JP2017217718A - Spherical body polishing device and spherical body polishing method - Google Patents

Spherical body polishing device and spherical body polishing method Download PDF

Info

Publication number
JP2017217718A
JP2017217718A JP2016112997A JP2016112997A JP2017217718A JP 2017217718 A JP2017217718 A JP 2017217718A JP 2016112997 A JP2016112997 A JP 2016112997A JP 2016112997 A JP2016112997 A JP 2016112997A JP 2017217718 A JP2017217718 A JP 2017217718A
Authority
JP
Japan
Prior art keywords
polishing
central axis
groove
trajectory
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016112997A
Other languages
Japanese (ja)
Other versions
JP6743495B2 (en
Inventor
祐生 増田
Yuki Masuda
祐生 増田
河原 徹
Toru Kawahara
徹 河原
哲弥 三井
Tetsuya Mitsui
哲弥 三井
徹 小野▲崎▼
Toru Onozaki
徹 小野▲崎▼
若園 賀生
Yoshio Wakazono
賀生 若園
匡俊 新美
Masatoshi Niimi
匡俊 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2016112997A priority Critical patent/JP6743495B2/en
Publication of JP2017217718A publication Critical patent/JP2017217718A/en
Application granted granted Critical
Publication of JP6743495B2 publication Critical patent/JP6743495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spherical body polishing device and spherical body polishing method capable of significantly enhancing sphericity of a spherical body.SOLUTION: A spherical body polishing device comprises: a first polishing groove (23a) including an inner peripheral edge, which is formed in a circular arc shape of in a cross section in a center axis line (L1) direction thereof; and a second polishing groove (33a) including an inner peripheral edge, which is formed in a circular arc shape of in a cross section in a center axis line (L2) direction thereof. A first locus, which is a locus of a cross section arc center (C1) of the first polishing groove (23a), and a second locus, which is a locus of a cross section arc center (C2) of the second polishing groove (33a) have a relationship that a radial distance between the first locus and the second locus changes in a circumferential direction when viewed from the respective center axis lines (L2 (L1)).SELECTED DRAWING: Figure 7

Description

本発明は、球体研磨装置及び球体研磨方法に関するものである。   The present invention relates to a sphere polishing apparatus and a sphere polishing method.

特許文献1には、研磨溝が形成される対向する回転盤と固定盤とを備え、回転盤を回転させることで両研磨溝間に配置される球体を研磨する球体研磨装置が記載されている。また、特許文献2には、相対的に回転可能な対向する2つの円盤と、2つの円盤の間に円盤と平行に配置される楕円形状の通路が形成された楕円通路構成部材とを備え、楕円形状の通路に複数の球体を配置して2つの円盤を回転させることで球体を研磨する球体研磨装置が記載されている。   Patent Document 1 describes a sphere polishing apparatus that includes a rotating plate and a fixed plate facing each other, in which polishing grooves are formed, and polishes a sphere disposed between both polishing grooves by rotating the rotating plate. . Patent Document 2 includes two opposing disks that are relatively rotatable, and an elliptical passage constituent member in which an elliptical passage disposed in parallel with the disk is formed between the two disks. A sphere polishing apparatus is described in which a plurality of spheres are arranged in an elliptical passage and two spheres are rotated to polish the spheres.

特開2015−77657号公報Japanese Patent Laying-Open No. 2015-77657 特開平2−1902525号公報JP-A-2-1902525

特許文献1の球体研磨装置では、球体の自転軸は研磨加工面に略平行な状態に維持されるので、球体の真球度の向上に限界がある。また、特許文献2の球体研磨装置では、複数の球体が楕円形状の通路内においてランダムに移動して球体同士が接触するため、球体の真球度の向上に限界がある。   In the sphere polishing apparatus of Patent Document 1, since the rotation axis of the sphere is maintained in a state substantially parallel to the polished surface, there is a limit to improving the sphericity of the sphere. Further, in the sphere polishing apparatus of Patent Document 2, a plurality of spheres move randomly in an elliptical path and come into contact with each other, and there is a limit to improving the sphericity of the sphere.

本発明は、球体の真球度を大幅に向上できる球体研磨装置及び球体研磨方法を提供することを目的とする。   An object of the present invention is to provide a sphere polishing apparatus and a sphere polishing method that can significantly improve the sphericity of a sphere.

(1.球体研磨装置)
球体研磨装置は、一方の面に中心軸線回りに環状に形成される第一研磨溝を有する第一研磨盤と、前記第一研磨盤の中心軸線と同軸上の中心軸線回りに前記第一研磨盤に対して相対的に回転可能に設けられ、前記第一研磨盤の前記一方の面に対向する面に、前記中心軸線回りに環状に形成される第二研磨溝を有する第二研磨盤と、を備え、研磨対象である球体を前記第一研磨溝及び前記第二研磨溝で挟圧して、前記第一研磨盤及び前記第二研磨盤を相対的に回転させることで、前記球体を研磨加工する。そして、前記第一研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、前記第二研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、前記第一研磨溝の断面円弧中心による軌跡を第一軌跡とし、前記第二研磨溝の断面円弧中心による軌跡を第二軌跡とし、前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、径方向の距離が周方向において変化する関係を有する。
(1. Sphere polishing equipment)
The spherical polishing apparatus includes a first polishing machine having a first polishing groove formed in an annular shape around one central axis on one surface, and the first polishing around a central axis coaxial with the central axis of the first polishing machine. A second polishing disc provided rotatably relative to the disc and having a second polishing groove formed annularly around the central axis on a surface facing the one surface of the first polishing disc; The sphere to be polished is sandwiched between the first polishing groove and the second polishing groove, and the first polishing disk and the second polishing disk are relatively rotated to polish the sphere. Process. An inner peripheral edge of a cross section in the central axis direction of the first polishing groove is formed in an arc shape, and an inner peripheral edge of the cross section in the central axis direction of the second polishing groove is formed in an arc shape. When the locus by the cross-sectional arc center of the groove is the first locus, the locus by the cross-sectional arc center of the second polishing groove is the second locus, and the first locus and the second locus are viewed from the central axis direction In addition, the radial distance varies in the circumferential direction.

(2.球体研磨方法)
また、球体研磨方法は、上述した球体研磨装置を用いる球体研磨方法であって、前記第一研磨溝及び前記第二研磨溝で研磨対象である球体を挟圧して、前記第一研磨盤及び前記第二研磨盤を相対的に回転させることで、前記球体を研磨加工する。
(2. Sphere polishing method)
Further, the sphere polishing method is a sphere polishing method using the above-described sphere polishing apparatus, wherein the sphere to be polished is sandwiched between the first polishing groove and the second polishing groove, and the first polishing disk and the The sphere is polished by relatively rotating the second polishing disk.

(3.球体研磨装置及び方法による効果)
上述した球体研磨装置及び球体研磨方法によれば、第一研磨溝の断面円弧中心の第一研磨溝に沿った第一軌跡は、第二研磨溝の断面円弧中心の第二研磨溝に沿った第二軌跡に対し変化するので、第一研磨溝及び第二研磨溝と球体との接触位置は変化することになり、球体の自転軸の傾きは変動する。よって、球体は、第一、第二研磨溝によって研磨されている最中において、球体の姿勢が変化するので、真球度が向上する。
(3. Effects of spherical polishing apparatus and method)
According to the spherical polishing apparatus and the spherical polishing method described above, the first locus along the first polishing groove at the center of the cross-sectional arc of the first polishing groove is along the second polishing groove at the center of the cross-sectional arc of the second polishing groove. Since it changes with respect to a 2nd locus | trajectory, the contact position of a 1st grinding | polishing groove | channel and a 2nd grinding | polishing groove | channel and a sphere will change, and the inclination of the rotation axis of a sphere will change. Therefore, since the attitude of the sphere changes while the sphere is being polished by the first and second polishing grooves, the sphericity is improved.

本実施形態の球体研磨装置の構成を示す図であり、図4のI-I断面図である。It is a figure which shows the structure of the spherical body polisher of this embodiment, and is II sectional drawing of FIG. 図1の球体研磨装置の第一研磨盤の平面図である。It is a top view of the 1st grinding | polishing disk of the spherical body polisher of FIG. 図1の球体研磨装置の第二研磨盤の平面図である。It is a top view of the 2nd grinding | polishing disk of the spherical body polisher of FIG. 図1の球体研磨装置の横断面図であり、図5のIV-IV断面図である。It is a cross-sectional view of the sphere polishing apparatus of FIG. 1, and is a cross-sectional view along IV-IV in FIG. 図4のV-V断面図である。It is VV sectional drawing of FIG. 制御装置のブロック構成図である。It is a block block diagram of a control apparatus. 球体を挟圧して球体の研磨を開始する時の第一研磨盤及び第二研磨盤の状態を示す平面図である。It is a top view which shows the state of the 1st grinding | polishing disc and the 2nd grinding | polishing disc when the spherical body is pinched and grinding | polishing of a spherical body is started. 図7のVIII-VIII断面図である。It is VIII-VIII sectional drawing of FIG. 図7のIX-IX断面図である。It is IX-IX sectional drawing of FIG. 第一研磨溝と第二研磨溝のずれを説明するための図9に対応させて示す断面図である。It is sectional drawing shown corresponding to FIG. 9 for demonstrating the shift | offset | difference of a 1st polishing groove and a 2nd polishing groove. ツルアにより第一研磨溝をツルーイングする際の球体研磨装置の図である。It is a figure of the spherical body polish apparatus at the time of truing the 1st grinding | polishing groove | channel with a truer. ツルアにより第二研磨溝をツルーイングする際の球体研磨装置の図である。It is a figure of the spherical body grinding | polishing apparatus at the time of truing a 2nd grinding | polishing groove | channel with a truer. 第一研磨溝及び第二研磨溝の第一の別形態を溝の断面円弧中心の軌跡で示す平面図である。It is a top view which shows the 1st another form of a 1st grinding | polishing groove | channel and a 2nd grinding | polishing groove | channel with the locus | trajectory of the cross-sectional arc center of a groove | channel. 第一研磨溝及び第二研磨溝の第二の別形態を溝の断面円弧中心の軌跡で示す平面図である。It is a top view which shows the 2nd another form of a 1st grinding | polishing groove | channel and a 2nd grinding | polishing groove | channel with the locus | trajectory of the cross-section circular arc center of a groove | channel. 第一研磨溝及び第二研磨溝の第三の別形態を溝の断面円弧中心の軌跡で示す平面図である。It is a top view which shows the 3rd another form of a 1st grinding | polishing groove | channel and a 2nd grinding | polishing groove | channel with the locus | trajectory of the cross-sectional arc center of a groove | channel. 第一研磨溝及び第二研磨溝の第四の別形態を溝の断面円弧中心の軌跡で示す平面図である。It is a top view which shows the 4th another form of a 1st grinding | polishing groove | channel and a 2nd grinding | polishing groove | channel with the locus | trajectory of the cross-sectional arc center of a groove | channel.

(1.球体研磨装置の構成)
本実施形態の球体研磨装置1について図1を参照して説明する。図1に示すように、球体研磨装置1は、基台11、コラム12、第一移動体13、第二移動体14及び上下駆動機構15を備える。基台11は、床面に設置され、中央に上下方向への貫通孔11aを備える。コラム12は、基台11の上面に固定される。コラム12の側面には、上下方向に延びるガイドレール12a,12bが設けられる。
(1. Configuration of spherical polishing machine)
A spherical polishing apparatus 1 of the present embodiment will be described with reference to FIG. As illustrated in FIG. 1, the spherical polishing apparatus 1 includes a base 11, a column 12, a first moving body 13, a second moving body 14, and a vertical drive mechanism 15. The base 11 is installed on the floor, and includes a through hole 11a in the vertical direction at the center. The column 12 is fixed to the upper surface of the base 11. On the side surface of the column 12, guide rails 12a and 12b extending in the vertical direction are provided.

第一移動体13は、基台11の上面及び貫通孔11aに配置される。第一移動体13は、第一本体部21、第一研磨盤支持体22、第一研磨盤23、第一静圧軸受24及び第一モータ25を備える。   The first moving body 13 is disposed on the upper surface of the base 11 and the through hole 11a. The first moving body 13 includes a first main body 21, a first polishing disk support 22, a first polishing disk 23, a first hydrostatic bearing 24, and a first motor 25.

第一本体部21は、中央孔21aを有する円盤状に形成される。第一本体部21は、中央孔21aが基台11の貫通孔11aと同軸上に位置するように、基台11の上面に固定される。中央孔21aの中心軸線は、L1であり、鉛直軸方向に一致する。第一本体部21は、基台11に対して中心軸線L1の方向及び中心軸線L1の直交方向に移動規制される。   The first main body 21 is formed in a disk shape having a central hole 21a. The first main body portion 21 is fixed to the upper surface of the base 11 so that the central hole 21 a is positioned coaxially with the through hole 11 a of the base 11. The central axis of the central hole 21a is L1 and coincides with the vertical axis direction. The movement of the first main body 21 is restricted with respect to the base 11 in the direction of the central axis L1 and the direction orthogonal to the central axis L1.

第一研磨盤支持体22は、第一本体部21に対して、中心軸線L1の回りに回転可能に設けられる。第一研磨盤支持体22は、第一本体部21の中央孔21aを貫通する軸部22a、第一本体部21の上面及び下面に対向する円盤状のフランジ部22b,22cを備える。   The first polishing disk support 22 is provided to be rotatable about the central axis L <b> 1 with respect to the first main body 21. The first polishing disc support 22 includes a shaft portion 22 a that passes through the central hole 21 a of the first main body portion 21, and disc-shaped flange portions 22 b and 22 c that face the upper and lower surfaces of the first main body portion 21.

第一研磨盤23は、第一研磨盤支持体22の上側のフランジ部22bの上面に一体的に固定される。つまり、第一研磨盤23は、第一本体部21に対して中心軸線L1の回りに回転可能に設けられる。第一研磨盤23は、環状に形成される。さらに、図2に示すように、第一研磨盤23は、一方の面(上面)に中心軸線L1の回りに円形状に形成される第一研磨溝23aを有する。第一研磨溝23aは、研磨対象である球体2を研磨する。   The first polishing plate 23 is integrally fixed to the upper surface of the upper flange portion 22 b of the first polishing plate support 22. That is, the first polishing board 23 is provided to be rotatable around the central axis L <b> 1 with respect to the first main body portion 21. The first polishing board 23 is formed in an annular shape. Further, as shown in FIG. 2, the first polishing disk 23 has a first polishing groove 23a formed in a circular shape around the central axis L1 on one surface (upper surface). The first polishing groove 23a polishes the sphere 2 to be polished.

詳細には、第一研磨溝23aの中心軸線L1方向の断面形状は、断面円弧半径がγの円弧凹状に形成される(図10参照)。そして、第一研磨溝23aの中心軸線L1方向から見た形状は、第一研磨溝23aの断面円弧中心C1と第一研磨盤23の中心軸線L1との距離R及び断面円弧半径γの加算値R+γを半径とする外周円と、上記距離R及び断面円弧半径γの減算値R−γを半径とする内周円でなる円形状に形成される。 Specifically, the cross-sectional shape of the first polishing groove 23a in the direction of the central axis L1 is formed in a circular arc concave shape having a circular arc radius of γ L (see FIG. 10). The shape viewed from the central axis line L1 direction of the first polishing groove 23a is the distance R L and a cross-sectional arc radius gamma L and cross-sectional arc center C1 of the first polishing groove 23a and the central axis line L1 of the first polishing plate 23 It is formed in a circular shape including an outer circumference circle having a radius of the addition value R L + γ L and an inner circumference circle having a radius of the subtraction value R L −γ L of the distance R L and the cross-section arc radius γ L.

図1に示すように、第一静圧軸受24は、第一本体部21に保持され、第一研磨盤23に一体的に固定される第一研磨盤支持体22を、第一本体部21に対してラジアル方向及びスラスト方向に支持する。詳細には、第一静圧軸受24は、第一本体部21の中央孔21aに保持され、軸部22aの外周面に対して流体圧により支持するラジアル軸受24aを備える。さらに、第一静圧軸受24は、第一本体部21の上面及び下面に保持され、フランジ部22b,22cに対して流体圧により支持するスラスト軸受24b,24cを備える。   As shown in FIG. 1, the first hydrostatic bearing 24 is held by the first main body 21, and the first polishing disk support 22 fixed integrally with the first polishing disk 23 is replaced with the first main body 21. Is supported in the radial and thrust directions. Specifically, the first hydrostatic bearing 24 includes a radial bearing 24a that is held in the central hole 21a of the first main body portion 21 and supports the outer peripheral surface of the shaft portion 22a by fluid pressure. Further, the first hydrostatic bearing 24 includes thrust bearings 24b and 24c that are held on the upper surface and the lower surface of the first main body 21 and are supported by fluid pressure on the flange portions 22b and 22c.

第一静圧軸受24に供給される流体は、共通の流体供給源から供給され、ラジアル軸受24a、スラスト軸受24b,24cに分岐される。第一静圧軸受24は、さらにオリフィス絞り24d(図6に示す)を備える。オリフィス絞り24dは、ラジアル軸受24a、スラスト軸受24b,24cのそれぞれに設けられる。ここで、第一静圧軸受24を構成するオリフィス絞り24dの位置は可変であるため、流体圧は可変とされる。第一モータ25は、第一本体部21又は基台11に支持され、第一研磨盤支持体22を回転駆動する。   The fluid supplied to the first hydrostatic bearing 24 is supplied from a common fluid supply source and is branched into a radial bearing 24a and thrust bearings 24b and 24c. The first hydrostatic bearing 24 further includes an orifice restrictor 24d (shown in FIG. 6). The orifice restrictor 24d is provided in each of the radial bearing 24a and the thrust bearings 24b and 24c. Here, since the position of the orifice restrictor 24d constituting the first hydrostatic bearing 24 is variable, the fluid pressure is variable. The first motor 25 is supported by the first main body 21 or the base 11 and rotationally drives the first polishing disc support 22.

第二移動体14は、コラム12に対して上下方向に移動可能に配置される。第二移動体14は、第二本体部31、第二研磨盤支持体32、第二研磨盤33、第二静圧軸受34及び第二モータ35を備える。   The second moving body 14 is disposed so as to be movable in the vertical direction with respect to the column 12. The second moving body 14 includes a second main body portion 31, a second polishing disc support 32, a second polishing disc 33, a second hydrostatic bearing 34, and a second motor 35.

第二本体部31は、円筒状に形成され、下円盤部及び上円盤部には中央孔31a,31bを有する。第二本体部31の中央孔31a,31bの中心軸線は、L2であり、第一本体部21の中央孔21aの中心軸線L1に一致する。第二本体部31の円筒部は、コラム12の側面のガイドレール12a,12bに摺動可能に設けられる。つまり、第二本体部31は、コラム12に対して上下方向(Y1方向)に移動可能である。そして、第二本体部31は、基台11及びコラム12に対して中心軸線L2の直交方向に移動規制される。   The 2nd main-body part 31 is formed in a cylindrical shape, and has a center hole 31a, 31b in a lower disk part and an upper disk part. The central axes of the central holes 31a and 31b of the second main body 31 are L2 and coincide with the central axis L1 of the central hole 21a of the first main body 21. The cylindrical portion of the second main body 31 is slidably provided on the guide rails 12 a and 12 b on the side surface of the column 12. That is, the second main body 31 is movable in the vertical direction (Y1 direction) with respect to the column 12. The movement of the second main body 31 is restricted with respect to the base 11 and the column 12 in the direction perpendicular to the central axis L2.

第二研磨盤支持体32は、第二本体部31に対して、中心軸線L2の回りに回転可能に設けられる。第二研磨盤支持体32は、第二本体部31の下円盤部の中央孔31aを貫通する軸部32a、第二本体部31の下円盤部の下面及び上面に対向する円盤状のフランジ部32b,32cを備える。   The second polishing disc support 32 is provided to be rotatable about the central axis L <b> 2 with respect to the second main body portion 31. The second polishing disc support 32 includes a shaft portion 32a penetrating the central hole 31a of the lower disc portion of the second main body portion 31, a disc-shaped flange portion facing the lower surface and the upper surface of the lower disc portion of the second main body portion 31. 32b and 32c are provided.

第二研磨盤33は、第二研磨盤支持体32の下側のフランジ部32bの下面に一体的に固定される。つまり、第二研磨盤33は、第二本体部31に対して中心軸線L2の回りに回転可能に設けられる。第二研磨盤33は、環状に形成される。さらに、図3に示すように、第二研磨盤33は、一方の面(下面)に中心軸線L2の回りに非円形状、本例では花冠形状に形成される第二研磨溝33aを有する。第二研磨溝33aは、研磨対象である球体2を研磨する。第二研磨盤33の第二研磨溝33a側の面は、第一研磨盤23の第一研磨溝23a側の面に対向する。   The second polishing disk 33 is integrally fixed to the lower surface of the lower flange portion 32 b of the second polishing disk support 32. That is, the second polishing disc 33 is provided to be rotatable about the central axis L <b> 2 with respect to the second main body portion 31. The second polishing disc 33 is formed in an annular shape. Further, as shown in FIG. 3, the second polishing disc 33 has a second polishing groove 33a formed in a non-circular shape around the central axis L2, in this example, a corolla shape, on one surface (lower surface). The second polishing groove 33a polishes the sphere 2 to be polished. The surface of the second polishing disk 33 on the second polishing groove 33a side faces the surface of the first polishing disk 23 on the first polishing groove 23a side.

詳細には、第二研磨溝33aの中心軸線L2方向の断面形状は、第一研磨溝23aの断面円弧半径γと同一の断面円弧半径γの円弧凹状に形成される(図10参照)。そして、第二研磨溝33aの中心軸線L2方向から見た形状は、第二研磨盤33の径方向外側に張り出た図示一点鎖線で囲まれる凸部331と、第二研磨盤33の径方向内側に引っ込んだ図示二点鎖線で囲まれる凹部332とが、第二研磨盤33の周方向に45度の間隔で交互に出現する花冠形状に形成される。つまり、凸部331及び凸部331の両側に位置する凹部332は、花冠形状を構成する花弁部を形成する。 In particular, the cross-sectional shape of the central axis line L2 direction of the second polishing groove 33a is formed in a circular arc concave arcuate cross-sectional radius gamma L and same cross-sectional arc radius gamma U of the first polishing groove 23a (see FIG. 10) . The shape of the second polishing groove 33 a viewed from the direction of the central axis L <b> 2 is a convex portion 331 surrounded by a dashed line in the figure protruding outward in the radial direction of the second polishing disc 33 and the radial direction of the second polishing disc 33. Concave portions 332 surrounded by a two-dot chain line shown in the drawing are formed in a corolla shape that alternately appears at intervals of 45 degrees in the circumferential direction of the second polishing board 33. That is, the convex part 331 and the concave part 332 located on both sides of the convex part 331 form a petal part constituting a flower crown shape.

本例では、第二研磨溝33aは、第二研磨溝33aの外接円の半径、すなわち凸部331の最外周の点Aと中心軸線L2との距離は、第一研磨溝23aの外周円の半径R+γと同一のR+γ(なお、Rは、第二研磨溝33aの断面円弧中心C2と第二研磨盤33の中心軸線L2との距離)となり、第二研磨溝33aの内接円の半径、すなわち凸部331の最内周の点Bと中心軸線L2との距離は、第一研磨溝23aの内周円の半径R−γと同一のR−γとなるように形成される。つまり、点A及び点Bを通る直線上において、第二研磨溝33aの断面円弧中心C2と第二研磨盤33の中心軸線L2との距離Rは、第一研磨溝23aの断面円弧中心C1と第一研磨盤23の中心軸線L1との距離Rと同一となる。 In this example, the second polishing groove 33a has a radius of a circumscribed circle of the second polishing groove 33a, that is, the distance between the outermost point A of the convex portion 331 and the central axis L2 is the outer circle of the first polishing groove 23a. radius R L + gamma L same as R U + γ U (Note, R U, the second distance between the polishing groove 33a of arcuate cross-sectional center C2 to the center axis L2 of the second polishing plate 33), and the second polishing groove 33a of the radius of the inscribed circle, i.e. the distance between the innermost point B and the center axis L2 of the convex portion 331, the radius R L-gamma L and identical R U-gamma in the inner circumference of the first polishing groove 23a It is formed to be U. That is, on a straight line passing through the point A and point B, the distance R U between the central axis line L2 of the second polishing groove 33a of arcuate cross-sectional center C2 and the second polishing plate 33, a circular arc cross sectional center of the first polishing groove 23a C1 And a distance RL between the first polishing board 23 and the central axis L1.

よって、図2及び図3に示すように、第一研磨溝23a及び第二研磨溝33aは、第一研磨溝23aの断面円弧中心C1を、第一研磨溝23aに沿って移動させたときの第一軌跡V1が、第二研磨溝33aの断面円弧中心C2を、第二研磨溝33aに沿って移動させたときの第二軌跡V2に対し、中心軸線L2方向から見て径方向の距離が周方向において変化するように形成される。本例では、花冠形状の第二研磨溝33aの外接円は、第一研磨溝23aの外周円形状と同径であり、第二研磨溝33aの内接円は、第一研磨溝23aの内周円形状より小径である。よって、第二軌跡V2は、凸部331における径方向外側に最も張り出た位置において第一軌跡V1と接し、凸部331から凹部332に向かうに従って第一軌跡V1に対し径方向内側に徐々に離間し、凹部332における径方向内側に最も引っ込んだ位置において第一軌跡V1から最も離間する。   Therefore, as shown in FIGS. 2 and 3, the first polishing groove 23a and the second polishing groove 33a are obtained when the cross-sectional arc center C1 of the first polishing groove 23a is moved along the first polishing groove 23a. The first trajectory V1 has a radial distance as viewed from the central axis L2 direction with respect to the second trajectory V2 when the cross-sectional arc center C2 of the second polishing groove 33a is moved along the second polishing groove 33a. It is formed so as to change in the circumferential direction. In the present example, the circumscribed circle of the second crown-shaped polishing groove 33a has the same diameter as the outer peripheral circular shape of the first polishing groove 23a, and the inscribed circle of the second polishing groove 33a is the inner diameter of the first polishing groove 23a. Smaller diameter than the circumferential shape. Therefore, the second trajectory V2 is in contact with the first trajectory V1 at the position where the convex portion 331 protrudes most outward in the radial direction, and gradually increases inward in the radial direction with respect to the first trajectory V1 from the convex portion 331 toward the concave portion 332. They are separated from each other and are most separated from the first locus V1 at the position most retracted radially inward in the recess 332.

図1に示すように、第二静圧軸受34は、第二本体部31の下円盤部に保持され、第二研磨盤33に一体的に固定される第二研磨盤支持体32を、第二本体部31に対してラジアル方向及びスラスト方向に支持する。詳細には、第二静圧軸受34は、第二本体部31の下円盤部の中央孔31aに保持され、軸部32aの外周面に対して流体圧により支持するラジアル軸受34aを備える。さらに、第二静圧軸受34は、第二本体部31の下円盤部の上面及び下面に保持され、フランジ部32b,32cに対して流体圧により支持するスラスト軸受34b,34cを備える。   As shown in FIG. 1, the second hydrostatic bearing 34 includes a second polishing disc support 32 that is held by the lower disc portion of the second main body 31 and is fixed integrally to the second polishing disc 33. The two main body portions 31 are supported in the radial direction and the thrust direction. Specifically, the second hydrostatic bearing 34 includes a radial bearing 34a that is held in the center hole 31a of the lower disk portion of the second main body portion 31 and is supported by fluid pressure on the outer peripheral surface of the shaft portion 32a. Further, the second hydrostatic bearing 34 includes thrust bearings 34b and 34c that are held on the upper and lower surfaces of the lower disk portion of the second main body portion 31 and are supported by the fluid pressure with respect to the flange portions 32b and 32c.

第二静圧軸受34に供給される流体は、共通の流体供給源から供給され、ラジアル軸受34a、スラスト軸受34b,34cに分岐される。第二静圧軸受34は、さらにオリフィス絞り34d(図6に示す)を備える。オリフィス絞り34dは、ラジアル軸受34a、スラスト軸受34b,34cのそれぞれに設けられる。ここで、第二静圧軸受34を構成するオリフィス絞り34dの位置は可変であるため、流体圧は可変とされる。また、第二静圧軸受34に流体を供給する流体供給源は、第一静圧軸受24に流体を供給する流体供給源と共通して設けられる。第二モータ35は、第二本体部31に支持され、第二研磨盤支持体32を回転駆動する。   The fluid supplied to the second hydrostatic bearing 34 is supplied from a common fluid supply source and is branched into a radial bearing 34a and thrust bearings 34b and 34c. The second hydrostatic bearing 34 further includes an orifice restrictor 34d (shown in FIG. 6). The orifice restriction 34d is provided in each of the radial bearing 34a and the thrust bearings 34b and 34c. Here, since the position of the orifice restrictor 34d constituting the second hydrostatic bearing 34 is variable, the fluid pressure is variable. A fluid supply source that supplies fluid to the second hydrostatic bearing 34 is provided in common with a fluid supply source that supplies fluid to the first hydrostatic bearing 24. The second motor 35 is supported by the second main body 31 and rotationally drives the second polishing disc support 32.

上下駆動機構15は、コラム12に対して第二本体部31を上下移動させる。上下駆動機構15は、コラム12の上端に固定されるモータ41と、モータ41の出力軸に連結されるボールねじ42と、ボールねじ42に螺合する第二本体部31の上円盤部の中央孔31bに固定されるボールねじナット43とを備える。   The vertical drive mechanism 15 moves the second main body 31 up and down with respect to the column 12. The vertical drive mechanism 15 includes a motor 41 fixed to the upper end of the column 12, a ball screw 42 connected to the output shaft of the motor 41, and the center of the upper disk portion of the second body portion 31 screwed into the ball screw 42. And a ball screw nut 43 fixed to the hole 31b.

(2.ツルーイング装置の構成)
球体研磨装置1は、さらにツルーイング装置17を備える。ツルーイング装置17について、図4及び図5を参照して説明する。ツルーイング装置17は、ガイド部材61、第一移動体62、第二移動体63、回転軸部材64及びツルア65を備える。
(2. Configuration of truing device)
The spherical polishing apparatus 1 further includes a truing device 17. The truing device 17 will be described with reference to FIGS. 4 and 5. The truing device 17 includes a guide member 61, a first moving body 62, a second moving body 63, a rotating shaft member 64, and a truer 65.

ガイド部材61は、基台11の上面に配置される。ガイド部材61は、第一研磨盤23の中心軸線L1に直交する軸線L3方向に沿って形成される。第一移動体62は、ガイド部材61の上に配置され、ガイド部材61の軸線L3方向に移動可能に設けられる。第一移動体62は、図示しないモータによって、ガイド部材61上を、軸線L3方向に移動する。第一移動体62の側面には、第一研磨盤23の中心軸線L1方向に沿ってガイドが形成される。   The guide member 61 is disposed on the upper surface of the base 11. The guide member 61 is formed along the direction of the axis L3 orthogonal to the central axis L1 of the first polishing board 23. The first moving body 62 is disposed on the guide member 61 and is provided so as to be movable in the direction of the axis L3 of the guide member 61. The first moving body 62 moves on the guide member 61 in the direction of the axis L3 by a motor (not shown). A guide is formed on the side surface of the first moving body 62 along the direction of the central axis L1 of the first polishing board 23.

第二移動体63は、第一移動体62の側面ガイドに係止され、第一移動体62の側面ガイドの軸線L1方向に移動可能に設けられる。第二移動体63は、図示しないモータによって、第一移動体62の側面ガイドに沿って、軸線L1方向に移動する。   The second moving body 63 is locked to the side guide of the first moving body 62 and is provided to be movable in the direction of the axis L1 of the side guide of the first moving body 62. The second moving body 63 moves in the direction of the axis L1 along the side guide of the first moving body 62 by a motor (not shown).

回転軸部材64は、第二移動体63に軸線L3の回りに回転可能に設けられる。回転軸部材64は、図示しないモータによって、第二移動体63に対して回転可能とされる。ツルア65は、回転軸部材64の先端に取り付けられる。つまり、ツルア65は、第一研磨盤23及び第二研磨盤33に対して、第一研磨盤23の中心軸線L1方向及び中心軸線L1の直交方向の少なくとも2軸方向に相対的に移動可能に基台11に設けられる。このツルア65は、回転軸部材64の回転に伴って回転するロータリーツルアである。1個のツルア65は、第一研磨溝23a及び第二研磨溝33aをツルーイングする。   The rotating shaft member 64 is provided on the second moving body 63 so as to be rotatable around the axis L3. The rotating shaft member 64 can be rotated with respect to the second moving body 63 by a motor (not shown). The truer 65 is attached to the tip of the rotary shaft member 64. That is, the truer 65 is movable relative to the first polishing disc 23 and the second polishing disc 33 in the direction of the central axis L1 of the first polishing disc 23 and at least two axial directions orthogonal to the central axis L1. Provided on the base 11. The truer 65 is a rotary truer that rotates as the rotary shaft member 64 rotates. One truer 65 truws the first polishing groove 23a and the second polishing groove 33a.

(3.制御装置の構成)
球体研磨装置1は、さらに制御装置16を備える。制御装置16は、図6に示すように、モータ制御部51と、流体圧調整部52と、ツルーイング制御部53とを備える。モータ制御部51は、各モータ25,35,41を制御する。つまり、モータ制御部51が第一モータ25を回転駆動することにより、第一研磨盤23が回転する。また、モータ制御部51が第二モータ35を回転駆動することにより、第二研磨盤33が回転する。また、モータ制御部51がモータ41を回転駆動することにより、第二移動体14が上下動する。
(3. Configuration of control device)
The spherical polishing apparatus 1 further includes a control device 16. As illustrated in FIG. 6, the control device 16 includes a motor control unit 51, a fluid pressure adjustment unit 52, and a truing control unit 53. The motor control unit 51 controls the motors 25, 35 and 41. That is, when the motor controller 51 drives the first motor 25 to rotate, the first polishing board 23 rotates. Further, when the motor control unit 51 rotationally drives the second motor 35, the second polishing board 33 rotates. Further, when the motor control unit 51 rotationally drives the motor 41, the second moving body 14 moves up and down.

流体圧調整部52は、各オリフィス絞り24d,34dの絞り量を調整する。流体圧調整部52が第一オリフィス絞り24dの位置を移動させることにより、第一静圧軸受24の剛性が変化する。また、流体圧調整部52が第二オリフィス絞り34dの位置を移動させることにより、第二静圧軸受34の剛性が変化する。   The fluid pressure adjusting unit 52 adjusts the throttle amount of each of the orifice throttles 24d and 34d. When the fluid pressure adjusting unit 52 moves the position of the first orifice restrictor 24d, the rigidity of the first hydrostatic bearing 24 changes. Further, the fluid pressure adjusting unit 52 moves the position of the second orifice restrictor 34d, whereby the rigidity of the second hydrostatic bearing 34 changes.

第一オリフィス絞り24dは、ラジアル軸受24a、スラスト軸受24b,24cの流体圧全てを同時に調整する。つまり、第一オリフィス絞り24dが調整されることで、ラジアル軸受24aによる剛性、及び、スラスト軸受24b,24cによる剛性が調整される。同時に、第一静圧軸受24によるモーメント剛性が調整される。   The first orifice restrictor 24d simultaneously adjusts all the fluid pressures of the radial bearing 24a and the thrust bearings 24b and 24c. That is, by adjusting the first orifice restrictor 24d, the rigidity by the radial bearing 24a and the rigidity by the thrust bearings 24b and 24c are adjusted. At the same time, the moment stiffness by the first hydrostatic bearing 24 is adjusted.

また、第二オリフィス絞り34dは、ラジアル軸受34a、スラスト軸受34b,34cの流体圧全てを同時に調整する。つまり、第二オリフィス絞り34dが調整されることで、ラジアル軸受34aによる剛性、及び、スラスト軸受34b,34cによる剛性が調整される。同時に、第二静圧軸受34によるモーメント剛性が調整される。   The second orifice restrictor 34d simultaneously adjusts all the fluid pressures of the radial bearing 34a and the thrust bearings 34b and 34c. In other words, the rigidity of the radial bearing 34a and the rigidity of the thrust bearings 34b and 34c are adjusted by adjusting the second orifice throttle 34d. At the same time, the moment stiffness by the second hydrostatic bearing 34 is adjusted.

ツルーイング制御部53は、ツルーイング装置17を制御する。詳細には、ツルーイング制御部53は、第一移動体62を移動するモータ、第二移動体63を移動するモータ、及び、回転軸部材64を回転するモータをそれぞれ制御する。   The truing control unit 53 controls the truing device 17. Specifically, the truing control unit 53 controls a motor that moves the first moving body 62, a motor that moves the second moving body 63, and a motor that rotates the rotating shaft member 64.

(4.球体研磨装置を用いる球体の研磨方法)
制御装置16は、第一,第二静圧軸受24,34の流体圧が球体2の研磨を行うときに使用する流体圧となるように、オリフィス絞り24d,34dを設定しておく。そして、制御装置16は、モータ41を駆動して、第二移動体14を上方へ移動させておく。この状態で、研磨素材である複数の球体2を、第一研磨盤23の第一研磨溝23aに配置する。続いて、制御装置16は、モータ41を駆動して、第二移動体14を下方へ移動させて、第二研磨盤33の第二研磨溝33aが球体2に接触させて挟圧する。
(4. Sphere polishing method using sphere polishing apparatus)
The control device 16 sets the orifice restrictors 24d and 34d so that the fluid pressure of the first and second hydrostatic bearings 24 and 34 becomes the fluid pressure used when the sphere 2 is polished. Then, the control device 16 drives the motor 41 to move the second moving body 14 upward. In this state, the plurality of spheres 2 that are polishing materials are arranged in the first polishing grooves 23 a of the first polishing board 23. Subsequently, the control device 16 drives the motor 41 to move the second moving body 14 downward so that the second polishing groove 33a of the second polishing board 33 is brought into contact with the sphere 2 and pinched.

続いて、制御装置16は、第一研磨盤23の回転速度を一定値とするように又は周期的に変動させるように第一モータ25を駆動し、且つ、第二研磨盤33の回転速度を一定値とするように第二モータ35を駆動する。このとき、第一研磨盤23と第二研磨盤33とは逆方向に回転される。   Subsequently, the control device 16 drives the first motor 25 so that the rotation speed of the first polishing board 23 is set to a constant value or periodically varies, and the rotation speed of the second polishing board 33 is set. The second motor 35 is driven so as to have a constant value. At this time, the first polishing disk 23 and the second polishing disk 33 are rotated in the opposite directions.

このようにして、球体2は、第一,第二研磨盤23,33によって研磨される。この状態を設定した時間を経過したところで、制御装置16は、第一モータ25及び第二モータ35を停止して、モータ41を駆動して第二移動体14を上方へ移動させる。また、第二移動体14の下降位置を固定した後、研磨荷重が十分に下がったときを加工完了としてもよい。なお、球体2の研磨中において、ツルア65は、第一研磨盤23及び第二研磨盤33の径方向外側に位置している。   In this way, the sphere 2 is polished by the first and second polishing disks 23 and 33. When the time set in this state has elapsed, the control device 16 stops the first motor 25 and the second motor 35 and drives the motor 41 to move the second moving body 14 upward. Further, after the lowering position of the second moving body 14 is fixed, the processing may be completed when the polishing load is sufficiently lowered. During polishing of the sphere 2, the truer 65 is located on the radially outer side of the first polishing plate 23 and the second polishing plate 33.

(5.第一、第二研磨溝による球体の動作)
次に、第一、第二研磨溝23a,33aに挟圧される球体2の研磨時における球体2の動作について、図を参照して説明する。なお、第一研磨盤23と第二研磨盤33とは、逆方向に絶対値が同一回転速度となるように回転されるものとする。
(5. Operation of sphere by first and second polishing grooves)
Next, the operation of the sphere 2 during polishing of the sphere 2 sandwiched between the first and second polishing grooves 23a and 33a will be described with reference to the drawings. In addition, the 1st grinding | polishing board 23 and the 2nd grinding | polishing board 33 shall be rotated so that an absolute value may become the same rotational speed in a reverse direction.

ここで、図7に示すように、球体2を挟圧した当初の第一、第二研磨盤23,33を中心軸線L2(L1)方向の上方から見たとき、第一研磨溝23aの断面円弧中心C1は、第二研磨溝33aの凸部331における点A及び点Bを通る直線上の断面円弧中心C2とは重なった位置にあり、第二研磨溝33aの凹部332における点A及び点Bから45度位相がずれた点C及び点Dを通る直線上の断面円弧中心C2とは、中心軸線L2(L1)と直角な方向にσだけずれた位置にある。以下の説明では、第一研磨溝23aと第二研磨溝33aの凸部331の点A,B間に位置する球体2A、及び、第一研磨溝23aと第二研磨溝33aの凹部332の点C,D間に位置する球体2Bに着目して説明する。   Here, as shown in FIG. 7, when the first and second polishing discs 23, 33 at the initial stage of clamping the sphere 2 are viewed from above in the direction of the central axis L2 (L1), the cross section of the first polishing groove 23a. The arc center C1 is positioned so as to overlap with the cross-sectional arc center C2 on the straight line passing through the point A and the point B in the convex portion 331 of the second polishing groove 33a, and the point A and the point in the concave portion 332 of the second polishing groove 33a. The cross-sectional arc center C2 on the straight line passing through the point C and the point D that are 45 degrees out of phase with respect to B is at a position shifted by σ in a direction perpendicular to the central axis L2 (L1). In the following description, the sphere 2A located between the points A and B of the convex portion 331 of the first polishing groove 23a and the second polishing groove 33a, and the point of the concave portion 332 of the first polishing groove 23a and the second polishing groove 33a. Description will be made by paying attention to the sphere 2B located between C and D.

図8に示すように、球体2Aと第一研磨溝23aは、第一研磨溝23aの断面円弧中心C1を通る中心軸線L1に平行な軸線L11と、第一研磨溝23aの断面円弧と、の交点P1を中心とする楕円形状の領域Aa1と接触する。また、球体2Aと第二研磨溝33aは、第二研磨溝33aの断面円弧中心C2を通る中心軸線L2に平行な軸線L22と、第二研磨溝33aの断面円弧と、の交点P2を中心とする楕円形状の領域Aa2と接触する。   As shown in FIG. 8, the sphere 2A and the first polishing groove 23a are formed by an axis L11 parallel to the central axis L1 passing through the cross-sectional arc center C1 of the first polishing groove 23a and a cross-sectional arc of the first polishing groove 23a. It contacts an elliptical area Aa1 centered on the intersection P1. The spherical body 2A and the second polishing groove 33a are centered on an intersection P2 between an axis L22 parallel to the central axis L2 passing through the cross-sectional arc center C2 of the second polishing groove 33a and a cross-sectional arc of the second polishing groove 33a. In contact with the elliptical region Aa2.

そして、第一研磨盤23と第二研磨盤33とは、相対的に回転するため、接触楕円領域Aa1,Aa2において研磨抵抗が発生し、球体2Aは、第一研磨盤23の中心軸線L1に直交する軸線X1の回りに回転する。   Since the first polishing disc 23 and the second polishing disc 33 rotate relatively, a polishing resistance is generated in the contact ellipse areas Aa1 and Aa2, and the sphere 2A is located on the central axis L1 of the first polishing disc 23. Rotate around an orthogonal axis X1.

図9に示すように、球体2Bにおいては、第一研磨溝23aと第二研磨溝33aが中心軸線L1(L2)と直角な方向にσだけずれているため、球体2Bと第一研磨溝23aの接触楕円領域Aa11は、接触楕円領域Aa1に対し図示時計回りの方向に角度θだけずれ、球体2Bと第二研磨溝33aの接触楕円領域Aa12は、接触楕円領域Aa2に対し図示時計回りの方向に角度θだけずれる。よって、球体2Bは、軸線X1に対し図示時計回りの方向に角度θだけずれた軸線X11回りに回転する。   As shown in FIG. 9, in the sphere 2B, the first polishing groove 23a and the second polishing groove 33a are shifted by σ in the direction perpendicular to the central axis L1 (L2), and therefore the sphere 2B and the first polishing groove 23a. The contact ellipse area Aa11 is shifted by an angle θ in the clockwise direction in the figure with respect to the contact ellipse area Aa1, and the contact ellipse area Aa12 of the sphere 2B and the second polishing groove 33a is in the clockwise direction in the figure with respect to the contact ellipse area Aa2. Is shifted by an angle θ. Therefore, the sphere 2B rotates around the axis X11 that is shifted by an angle θ in the clockwise direction in the drawing with respect to the axis X1.

つまり、第一研磨盤23と第二研磨盤33との相対的な回転によって、球体2は、第一研磨盤23の中心軸線L1に直交する軸線X1の回りに回転するとともに、軸線X1に対し図示時計回りの方向に角度θだけずれた軸線X11回りに回転する。従って、球体2は、第一、第二研磨溝23a,33aによって研磨されている最中において、球体2の姿勢が常に変化する。その結果、球体2の真球度が向上する。   That is, due to the relative rotation of the first polishing disc 23 and the second polishing disc 33, the sphere 2 rotates about the axis X1 orthogonal to the central axis L1 of the first polishing disc 23, and with respect to the axis X1. It rotates about an axis X11 shifted by an angle θ in the clockwise direction shown in the figure. Accordingly, while the sphere 2 is being polished by the first and second polishing grooves 23a and 33a, the posture of the sphere 2 is constantly changed. As a result, the sphericity of the sphere 2 is improved.

次に、第一研磨溝23aと第二研磨溝33aのずれについて説明する。第一研磨溝23a及び第二研磨溝33aは、以下の2つのずれの条件を満たすように形成する。第1の条件としては、第一研磨溝23a(第二研磨溝33a)の中心軸線L1(L2)回りの一周にわたってずれ量が一定とならないように第一研磨溝23a及び第二研磨溝33aを形成する。この理由は、第一、第二研磨溝23a,33aに挟圧されて研磨される球体2の自転軸を変動させて姿勢を変化させる必要があるためである。   Next, the deviation between the first polishing groove 23a and the second polishing groove 33a will be described. The first polishing groove 23a and the second polishing groove 33a are formed so as to satisfy the following two deviation conditions. As a first condition, the first polishing groove 23a and the second polishing groove 33a are set so that the amount of deviation does not become constant over one circumference around the central axis L1 (L2) of the first polishing groove 23a (second polishing groove 33a). Form. This is because it is necessary to change the posture by changing the rotation axis of the sphere 2 to be polished by being sandwiched between the first and second polishing grooves 23a and 33a.

第2の条件としては、最大ずれ量σが、第二研磨溝33aの断面円弧半径γ、球体2の半径R及び公知のヘルツの理論等から導かれる式(1)−式(4)を満たすように第一研磨溝23a及び第二研磨溝33aを形成する。最大ずれ量σが大き過ぎると、接触楕円領域Aa11,Aa12が第一研磨溝23a及び第二研磨溝33aの内周面からはみ出し、球体2と第一研磨溝23a及び第二研磨溝33aとの接触圧力が局所的に高くなって真球度の向上を図ることが困難となるからである。なお、式(1)−式(4)は、球体2と第二研磨溝33aとの最大ずれ量σを表しているが、球体2と第一研磨溝23aとの最大ずれ量σも同様である。 As the second condition, the maximum deviation amount σ is expressed by equations (1)-(4) derived from the cross-sectional arc radius γ U of the second polishing groove 33a, the radius R S of the sphere 2, the well-known Hertz theory, and the like. The first polishing groove 23a and the second polishing groove 33a are formed so as to satisfy the above. If the maximum deviation amount σ is too large, the contact ellipse regions Aa11, Aa12 protrude from the inner peripheral surfaces of the first polishing groove 23a and the second polishing groove 33a, and the spherical body 2, the first polishing groove 23a, and the second polishing groove 33a This is because the contact pressure is locally increased and it is difficult to improve the sphericity. Equations (1) to (4) represent the maximum deviation σ between the sphere 2 and the second polishing groove 33a, but the maximum deviation σ between the sphere 2 and the first polishing groove 23a is the same. is there.

Figure 2017217718
Figure 2017217718

Figure 2017217718
Figure 2017217718

Figure 2017217718
Figure 2017217718

Figure 2017217718
Figure 2017217718

ここで、式(1)−式(4)の各符号は、図10に示す通りであり、各符号の意味は、以下の通りである。
γ:第二研磨溝33aの断面円弧半径
:球体2の半径
Here, each code | symbol of Formula (1) -Formula (4) is as showing in FIG. 10, and the meaning of each code | symbol is as follows.
γ U : radius of cross section of second polishing groove 33a R S : radius of sphere 2

de:第二研磨溝33aの溝深さ
UL:第二研磨溝33aの断面円弧中心C2と第一研磨溝23aの断面円弧中心C1との中心間距離
de U : groove depth of the second polishing groove 33a C UL : center distance between the cross-section arc center C2 of the second polishing groove 33a and the cross-section arc center C1 of the first polishing groove 23a

:ずれが無い状態での第二研磨溝33aの断面円弧中心C2と第二研磨盤33の中心軸線L2との距離
:第一研磨溝23aの断面円弧中心C1と第一研磨盤23の中心軸線L1との距離
:接触楕円領域Aa2の長半径
σ:第一研磨溝23aの断面円弧中心C1と第二研磨溝33aの断面円弧中心C2との中心軸線L1(L2)と直角な方向の最大ずれ量
R U : Distance between the cross-sectional arc center C2 of the second polishing groove 33a and the center axis L2 of the second polishing disk 33 in a state where there is no deviation R L : Cross-sectional arc center C1 of the first polishing groove 23a and the first polishing disk 23 a distance from the central axis L1 a U : major radius of the contact ellipse region Aa2 σ: a central axis L1 (L2) between the cross-sectional arc center C1 of the first polishing groove 23a and the cross-sectional arc center C2 of the second polishing groove 33a Maximum deviation in a perpendicular direction

(6.ツルーイング方法)
ツルーイング装置17による第一、第二研磨溝23a,33aのツルーイング方法について、図11及び図12を参照して説明する。本実施形態においては、ツルア65によって第一研磨溝23aと第二研磨溝33aとを別々にツルーイングする方法を採用する。ツルア65は、小径円盤状のロータリーツルアを用いるが、総型のロータリーツルアを用いてもよい。
(6. Truing method)
A truing method of the first and second polishing grooves 23a and 33a by the truing device 17 will be described with reference to FIGS. In the present embodiment, a method in which the first polishing groove 23a and the second polishing groove 33a are trued separately by the truer 65 is employed. As the truer 65, a small-diameter disk-shaped rotary truer is used, but an all-round rotary truer may be used.

図11を参照して、ツルア65による第一研磨溝23aのツルーイング方法について説明する。まず、モータ制御部51は、モータ41を駆動して、第二研磨盤33を上方へ移動させる。続いて、ツルーイング制御部53は、ツルーイング装置17の第二移動体63を上方(Y2方向)へ移動させた後に、ツルア65が第一研磨溝23aの上方に対向する位置に至るまで第一移動体62を第一研磨盤23側(X2方向)へ移動させる。   With reference to FIG. 11, the truing method of the 1st grinding | polishing groove | channel 23a by the truer 65 is demonstrated. First, the motor control unit 51 drives the motor 41 to move the second polishing board 33 upward. Subsequently, the truing control unit 53 moves the second moving body 63 of the truing device 17 upward (in the Y2 direction), and then first moves until the truer 65 reaches a position facing the upper side of the first polishing groove 23a. The body 62 is moved to the first polishing board 23 side (X2 direction).

続いて、ツルーイング制御部53がツルア65を軸線L3の回りに回転させると共に、モータ制御部51が第一研磨盤23を軸線L1の回りに回転させる。続いて、ツルーイング制御部53が、第一移動体62のX2方向へ移動と第二移動体63のY2方向への移動を同期制御しながら、ツルア65を第一研磨溝23aの成形形状に沿って移動させる。このとき、ツルア65は、第一研磨溝23aの外周縁から溝底を通過して内周縁へ移動することによって、第一研磨溝23aを成形する。   Subsequently, the truing control unit 53 rotates the truer 65 around the axis L3, and the motor control unit 51 rotates the first polishing board 23 around the axis L1. Subsequently, the truing control unit 53 synchronously controls the movement of the first moving body 62 in the X2 direction and the movement of the second moving body 63 in the Y2 direction, and moves the truer 65 along the shape of the first polishing groove 23a. To move. At this time, the truer 65 forms the first polishing groove 23a by moving from the outer peripheral edge of the first polishing groove 23a to the inner peripheral edge through the groove bottom.

次に、図12を参照して、ツルア65による第二研磨溝33aのツルーイング方法について説明する。まず、モータ制御部51は、モータ41を駆動して、第二研磨盤33を上方へ移動させて位置決めする。続いて、ツルーイング制御部53は、ツルーイング装置17の第二移動体63を上方(Y2方向)へ移動させた後に、ツルア65が第二研磨溝33aの下方に対向する位置に至るまで第一移動体62を第二研磨盤33側(X2方向)へ移動させる。   Next, with reference to FIG. 12, a truing method of the second polishing groove 33a by the truer 65 will be described. First, the motor control unit 51 drives the motor 41 to move and position the second polishing board 33 upward. Subsequently, the truing control unit 53 moves the second moving body 63 of the truing device 17 upward (in the Y2 direction), and then moves the first until the truer 65 reaches a position facing the lower side of the second polishing groove 33a. The body 62 is moved to the second polishing board 33 side (X2 direction).

続いて、ツルーイング制御部53がツルア65を軸線L3の回りに回転させると共に、モータ制御部51が第二研磨盤33を軸線L2の回りに回転させる。続いて、ツルーイング制御部53が、第一移動体62のX2方向へ移動と第二移動体63のY2方向への移動を同期制御しながら、ツルア65を第二研磨溝33aの成形形状に沿って移動させる。このとき、ツルア65は、第二研磨溝33aの外周縁から溝底を通過して内周縁へ移動することによって、第二研磨溝33aを成形する。   Subsequently, the truing control unit 53 rotates the truer 65 around the axis L3, and the motor control unit 51 rotates the second polishing board 33 around the axis L2. Subsequently, the truing control unit 53 synchronously controls the movement of the first moving body 62 in the X2 direction and the movement of the second moving body 63 in the Y2 direction, and moves the truer 65 along the molding shape of the second polishing groove 33a. To move. At this time, the truer 65 forms the second polishing groove 33a by moving from the outer peripheral edge of the second polishing groove 33a to the inner peripheral edge through the groove bottom.

(7.その他)
上述の実施形態では、花冠形状の第二研磨溝33aの外接円を第一研磨溝23aの外周円形状と同径で形成し、第二研磨溝33aの内接円を第一研磨溝23aの内周円形状より小径で形成したが、第二研磨溝33aの外接円を第一研磨溝23aの外周円形状より大径で形成し、第二研磨溝33aの内接円を第一研磨溝23aの内周円形状より小径で形成してもよい。これにより、図13に示すように、第一軌跡V11と第二軌跡V12とは、中心軸線L2(L1)方向から見た場合に、花冠形状における各花弁部F1にて交差するので、球体2の自転軸の傾きの変動幅を大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。
(7. Others)
In the above-described embodiment, the circumscribed circle of the second crown-shaped polishing groove 33a is formed with the same diameter as the outer peripheral circular shape of the first polishing groove 23a, and the inscribed circle of the second polishing groove 33a is formed of the first polishing groove 23a. Although formed with a smaller diameter than the inner circular shape, the circumscribed circle of the second polishing groove 33a is formed with a larger diameter than the outer peripheral circular shape of the first polishing groove 23a, and the inscribed circle of the second polishing groove 33a is formed as the first polishing groove. It may be formed with a smaller diameter than the inner circumferential circular shape of 23a. Thus, as shown in FIG. 13, the first locus V11 and the second locus V12 intersect at each petal portion F1 in the shape of the flower crown when viewed from the direction of the central axis L2 (L1). It is possible to greatly change the posture of the sphere 2 by increasing the fluctuation range of the inclination of the rotation axis, and to greatly improve the sphericity.

また、第一研磨溝23a及び第二研磨溝33aは、共に非円形状に形成してもよい。例えば、第一研磨溝23a及び第二研磨溝33aは、共に花冠形状に形成してもよい。これにより、図14に示すように、第一軌跡V21と第二軌跡V22とは、中心軸線L2(L1)方向から見た場合に、各花冠形状における各花弁部F2にて交差し、又は大きく離間するので、球体2の自転軸の傾きの変動幅をさらに大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。   Further, both the first polishing groove 23a and the second polishing groove 33a may be formed in a non-circular shape. For example, both the first polishing groove 23a and the second polishing groove 33a may be formed in a corolla shape. As a result, as shown in FIG. 14, the first locus V21 and the second locus V22 intersect each other at each petal portion F2 in each petal shape when viewed from the direction of the central axis L2 (L1). Since they are separated from each other, the fluctuation range of the inclination of the rotation axis of the sphere 2 can be further increased to greatly change the attitude of the sphere 2 and the sphericity can be greatly improved.

共に非円形状の別例として例えば、第一研磨溝23a及び第二研磨溝33aは、共に楕円形状に形成してもよい。これにより、図15に示すように、第一軌跡V31と第二軌跡V32とは、中心軸線L2(L1)方向から見た場合に、一方の楕円形状の長軸と他方の楕円形状の短軸とが重なったときに最も大きく離間するので、球体2の自転軸の傾きの変動幅をさらに大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。   As another example of both non-circular shapes, for example, the first polishing groove 23a and the second polishing groove 33a may both be formed in an elliptical shape. Accordingly, as shown in FIG. 15, the first locus V31 and the second locus V32 are, when viewed from the direction of the central axis L2 (L1), the major axis of one elliptical shape and the minor axis of the other elliptical shape. Is greatly separated from each other, the fluctuation range of the inclination of the rotation axis of the sphere 2 can be further increased to greatly change the attitude of the sphere 2 and the sphericity can be greatly improved.

また、上述の実施形態では、第一研磨溝23aは、円形状に形成し、第二研磨溝33aは、花冠形状に形成したが、第一研磨溝23aは、円形状に形成し、第二研磨溝33aは、楕円形状に形成してもよい。この場合、第一研磨溝23a及び第二研磨溝33aは、図16に示すように、第一軌跡V41と第二軌跡V42とが、中心軸線L2(L1)方向から見た場合に、楕円形状の長軸と短軸の各間に位置する4箇所の角度の位置F3にて交差するように形成する。これにより、球体2の自転軸の傾きの変動幅をさらに大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。   In the above-described embodiment, the first polishing groove 23a is formed in a circular shape, and the second polishing groove 33a is formed in a corolla shape. However, the first polishing groove 23a is formed in a circular shape, and the second polishing groove 23a is formed in a circular shape. The polishing groove 33a may be formed in an elliptical shape. In this case, as shown in FIG. 16, the first polishing groove 23a and the second polishing groove 33a have an elliptical shape when the first locus V41 and the second locus V42 are viewed from the direction of the central axis L2 (L1). Are formed so as to intersect at four angular positions F3 located between the major axis and the minor axis. Thereby, the fluctuation range of the inclination of the rotation axis of the sphere 2 can be further increased to greatly change the attitude of the sphere 2, and the sphericity can be greatly improved.

また、上述の実施形態では、第二研磨溝33aは、凸部331と凹部332とが、第二研磨盤33の周方向に45度の間隔で交互に出現する花冠形状、すなわち4つの花弁部を有する花冠形状に形成したが、3つ以上の複数の花弁部を有する花冠形状、すなわち第二研磨盤33の周方向に任意の角度間隔で交互に出現する花冠状に形成してもよい。
なお、以上説明した第一研磨溝23a及び第二研磨溝33aの形状の組み合わせは、逆の組み合わせであってもよい。
Further, in the above-described embodiment, the second polishing groove 33a has a crown shape in which the convex portions 331 and the concave portions 332 appear alternately at intervals of 45 degrees in the circumferential direction of the second polishing disc 33, that is, four petal portions. However, it may be formed into a corolla shape having three or more petal portions, that is, a corolla shape alternately appearing at an arbitrary angular interval in the circumferential direction of the second polishing board 33.
In addition, the combination of the shape of the 1st grinding | polishing groove | channel 23a demonstrated above and the 2nd grinding | polishing groove | channel 33a may be a reverse combination.

(8.実施形態の効果)
本実施形態の球体研磨装置1は、一方の面に中心軸線L1回りに環状に形成される第一研磨溝23aを有する第一研磨盤23と、第一研磨盤23の中心軸線L1と同軸上の中心軸線L2回りに第一研磨盤23に対して相対的に回転可能に設けられ、第一研磨盤23の一方の面に対向する面に、中心軸線L2回りに環状に形成される第二研磨溝33aを有する第二研磨盤33と、を備え、研磨対象である球体2を第一研磨溝23a及び第二研磨溝33aで挟圧して、第一研磨盤23及び第二研磨盤33を相対的に回転させることで、球体2を研磨加工する。
(8. Effects of the embodiment)
The spherical polishing apparatus 1 of the present embodiment is coaxial with the first polishing disk 23 having a first polishing groove 23a formed in an annular shape around the central axis L1 on one surface, and the central axis L1 of the first polishing disk 23. The first polishing disc 23 is provided so as to be rotatable relative to the first polishing disc 23 around the central axis L2 and is formed in an annular shape around the central axis L2 on the surface facing one surface of the first polishing disc 23. A second polishing disk 33 having a polishing groove 33a, and the sphere 2 to be polished is sandwiched between the first polishing groove 23a and the second polishing groove 33a, so that the first polishing disk 23 and the second polishing disk 33 are The spherical body 2 is polished by rotating it relatively.

そして、第一研磨溝23aにおける中心軸線L1方向の断面の内周縁は、円弧状に形成され、第二研磨溝33aにおける中心軸線L2方向の断面の内周縁は、円弧状に形成され、第一研磨溝23aの断面円弧中心C1による軌跡を第一軌跡V1,V11,V21,V31,V41とし、第二研磨溝33aの断面円弧中心C2による軌跡を第二軌跡V2,V12,V22,V32,V42とし、第一軌跡V1,V11,V21,V31,V41と第二軌跡V2,V12,V22,V32,V42とは、中心軸線L2(L1)方向から見た場合に、径方向の距離が周方向において変化する関係を有する。   The inner peripheral edge of the first polishing groove 23a in the direction of the central axis L1 is formed in an arc shape, and the inner peripheral edge of the second polishing groove 33a in the direction of the central axis L2 is formed in an arc shape. The trajectory of the polishing groove 23a by the cross-sectional arc center C1 is defined as the first trajectory V1, V11, V21, V31, V41, and the trajectory by the cross-sectional arc center C2 of the second polishing groove 33a is the second trajectory V2, V12, V22, V32, V42. The first trajectories V1, V11, V21, V31, V41 and the second trajectories V2, V12, V22, V32, V42 have a radial distance in the circumferential direction when viewed from the central axis L2 (L1) direction. Have a changing relationship.

第一研磨溝23aの断面円弧中心C1の第一研磨溝23aに沿った第一軌跡V1,V11,V21,V31,V41は、第二研磨溝33aの断面円弧中心C2の第二研磨溝33aに沿った第二軌跡V2,V12,V22,V32,V42に対し変化するので、第一研磨溝23a及び第二研磨溝33aと球体2との接触位置Aa1,Aa2は変化することになり、球体2の自転軸の傾きは変動する。よって、球体2は、第一、第二研磨溝23a,33aによって研磨されている最中において、球体2の姿勢が変化するので、真球度が向上する。   The first trajectories V1, V11, V21, V31, V41 along the first polishing groove 23a at the cross-sectional arc center C1 of the first polishing groove 23a become the second polishing groove 33a at the cross-sectional arc center C2 of the second polishing groove 33a. Since the second trajectories V2, V12, V22, V32, and V42 change, the contact positions Aa1 and Aa2 of the first polishing groove 23a and the second polishing groove 33a with the sphere 2 change, and the sphere 2 The inclination of the rotation axis of fluctuates. Therefore, since the attitude of the sphere 2 changes while the sphere 2 is being polished by the first and second polishing grooves 23a and 33a, the sphericity is improved.

また、第一軌跡V1,V11,V21,V31,V41と第二軌跡V2,V12,V22,V32,V42とは、中心軸線L2(L1)方向から見た場合に、複数箇所にて交差するので、球体2の姿勢を大きく変化させることができる。
また、第一軌跡V1,V11,V41及び第二軌跡V2,V12,V42の一方は、円形状に形成され、第一軌跡V1,V11,V41及び第二軌跡V2,V12,V42の他方は、非円形状に形成されるので、球体2の自転軸の傾きを大きく変動させることができる。
Further, the first trajectories V1, V11, V21, V31, V41 and the second trajectories V2, V12, V22, V32, V42 intersect with each other when viewed from the central axis L2 (L1) direction. The posture of the sphere 2 can be greatly changed.
One of the first trajectories V1, V11, V41 and the second trajectories V2, V12, V42 is formed in a circular shape, and the other of the first trajectories V1, V11, V41 and the second trajectories V2, V12, V42 is Since it is formed in a non-circular shape, the inclination of the rotation axis of the sphere 2 can be greatly varied.

また、第一軌跡21,31及び第二軌跡22,32は、非円形状に形成されるので、球体2の自転軸の傾きをさらに大きく変動させることができる。
また、非円形状は、複数の花弁部331,332,332を有する花冠形状、特に複数の花弁部331,332,332を有する花冠形状であるので、球体2の姿勢を頻繁に変化させることができる。
また、花冠形状の外接円は、円形状より大径であり、花冠形状の外接円の中心軸線L2は、円形状の中心軸線L1と同軸に位置し、花冠形状の内接円は、円形状より小径であり、花冠形状の内接円の中心軸線L2は、円形状の中心軸線L1と同軸に位置し、第一軌跡V11と第二軌跡V12とは、中心軸線L2(L1)方向から見た場合に、花冠形状における各花弁部F1にて交差するので、球体2の自転軸の傾きの変動幅を大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。
In addition, since the first trajectories 21 and 31 and the second trajectories 22 and 32 are formed in a non-circular shape, the inclination of the rotation axis of the sphere 2 can be further varied.
Further, the non-circular shape is a corolla shape having a plurality of petal portions 331, 332, 332, particularly a corolla shape having a plurality of petal portions 331, 332, 332, so that the posture of the sphere 2 can be changed frequently. it can.
The circumscribed circle of the corolla has a larger diameter than the circular shape, the central axis L2 of the circumscribed circle of the corolla is located coaxially with the circular central axis L1, and the inscribed circle of the corolla has a circular shape. The center axis L2 of the inscribed circle having a smaller diameter and the corolla shape is located coaxially with the circular center axis L1, and the first locus V11 and the second locus V12 are viewed from the direction of the center axis L2 (L1). The petals F1 in the shape of the corolla intersect each other, so that the fluctuation range of the inclination of the rotation axis of the sphere 2 can be increased to greatly change the attitude of the sphere 2 and greatly improve the sphericity. it can.

また、非円形状は、楕円形状であるので、球体2の姿勢を大きく変化させることができる。
また、非円形状は、楕円形状であり、楕円形状の中心軸線L2は、円形状の中心軸線L1と同軸に位置し、第一軌跡V41と第二軌跡V42とは、中心軸線L2(L1)方向から見た場合に、楕円の長軸と短軸の各間に位置する4箇所の角度にて交差する。これにより、球体2の自転軸の傾きの変動幅をさらに大きくして球体2の姿勢を大きく変化させることができ、真球度を大幅に向上できる。
Further, since the non-circular shape is an elliptical shape, the posture of the sphere 2 can be greatly changed.
The non-circular shape is an elliptical shape, the elliptical central axis L2 is positioned coaxially with the circular central axis L1, and the first trajectory V41 and the second trajectory V42 are the central axis L2 (L1). When viewed from the direction, they intersect at four angles located between the major and minor axes of the ellipse. Thereby, the fluctuation range of the inclination of the rotation axis of the sphere 2 can be further increased to greatly change the attitude of the sphere 2, and the sphericity can be greatly improved.

また、球体研磨装置1は、第一研磨盤23が設けられる基台11と、第一研磨盤23及び第二研磨盤33に対して第一研磨盤23の中心軸線L1方向及び中心軸線L1と直角な方向の少なくとも2軸方向に相対的に移動可能に基台11に設けられ、第一研磨溝23a及び第二研磨溝33aをツルーイングするツルア65と、第一研磨盤23及び第二研磨盤33を相対回転させて第一研磨溝23a及び第二研磨溝33aにより球体2を研磨し、ツルア65を2軸方向に相対的に移動させ且つ第一研磨盤23を回転させながらツルア65により第一研磨溝23aをツルーイングし、且つ、ツルア65を2軸方向に相対的に移動させ且つ第二研磨盤33を回転させながらツルア65により第二研磨溝33aをツルーイングする制御装置16と、を備える。これにより、第一研磨溝23a及び第二研磨溝33aを容易にツルーイングできる。   In addition, the spherical polishing apparatus 1 includes a base 11 on which the first polishing board 23 is provided, a central axis L1 direction and a central axis L1 of the first polishing board 23 with respect to the first polishing board 23 and the second polishing board 33. A truer 65 provided on the base 11 so as to be relatively movable in at least two axial directions perpendicular to each other and truing the first polishing groove 23a and the second polishing groove 33a, and the first polishing disk 23 and the second polishing disk. The sphere 2 is polished by the first polishing groove 23 a and the second polishing groove 33 a by relatively rotating the 33, the tour 65 is moved relative to the biaxial direction, and the first polishing plate 23 is rotated while the first 65 is rotated. And a control device 16 for truing the one polishing groove 23a, truing the second polishing groove 33a by the truer 65 while moving the truer 65 relatively in two axial directions and rotating the second polishing disk 33. That. Thereby, the first polishing groove 23a and the second polishing groove 33a can be easily trued.

また、ツルア65は、第一研磨盤23の中心軸線L1と直角な方向の軸線X2回りに回転する総型のロータリーツルアであるので、ツルーイングの制御が容易となる。
球体研磨装置1による球体研磨方法は、第一研磨溝及び第二研磨溝で研磨対象である球体を挟圧して、第一研磨盤及び第二研磨盤を相対的に回転させることで、球体を研磨加工する。これにより、上述の球体研磨装置1の効果と同様の効果が得られる。
Further, since the truer 65 is an all-round rotary truer that rotates about the axis X2 in a direction perpendicular to the central axis L1 of the first polishing board 23, it is easy to control truing.
The sphere polishing method by the sphere polishing apparatus 1 is configured such that the sphere to be polished is sandwiched between the first polishing groove and the second polishing groove, and the first polishing disk and the second polishing disk are relatively rotated, whereby the sphere is Polishing. Thereby, the effect similar to the effect of the above-mentioned spherical-polishing apparatus 1 is acquired.

1:球体研磨装置、 2:球体、 11:基台、 12:コラム、 16:制御装置、 17:ツルーイング装置、 23:第一研磨盤、 23a:第一研磨溝、 33:第二研磨盤、 33a:第二研磨溝、 65:ツルア 1: sphere polishing device, 2: sphere, 11: base, 12: column, 16: control device, 17: truing device, 23: first polishing disk, 23a: first polishing groove, 33: second polishing disk, 33a: second polishing groove, 65: true

Claims (11)

一方の面に中心軸線回りに環状に形成される第一研磨溝を有する第一研磨盤と、
前記第一研磨盤の中心軸線と同軸上の中心軸線回りに前記第一研磨盤に対して相対的に回転可能に設けられ、前記第一研磨盤の前記一方の面に対向する面に、前記中心軸線回りに環状に形成される第二研磨溝を有する第二研磨盤と、を備え、
研磨対象である球体を前記第一研磨溝及び前記第二研磨溝で挟圧して、前記第一研磨盤及び前記第二研磨盤を相対的に回転させることで、前記球体を研磨加工する球体研磨装置であって、
前記第一研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、
前記第二研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、
前記第一研磨溝の断面円弧中心による軌跡を第一軌跡とし、前記第二研磨溝の断面円弧中心による軌跡を第二軌跡とし、
前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、径方向の距離が周方向において変化する関係を有する、球体研磨装置。
A first polishing disc having a first polishing groove formed annularly around the central axis on one surface;
The first polishing machine is provided so as to be rotatable relative to the first polishing machine around a central axis that is coaxial with the central axis of the first polishing machine, and on the surface facing the one surface of the first polishing machine, A second polishing disk having a second polishing groove formed annularly around the central axis,
Sphere polishing for polishing the sphere by sandwiching the sphere to be polished between the first polishing groove and the second polishing groove and rotating the first polishing disk and the second polishing disk relatively. A device,
The inner peripheral edge of the cross section in the central axis direction of the first polishing groove is formed in an arc shape,
The inner peripheral edge of the cross section in the central axis direction of the second polishing groove is formed in an arc shape,
The trajectory by the cross-sectional arc center of the first polishing groove is the first trajectory, the trajectory by the cross-section arc center of the second polishing groove is the second trajectory,
The spherical polishing apparatus, wherein the first trajectory and the second trajectory have a relationship in which a radial distance changes in a circumferential direction when viewed from the central axis direction.
前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、複数箇所にて交差する、請求項1に記載の球体研磨装置。   The spherical polishing apparatus according to claim 1, wherein the first trajectory and the second trajectory intersect at a plurality of locations when viewed from the central axis direction. 前記第一軌跡及び前記第二軌跡の一方は、円形状に形成され、
前記第一軌跡及び前記第二軌跡の他方は、非円形状に形成される、請求項1又は2に記載の球体研磨装置。
One of the first trajectory and the second trajectory is formed in a circular shape,
The spherical polishing apparatus according to claim 1 or 2, wherein the other of the first locus and the second locus is formed in a non-circular shape.
前記第一軌跡及び前記第二軌跡は、非円形状に形成される、請求項1又は2に記載の球体研磨装置。   The spherical polishing apparatus according to claim 1, wherein the first locus and the second locus are formed in a non-circular shape. 前記非円形状は、複数の花弁部を有する花冠形状である、請求項3又は4に記載の球体研磨装置。   The spherical polishing apparatus according to claim 3 or 4, wherein the non-circular shape is a corolla shape having a plurality of petals. 前記非円形状は、複数の花弁部を有する花冠形状であり、
前記花冠形状の外接円は、前記円形状より大径であり、
前記花冠形状の外接円の中心軸線は、前記円形状の中心軸線と同軸に位置し、
前記花冠形状の内接円は、前記円形状より小径であり、
前記花冠形状の内接円の中心軸線は、前記円形状の中心軸線と同軸に位置し、
前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、前記花冠形状における各花弁部にて交差する、請求項3に記載の球体研磨装置。
The non-circular shape is a corolla shape having a plurality of petals,
The circumscribed circle of the corolla shape is larger in diameter than the circular shape,
The central axis of the circumscribed circle of the corolla shape is located coaxially with the circular central axis,
The inscribed circle of the corolla shape has a smaller diameter than the circular shape,
The central axis of the inscribed circle of the corolla shape is located coaxially with the central axis of the circle,
The spherical polishing apparatus according to claim 3, wherein the first trajectory and the second trajectory intersect at each petal portion in the corolla shape when viewed from the central axis direction.
前記非円形状は、楕円形状である、請求項3又は4に記載の球体研磨装置。   The spherical polishing apparatus according to claim 3 or 4, wherein the non-circular shape is an elliptical shape. 前記非円形状は、楕円形状であり、
前記楕円形状の中心軸線は、前記円形状の中心軸線と同軸に位置し、
前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、楕円の長軸と短軸の各間に位置する4箇所の角度にて交差する、請求項3に記載の球体研磨装置。
The non-circular shape is an elliptical shape,
The elliptical central axis is located coaxially with the circular central axis,
The said 1st locus | trajectory and said 2nd locus | trajectory cross | intersect at the angle of four places located between each of the ellipse's long axis and a short axis, when it sees from the said center axis line direction. Sphere polishing equipment.
前記球体研磨装置は、
前記第一研磨盤が設けられる基台と、
前記第一研磨盤及び前記第二研磨盤に対して前記第一研磨盤の中心軸線方向及び中心軸線と直角な方向の少なくとも2軸方向に相対的に移動可能に前記基台に設けられ、前記第一研磨溝及び前記第二研磨溝をツルーイングするツルアと、
前記第一研磨盤及び前記第二研磨盤を相対回転させて前記第一研磨溝及び前記第二研磨溝により前記球体を研磨し、前記ツルアを前記2軸方向に相対的に移動させ且つ前記第一研磨盤を回転させながら前記ツルアにより前記第一研磨溝をツルーイングし、且つ、前記ツルアを前記2軸方向に相対的に移動させ且つ前記第二研磨盤を回転させながら前記ツルアにより前記第二研磨溝をツルーイングする制御装置と、
を備える、請求項1−7の何れか一項に記載の球体研磨装置。
The spherical polishing apparatus is
A base on which the first polishing machine is provided;
Provided on the base so as to be relatively movable in at least two axial directions of the first polishing disk and the second polishing disk in a direction of a central axis of the first polishing disk and a direction perpendicular to the central axis; A truer for truing the first polishing groove and the second polishing groove;
The first polishing disk and the second polishing disk are rotated relative to each other to polish the sphere by the first polishing groove and the second polishing groove, and the truer is relatively moved in the biaxial direction and the first polishing groove The first polishing groove is trued by the truer while rotating one polishing disk, and the second polisher is rotated by the truer while relatively moving the truer in the two axial directions and rotating the second polishing disk. A control device for truing the polishing grooves;
The sphere polishing apparatus according to claim 1, comprising:
前記ツルアは、前記第一研磨盤の中心軸線と直角な方向の軸線回りに回転する総型のロータリーツルアである、請求項9に記載の球体研磨装置。   The spherical polisher according to claim 9, wherein the truer is an all-round rotary truer that rotates about an axis in a direction perpendicular to the central axis of the first polishing disc. 球体研磨装置による球体研磨方法であって、
前記球体研磨装置は、
一方の面に中心軸線回りに環状に形成される第一研磨溝を有する第一研磨盤と、
前記第一研磨盤の中心軸線と同軸上の中心軸線回りに前記第一研磨盤に対して相対的に回転可能に設けられ、前記第一研磨盤の前記一方の面に対向する面に、前記中心軸線回りに環状に形成される第二研磨溝を有する第二研磨盤と、を備え、
前記第一研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、
前記第二研磨溝における中心軸線方向の断面の内周縁は、円弧状に形成され、
前記第一研磨溝の断面円弧中心による軌跡を第一軌跡とし、前記第二研磨溝の断面円弧中心による軌跡を第二軌跡とし、
前記第一軌跡と前記第二軌跡とは、前記中心軸線方向から見た場合に、径方向の距離が周方向において変化する関係を有し、
前記球体研磨方法は、前記第一研磨溝及び前記第二研磨溝で研磨対象である球体を挟圧して、前記第一研磨盤及び前記第二研磨盤を相対的に回転させることで、前記球体を研磨加工する、球体研磨方法。
A spherical polishing method using a spherical polishing apparatus,
The spherical polishing apparatus is
A first polishing disc having a first polishing groove formed annularly around the central axis on one surface;
The first polishing machine is provided so as to be rotatable relative to the first polishing machine around a central axis that is coaxial with the central axis of the first polishing machine, and on the surface facing the one surface of the first polishing machine, A second polishing disk having a second polishing groove formed annularly around the central axis,
The inner peripheral edge of the cross section in the central axis direction of the first polishing groove is formed in an arc shape,
The inner peripheral edge of the cross section in the central axis direction of the second polishing groove is formed in an arc shape,
The trajectory by the cross-sectional arc center of the first polishing groove is the first trajectory, the trajectory by the cross-section arc center of the second polishing groove is the second trajectory,
The first trajectory and the second trajectory have a relationship in which a radial distance changes in a circumferential direction when viewed from the central axis direction.
In the spherical polishing method, the spherical body to be polished is sandwiched between the first polishing groove and the second polishing groove, and the first polishing disk and the second polishing disk are relatively rotated, so that the spherical body A spherical polishing method for polishing a sphere.
JP2016112997A 2016-06-06 2016-06-06 Sphere polishing device and sphere polishing method Expired - Fee Related JP6743495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112997A JP6743495B2 (en) 2016-06-06 2016-06-06 Sphere polishing device and sphere polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112997A JP6743495B2 (en) 2016-06-06 2016-06-06 Sphere polishing device and sphere polishing method

Publications (2)

Publication Number Publication Date
JP2017217718A true JP2017217718A (en) 2017-12-14
JP6743495B2 JP6743495B2 (en) 2020-08-19

Family

ID=60658220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112997A Expired - Fee Related JP6743495B2 (en) 2016-06-06 2016-06-06 Sphere polishing device and sphere polishing method

Country Status (1)

Country Link
JP (1) JP6743495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637865A (en) * 2018-07-23 2018-10-12 遂宁市盛川视觉科技有限公司 A kind of lens element processing unit (plant)
CN108857742A (en) * 2018-07-13 2018-11-23 安庆市凯立金刚石科技有限公司 A kind of curved surfaces grinding device with diamond grinding head
CN110842764A (en) * 2019-11-18 2020-02-28 张俊杰 Grinding disc device for developing superhard ceramic ball body part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857742A (en) * 2018-07-13 2018-11-23 安庆市凯立金刚石科技有限公司 A kind of curved surfaces grinding device with diamond grinding head
CN108637865A (en) * 2018-07-23 2018-10-12 遂宁市盛川视觉科技有限公司 A kind of lens element processing unit (plant)
CN108637865B (en) * 2018-07-23 2024-02-06 深圳市鸿途科技服务有限公司 Lens glass processing device
CN110842764A (en) * 2019-11-18 2020-02-28 张俊杰 Grinding disc device for developing superhard ceramic ball body part

Also Published As

Publication number Publication date
JP6743495B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6878605B2 (en) Processing equipment
JP2017217718A (en) Spherical body polishing device and spherical body polishing method
US8496512B2 (en) Polishing pad, polishing method and method of forming polishing pad
US6123605A (en) Dressing device for centerless grinding machine and dressing method for centerless grinding machine
CN105834766B (en) Rotating table device
CN107813207A (en) Milling apparatus
US5214884A (en) Ball polishing apparatus and method for the same
JP6753154B2 (en) Sphere polishing device and sphere polishing method
JP6468056B2 (en) Sphere polishing apparatus and sphere polishing method
JP7003553B2 (en) Polishing machine, sphere polishing device and sphere polishing method
JP2000094306A (en) Machining method for cylindrical body-outside diametric surface, and cylindrical body
JP6497214B2 (en) Sphere polishing apparatus and truing method thereof
JP6159639B2 (en) Grinding equipment
JP6520357B2 (en) Sphere polishing apparatus and sphere polishing method
JP6536175B2 (en) Sphere polishing apparatus and sphere polishing method
JP6743510B2 (en) Sphere polishing device and sphere polishing method
JP2019018269A (en) Spherical body behavior measurement device and spherical body behavior measurement method
JP2016221588A (en) Spherical body polishing device and spherical body polishing method
JP6136199B2 (en) Spherical end grinding machine for roller workpieces
CN108637874B (en) Three Degree Of Freedom sphere rotation type grinding and polishing device
JP6540232B2 (en) Sphere polishing apparatus and sphere polishing method
US11850701B2 (en) Polishing pad, manufacturing method of polishing pad and polishing method
JP6592965B2 (en) Sphere polishing apparatus and sphere polishing method
KR20160087538A (en) Substrate grinding apparatus and substrate corner grinding method of the same
US3383806A (en) Motion control device for grinding tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200429

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees