.
That is, PARP requires about 10 mM Mg 2+ to exert its activity.
Although the reactions involved are different, NheI and XhoI, like PARP, require about 10 mM of Mg 2+ to exert their activity.
(1) For AQ1, no inhibitory effect was observed at either 3 μg / mL or 15 μg / mL.
(2) On the other hand, AQ2 showed no inhibitory effect at 3 μg / mL, but partially inhibited at 15 μg / mL.
(3) Olaparib was examined at a concentration of 5 μM, but no inhibitory effect was seen (not shown).

Claims (5)

オオフトモモの葉抽出物を含むことを特徴とするPARP阻害剤。 A PARP inhibitor characterized by comprising a leaf extract of peach peach. 前記抽出物が,5つの没食子酸ならびに開環した六炭糖の構造単位を有することを特徴とする請求項1に記載のPARP阻害剤。 The PARP inhibitor according to claim 1, wherein the extract has structural units of five gallic acids and a ring-opened hexose. 前記抽出物が,C-配糖体型エラジタンニンを有することを特徴とする請求項1に記載のPARP阻害剤。 The PARP inhibitor according to claim 1, wherein the extract has C-glycoside type ellagitannin. 前記抽出物が,Castalagin,Vescalaginのいずれか又は複数からなることを特徴とする請求項1に記載のPARP阻害剤。 The PARP inhibitor according to claim 1, wherein the extract comprises one or more of Castalagin and Vescalagin. 請求項1から4に記載のPARP阻害剤を有効成分とすることを特徴とするBRCA1/2遺伝子変異陽性進行卵巣ガン治療薬剤。 A therapeutic agent for BRCA1 / 2 gene mutation-positive advanced ovarian cancer comprising the PARP inhibitor according to claim 1 as an active ingredient.
JP2016111383A 2016-06-02 2016-06-02 PARP inhibitors containing Ooftomomo extract Active JP6763114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111383A JP6763114B2 (en) 2016-06-02 2016-06-02 PARP inhibitors containing Ooftomomo extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111383A JP6763114B2 (en) 2016-06-02 2016-06-02 PARP inhibitors containing Ooftomomo extract

Publications (2)

Publication Number Publication Date
JP2017218382A true JP2017218382A (en) 2017-12-14
JP6763114B2 JP6763114B2 (en) 2020-09-30

Family

ID=60658431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111383A Active JP6763114B2 (en) 2016-06-02 2016-06-02 PARP inhibitors containing Ooftomomo extract

Country Status (1)

Country Link
JP (1) JP6763114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115697324A (en) * 2020-02-20 2023-02-03 皇家学术促进会/麦吉尔大学 Use of castalagin or its analogs for anticancer efficacy and increasing response to immune checkpoint inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056031A1 (en) * 2003-12-15 2005-06-23 Kabushiki Kaisha Yakult Honsha Lipase inhibitor
JP2009227612A (en) * 2008-03-24 2009-10-08 Okinawa Pref Gov Tyrosinase activity inhibitor and bleaching cosmetic containing the same
JP2010132563A (en) * 2008-12-02 2010-06-17 Lotte Co Ltd Antibacterial agent and oral cavity composition and food and drink including the same
JP2010132564A (en) * 2008-12-02 2010-06-17 Lotte Co Ltd Deodorant and oral cavity composition and food and drink including the same
WO2015108986A1 (en) * 2014-01-16 2015-07-23 Clovis Oncology, Inc. Use of parp inhibitors to treat breast or ovarian cancer patients showing a loss of heterozygosity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056031A1 (en) * 2003-12-15 2005-06-23 Kabushiki Kaisha Yakult Honsha Lipase inhibitor
JP2009227612A (en) * 2008-03-24 2009-10-08 Okinawa Pref Gov Tyrosinase activity inhibitor and bleaching cosmetic containing the same
JP2010132563A (en) * 2008-12-02 2010-06-17 Lotte Co Ltd Antibacterial agent and oral cavity composition and food and drink including the same
JP2010132564A (en) * 2008-12-02 2010-06-17 Lotte Co Ltd Deodorant and oral cavity composition and food and drink including the same
WO2015108986A1 (en) * 2014-01-16 2015-07-23 Clovis Oncology, Inc. Use of parp inhibitors to treat breast or ovarian cancer patients showing a loss of heterozygosity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, W.-C. ET AL.: "Protective effects of vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perr", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. No. 61, No. 29, JPN6020013234, 2 July 2013 (2013-07-02), pages 7102 - 7109, ISSN: 0004249649 *
PERALTA-LEAL, A. ET AL.: "PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases", FREE RADICAL BIOLOGY AND MEDICINE, vol. 47, no. 1, JPN6020013235, 2009, pages 13 - 26, XP026158945, ISSN: 0004249650, DOI: 10.1016/j.freeradbiomed.2009.04.008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115697324A (en) * 2020-02-20 2023-02-03 皇家学术促进会/麦吉尔大学 Use of castalagin or its analogs for anticancer efficacy and increasing response to immune checkpoint inhibitors

Also Published As

Publication number Publication date
JP6763114B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
Nagarsenkar et al. Synthesis and apoptosis inducing studies of triazole linked 3-benzylidene isatin derivatives
US10765660B2 (en) Agent containing flavonoid derivatives for treating cancer and inflammation
CN109942609B (en) Peroxynitrite near-infrared fluorescent probe ONP, and preparation method and application thereof
WO2016178713A1 (en) Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
JP2005035977A (en) New gamma-butyrolactone compound and its medicinal composition
Subash-Babu et al. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53
WO2001037819A2 (en) Use of indirubine derivatives for making medicines
US20190083452A1 (en) Therapeutic agents containing cannabis flavonoid derivatives for the prevention and treatment of neurodegenerative disorders
Yao et al. Stereoisomeric guaiacylglycerol-β-coniferyl aldehyde ether induces distinctive apoptosis by downregulation of MEK/ERK pathway in hepatocellular carcinoma cells
WO2011069334A1 (en) Cdk5 inhibitors and therapeutic uses thereof
Ateş-Alagöz et al. A comparative study: Evaluation of antioxidant activity of melatonin and some indole derivatives
Sharma et al. Discovery of C-3 Tethered 2-oxo-benzo [1, 4] oxazines as potent antioxidants: bio-inspired based design, synthesis, biological evaluation, cytotoxic, and in silico molecular docking studies
JP2017218382A (en) Parp inhibitor containing syzygium samarangense extract
WO2019183373A1 (en) Small molecules for disrupting the super elongation complex and inhibiting transcription elongation for cancer therapy
Sáez‐Ayala et al. Comparison of a Pair of Synthetic Tea‐Catechin‐Derived Epimers: Synthesis, Antifolate Activity, and Tyrosinase‐Mediated Activation in Melanoma
BR112021003813A2 (en) botanical antioxidants
EP3487585B1 (en) Oleocanthal isolation
Adiguzel et al. A platinum blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells
RU2612256C1 (en) Hydrazine thiazole derivatives of usnic acid with inhibitory action towards human tyrosyl-dna-phosphodiesterase 1 enzyme
KR101483055B1 (en) Process for extracting and separating the components for treating chronic myelogenous leukemia from yellow poplar cortex
AU2013100366A4 (en) Therapeutic and/or Prophylactic Extract of Mahogany species
RU2763021C2 (en) Medicinal extracts of ambrosia plants
Nugraha et al. Phytochemical and pharmacological evaluation of a medicinal plant of Indonesian tengger ethnic group
CN110551138A (en) Hypericum perforatum extract, preparation method thereof and application thereof in preparing anti-Alzheimer&#39;s disease drugs
Kolekar et al. Synthesis and human RBC membrane stabilization activity of substituted 3-benzoyl flavone

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6763114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250