JP2017218329A - Seal structure of optical fiber drawing furnace and method for manufacturing optical fiber - Google Patents

Seal structure of optical fiber drawing furnace and method for manufacturing optical fiber Download PDF

Info

Publication number
JP2017218329A
JP2017218329A JP2016111427A JP2016111427A JP2017218329A JP 2017218329 A JP2017218329 A JP 2017218329A JP 2016111427 A JP2016111427 A JP 2016111427A JP 2016111427 A JP2016111427 A JP 2016111427A JP 2017218329 A JP2017218329 A JP 2017218329A
Authority
JP
Japan
Prior art keywords
optical fiber
drawing furnace
blade member
housing
seal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016111427A
Other languages
Japanese (ja)
Other versions
JP6665695B2 (en
Inventor
巌 岡崎
Iwao Okazaki
巌 岡崎
青木 誠
Makoto Aoki
誠 青木
山崎 卓
Taku Yamazaki
卓 山崎
小西 達也
Tatsuya Konishi
達也 小西
吉村 文雄
Fumio Yoshimura
文雄 吉村
智哉 鈴木
Tomoya Suzuki
智哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016111427A priority Critical patent/JP6665695B2/en
Publication of JP2017218329A publication Critical patent/JP2017218329A/en
Application granted granted Critical
Publication of JP6665695B2 publication Critical patent/JP6665695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the seal structure of an optical fiber drawing furnace capable of suppressing increase in friction coefficient to excellently maintain the slidability of a blade member, and a method for manufacturing an optical fiber.SOLUTION: The seal structure of an optical fiber drawing furnace for blocking a space between the upper end opening of the optical fiber drawing furnace and an optical fiber glass preform inserted from the upper end opening comprises: blade members 14 and 15 contacting the side surface of the optical fiber glass preform in the circumferential direction; and a housing 11 for housing the blade members and guide members 16 and 17 for slidably supporting the blade members. At least a part or the entire of a sliding surface between the blade member and guide member in the housing is in a space in an atmosphere including at least moisture or oxygen of 0.1% or more.SELECTED DRAWING: Figure 3

Description

本発明は、光ファイバ用線引炉のシール構造、光ファイバの製造方法に関し、詳細には、光ファイバ用線引炉の上端開口部と上端開口部から挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造、光ファイバの製造方法に関する。   The present invention relates to a sealing structure for an optical fiber drawing furnace and an optical fiber manufacturing method, and more specifically, an upper end opening of an optical fiber drawing furnace and an optical fiber glass base material inserted from the upper end opening. The present invention relates to a sealing structure of an optical fiber drawing furnace for closing a gap between the two, and a method for manufacturing an optical fiber.

光ファイバは、石英を主成分とする光ファイバ用ガラス母材(以下、ガラス母材という)を光ファイバ用線引炉(以下、線引炉という)の上端開口部から炉心管内に挿入し、ガラス母材の先端が加熱溶融して細径化されることにより、線引炉の下方から線引きされる。このときの線引炉内の温度は、約2000℃と非常に高温となるので、線引炉内の部品には、耐熱性に優れたカーボンが用いられている。   The optical fiber is a glass base material for optical fiber (hereinafter referred to as glass base material) mainly composed of quartz, inserted into the core tube from the upper end opening of an optical fiber drawing furnace (hereinafter referred to as drawing furnace), When the tip of the glass base material is heated and melted to reduce the diameter, the glass base material is drawn from below the drawing furnace. Since the temperature in the drawing furnace at this time is as high as about 2000 ° C., carbon having excellent heat resistance is used for the parts in the drawing furnace.

この場合、線引炉内を陽圧にし、外気(酸素)が線引炉内に入り込むことを防いでいるが、線引炉の上端開口部とガラス母材との隙間でうまく気密が取れていないと(シールされていないと)、外気を線引炉内に巻き込んで線引炉の寿命に影響を与える。例えば、特許文献1には、線引炉の上端開口部とガラス母材との隙間を塞ぐためのシール構造の技術が開示されている。   In this case, the inside of the drawing furnace is set to a positive pressure to prevent outside air (oxygen) from entering the drawing furnace. However, the gap between the upper end opening of the drawing furnace and the glass base material is well sealed. Otherwise (unsealed), outside air is drawn into the drawing furnace and affects the life of the drawing furnace. For example, Patent Document 1 discloses a technique of a seal structure for closing a gap between an upper end opening of a drawing furnace and a glass base material.

特開2012−106915号公報JP 2012-106915 A

ところで、上記特許文献1の技術では、ガラス母材の側面に当接するブレード部材(封止要素)が筐体(チャンバ)に収容されているが、通常、線引炉内の部材としてカーボンが多く使用されており、酸素が線引炉内に混入するとこれら部材が酸化劣化する。このため、筐体内に供給したガスの全部または一部が線引炉内へ漏れ出ることを考慮し、筐体内を線引炉内と同じ不活性ガス雰囲気としている。しかしながら、筐体内を不活性ガス雰囲気にし、ブレード部材やガイド部材に、カーボンや石英、金属を使用すると、高温下ではブレード部材の接触面の摩擦係数が増加し、ブレード部材の摺動性が低下する場合があることが判明した。   By the way, in the technique of the above-mentioned Patent Document 1, a blade member (sealing element) that contacts the side surface of the glass base material is housed in a housing (chamber). These components are oxidized and deteriorated when oxygen is mixed into the drawing furnace. For this reason, considering that all or part of the gas supplied into the housing leaks into the drawing furnace, the inside of the housing is set to the same inert gas atmosphere as in the drawing furnace. However, when the inside of the housing is in an inert gas atmosphere and carbon, quartz, or metal is used for the blade member or guide member, the friction coefficient of the contact surface of the blade member increases at high temperatures, and the slidability of the blade member decreases. It turns out that there is a case.

本発明は、上述のような実情に鑑みてなされたもので、摩擦係数の増加を抑えてブレード部材の摺動性を良好に維持する光ファイバ用線引炉のシール構造、光ファイバの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has an optical fiber drawing furnace seal structure that suppresses an increase in the coefficient of friction and maintains good slidability of the blade member, and an optical fiber manufacturing method. The purpose is to provide.

本発明の一態様に係る光ファイバ用線引炉のシール構造は、光ファイバ用線引炉の上端開口部と該上端開口部から挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、前記光ファイバ用ガラス母材の周方向側面に当接するブレード部材と、該ブレード部材を収容すると共に、該ブレード部材を摺動自在に支持するガイド部材を収容した筐体とを備え、該筐体内における前記ブレード部材と前記ガイド部材との摺動面の少なくとも一部または全部が、少なくとも水分あるいは酸素を0.1%以上含む雰囲気の空間にある。   An optical fiber drawing furnace seal structure according to an aspect of the present invention closes a gap between an upper end opening of an optical fiber drawing furnace and an optical fiber glass preform inserted from the upper end opening. An optical fiber drawing furnace seal structure for a blade member abutting on a circumferential side surface of the optical fiber glass preform, and housing the blade member and slidably supporting the blade member And a space in an atmosphere in which at least a part or all of the sliding surfaces of the blade member and the guide member in the housing contains at least 0.1% of moisture or oxygen. It is in.

上記によれば、摩擦係数の増加を抑えてガイド部材に対するブレード部材の摺動性を良好に維持することができる。   According to the above, it is possible to satisfactorily maintain the slidability of the blade member with respect to the guide member while suppressing an increase in the friction coefficient.

本発明の一実施形態による光ファイバ用線引炉の概略を説明する図である。It is a figure explaining the outline of the drawing furnace for optical fibers by one Embodiment of this invention. シール構造の一例を示す図である。It is a figure which shows an example of a seal structure. 図2のブレード部材およびガイド部材を説明する図である。It is a figure explaining the blade member and guide member of FIG. 図2のA−A矢視断面図である。It is AA arrow sectional drawing of FIG. シール構造の円筒スリットバネの一例を示す図である。It is a figure which shows an example of the cylindrical slit spring of a seal structure. ブレード部材の他の例を示す図である。It is a figure which shows the other example of a blade member.

[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
本発明の一態様に係る光ファイバ用線引炉のシール構造は、(1)光ファイバ用線引炉の上端開口部と該上端開口部から挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、前記光ファイバ用ガラス母材の周方向側面に当接するブレード部材と、該ブレード部材を収容すると共に、該ブレード部材を摺動自在に支持するガイド部材を収容した筐体とを備え、該筐体内における前記ブレード部材と前記ガイド部材との摺動面の少なくとも一部または全部が、少なくとも水分あるいは酸素を0.1%以上含む雰囲気の空間にある。筐体内を、水分を含む雰囲気あるいは酸素を含む雰囲気にすることにより、摩擦係数の増加を抑えてガイド部材に対するブレード部材の摺動性を良好に維持することができる。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
An optical fiber drawing furnace seal structure according to an aspect of the present invention includes: (1) an upper end opening of an optical fiber drawing furnace and an optical fiber glass preform inserted from the upper end opening; A sealing structure for an optical fiber drawing furnace for closing a gap, a blade member abutting on a circumferential side surface of the optical fiber glass preform, and housing the blade member, and sliding the blade member A housing that accommodates a freely supporting guide member, and at least a part or all of the sliding surfaces of the blade member and the guide member in the housing contains at least 0.1% or more of moisture or oxygen. It is in a space of atmosphere. By making the inside of the casing into an atmosphere containing moisture or an atmosphere containing oxygen, an increase in the friction coefficient can be suppressed and the slidability of the blade member with respect to the guide member can be maintained well.

(2)前記水分あるいは酸素を含む雰囲気が大気雰囲気である。筐体内を大気雰囲気(酸素が21%、湿度0.1〜80%程度の空気からなる雰囲気)にすれば、水分を含む雰囲気あるいは酸素を含む雰囲気の空間を容易に形成可能になる。
(3)前記光ファイバ用線引炉内の圧力が、前記筐体内の圧力よりも高い。線引炉内を筐体内よりも陽圧にし、筐体内の水分や酸素が線引炉内に入り込むのを防止できる。
(2) The atmosphere containing moisture or oxygen is an air atmosphere. If the inside of the housing is in an air atmosphere (atmosphere made of air with 21% oxygen and a humidity of 0.1 to 80%), an atmosphere containing moisture or a space containing oxygen can be easily formed.
(3) The pressure in the optical fiber drawing furnace is higher than the pressure in the housing. It is possible to prevent the moisture and oxygen in the housing from entering the drawing furnace by making the inside of the drawing furnace more positive than in the housing.

(4)前記ブレード部材あるいは前記ガイド部材の少なくとも一方がカーボンで形成されている。筐体内を、水分を含む雰囲気あるいは酸素を含む雰囲気にすることにより、いずれかの部材にカーボンが用いられたとしても、高温下でカーボンの自己潤滑性が失われないので、摩擦係数の増加を抑制できる。
(5)前記ブレード部材あるいは前記ガイド部材の少なくとも一方が金属で形成されている。筐体内を、水分を含む雰囲気あるいは酸素を含む雰囲気にすることにより、いずれかの部材に金属が用いられたとしても、表面の酸化膜を維持できるため、摩擦係数の増加を抑制できる。
(6)前記金属として、ステンレス、二硫化モリブデン、フッ素コート金属、金メッキ金属、窒化クロムコート金属、DLC(ダイヤモンドライクカーボン)コート金属の何れかを含むとよい。
(7)前記ブレード部材あるいは前記ガイド部材の少なくとも一方が石英ガラスで形成されている。筐体内を、水分を含む雰囲気あるいは酸素を含む雰囲気にすることにより、いずれかの部材に石英ガラスが用いられたとしても、石英ガラス表面を清浄な状態にしないことで、摩擦係数の増加を抑制できる。
(4) At least one of the blade member or the guide member is formed of carbon. By creating an atmosphere containing moisture or oxygen in the housing, even if carbon is used for any member, the self-lubricating property of carbon will not be lost at high temperatures. Can be suppressed.
(5) At least one of the blade member or the guide member is made of metal. By making the inside of the housing an atmosphere containing moisture or an atmosphere containing oxygen, even if a metal is used for any of the members, an oxide film on the surface can be maintained, so that an increase in the coefficient of friction can be suppressed.
(6) The metal may include any of stainless steel, molybdenum disulfide, fluorine-coated metal, gold-plated metal, chromium nitride-coated metal, and DLC (diamond-like carbon) -coated metal.
(7) At least one of the blade member or the guide member is formed of quartz glass. Even if quartz glass is used for any member, the increase in the coefficient of friction is suppressed by making the inside of the housing an atmosphere containing moisture or oxygen, even if quartz glass is used for any member. it can.

(8)前記ブレード部材は、複数の材質からなる。ブレード部材を複数の材質から構成し、ガラス母材に当接する前方部の材料と、ガイド部材に対して摺動する後方部の材料とを変えることにより、前方部をガラスに接触しても問題ない材料(カーボン、石英ガラス)とし、後方部をその他の材料(金属など)にすることができる。
(9)前記ガイド部材は水冷される。水冷することで、ガイド部材に使用するカーボンや金属が、熱により劣化するのを抑制することができる。
(8) The blade member is made of a plurality of materials. Even if the front part contacts the glass by changing the material of the front part that contacts the glass base material and the material of the rear part that slides against the guide member, the blade member is composed of multiple materials. No material (carbon, quartz glass), and the rear part can be other materials (metal, etc.).
(9) The guide member is water-cooled. By cooling with water, it is possible to suppress deterioration of the carbon and metal used for the guide member due to heat.

(10)本発明の一態様に係る光ファイバの製造方法は、上記いずれかの光ファイバ用線引炉のシール構造を用いて光ファイバを線引きする。上述のシール構造を用いているため、線引き中の気密能力を維持することができる。また、ガラス母材の挿入時や取出し時におけるガラス母材やシール構造の破損も防止できる。 (10) In the optical fiber manufacturing method according to an aspect of the present invention, the optical fiber is drawn by using any one of the above-described seal structures of a drawing furnace for an optical fiber. Since the above-described seal structure is used, the airtight ability during drawing can be maintained. Further, it is possible to prevent the glass base material and the seal structure from being damaged when the glass base material is inserted or taken out.

[本発明の実施形態の詳細]
以下、添付図面を参照しながら、本発明による光ファイバ用線引炉のシール構造、光ファイバの製造方法の好適な実施の形態について説明する。なお、以下ではヒータにより炉心管を加熱する抵抗炉を例に説明するが、コイルに高周波電源を印加し、炉心管を誘導加熱する誘導炉にも、本発明は適用可能である。また、ガラス母材の吊り下げ機構や、断熱材の構成なども、下記で説明するのは一例であり、これに限定されるものではない。
[Details of the embodiment of the present invention]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a sealing structure for an optical fiber drawing furnace and an optical fiber manufacturing method according to the invention will be described with reference to the accompanying drawings. In the following, a resistance furnace that heats the core tube with a heater will be described as an example. However, the present invention can also be applied to an induction furnace in which a high-frequency power source is applied to the coil to induction-heat the core tube. Moreover, what is demonstrated below also about the suspension mechanism of a glass base material, the structure of a heat insulating material, etc. is an example, and is not limited to this.

図1は、本発明の一実施形態による光ファイバ用線引炉の概略を説明する図である。線引炉1は、炉筐体2と、炉心管3と、加熱源(ヒータ)4と、シール構造10とを備えている。炉筐体2は、上端開口部2aと下端開口部2bを有し、例えば、ステンレス鋼製で形成されている。炉心管3は、炉筐体2の中央部に円筒状で形成され、上端開口部2aと連通している。炉心管3はカーボン製であり、この炉心管3内には、ガラス母材5が上端開口部2aからシール構造10でシールされた状態で挿入される。   FIG. 1 is a diagram for explaining the outline of an optical fiber drawing furnace according to an embodiment of the present invention. The drawing furnace 1 includes a furnace casing 2, a furnace core tube 3, a heating source (heater) 4, and a seal structure 10. The furnace housing 2 has an upper end opening 2a and a lower end opening 2b, and is made of, for example, stainless steel. The core tube 3 is formed in a cylindrical shape at the center of the furnace housing 2 and communicates with the upper end opening 2a. The core tube 3 is made of carbon, and the glass base material 5 is inserted into the core tube 3 while being sealed by the seal structure 10 from the upper end opening 2a.

炉筐体2内には、ヒータ4が炉心管3を囲むように配置され、断熱材7がヒータ4の外側を覆うように収納されている。ヒータ4は、炉心管3の内部に挿入されたガラス母材5を加熱溶融し、その下端部5aから溶融縮径された光ファイバ5bを垂下させる。ガラス母材5は、別途設けた移動機構により線引方向(下側方向)に移動可能であり、ガラス母材5の上側には、ガラス母材5を吊り下げて支持するための支持棒6が連結されている。また、線引炉1には不活性ガス等による炉内ガスの供給機構(図示省略)が設けられ、炉心管3内やヒータ4の周りに、酸化や劣化防止のための不活性ガス等を供給可能である。   In the furnace casing 2, a heater 4 is disposed so as to surround the furnace core tube 3, and a heat insulating material 7 is accommodated so as to cover the outside of the heater 4. The heater 4 heats and melts the glass base material 5 inserted into the core tube 3, and hangs down the optical fiber 5b melted and reduced in diameter from the lower end portion 5a. The glass base material 5 can be moved in a drawing direction (downward direction) by a separately provided moving mechanism, and a support bar 6 for hanging and supporting the glass base material 5 on the upper side of the glass base material 5. Are connected. Further, the drawing furnace 1 is provided with a furnace gas supply mechanism (not shown) using an inert gas or the like, and an inert gas or the like for preventing oxidation or deterioration is provided in the furnace core tube 3 or around the heater 4. It can be supplied.

なお、図1では、炉心管3の内壁の上端部がそのまま上端開口部2aを形成している例を挙げているが、これに限ったものではない。例えば、炉心管3の内径dよりさらに狭い上端開口部となる上蓋を炉心管3の上側に設けてもよく、この場合にシール対象となる隙間は、この狭い上端開口部とガラス母材5との間に生じる隙間となる。また、ガラス母材5の断面形状は、基本的に真円を目指して生成されたものとするが、その精度を問わず一部で非円が存在してもよく、また楕円形などであってもよい。また、上端開口部2aの断面は円形としておけばよいが、この精度は問わない。   Although FIG. 1 shows an example in which the upper end portion of the inner wall of the core tube 3 forms the upper end opening 2a as it is, the present invention is not limited to this. For example, an upper lid that is an upper end opening narrower than the inner diameter d of the core tube 3 may be provided on the upper side of the core tube 3, and in this case, the gap to be sealed is the narrow upper end opening and the glass base material 5. It becomes a gap generated between the two. In addition, the cross-sectional shape of the glass base material 5 is basically generated to aim at a perfect circle, but some non-circles may exist regardless of the accuracy, and the glass base material 5 may have an elliptical shape. May be. The upper end opening 2a may have a circular cross section, but this accuracy does not matter.

本発明の一実施形態は、線引炉1の上端開口部2aと上端開口部2aから挿入されたガラス母材5の外周との間の隙間Sを塞ぐためのシール構造10を対象とするものであり、特に、上端開口部2aに設けたシール構造10によって炉外の外気を巻き込まないようにしながら、線引炉内のガラス母材5をヒータ4により加熱している。   One embodiment of the present invention is directed to a seal structure 10 for closing a gap S between an upper end opening 2a of a drawing furnace 1 and an outer periphery of a glass base material 5 inserted from the upper end opening 2a. In particular, the glass base material 5 in the drawing furnace is heated by the heater 4 while the outside air outside the furnace is not caught by the seal structure 10 provided in the upper end opening 2a.

以下、図2〜図5を参照してシール構造の一例を説明する。図2はシール構造の一例を示す図、図3は図2のブレード部材およびガイド部材を説明する図、図4は図2の筐体内におけるA−A矢視断面図であり、図5は、シール構造の円筒スリットバネの一例を示す図である。
シール構造10は、耐熱性を持った複数のブレード部材14,15と、これらブレード部材14,15や、ブレード部材14,15を直線的にスライド移動させるためのガイド部材16,17を収容する筐体11とを備えている。なお、筐体の一部がガイド部材となるように、筐体とガイド部材とを一体成型した構成としてもよい。
Hereinafter, an example of the seal structure will be described with reference to FIGS. 2 is a diagram illustrating an example of a seal structure, FIG. 3 is a diagram illustrating the blade member and the guide member in FIG. 2, FIG. 4 is a cross-sectional view taken along the line AA in the housing in FIG. 2, and FIG. It is a figure which shows an example of the cylindrical slit spring of a seal structure.
The seal structure 10 includes a plurality of blade members 14 and 15 having heat resistance, and the blade members 14 and 15 and guide members 16 and 17 for sliding the blade members 14 and 15 linearly. And a body 11. In addition, it is good also as a structure which integrally molded the housing | casing and the guide member so that a part of housing | casing may become a guide member.

図2に示すように、筐体11は、同心の貫通孔を有した円盤状の部材であり、図2を拡大した図3(A)に示すように、ブレード部材15を挿通させるための開口11bや、図3(A)よりも奥の断面図である図3(B)に示すように、ブレード部材14を挿通させるための開口11aが、筐体11の内周面上に、例えば互い違いに設けられている。なお、筐体11は、例えばステンレス鋼製で形成され、ブレード部材14,15を例えば400℃以下(カーボン製のブレード部材の場合には300℃以下にすることが好ましい)となるように冷却する機構(例えば水冷方式)を有することもでき、これにより、後述するガイド部材を冷却することができる。   As shown in FIG. 2, the casing 11 is a disk-shaped member having concentric through holes, and an opening for inserting the blade member 15 as shown in FIG. As shown in FIG. 3B and FIG. 3B which is a cross-sectional view deeper than FIG. 3A, the openings 11a for inserting the blade member 14 are alternately formed on the inner peripheral surface of the housing 11, for example. Is provided. The housing 11 is made of, for example, stainless steel, and the blade members 14 and 15 are cooled to 400 ° C. or lower (preferably 300 ° C. or lower in the case of a carbon blade member). It can also have a mechanism (for example, a water cooling system), and can cool a guide member mentioned below by this.

ブレード部材14,15は、筐体11の中心軸に対して、それぞれ放射状に延びて筐体11内に設置され、ブレード部材14は筐体11の内周面に沿って等間隔で複数設けられ、ブレード部材15も筐体11の内周面に沿って等間隔で複数設けられている。ブレード部材14,15は、例えば、移動方向に垂直な面での断面形状が略長方形となる略直方体形状であり、上下2段で互い違いに配されている。   The blade members 14 and 15 are radially installed with respect to the central axis of the housing 11 and installed in the housing 11. A plurality of blade members 14 are provided at equal intervals along the inner peripheral surface of the housing 11. A plurality of blade members 15 are also provided at equal intervals along the inner peripheral surface of the housing 11. For example, the blade members 14 and 15 have a substantially rectangular parallelepiped shape in which a cross-sectional shape in a plane perpendicular to the moving direction is a substantially rectangular shape, and are arranged alternately in two upper and lower stages.

また、図3に示すように、ブレード部材14,15は、筐体11から突出してガラス母材の周方向側面に当接可能な先端部14a,15a、図4にも示すように、筐体11内でガイド部材16,17に接触して摺動する外周面部14b,14c,14d,14e,15b,15c,15d,15e、ブレード部材を押圧する、例えば後述するような円筒スリットバネ18に当接する後端部14f,15fで構成されている。なお、外周面部14b〜14e,15b〜15eが本発明の摺動面に相当する。
先端部14a,15aは、ガラス母材の側面に当接した際に、ガラス母材との隙間を可能な限り小さくする必要がある。このため、先端部14a,15aの先端は、ガラス母材の半径として想定される最大値(使用されるガラス母材の最大径)に合うような曲率を持つ円弧形状にしておくことが好ましい。
As shown in FIG. 3, the blade members 14 and 15 are protruded from the housing 11 and can be brought into contact with the circumferential side surfaces of the glass base material 14a and 15a. As shown in FIG. 11, the outer peripheral surface portions 14 b, 14 c, 14 d, 14 e, 15 b, 15 c, 15 d, 15 e that slide in contact with the guide members 16, 17 are pressed against a blade member, for example, a cylindrical slit spring 18 as described later. The rear end portions 14f and 15f are in contact with each other. The outer peripheral surface portions 14b to 14e and 15b to 15e correspond to the sliding surfaces of the present invention.
When the tip portions 14a and 15a abut on the side surface of the glass base material, it is necessary to make the gap with the glass base material as small as possible. For this reason, it is preferable to make the front-end | tip of the front-end | tip parts 14a and 15a into the circular arc shape which has a curvature suitable for the maximum value (maximum diameter of the glass base material to be used) assumed as the radius of a glass base material.

先端部14a,15aがガラス母材の側面に当接した際に、先端部14aと先端部15aとの間は、上下方向に隙間が生じないようにし、さらに、隣接する先端部14aで生じる隙間を先端部15aで埋めて、隣接する先端部15aで生じる隙間を先端部14aで埋めている。これにより、図1の隙間Sを塞ぎ、外気を炉内に巻き込まないようにシールすることができる。   When the tip portions 14a and 15a are in contact with the side surfaces of the glass base material, a gap is not generated in the vertical direction between the tip portion 14a and the tip portion 15a, and further, a gap generated in the adjacent tip portion 14a. Is filled with the tip portion 15a, and a gap generated at the adjacent tip portion 15a is filled with the tip portion 14a. Thereby, it is possible to seal the gap S in FIG. 1 so that the outside air is not caught in the furnace.

ブレード部材14,15の材料はカーボンであることが好ましい。カーボンは、耐熱性に優れるだけでなく、やわらかい素材であるためガラス母材を傷付ける心配もない。特に、本例のブレード部材14,15には、ショア硬度100以下の軟質のカーボンを採用することが好ましい。また、カーボンは、プレス成型や削り出しなどにより容易に成型することができる点でも好ましい。   The material of the blade members 14 and 15 is preferably carbon. Carbon is not only excellent in heat resistance, but it is a soft material, so there is no worry of damaging the glass base material. In particular, it is preferable to employ soft carbon having a Shore hardness of 100 or less for the blade members 14 and 15 of this example. Carbon is also preferred in that it can be easily molded by press molding or machining.

また、ブレード部材14,15の材料としては、カーボンの他に、例えば、石英ガラス、SiCコートカーボンなどを採用することもできる。他の硬質の材料を用いた場合でも、例えば、先端部分のみだけでも軟質のカーボンを使用することで、ガラス母材を傷付けないようにすることは可能である。
なお、上述したブレード部材14,15の幅や枚数は、使用するガラス母材の外径や外径変動量や曲がり量などに応じて、適宜選べばよい。
Further, as a material of the blade members 14 and 15, for example, quartz glass, SiC coated carbon, or the like can be employed in addition to carbon. Even when other hard materials are used, it is possible to prevent the glass base material from being damaged, for example, by using soft carbon only at the tip portion.
The width and the number of the blade members 14 and 15 described above may be appropriately selected according to the outer diameter, the outer diameter fluctuation amount, the bending amount, and the like of the glass base material to be used.

ガイド部材16,17は、図3,4に示すように、ブレード部材14,15の外周面部14b〜14e,15b〜15eを挿通させる筒状に形成され、例えば筐体11の底面、上面に設置されている。詳しくは、ガイド部材16,17は、ブレード部材14の外周面部14b〜14eの周囲に位置する摺動面16c〜16e,17dを有し、この摺動面16c〜16e,17dがブレード部材14の外周面部14b〜14eに四方から当接可能に構成されている。また、摺動面17dよりも低い位置で、ブレード部材15の外周面部15b〜15eの周囲に位置する摺動面16b,17b,17c,17eを有し、この摺動面16b,17b,17c,17eがブレード部材15の外周面部15b〜15eに四方から当接可能に構成されている。なお、ガイド部材16,17の摺動面16b〜16e,17b〜17eも本発明の摺動面に相当する。   As shown in FIGS. 3 and 4, the guide members 16 and 17 are formed in a cylindrical shape through which the outer peripheral surface portions 14b to 14e and 15b to 15e of the blade members 14 and 15 are inserted. Has been. Specifically, the guide members 16 and 17 have sliding surfaces 16c to 16e and 17d positioned around the outer peripheral surface portions 14b to 14e of the blade member 14, and the sliding surfaces 16c to 16e and 17d are formed on the blade member 14. It is comprised so that contact | abutting to the outer peripheral surface parts 14b-14e from four directions. Moreover, it has sliding surfaces 16b, 17b, 17c, and 17e positioned around the outer peripheral surface portions 15b to 15e of the blade member 15 at a position lower than the sliding surface 17d, and the sliding surfaces 16b, 17b, 17c, 17e is comprised so that the outer peripheral surface parts 15b-15e of the blade member 15 can contact | abut from four directions. Note that the sliding surfaces 16b to 16e and 17b to 17e of the guide members 16 and 17 also correspond to the sliding surfaces of the present invention.

ガイド部材16,17の材料もカーボンであることが好ましいが、窒化ボロン(BN)や、金属の場合にはステンレス、二硫化モリブテン(MoS2)などの金属を採用することもできる。あるいは、酸化膜を有した金属、フッ素コートや金メッキ、窒化クロムコート、DLC(ダイヤモンドライクカーボン)コートなどの各種コーティングを施した金属、若しくは石英ガラスなどを採用してもよい。 The material of the guide members 16 and 17 is also preferably carbon, but it is also possible to employ metals such as boron nitride (BN) and, in the case of metals, stainless steel, molybdenum disulfide (MoS 2 ), and the like. Alternatively, a metal having an oxide film, a metal having various coatings such as a fluorine coat, gold plating, a chromium nitride coat, a DLC (diamond-like carbon) coat, or quartz glass may be employed.

次に、ブレード部材を押圧する機構の一例である円筒スリットバネ18は、ブレード部材14,15の後端部14c,15cに当接するように設置されており、図5に示すように、上方向からのスリット18aと下方向からのスリット18bとが互い違いに形成されている。なお、円筒スリットバネ18の材料は、耐熱性の材料、例えば、カーボン、セラミックス、カーボン−セラミックス複合材、金属材のいずれかで形成されていることが望ましく、200℃以上の耐熱性を持つことが好ましい。   Next, the cylindrical slit spring 18, which is an example of a mechanism for pressing the blade member, is installed so as to contact the rear end portions 14 c and 15 c of the blade members 14 and 15, and as shown in FIG. The slits 18a from the vertical direction and the slits 18b from the downward direction are alternately formed. The material of the cylindrical slit spring 18 is desirably formed of any one of heat-resistant materials such as carbon, ceramics, carbon-ceramic composite material, and metal material, and has heat resistance of 200 ° C. or higher. Is preferred.

円筒スリットバネ18による円筒径方向への収縮力により、複数のブレード部材14,15の先端をガラス母材の側面に当接させる。これにより、線引きの進行によりガラス母材5が図2に矢印で示すように下降し、ガラス母材5の外径が、例えば、φ1からφ2(>φ1)まで増加しても、円筒スリットバネ18は、周方向に均一にブレード部材14,15を締め付けた状態で外側に延びる。逆にガラス母材5の外径が減少した場合、円筒スリットバネ18は、周方向に均一にブレード部材14,15を締め付けた状態で内側に縮むことができる。なお、円筒スリットバネ18はブレード部材を押圧する機構の一例であり、スリットバネ以外でも、ガスの給排気でブレード部材を押し引きしたり、コイルバネやエアシリンダを用いたりしてもよい。   The tips of the plurality of blade members 14 and 15 are brought into contact with the side surfaces of the glass base material by the contracting force in the cylindrical radial direction by the cylindrical slit spring 18. Thereby, even if the glass base material 5 descends as shown by an arrow in FIG. 2 due to the progress of drawing, and the outer diameter of the glass base material 5 increases, for example, from φ1 to φ2 (> φ1), the cylindrical slit spring 18 extends outward in a state where the blade members 14 and 15 are tightened uniformly in the circumferential direction. Conversely, when the outer diameter of the glass base material 5 decreases, the cylindrical slit spring 18 can be contracted inward with the blade members 14 and 15 tightened uniformly in the circumferential direction. The cylindrical slit spring 18 is an example of a mechanism that presses the blade member. Besides the slit spring, the blade member may be pushed and pulled by gas supply / exhaust, or a coil spring or an air cylinder may be used.

ところで、図2に示した筐体11には、その内部の大気溜り12と筐体11の外部とを接続し、外部から空気を導入する給排ポート13が設けられており、この筐体11内におけるブレード部材14,15とガイド部材16,17との摺動面は、少なくとも水分あるいは酸素を0.1%以上含む雰囲気の空間に配置されている。
カーボンのブレード部材とガイド部材を使用した場合、水分や酸素が無い高温の不活性ガス雰囲気ではカーボン同士の結合が強固になってしまうため、摺動性が悪化し、その後、室温に下がっても摺動性は悪化した状態が維持される。しかし、筐体内を、水分を含む雰囲気(乾燥していない雰囲気)や酸素を含む雰囲気にすれば、カーボン同士の結合が強固にならず、ガイド部材に対するブレード部材の摺動性を良好に維持することができる。すなわち、水分や酸素を含む雰囲気にすれば、カーボンの自己潤滑性が失われないので、摩擦係数の増加を抑制できる。
なお、水分や酸素が無い高温の不活性ガス雰囲気となる箇所では、部材同士を接触させないことが好ましく、例えば線引炉内の雰囲気に近い、筐体11とブレード部材14,15との間には若干の隙間を空け、接触しないようにしておくことが好ましい。
Incidentally, the housing 11 shown in FIG. 2 is provided with a supply / exhaust port 13 that connects the air reservoir 12 inside the housing 11 to the outside of the housing 11 and introduces air from the outside. The sliding surfaces between the blade members 14 and 15 and the guide members 16 and 17 are disposed in a space having an atmosphere containing at least moisture or oxygen of 0.1% or more.
When a carbon blade member and guide member are used, the bonding between carbons becomes strong in a high-temperature inert gas atmosphere free of moisture and oxygen. The slidability is maintained in a deteriorated state. However, if the inside of the housing is in an atmosphere containing moisture (an atmosphere that is not dry) or an atmosphere containing oxygen, the bonding between the carbons does not become strong, and the slidability of the blade member with respect to the guide member is maintained well. be able to. That is, if the atmosphere contains moisture or oxygen, the self-lubricating property of carbon is not lost, so that an increase in the friction coefficient can be suppressed.
It should be noted that it is preferable not to bring the members into contact with each other in a place where a high-temperature inert gas atmosphere without moisture or oxygen exists, for example, between the casing 11 and the blade members 14 and 15 close to the atmosphere in the drawing furnace. It is preferable to leave a slight gap so as not to contact.

また、例えば、酸化膜を有した金属をガイド部材に用いた場合、不活性ガス雰囲気では酸化膜が除去されるため、摺動性が悪化するが、筐体内に外気(酸素)を供給して、筐体内を、酸素を含む雰囲気にすれば、摩擦係数の増加を抑制できるので、ブレード部材の摺動性を良好に維持することができる。
また、例えば、石英ガラスのブレード部材とガイド部材を使用した場合、筐体内を、水分を含む雰囲気(乾燥していない雰囲気)にすれば、清浄化によって洗浄研磨された乾燥状態で大きくなる摩擦が生じないので、ブレード部材の摺動性を良好に維持することができる。
ブレード部材にカーボンを用い、ガイド部材にカーボン以外の材料を用いた場合など、それぞれの部材として上記した材料を組み合わせた場合も、同様に、筐体内を水分あるいは酸素を含む雰囲気にすれば、摺動面において摩擦係数の増加が生じにくくなり、ブレード部材の摺動性を良好に維持することができる。
In addition, for example, when a metal having an oxide film is used for the guide member, the oxide film is removed in an inert gas atmosphere, so that the slidability deteriorates. However, outside air (oxygen) is supplied into the housing. If the inside of the casing is in an atmosphere containing oxygen, an increase in the coefficient of friction can be suppressed, so that the slidability of the blade member can be maintained well.
In addition, for example, when a quartz glass blade member and a guide member are used, if the inside of the housing is in an atmosphere containing moisture (non-dry atmosphere), friction that increases in a dry state that has been cleaned and polished by cleaning is increased. Since it does not occur, the slidability of the blade member can be maintained well.
Similarly, when carbon is used for the blade member and materials other than carbon are used for the guide member, the above materials are combined as the respective members. It is difficult for the friction coefficient to increase on the moving surface, and the slidability of the blade member can be maintained well.

そして、摩擦係数の増加を抑制したシール構造を用いた光ファイバの製造方法によれば、線引き中の気密能力を維持することができる。また、ガラス母材の挿入時や取出し時には、ブレード部材の摺動性を良好に維持できるため、ガラス母材が引っ掛かることなく、ガラス母材やシール構造の破損も防止できる。
なお、線引中における線引炉内の圧力は、筐体内の圧力よりも大きくすることが好ましい。線引炉内を陽圧にし、筐体内の水分や酸素が線引炉内に入り込むのを防止するためである。また、大気溜り12には例えば湿度センサあるいは酸素センサなどを設け、コントローラ(図示省略)からの指示に応じて給排ポート13から大気溜り12に外気を供給してもよい。
And according to the manufacturing method of the optical fiber using the seal structure which suppressed the increase in the coefficient of friction, the airtight capability during drawing can be maintained. In addition, since the slidability of the blade member can be maintained satisfactorily when the glass base material is inserted or taken out, the glass base material or the seal structure can be prevented from being damaged without being caught.
In addition, it is preferable that the pressure in the drawing furnace during drawing is larger than the pressure in the housing. This is because a positive pressure is applied in the drawing furnace to prevent moisture and oxygen in the housing from entering the drawing furnace. Further, the atmospheric pool 12 may be provided with, for example, a humidity sensor or an oxygen sensor, and external air may be supplied from the supply / exhaust port 13 to the atmospheric pool 12 in accordance with an instruction from a controller (not shown).

また、例えばガスの給排気でブレード部材を押し引きする場合、ブレード部材とガイド部材との摺動面を少なくとも水分あるいは酸素を含む雰囲気の空間に置きつつ、給排ポートから筐体内のガスを供給(筐体内にガス溜りを形成)してブレード部材をガラス母材の側面に当接させる一方、給排ポートから筐体内のガスを排出してブレード部材をガラス母材の側面から離すことも可能である。   For example, when the blade member is pushed and pulled by gas supply / exhaust, the gas in the housing is supplied from the supply / discharge port while the sliding surface between the blade member and the guide member is placed in an atmosphere containing at least moisture or oxygen. (A gas reservoir is formed in the housing) to bring the blade member into contact with the side surface of the glass base material. On the other hand, the gas in the housing can be discharged from the supply / discharge port to separate the blade member from the side surface of the glass base material. It is.

図6は、ブレード部材の他の例を示す図である。ブレード部材14の例を挙げて説明すると、ブレード部材14は、ガラス母材に当接する前方部14gの材料と、ガイド部材に対して摺動する後方部14hの材料とを変更した、複合材料で構成してもよい。なお、この場合、後方部14hの側面が本発明の摺動面に相当する。
具体的には、前方部14gの材料には、上述したカーボン、石英ガラス、SiCコートカーボンなどを採用するのに対し、後方部14hの材料としては、上述したカーボンの他に、窒化ボロン(BN)、金属の場合にはステンレスや二硫化モリブテン(MoS2)など、前方部14gとは異なる材料を採用することもできる。あるいは、酸化膜を有した金属、フッ素コートや金メッキ、窒化クロムコート、DLCコートなどの各種コーティングを施した金属、若しくは石英ガラスなどを採用してもよい。このような構成にすることで、母材と接触する材質をカーボンや石英などのガラス母材に接触しても問題ない(強度劣化や断線が生じない)材質を選定し、摺動面については、色々な材質の中から、より摩擦が生じにくい材質を選定することができる。
FIG. 6 is a diagram illustrating another example of the blade member. An example of the blade member 14 will be described. The blade member 14 is a composite material in which the material of the front portion 14g that comes into contact with the glass base material and the material of the rear portion 14h that slides with respect to the guide member are changed. It may be configured. In this case, the side surface of the rear portion 14h corresponds to the sliding surface of the present invention.
Specifically, the above-described carbon, quartz glass, SiC-coated carbon, or the like is adopted as the material of the front portion 14g, while the material of the rear portion 14h is boron nitride (BN) in addition to the above-described carbon. In the case of metal, a material different from the front portion 14g, such as stainless steel or molybdenum disulfide (MoS 2 ), can be used. Alternatively, a metal having an oxide film, a metal having various coatings such as a fluorine coat, gold plating, a chromium nitride coat, and a DLC coat, or quartz glass may be employed. By adopting such a configuration, a material that does not have any problem even if it comes into contact with a glass base material such as carbon or quartz is selected as the material that comes into contact with the base material (there is no deterioration in strength or disconnection). From various materials, a material that is less susceptible to friction can be selected.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…光ファイバ用線引炉、2…炉筐体、2a…上端開口部、2b…下端開口部、3…炉心管、4…ヒータ、5…光ファイバ用ガラス母材、5a…下端部、5b…光ファイバ、6…支持棒、7…断熱材、10…シール構造、11…筐体、11a,11b…開口、12…大気溜り、13…給排ポート、14,15…ブレード部材、14a,15a…先端部、14b,14c,14d,14e,15b,15c,15d,15e…外周面部、14f,15f…後端部、14g…前方部、14h…後方部、16,17…ガイド部材、16b,16c,16d,16e,17b,17c,17d,17e…摺動面、18…円筒スリットバネ、18a,18b…スリット。
DESCRIPTION OF SYMBOLS 1 ... Optical fiber drawing furnace, 2 ... Furnace housing, 2a ... Upper end opening part, 2b ... Lower end opening part, 3 ... Furnace core tube, 4 ... Heater, 5 ... Optical fiber glass preform, 5a ... Lower end part, 5b: optical fiber, 6: support rod, 7: heat insulating material, 10: seal structure, 11: housing, 11a, 11b ... opening, 12: air reservoir, 13: supply / exhaust port, 14, 15 ... blade member, 14a , 15a ... tip part, 14b, 14c, 14d, 14e, 15b, 15c, 15d, 15e ... outer peripheral surface part, 14f, 15f ... rear end part, 14g ... front part, 14h ... rear part, 16, 17 ... guide member, 16b, 16c, 16d, 16e, 17b, 17c, 17d, 17e ... sliding surface, 18 ... cylindrical slit spring, 18a, 18b ... slit.

Claims (10)

光ファイバ用線引炉の上端開口部と該上端開口部から挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、
前記光ファイバ用ガラス母材の周方向側面に当接するブレード部材と、該ブレード部材を収容すると共に、該ブレード部材を摺動自在に支持するガイド部材を収容した筐体とを備え、
該筐体内における前記ブレード部材と前記ガイド部材との摺動面の少なくとも一部または全部が、少なくとも水分あるいは酸素を0.1%以上含む雰囲気の空間にある、光ファイバ用線引炉のシール構造。
An optical fiber drawing furnace sealing structure for closing a gap between an upper end opening of an optical fiber drawing furnace and an optical fiber glass base material inserted from the upper end opening;
A blade member in contact with a circumferential side surface of the glass preform for optical fiber, and a housing that houses the blade member and a guide member that slidably supports the blade member;
A sealing structure for an optical fiber drawing furnace, wherein at least a part or all of the sliding surfaces of the blade member and the guide member in the housing is in a space having an atmosphere containing at least moisture or oxygen of 0.1% or more. .
前記水分あるいは酸素を含む雰囲気が大気雰囲気である、請求項1に記載の光ファイバ用線引炉のシール構造。   The sealing structure for an optical fiber drawing furnace according to claim 1, wherein the atmosphere containing moisture or oxygen is an air atmosphere. 前記光ファイバ用線引炉内の圧力が、前記筐体内の圧力よりも高い、請求項1または2に記載の光ファイバ用線引炉のシール構造。   The seal structure of the optical fiber drawing furnace according to claim 1, wherein a pressure in the optical fiber drawing furnace is higher than a pressure in the housing. 前記ブレード部材あるいは前記ガイド部材の少なくとも一方がカーボンで形成されている、請求項1〜3のいずれか1項に記載の光ファイバ用線引炉のシール構造。   The seal structure for an optical fiber drawing furnace according to any one of claims 1 to 3, wherein at least one of the blade member or the guide member is made of carbon. 前記ブレード部材あるいは前記ガイド部材の少なくとも一方が金属で形成されている、請求項1〜3のいずれか1項に記載の光ファイバ用線引炉のシール構造。   The seal structure of the drawing furnace for optical fibers according to any one of claims 1 to 3, wherein at least one of the blade member or the guide member is made of metal. 前記金属は、ステンレス、二硫化モリブデン、フッ素コート金属、金メッキ金属、窒化クロムコート金属、DLC(ダイヤモンドライクカーボン)コート金属の何れかを含む、請求項5に記載の光ファイバ用線引炉のシール構造。   The seal of an optical fiber drawing furnace according to claim 5, wherein the metal includes any of stainless steel, molybdenum disulfide, fluorine-coated metal, gold-plated metal, chromium nitride-coated metal, and DLC (diamond-like carbon) -coated metal. Construction. 前記ブレード部材あるいは前記ガイド部材の少なくとも一方が石英ガラスで形成されている、請求項1〜3のいずれか1項に記載の光ファイバ用線引炉のシール構造。   The seal structure for an optical fiber drawing furnace according to any one of claims 1 to 3, wherein at least one of the blade member or the guide member is formed of quartz glass. 前記ブレード部材は、複数の材質からなる、請求項4〜7のいずれか1項に記載の光ファイバ用線引炉のシール構造。   The said blade member is a seal structure of the drawing furnace for optical fibers according to any one of claims 4 to 7, comprising a plurality of materials. 前記ガイド部材は水冷される、請求項1〜8のいずれか1項に記載の光ファイバ用線引炉のシール構造。   The seal structure for an optical fiber drawing furnace according to any one of claims 1 to 8, wherein the guide member is water-cooled. 請求項1〜9のいずれか1項に記載の光ファイバ用線引炉のシール構造を用いて光ファイバを線引きする、光ファイバの製造方法。
The manufacturing method of an optical fiber which draws an optical fiber using the sealing structure of the drawing furnace for optical fibers of any one of Claims 1-9.
JP2016111427A 2016-06-03 2016-06-03 Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber Active JP6665695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111427A JP6665695B2 (en) 2016-06-03 2016-06-03 Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111427A JP6665695B2 (en) 2016-06-03 2016-06-03 Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber

Publications (2)

Publication Number Publication Date
JP2017218329A true JP2017218329A (en) 2017-12-14
JP6665695B2 JP6665695B2 (en) 2020-03-13

Family

ID=60657219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111427A Active JP6665695B2 (en) 2016-06-03 2016-06-03 Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber

Country Status (1)

Country Link
JP (1) JP6665695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165942A (en) * 2018-11-21 2021-07-23 住友电气工业株式会社 Sealing structure of optical fiber drawing furnace and method for manufacturing optical fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280578A1 (en) * 2005-06-10 2006-12-14 Hitachi Cable, Ltd. Optical fiber drawing apparatus, sealing mechanism for the same, and method for drawing an optical fiber
JP2010189213A (en) * 2009-02-17 2010-09-02 Shin-Etsu Chemical Co Ltd Sealing member for heating furnace
JP2012106915A (en) * 2010-10-19 2012-06-07 Sumitomo Electric Ind Ltd Sealing structure for optical fiber base material
JP2012236742A (en) * 2011-05-12 2012-12-06 Sumitomo Electric Ind Ltd Heat resistant spring, and sealing structure for optical fiber drawing furnace using the same
JP2012246159A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Sealing structure of drawing furnace for optical fiber
JP2014141373A (en) * 2013-01-24 2014-08-07 Sumitomo Electric Ind Ltd Seal structure of fiber drawing furnace for optical fiber and fiber drawing method for optical fiber
JP2014152083A (en) * 2013-02-12 2014-08-25 Sumitomo Electric Ind Ltd Seal structure of drawing furnace for optical fiber and drawing method of optical fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280578A1 (en) * 2005-06-10 2006-12-14 Hitachi Cable, Ltd. Optical fiber drawing apparatus, sealing mechanism for the same, and method for drawing an optical fiber
JP2006342030A (en) * 2005-06-10 2006-12-21 Hitachi Cable Ltd Optical fiber drawing apparatus, seal mechanism used for the same and optical fiber drawing method
JP2010189213A (en) * 2009-02-17 2010-09-02 Shin-Etsu Chemical Co Ltd Sealing member for heating furnace
JP2012106915A (en) * 2010-10-19 2012-06-07 Sumitomo Electric Ind Ltd Sealing structure for optical fiber base material
JP2012236742A (en) * 2011-05-12 2012-12-06 Sumitomo Electric Ind Ltd Heat resistant spring, and sealing structure for optical fiber drawing furnace using the same
JP2012246159A (en) * 2011-05-26 2012-12-13 Sumitomo Electric Ind Ltd Sealing structure of drawing furnace for optical fiber
JP2014141373A (en) * 2013-01-24 2014-08-07 Sumitomo Electric Ind Ltd Seal structure of fiber drawing furnace for optical fiber and fiber drawing method for optical fiber
JP2014152083A (en) * 2013-02-12 2014-08-25 Sumitomo Electric Ind Ltd Seal structure of drawing furnace for optical fiber and drawing method of optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165942A (en) * 2018-11-21 2021-07-23 住友电气工业株式会社 Sealing structure of optical fiber drawing furnace and method for manufacturing optical fiber
CN113165942B (en) * 2018-11-21 2023-02-17 住友电气工业株式会社 Sealing structure of optical fiber drawing furnace and method for manufacturing optical fiber

Also Published As

Publication number Publication date
JP6665695B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5023016B2 (en) Optical fiber manufacturing apparatus and drawing furnace sealing method
WO2012053394A1 (en) Sealing structure for optical fiber drawing furnace
JP6665695B2 (en) Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber
US10502636B2 (en) Temperature-measuring stick with an easily replaceable thermocouple
JP6024475B2 (en) Optical fiber drawing furnace seal structure, optical fiber drawing method
JP6048190B2 (en) Optical fiber drawing furnace seal structure, optical fiber drawing method
RU2013153500A (en) SEALING ASSEMBLY
WO2018038156A1 (en) Seal structure for optical fiber drawing furnace, production method for optical fiber
ITMI20091872A1 (en) "ENVELOPE SYSTEM FOR A STEAM TURBINE"
JP6677123B2 (en) Seal structure of optical fiber drawing furnace and method of manufacturing optical fiber
JP5821514B2 (en) Seal structure of optical fiber preform
JP2019019034A (en) Seal structure of wire drawing furnace for optical fiber, and production method of optical fiber
WO2020105691A1 (en) Seal structure of wire drawing furnace for optical fiber, and production method for optical fiber
JP2017147026A (en) Vacuum interrupter
JP5768484B2 (en) Heat-resistant spring and optical fiber drawing furnace seal structure using the same
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
KR20160065746A (en) Heater tube
JPWO2019182136A1 (en) In-core gas supply equipment, optical fiber manufacturing equipment, optical fiber manufacturing method
CN219556334U (en) Heating mechanism and aerosol generating device
KR20140116000A (en) Heater device and heat treatment apparatus
JP6794321B2 (en) Sealing device
JP2007017101A (en) Fluid heating device
KR100641939B1 (en) Movable auxiliary heating apparatus for MCVD process
JP2024022038A (en) Glass preform heating device and method for producing glass preform
JP2013040085A (en) Heating furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250