JP2017215480A - Optical member having modified surface - Google Patents

Optical member having modified surface Download PDF

Info

Publication number
JP2017215480A
JP2017215480A JP2016109503A JP2016109503A JP2017215480A JP 2017215480 A JP2017215480 A JP 2017215480A JP 2016109503 A JP2016109503 A JP 2016109503A JP 2016109503 A JP2016109503 A JP 2016109503A JP 2017215480 A JP2017215480 A JP 2017215480A
Authority
JP
Japan
Prior art keywords
optical member
solvent
layer
water
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016109503A
Other languages
Japanese (ja)
Inventor
高橋 崇
Takashi Takahashi
崇 高橋
拓朗 大久保
Takuro Okubo
拓朗 大久保
浩生 深谷
Hiroki Fukaya
浩生 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016109503A priority Critical patent/JP2017215480A/en
Publication of JP2017215480A publication Critical patent/JP2017215480A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical member having a modified surface, the optical member excelling in antifouling property, durability, chemical resistance, environmental resistance, and UV resistance.SOLUTION: A surface-modified optical member has a buffer layer composed of oxide on a surface thereof, and a surface-modified layer on the buffer layer. In the surface-modified layer, molecules having ether linkages and having no ether linkages are mutually dispersed.SELECTED DRAWING: Figure 1

Description

本発明は、物品表面の耐薬品性、耐環境性、耐UV性を向上させる表面改質技術に係り、特に、そのような表面改質を施した光学部材に関する。   The present invention relates to a surface modification technique for improving chemical resistance, environmental resistance and UV resistance of an article surface, and more particularly to an optical member subjected to such surface modification.

従来から公知のカメラ装置、検眼装置、測量装置、パソコン、モバイル機器、携帯通信機器などは、屋外で使用されることがある。そのため、これら機器や装置に用いられるレンズ、センサー等の光学素子や、液晶画面や保護ガラス板等の光学部材は、太陽光に含まれる紫外線(以下、UVと略称する)や、使用環境によっては大気中の排ガスや火山性ガス等に含まれる硫化物、硫黄酸化物、窒素酸化物等の腐食性成分や腐食性の化学薬品の影響を受け、そのような使用が長期に亘ると、光学素子や部材の劣化の原因となっていた。   Conventionally known camera devices, optometry devices, surveying devices, personal computers, mobile devices, portable communication devices, and the like may be used outdoors. Therefore, optical elements such as lenses and sensors used in these devices and apparatuses, and optical members such as liquid crystal screens and protective glass plates, depending on the ultraviolet rays contained in sunlight (hereinafter abbreviated as UV) and the usage environment. Under the influence of corrosive components and corrosive chemicals such as sulfides, sulfur oxides and nitrogen oxides contained in exhaust gas and volcanic gases in the atmosphere It was a cause of deterioration of the members.

このような問題に対して、例えば、特許文献1、2に示すように、有効なUVカットフィルターを積層したレンズや液晶画面などが知られている。   In order to solve such a problem, for example, as shown in Patent Documents 1 and 2, a lens or a liquid crystal screen on which an effective UV cut filter is laminated is known.

特許第4796662号Japanese Patent No. 4796666 特開2006−251380号公報JP 2006-251380 A

しかしながら、特許文献1、2に示すような従来のUVカットフィルターは、UVに対しては耐久性を有するものの、大気中の腐食性成分に対する対環境性、腐食性の化学薬品に対する耐薬品性については検討されておらず、経年により劣化してしまう。また、耐UV層を接着剤組成物を介して積層しているので、光学特性に影響を及ぼすという問題があった。   However, although the conventional UV cut filters as shown in Patent Documents 1 and 2 have durability against UV, they are resistant to corrosive components in the atmosphere and are resistant to chemicals that are corrosive. Has not been studied and will deteriorate over time. Moreover, since the UV-resistant layer is laminated via the adhesive composition, there is a problem of affecting the optical characteristics.

ところで、耐薬品性、耐UV性を有する層を形成するための組成物としては、エーテル結合を有さないフッ素系の撥水撥油コート、例えばフルオロアルキルシラン化合物等が知られている。この撥水撥油コート層は、エーテル結合を有さないため、撥水撥油コート層を構成する分子の安定性が高く、腐食性物質やUVに対する耐久性が高い(以下、エーテル基を有さないフッ素系撥水撥油コートおよび原料を、コートBおよび溶剤B等と略称する場合がある)。   By the way, as a composition for forming a layer having chemical resistance and UV resistance, a fluorine-based water- and oil-repellent coat having no ether bond, such as a fluoroalkylsilane compound, is known. Since this water / oil repellent coat layer does not have an ether bond, the molecules constituting the water / oil repellent coat layer have high stability and high durability against corrosive substances and UV (hereinafter referred to as having an ether group). Fluorine-based water- and oil-repellent coats and raw materials that are not used may be abbreviated as “coat B” and “solvent B”).

しかしながら、エーテル結合を有さないフッ素系撥水撥油コート(B)は、撥水角が低く、すなわち防汚性が悪い。また、物理的な膜の耐久性、すなわち基材との密着力が低いという問題があった。   However, the fluorine-based water / oil repellent coat (B) having no ether bond has a low water repellency angle, that is, poor antifouling property. In addition, there is a problem that the durability of the physical film, that is, the adhesion with the substrate is low.

防汚性、基材との密着力という観点からは、例えば、ダイキン、信越化学、ダウコーニング、3Mなどで発売されている単分子撥水撥油コート原料が知られている。この単分子撥水撥油コート原料は、有効成分の分子中にエーテル結合を有しているため、長鎖構造の分子が特定方向に配向して物品表面に単分子膜を形成する(以下、エーテル基を有する撥水撥油コートおよび原料を、コートAおよび溶剤A等と略称する場合がある)。このエーテル結合を含む単分子膜は、高い撥水角のため、光学素子や部材に塗布した際の撥水撥油コート層の防汚性や耐久性を向上させる。   From the viewpoint of antifouling properties and adhesion to a substrate, for example, monomolecular water / oil repellent coating materials sold by Daikin, Shin-Etsu Chemical, Dow Corning, 3M and the like are known. Since this monomolecular water / oil repellent coating material has an ether bond in the molecule of the active ingredient, the molecules of the long chain structure are oriented in a specific direction to form a monomolecular film on the surface of the article (hereinafter, The water- and oil-repellent coat and the raw material having an ether group may be abbreviated as coat A and solvent A). Since the monomolecular film containing an ether bond has a high water repellency angle, the antifouling property and durability of the water / oil repellent coating layer when applied to an optical element or member are improved.

しかしながら、単分子撥水撥油コート(A)は、分子中のエーテル結合が上述した腐食性の物質やUVによって容易に反応してしまい、これが撥水撥油コート層を劣化させてしまうという問題があった。   However, in the monomolecular water / oil repellent coat (A), the ether bond in the molecule easily reacts with the corrosive substance and UV described above, and this deteriorates the water / oil repellent coat layer. was there.

そこで、発明者らは、鋭意研究を重ね、上述したエーテル結合を有するために劣化してしまう(A)溶剤と、エーテル結合を備えていないことで劣化しない(B)溶剤とを所望の割合で混合し、レンズや液晶画面などの光学素子や部材に積層し試験したところ、防汚性、耐久性に優れ、かつ、耐薬品性、耐環境性、耐UV性も両立させた表面改質層を完成させた。   Therefore, the inventors have intensively researched, and (A) the solvent that deteriorates because it has the ether bond described above, and (B) the solvent that does not deteriorate because it does not have an ether bond at a desired ratio. When mixed and tested on optical elements and components such as lenses and liquid crystal screens, the surface modification layer has excellent antifouling and durability properties, and has both chemical resistance, environmental resistance, and UV resistance. Was completed.

本発明では、レンズや液晶画面などとの密着力が強く、防汚性、耐薬品性、耐環境性、耐UV性に優れた表面改質層を積層した光学部材を提供することを目的とする。   An object of the present invention is to provide an optical member having a surface modification layer laminated with a strong adhesion to a lens or a liquid crystal screen, and having excellent antifouling properties, chemical resistance, environmental resistance and UV resistance. To do.

前記課題を解決する請求項1に記載の発明は、表面改質された光学部材であって、光学部材は、その表面の酸化物からなるバッファー層と、バッファー層表面の表面改質層を有し、表面改質層は、エーテル結合を有する分子とエーテル結合を有していない分子が互いに分散していることを特徴とする。   The invention according to claim 1, which solves the above problem, is a surface-modified optical member, and the optical member has a buffer layer made of an oxide on the surface and a surface modified layer on the surface of the buffer layer. The surface modified layer is characterized in that molecules having an ether bond and molecules not having an ether bond are dispersed with each other.

本発明によれば、エーテル結合を有する溶質を溶解してなる溶剤(A)と、エーテル結合を有していない溶質を溶解してなる溶剤(B)とを混合して完全に混和させた状態で塗布しているので、表面改質層中では、エーテル結合を有する分子とエーテル結合を有していない分子が互いに分散して、溶剤(A)の防汚性、耐久性と、溶剤(B)の耐薬品性、耐環境性、耐UV性を両立することができる。また、物品の表面にバッファー層を積層した後に、溶剤を積層するので、溶剤のOH基とバッファー層のOH基の共有結合によって両者の密着力が格段に良くなり、防汚性、耐久性、耐薬品性、耐環境性、耐UV性を向上させることができる。   According to the present invention, the solvent (A) obtained by dissolving a solute having an ether bond and the solvent (B) obtained by dissolving a solute having no ether bond are mixed and completely mixed. In the surface modification layer, molecules having an ether bond and molecules not having an ether bond are dispersed with each other, and the antifouling property and durability of the solvent (A) and the solvent (B ) Chemical resistance, environmental resistance, and UV resistance. In addition, since the solvent is laminated after laminating the buffer layer on the surface of the article, the adhesive force between the two is greatly improved by the covalent bond between the OH group of the solvent and the OH group of the buffer layer, antifouling property, durability, Chemical resistance, environmental resistance, and UV resistance can be improved.

本発明の表面改質された光学部材の一例、レンズ(光学素子)の模式図である。It is a schematic diagram of an example of the surface-modified optical member of the present invention, a lens (optical element). 表面改質剤によって光学部材を表面改質する工程を示す模式図である。It is a schematic diagram which shows the process of surface-modifying an optical member with a surface modifier.

図1は本発明に係る光学部材4の一例として、例えばレンズを示す模式図である。レンズのような光学素子や、ガラス板といった光学部材の基材1の表面にバッファー層(酸化物層)2と表面改質層3とを順次積層して、表面が改質された光学部材4を形成する。レンズの材質は、ガラス(二酸化ケイ素)、水晶、プラスチックなどの樹脂とすることができる。本発明は、レンズに限定されず、それ以外にも、プリズムなど、光学特性に影響を及ぼすあらゆる光学素子に、また、液晶画面やセンサーの保護カバー等の光学部材等に適用することができる。本発明でいうところの光学部材は、光学素子を含む。   FIG. 1 is a schematic view showing, for example, a lens as an example of the optical member 4 according to the present invention. An optical member 4 having a surface modified by sequentially laminating a buffer layer (oxide layer) 2 and a surface modification layer 3 on the surface of an optical element such as a lens or a substrate 1 of an optical member such as a glass plate. Form. The material of the lens can be a resin such as glass (silicon dioxide), crystal, or plastic. The present invention is not limited to a lens, but can be applied to any optical element that affects optical characteristics, such as a prism, and to an optical member such as a liquid crystal screen or a protective cover of a sensor. The optical member referred to in the present invention includes an optical element.

図1に示す表面が改質された光学部材の製造方法を以下に説明する。図2は本発明の実施形態に係る表面改質剤を光学部材に積層させる工程を示す模式図である。図2の光学部材4は、表面に凹凸を有しているが、平滑であっても同様である。この光学部材の基材1にバッファー層2と表面改質層3とを順次積層して光学部材4を形成する。   A method of manufacturing the optical member having a modified surface shown in FIG. 1 will be described below. FIG. 2 is a schematic view showing a process of laminating the surface modifier according to the embodiment of the present invention on the optical member. The optical member 4 in FIG. 2 has irregularities on the surface, but the same is true even if it is smooth. The optical member 4 is formed by sequentially laminating the buffer layer 2 and the surface modification layer 3 on the substrate 1 of the optical member.

図1(a)に示すように、まず光学部材の基材1を準備する。この基材1の材質は、光学部材として使用できる材質であれば限定されないが、透明・半透明のガラス、水晶、樹脂等が考えられる。   As shown to Fig.1 (a), the base material 1 of an optical member is prepared first. The material of the substrate 1 is not limited as long as it is a material that can be used as an optical member, but transparent and translucent glass, crystal, resin, and the like are conceivable.

次に、基材1の表面を改質する。これは、基材1の表面へのプラズマ照射などによる。また、基材1の表面に、エキシマレーザー光を照射し、活性化させることもできる。エキシマレーザー光を照射する場合、その時間は30秒から1分程度である。   Next, the surface of the substrate 1 is modified. This is due to plasma irradiation on the surface of the substrate 1. Further, the surface of the substrate 1 can be activated by irradiating it with excimer laser light. When the excimer laser light is irradiated, the time is about 30 seconds to 1 minute.

次に、図1(b)に示すように、光学部材の基材1の表面にバッファー層2として酸化物層である二酸化ケイ素(SiO)を積層する。このバッファー層2の積層は、ウェットコート法、ドライコート法による。また、イオンアシスト法、真空蒸着法、スパッタリング法、化学蒸着法のいずれかで行うことができる。なお、バッファー層2としては、Al、ZnO、SnO等のあらゆる金属酸化物が使用可能であるが、二酸化ケイ素(SiO)が最も好ましい。 Next, as shown in FIG. 1 (b), laminating the silicon dioxide on the substrate 1 of the surface of the optical element is an oxide layer as a buffer layer 2 (SiO 2). The buffer layer 2 is laminated by a wet coating method or a dry coating method. Moreover, it can carry out by any one of an ion assist method, a vacuum evaporation method, a sputtering method, and a chemical vapor deposition method. As the buffer layer 2, any metal oxide such as Al 2 O 3 , ZnO, SnO 2 can be used, but silicon dioxide (SiO 2 ) is most preferable.

次に、エーテル基を有する撥水撥油コート原料(A)を、可溶な溶媒に溶解して溶剤(A)を調製し、また、エーテル基を有さないフッ素系撥水撥油コート原料(B)を可溶な溶媒に溶解して溶剤(B)を調製し、これら溶剤を混合して撥水撥油コート原料(A)と(B)が均一に混合された本発明の表面改質剤を準備しておく。   Next, the water / oil repellent coating material (A) having an ether group is dissolved in a soluble solvent to prepare the solvent (A), and the fluorine-based water / oil repellent coating material having no ether group is prepared. The surface modification of the present invention in which (B) is dissolved in a soluble solvent to prepare a solvent (B), and these solvents are mixed to uniformly mix the water and oil repellent coating raw materials (A) and (B). Prepare a quality material.

表面改質剤が塗布可能となったら、バッファー層2の表面をプラズマやDUV(遠紫外線、波長約200nm以下)などにより改質する。これにより、図1(c)に示すように、バッファー層2の酸素原子が(バッファー層Si)−OH基として励起される。そして、このバッファー層2の表面に、調製した表面改質剤を塗布して撥水撥油性を示す表面改質層3を形成する。この時、表面改質剤中のエーテル基を有さないフッ素系撥水撥油コート原料(B)として後述するアルコキシル基を有するフルオロアルキルシランを用いる場合、アルコキシル基が加水分解されて(表面改質層Si)−OH基を生じ、図1(d)の模式図に示すようにバッファー層2のOH基との間にSi−O−Si(シロキサン)結合を生じ、表面改質層3とバッファー層2が強固に密着し、図1(e)の状態となる。   When the surface modifier can be applied, the surface of the buffer layer 2 is modified by plasma or DUV (far ultraviolet, wavelength of about 200 nm or less). Thereby, as shown in FIG.1 (c), the oxygen atom of the buffer layer 2 is excited as a (buffer layer Si) -OH group. Then, the prepared surface modifier is applied to the surface of the buffer layer 2 to form a surface modified layer 3 exhibiting water and oil repellency. At this time, when a fluoroalkylsilane having an alkoxyl group described later is used as the fluorine-based water / oil repellent coating raw material (B) having no ether group in the surface modifier, the alkoxyl group is hydrolyzed (surface modification). Layer Si) —OH groups, and Si—O—Si (siloxane) bonds are formed with the OH groups of the buffer layer 2 as shown in the schematic diagram of FIG. The buffer layer 2 is firmly adhered, and the state shown in FIG.

表面改質層3の形成は、浸漬法、真空蒸着法、スパッタリング法、化学的蒸着法のいずれかで行うことができる。これにより、光学部材の基材1の表面にバッファー層2と、表面改質層3とが形成され、光学部材4が準備される。   The surface-modified layer 3 can be formed by any one of an immersion method, a vacuum vapor deposition method, a sputtering method, and a chemical vapor deposition method. Thereby, the buffer layer 2 and the surface modification layer 3 are formed on the surface of the substrate 1 of the optical member, and the optical member 4 is prepared.

本実施形態に係る表面改質された光学部材においては、エーテル結合を含む撥水撥油コート(A)によって素子の防汚性、耐久性(素子と表面改質層の密着力)を、そしてエーテル結合を含まない撥水撥油コート(B)によって耐薬品性、耐環境性、耐UV性を極めて高くすることができる。さらに、バッファー層と、耐環境性層とが、化学結合、即ちOH基由来のシロキサン結合により強固に結びつくことにより、さらに密着力を高めることができる。   In the surface-modified optical member according to the present embodiment, the water- and oil-repellent coat (A) containing an ether bond gives the element antifouling property and durability (adhesion between the element and the surface modified layer), and Chemical resistance, environmental resistance, and UV resistance can be made extremely high by the water / oil repellent coat (B) containing no ether bond. Further, the buffer layer and the environment-resistant layer are firmly bonded to each other by a chemical bond, that is, an OH group-derived siloxane bond, whereby the adhesion can be further enhanced.

本発明の表面改質層3は、例えば、フルオロアルキルシランなどのエーテル結合を有すると共に、極わずかにエーテル結合を有していない組成からなる化学物質であるが、これ以外にも、エーテル結合を有してないフッ素化合物は、以下に示すとおり、同様に、耐薬品性、耐環境性、耐UV性の効果を発揮することができる。   The surface modification layer 3 of the present invention is a chemical substance having a composition having an ether bond such as fluoroalkylsilane and a slight amount of an ether bond. The fluorine compound which does not have can exhibit the effect of chemical resistance, environmental resistance, and UV resistance similarly as shown below.

エーテル基を有さないフッ素系撥水撥油コート原料(B)に用いる溶質としては、フルオロアルキル基を含有するオルガノシランを使用することが好ましい。公知のフッ素系シランカップリング剤を広く使用でき、その具体例としては、例えば、下記に示すフルオロアルキルシランの1種もしくは2種以上の加水分解縮合物又は共加水分解縮合物が挙げられる。
CF3(CF23CH2CH2Si(OCH33
CF3(CF25CH2CH2Si(OCH33
CF3(CF27CH2CH2Si(OCH33
CF3(CF29CH2CH2Si(OCH33
(CF32CF(CF24CH2CH2Si(OCH33
(CF32CF(CF26CH2CH2Si(OCH33
(CF32CF(CF28CH2CH2Si(OCH33
CF3(C64)C24Si(OCH33
CF3(CF23(C64)C24Si(OCH33
CF3(CF25(C64)C24Si(OCH33
CF3(CF27(C64)C24Si(OCH33
CF3(CF23CH2CH2SiCH3(OCH32
CF3(CF25CH2CH2SiCH3(OCH32
CF3(CF27CH2CH2SiCH3(OCH32
CF3(CF29CH2CH2SiCH3(OCH32
(CF32CF(CF24CH2CH2SiCH3(OCH32
(CF32CF(CF26CH2CH2SiCH3(OCH32
(CF32CF(CF28CH2CH2SiCH3(OCH32
CF3(C64)C24SiCH3(OCH32
CF3(CF23(C64)C24SiCH3(OCH32
CF3(CF25(C64)C24SiCH3(OCH32
CF3(CF27(C64)C24SiCH3(OCH32
CF3(CF23CH2CH2Si(OCH2CH33
CF3(CF25CH2CH2Si(OCH2CH33
CF3(CF27CH2CH2Si(OCH2CH33;及び
CF3(CF29CH2CH2Si(OCH2CH33
As the solute used for the fluorine-based water / oil repellent coating material (B) having no ether group, it is preferable to use an organosilane containing a fluoroalkyl group. Known fluorine-based silane coupling agents can be widely used, and specific examples thereof include one or two or more hydrolyzed condensates or cohydrolyzed condensates of fluoroalkylsilanes shown below.
CF 3 (CF 2) 3 CH 2 CH 2 Si (OCH 3) 3;
CF 3 (CF 2) 5 CH 2 CH 2 Si (OCH 3) 3;
CF 3 (CF 2) 7 CH 2 CH 2 Si (OCH 3) 3;
CF 3 (CF 2) 9 CH 2 CH 2 Si (OCH 3) 3;
(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ;
(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ;
(CF 3 ) 2 CF (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 ;
CF 3 (C 6 H 4) C 2 H 4 Si (OCH 3) 3;
CF 3 (CF 2) 3 ( C 6 H 4) C 2 H 4 Si (OCH 3) 3;
CF 3 (CF 2) 5 ( C 6 H 4) C 2 H 4 Si (OCH 3) 3;
CF 3 (CF 2) 7 ( C 6 H 4) C 2 H 4 Si (OCH 3) 3;
CF 3 (CF 2) 3 CH 2 CH 2 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 5 CH 2 CH 2 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 7 CH 2 CH 2 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 9 CH 2 CH 2 SiCH 3 (OCH 3) 2;
(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 SiCH 3 (OCH 3 ) 2 ;
(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 SiCH 3 (OCH 3 ) 2 ;
(CF 3) 2 CF (CF 2) 8 CH 2 CH 2 SiCH 3 (OCH 3) 2;
CF 3 (C 6 H 4) C 2 H 4 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 3 ( C 6 H 4) C 2 H 4 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 5 ( C 6 H 4) C 2 H 4 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 7 ( C 6 H 4) C 2 H 4 SiCH 3 (OCH 3) 2;
CF 3 (CF 2) 3 CH 2 CH 2 Si (OCH 2 CH 3) 3;
CF 3 (CF 2) 5 CH 2 CH 2 Si (OCH 2 CH 3) 3;
CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 ; and CF 3 (CF 2 ) 9 CH 2 CH 2 Si (OCH 2 CH 3 ) 3

エーテル基を有する撥水撥油コート原料(A)に用いる溶質としては、公知の撥水撥油コート原料からエーテル基を有する化合物を選択することができ、特に限定されないが、例えば、特表2005−527677号公報、特開2004−225009号公報、特許第3275402号、特許第3433024号等に開示されているように、各種の脂肪族エーテル、芳香族エーテル等の化合物が知られており、官能基がフッ素置換されたものが好ましい。   As a solute used for the water / oil repellent coating material (A) having an ether group, a compound having an ether group can be selected from known water / oil repellent coating materials, and is not particularly limited. As disclosed in Japanese Patent No. -527777, Japanese Patent Application Laid-Open No. 2004-225209, Japanese Patent No. 3275402, Japanese Patent No. 3343024 and the like, various aliphatic ethers, aromatic ethers and other compounds are known and functional Those in which the group is fluorine-substituted are preferred.

エーテル基を有さないフッ素系撥水撥油コート原料(B)は、選択した化合物を可溶な溶媒に溶解させて溶剤(B)を調製する。そのような溶媒としては、アルコールが挙げられ、イソプロピルアルコール(IPA)、メタノール、エタノールなどが好ましく、特に、IPAが好ましい。   The fluorine-based water / oil repellent coating material (B) having no ether group is prepared by dissolving the selected compound in a soluble solvent. Examples of such a solvent include alcohol, and isopropyl alcohol (IPA), methanol, ethanol and the like are preferable, and IPA is particularly preferable.

エーテル基を有する撥水撥油コート原料(A)は、選択した化合物を可溶な溶媒に溶解させて溶剤(A)を調製する。そのような溶媒としては、フッ素系溶媒が挙げられ、HFE類、HFC類、HFO類が好ましく、特に、HFE類が好ましい。   The water / oil repellent coating material (A) having an ether group is prepared by dissolving the selected compound in a soluble solvent. Examples of such a solvent include fluorine-based solvents, and HFEs, HFCs, and HFOs are preferable, and HFEs are particularly preferable.

このようにして撥水撥油コート溶剤(A)および撥水撥油コート溶剤(B)を準備したら、所定の割合で両溶剤を完全に混和させる。この時、一度に両溶剤を加えても、分離・白濁してしまう。本発明においては、両溶剤のうち相対的に少量用いる方の溶剤を、相対的に多量用いる方の溶剤に少量添加・攪拌し、分離しないことを確認した後に添加・攪拌を繰り返し、本発明の表面改質剤とする。調整後の表面改質剤が完全に混和したものであることは、溶剤が白濁せず透明であることで判断でき、具体的には溶剤の散乱を測定すればよい。   When the water / oil repellent coating solvent (A) and the water / oil repellent coating solvent (B) are thus prepared, the two solvents are completely mixed at a predetermined ratio. At this time, even if both solvents are added at once, they are separated and become cloudy. In the present invention, the solvent used in a relatively small amount of both solvents is added and stirred in a small amount to the solvent used in a relatively large amount, and after confirming that the solvent does not separate, the addition and stirring are repeated. A surface modifier is used. Whether the adjusted surface modifier is completely mixed can be determined by the fact that the solvent is transparent without being clouded. Specifically, the scattering of the solvent may be measured.

本発明の表面改質剤中の撥水撥油コート溶剤(A)および撥水撥油コート溶剤(B)の配合比は、乾燥後の表面改質層中の撥水撥油コート(A)と撥水撥油コート(B)の重量比で1:2〜2:1であることが好ましく、1:1が更に好ましい。   The mixing ratio of the water / oil repellent coating solvent (A) and the water / oil repellent coating solvent (B) in the surface modifying agent of the present invention is such that the water / oil repellent coating (A) in the surface modified layer after drying. The water / oil repellent coat (B) has a weight ratio of preferably 1: 2 to 2: 1, and more preferably 1: 1.

本発明で使用する表面改質剤は、耐薬品性、耐環境性、耐UV性が求められるあらゆる物品に適用することができるのであり、本実施形態で説明した光学部材に限定されず、他の金属製品や、ガラス、樹脂等にも適用することができる。なお、表面改質層をガラス上に形成する場合は、バッファー層の形成を省略することができる。   The surface modifier used in the present invention can be applied to any article that requires chemical resistance, environmental resistance, and UV resistance, and is not limited to the optical member described in the present embodiment. It can also be applied to other metal products, glass, resin and the like. In addition, when forming a surface modification layer on glass, formation of a buffer layer can be abbreviate | omitted.

以下、実施例および比較例によって本発明をより具体的に説明する。
(1)エーテル基を有する撥水撥油コート溶剤Aとエーテル基を有さない撥水撥油コート溶剤Bの配合比の検討
[実施例1]
商品名:DSX(ダイキン工業製)をハイドロフルオロエーテル(HFE)に溶解して0.1%の溶剤Aとした。また、商品名:XC98-C4626(モメンティブ社製)をイソプロピルアルコール(IPA)に溶解して0.1%の溶剤Bとした。これらをAとBの溶質が重量比で1.0:0.5となるように混合し、実施例1の表面改質剤を調製した。以下、全ての例において、混合にあたっては、両溶剤の分離を防ぐため、溶剤AとBのうち量の多い溶剤に対して少ない溶剤を少量ずつ加えて攪拌し、分離しないことを確認して添加と攪拌を繰り返し、最終的な配合比に到達させた。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
(1) Examination of mixing ratio of water / oil repellent coating solvent A having an ether group and water / oil repellent coating solvent B having no ether group [Example 1]
Product name: DSX (manufactured by Daikin Industries) was dissolved in hydrofluoroether (HFE) to give 0.1% solvent A. In addition, trade name: XC98-C4626 (manufactured by Momentive) was dissolved in isopropyl alcohol (IPA) to obtain 0.1% solvent B. These were mixed so that the solutes of A and B were 1.0: 0.5 by weight to prepare the surface modifier of Example 1. Hereinafter, in all examples, in order to prevent separation of both solvents in mixing, a small amount of solvent is added little by little to a large amount of solvents A and B, and added after confirming that they do not separate. And stirring was repeated until the final blending ratio was reached.

[実施例2]
AとBの溶質が重量比で1.0:1.0となるように混合した以外は実施例1と同様にして、実施例2の表面改質剤を調製した。
[Example 2]
The surface modifier of Example 2 was prepared in the same manner as in Example 1 except that the solutes A and B were mixed so that the weight ratio was 1.0: 1.0.

[実施例3]
AとBの溶質が重量比で1.0:2.0となるように混合した以外は実施例1と同様にして、実施例3の表面改質剤を調製した。
[Example 3]
The surface modifier of Example 3 was prepared in the same manner as in Example 1 except that the solutes of A and B were mixed so that the weight ratio was 1.0: 2.0.

[比較例1]
溶剤Aのみを比較例1の表面改質剤とした。
[Comparative Example 1]
Only the solvent A was used as the surface modifier of Comparative Example 1.

[比較例2]
AとBの溶質が重量比で1.0:0.1となるように混合した以外は実施例1と同様にして、比較例2の表面改質剤を調製した。
[Comparative Example 2]
A surface modifier of Comparative Example 2 was prepared in the same manner as in Example 1 except that the solutes of A and B were mixed so that the weight ratio was 1.0: 0.1.

[比較例3]
AとBの溶質が重量比で1.0:10.0となるように混合した以外は実施例1と同様にして、比較例3の表面改質剤を調製した。この場合、液の白濁が生じた。
[Comparative Example 3]
A surface modifier of Comparative Example 3 was prepared in the same manner as in Example 1 except that the solutes of A and B were mixed so that the weight ratio was 1.0: 10.0. In this case, the liquid became cloudy.

[比較例4]
溶剤Bのみを比較例4の表面改質剤とした。
[Comparative Example 4]
Only the solvent B was used as the surface modifier of Comparative Example 4.

基材白板ガラス(BK7)の表面に、蒸着法によって二酸化ケイ素のバッファー層を形成した。続いて、エキシマバリアランプによるDUVの照射によってバッファー層表面を活性化し、表面にディップ、あるいはスピン、あるいはスリットコーターを用いて塗布した実施例1〜3および比較例1〜4の表面改質剤により表面改質層を形成した。   A silicon dioxide buffer layer was formed on the surface of the base white glass (BK7) by vapor deposition. Subsequently, the surface of the buffer layer was activated by DUV irradiation using an excimer barrier lamp, and the surface modifiers of Examples 1 to 3 and Comparative Examples 1 to 4 were applied to the surface using a dip, spin, or slit coater. A surface modified layer was formed.

表面改質した物品の実際の使用環境における腐食性や酸化性のあるガスによるダメージの影響を確認するため、ダメージを受けていると考えられる結合に対しアタックする環境を作成し、性能の変化を確認した。具体的には、実施例および比較例の各サンプル表面に水滴を付着させ、濡れ性を示す接触角を測定した。その後、各サンプルをガス雰囲気中(硫黄系、塩素系、硝酸性、過酸化物系など)に載置し、190℃で48時間保持して耐ガス試験とした。耐ガス試験後、サンプル表面に水滴を付着させて再度接触角を測定した。実施例および比較例における溶剤配合比、耐ガス試験結果を表1に示す。   In order to confirm the effect of corrosive and oxidizing gas damage in the actual usage environment of the surface-modified article, create an environment that attacks the bond considered to be damaged, and change the performance confirmed. Specifically, water droplets were attached to the sample surfaces of the examples and comparative examples, and the contact angle indicating wettability was measured. Thereafter, each sample was placed in a gas atmosphere (sulfur, chlorine, nitrate, peroxide, etc.) and held at 190 ° C. for 48 hours for a gas resistance test. After the gas resistance test, water droplets were attached to the sample surface and the contact angle was measured again. Table 1 shows solvent mixing ratios and gas resistance test results in Examples and Comparative Examples.

Figure 2017215480
Figure 2017215480

表1に示すように、実施例の表面改質剤では、初期の接触角は僅かに低下してしまうが、耐ガス試験後の接触角の減少が抑制されており、すなわち、耐ガス性が向上している。比較例1、2では、接触角は大幅に減少しており、腐食性ガスによって表面改質層が劣化したことを意味する。なお、比較例3、4では試験前後で接触角はほとんど低下していないが、これはエーテル基を有さない溶剤Bの存在による。実施例では、溶剤Bが半減しているにも関わらず、同等の性能を示した。   As shown in Table 1, in the surface modifiers of the examples, the initial contact angle slightly decreases, but the decrease in the contact angle after the gas resistance test is suppressed, that is, the gas resistance is low. It has improved. In Comparative Examples 1 and 2, the contact angle is greatly reduced, which means that the surface modified layer is deteriorated by the corrosive gas. In Comparative Examples 3 and 4, the contact angle hardly decreased before and after the test, which is due to the presence of the solvent B having no ether group. In the examples, although the solvent B was halved, the same performance was exhibited.

(2)耐ガス性、耐UV性試験
溶剤配合比の検討で最も性能の高かった実施例2と、比較例1のサンプルをガス雰囲気中に載置し、190℃で48時間および120時間保持して耐ガス試験とした。また、太陽光を100時間および300時間照射し、サンシャインウェザー試験とした。(1)と同様に試験前後の接触角を測定した。試験結果を表2に示す。
(2) Gas resistance and UV resistance test The sample of Example 2 and Comparative Example 1, which had the highest performance in examining the solvent blend ratio, were placed in a gas atmosphere and held at 190 ° C for 48 hours and 120 hours. The gas resistance test was performed. Moreover, sunlight was irradiated for 100 hours and 300 hours, and it was set as the sunshine weather test. The contact angle before and after the test was measured as in (1). The test results are shown in Table 2.

Figure 2017215480
Figure 2017215480

表2に示すように、実施例2の表面改質剤では、120時間経過後の接触角の減少が抑制されているのに対して、比較例1では、接触角は半分以下に減少しており、本発明の耐ガス性の高さが示された。   As shown in Table 2, in the surface modifier of Example 2, the decrease in contact angle after 120 hours was suppressed, whereas in Comparative Example 1, the contact angle was reduced to less than half. Thus, the high gas resistance of the present invention was shown.

また、サンシャインウェザー試験においては、実施例2は試験前から100時間経過後に僅かに接触角が低下したものの、300時間経過後においても数値に変化は無かったが、比較例では100時間経過後に接触角が大幅に減少したので300時間の試験を中止した。このように、本発明の耐UV性の高さが示された。   In the sunshine weather test, although the contact angle of Example 2 slightly decreased after 100 hours from the time before the test, the numerical value did not change after 300 hours. The 300 hour test was stopped because the horns were significantly reduced. Thus, the high UV resistance of the present invention was shown.

(3)耐摩耗性試験
溶剤配合比の検討で最も性能の高かった実施例2と、比較例1の表面改質層に対して、消しゴムを用い、移動距離30mm、500g荷重、接触面積φ10mmにて所定の回数往復させて擦り試験を行った。(1)と同様に、試験前後の接触角の測定を行った。試験結果を表3に示す。
(3) Abrasion resistance test For the surface modified layer of Example 2 and Comparative Example 1 that had the highest performance in the investigation of the solvent compounding ratio, an eraser was used, the moving distance was 30 mm, the load was 500 g, and the contact area was 10 mm. Then, a rubbing test was performed by reciprocating a predetermined number of times. Similar to (1), the contact angles before and after the test were measured. The test results are shown in Table 3.

Figure 2017215480
Figure 2017215480

表3に示すように、比較例はエーテル基を有する撥水撥油コート溶剤Aが主に含まれていて耐久性が高いため、接触角の減少はほとんど見られなかった。一方、実施例では、エーテル基を有する撥水撥油コート溶剤Aの含有量が半減しているにも関わらず、接触角の減少は僅かであり、現行品と同等の性能を示した。   As shown in Table 3, since the comparative example mainly contains the water / oil repellent coating solvent A having an ether group and has high durability, the contact angle was hardly reduced. On the other hand, in the examples, although the content of the water- and oil-repellent coating solvent A having an ether group was halved, the decrease in the contact angle was slight and the performance equivalent to that of the current product was exhibited.

このように、本発明の表面改質剤は、エーテル基を有する溶剤Aとエーテル基を有さない溶剤Bを混合させており、ほぼ溶質Aからなる溶剤やほぼ溶質Bからなる溶剤から比較すると各成分は半減しているにも関わらず、含有量の低下に伴って両者の性能が低下せず、性能を両立させるという予期できない効果を奏する。   Thus, the surface modifier of the present invention is mixed with the solvent A having an ether group and the solvent B having no ether group, and compared with a solvent substantially consisting of the solute A and a solvent consisting essentially of the solute B. In spite of the fact that each component is halved, the performance of both components does not decrease with the decrease in the content, and an unexpected effect of achieving both performances is achieved.

1:光学部材の基材
2:バッファー層
3:表面改質層
4:光学部材、部材
1: Optical member base material 2: Buffer layer 3: Surface modification layer 4: Optical member, member

Claims (3)

表面改質された光学部材であって、
前記光学部材は、その表面の酸化物からなるバッファー層と、バッファー層表面の表面改質層を有し、
前記表面改質層は、エーテル結合を有する分子とエーテル結合を有していない分子が互いに分散していることを特徴とする光学部材。
A surface-modified optical member,
The optical member has a buffer layer made of an oxide on the surface thereof, and a surface modification layer on the surface of the buffer layer,
In the optical member, the surface modification layer includes molecules having an ether bond and molecules not having an ether bond dispersed in each other.
前記表面改質層における前記エーテル結合を有する分子と前記エーテル結合を有していない分子の配合比は、重量比で1:2〜2:1であることを特徴とする請求項1に記載の光学部材。   The compounding ratio of the molecule having the ether bond and the molecule not having the ether bond in the surface modified layer is 1: 2 to 2: 1 by weight. Optical member. 前記バッファー層は二酸化ケイ素であり、前記バッファー層と前記表面改質層との間にシロキサン結合が存在することを特徴とする請求項2に記載の光学部材。
The optical member according to claim 2, wherein the buffer layer is silicon dioxide, and a siloxane bond exists between the buffer layer and the surface modification layer.
JP2016109503A 2016-05-31 2016-05-31 Optical member having modified surface Pending JP2017215480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109503A JP2017215480A (en) 2016-05-31 2016-05-31 Optical member having modified surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109503A JP2017215480A (en) 2016-05-31 2016-05-31 Optical member having modified surface

Publications (1)

Publication Number Publication Date
JP2017215480A true JP2017215480A (en) 2017-12-07

Family

ID=60575608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109503A Pending JP2017215480A (en) 2016-05-31 2016-05-31 Optical member having modified surface

Country Status (1)

Country Link
JP (1) JP2017215480A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225916A (en) * 2010-04-16 2011-11-10 Seiko Epson Corp Optical article and method of manufacturing the same
WO2015125498A1 (en) * 2014-02-24 2015-08-27 キヤノンオプトロン株式会社 Optical member having antifouling film, and touchscreen
JP2015168785A (en) * 2014-03-07 2015-09-28 ダイキン工業株式会社 Composition including perfluoro (poly) ether group-containing silane compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225916A (en) * 2010-04-16 2011-11-10 Seiko Epson Corp Optical article and method of manufacturing the same
WO2015125498A1 (en) * 2014-02-24 2015-08-27 キヤノンオプトロン株式会社 Optical member having antifouling film, and touchscreen
JP2015168785A (en) * 2014-03-07 2015-09-28 ダイキン工業株式会社 Composition including perfluoro (poly) ether group-containing silane compound

Similar Documents

Publication Publication Date Title
Schlaich et al. Mussel‐inspired polymer‐based universal spray coating for surface modification: fast fabrication of antibacterial and superhydrophobic surface coatings
JP6532228B2 (en) Optical member and method of manufacturing optical member
CN111163936B (en) Water-and oil-repellent member and method for producing water-and oil-repellent member
CN107298885B (en) Antifouling coating material
US10865312B2 (en) Surface treatment agent
JP6598750B2 (en) Optical member and optical member manufacturing method
TWI643914B (en) Fluorine-containing coating agent and journal consulting by the coating agent
Zhang et al. Multifunctional Hard Yet Flexible Coatings Fabricated Using a Universal Step‐by‐Step Strategy
JP7236624B2 (en) Water- and oil-repellent member and method for manufacturing water- and oil-repellent member
WO2008038782A1 (en) Vapor deposition material, process for producing optical member or plastic lens for spectacle with use thereof, and plastic lens for spectacle
CN111032337B (en) Water-repellent member and method for manufacturing water-repellent member
JP7211423B2 (en) Water- and oil-repellent member and method for manufacturing water- and oil-repellent member
JP2009175500A (en) Method for manufacturing optical member
FR2874007A1 (en) PROCESS FOR PRODUCING A SUBSTRATE COATED WITH A MESOPOROUS LAYER AND ITS OPTICAL APPLICATION
JP6337995B2 (en) Article comprising a surface treatment agent and a layer formed from the surface treatment agent
JP2017215480A (en) Optical member having modified surface
KR102596091B1 (en) Composition for forming a hard coat layer, and spectacle lenses
JP2013217977A (en) Antireflection film and optical element
JP2017214494A (en) Surface modifier, surface modification method using the same, and surface-modified article
CN117396336A (en) Antibacterial, antifungal, antiviral water-and oil-repellent member, method for producing water-and oil-repellent member, and article
JP2008107836A (en) Process for producing optical member and thin film
JP2023059406A (en) Uv-reflective composition
JP7255692B2 (en) Water- and oil-repellent member and method for manufacturing water- and oil-repellent member
JP2019179146A (en) Optical component, lens unit, and method of manufacturing optical component
JP2019179145A (en) Optical component, lens unit, and method of manufacturing optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200828