JP2017215082A - Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor - Google Patents

Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor Download PDF

Info

Publication number
JP2017215082A
JP2017215082A JP2016108403A JP2016108403A JP2017215082A JP 2017215082 A JP2017215082 A JP 2017215082A JP 2016108403 A JP2016108403 A JP 2016108403A JP 2016108403 A JP2016108403 A JP 2016108403A JP 2017215082 A JP2017215082 A JP 2017215082A
Authority
JP
Japan
Prior art keywords
combustion
carbon dioxide
fuel
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016108403A
Other languages
Japanese (ja)
Inventor
薫 宇野
Kaoru Uno
薫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016108403A priority Critical patent/JP2017215082A/en
Publication of JP2017215082A publication Critical patent/JP2017215082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for recovering carbon dioxide gas and water gas which are normally discharged by using combustion of thermodynamics, diverging the exhaust gases at the molecular level, and combusting the recycled gases for utilization as regenerated energy, the technique thus bringing about the effect that recycling the exhaust gases and their utilization as regenerated energy suppresses the consumption of basic fuel and substantially reduces the emission of carbon dioxide gas, and further the technique enabling the melting and reduction of pollutants at temperatures of 1300°C or higher.SOLUTION: An apparatus according to the present invention is made possible by installing a device of the invention shown in Fig. 1 at a flame emission opening for use in combustion. A method of utilization thereof can, depending on the molecular composition of the fuel used, achieve a maximum effect in the fuel of the claims as needed by increasing the number of diverging chambers 3, 5, 7, 9 of the shape as shown in Fig. 1 according to the heat quantity and the theoretical air ratio as shown in Fig. 2.SELECTED DRAWING: Figure 1

Description

本発明は、炭素系燃料を燃焼利用した場合に生ずる二酸化炭素・水性ガスを大幅に回収と再利用する事で、結果的に同排気ガスとして排出される二酸化炭素・水性ガス排出量を抑制する製造方法及び製造装置に関するものである。   The present invention significantly reduces the amount of carbon dioxide / water gas generated when carbon-based fuels are burned and used, thereby reducing the amount of carbon dioxide / water gas discharged as the same exhaust gas. The present invention relates to a manufacturing method and a manufacturing apparatus.

従来、炭素系燃料によって燃焼廃棄ガスに生じる二酸化炭素・水性ガスは空気中放出を抑制に関しては、排出二酸化炭素を分離回収して地下に貯留方法によって解決されている。又は緑化事業の延長のように、樹木の自然力の微生物等を利用予測して回収を進めているのが現状である。   Conventionally, carbon dioxide / water gas generated in combustion waste gas by carbon-based fuel has been solved by a method of separating and recovering discharged carbon dioxide and storing it underground in terms of suppressing release in the air. Or, as an extension of the tree planting project, the current situation is that the collection of natural microorganisms, etc. of trees is predicted and utilized.

また二酸化炭素のみの分離回収や抑制する科学方式を利用する場合は、二酸化炭素ガス微粒子のみ採取するバグフィルター等の大型設備での回収方法が既存の技術方式であり、大量に容易にできる利用できるシステムでなかった。   In addition, when using a scientific method that separates and recovers only carbon dioxide, the recovery method in a large facility such as a bag filter that collects only carbon dioxide gas particulates is an existing technical method and can be used easily in large quantities. It was not a system.

特許文献1:特開第2009-213972号 特許文献2:特許5449059号Patent Document 1: JP-A-2009-213972 Patent Document 2: Patent 5449059 特許第5719093Patent No.5719093

非特許文献:日本エネルギー学会誌、78(798)、1999Non-patent literature: Journal of the Japan Institute of Energy, 78 (798), 1999

ところで二酸化炭素を回収して地下深部貯留層に圧入方式は、回収するには事前の二酸化炭素分離選別のコストと目的地に運ぶ設備に関わる費用は多大な労力が必要となっている。また大量の排出や小型設備施設での分離回収には、設備コストがかかり一般実用化に進んでいない。   By the way, the carbon dioxide is recovered and the press-fitting method into the deep underground reservoir requires a great deal of labor to recover the carbon dioxide separation and sorting cost in advance and the cost for the equipment to be transported to the destination. In addition, a large amount of discharge and separation / recovery in a small facility are expensive and have not been put to practical use.

本発明は、二酸化炭素・水性ガスを炭素と水素と酸素の分子剥離回収して、直ちにその炭素・水素・酸素分子を再生エネルギーとして利用させる事である。さらにその分離回収方法は、複数回連続に繰り返すことで再生エネルギーとしての新燃料の創造も目的利用になるので、根本的な二酸化炭素の排出の抑制と炭素系燃料の資源保護も併せ持つ環境保全技術を提供することを目的とする。   The present invention is to collect and recover carbon dioxide / water gas from carbon, hydrogen, and oxygen, and immediately use the carbon / hydrogen / oxygen molecules as regeneration energy. Furthermore, the separation and recovery method can be used for the purpose of creating new fuel as renewable energy by repeating it multiple times in succession, so environmental conservation technology that combines fundamental suppression of carbon dioxide emissions and protection of carbon-based fuel resources. The purpose is to provide.

本発明による二酸化炭素・水性排気ガス分離回収の方法は、燃焼によって放出された排気ガスを高温・高圧下による工程を通過させることで、炭素基と水素基と酸素基に分子分離させる。全ての排気ガスは、炭素系燃料の燃焼後の排出処理するまでの工程間で、二酸化炭素分子組成と水性排出ガス組成が分子遊離回収を特徴とする。   In the method for separating and recovering carbon dioxide / water exhaust gas according to the present invention, exhaust gas released by combustion is passed through a process under high temperature and high pressure to cause molecular separation into a carbon group, a hydrogen group, and an oxygen group. All exhaust gases are characterized by molecular free recovery of carbon dioxide molecular composition and aqueous exhaust gas composition during the process until the exhaust treatment after combustion of carbon-based fuel.

また、同時に上記のように高温・高圧下で回収した炭素基と水素基と酸素基は、同条件下で再利用エネルギーにすれば、純粋な再燃焼効果によるクリーンな再生エネルギー効果と効率が得られ、本技術を複数連続回収利用すれば多大な排気ガスの抑制と燃料消費の削減効果をも特徴とする。   At the same time, if the carbon, hydrogen and oxygen groups recovered under high temperature and high pressure are reused under the same conditions, a clean regenerative energy effect and efficiency can be obtained. In addition, if a plurality of continuous recoveries of this technology are used, it is also characterized by significant exhaust gas suppression and fuel consumption reduction effects.

本発明による二酸化炭素と水性排気ガスの分離回収と再燃焼利用の方法及び製造装置では、環境汚染物質の排出削減を燃焼時の高温高圧の仕組みによって、非常に簡易に低コストで大幅に二酸化炭素と水性排気ガスを連続的に回収と再燃焼利用ができる。   In the method and apparatus for separating and recovering carbon dioxide and aqueous exhaust gas according to the present invention and the re-burning method, the emission reduction of environmental pollutants is greatly simplified by the mechanism of high temperature and high pressure during combustion. And aqueous exhaust gas can be continuously recovered and re-burned.

又同時に回収方法が炭素と水素と酸素の分子解離させる方法である為に、再生エネルギーとして利用効果として臨めるために、新たな熱量効果が生まれるので、当初の利用炭素系燃料の削減効果も大幅に抑制出来る。それは更なる熱効率と基本燃料の抑制効果が生じて、基本結果的として二酸化炭素の排出原因の抑制になる。それは実質上排出ガスの二酸化炭素の回収抑制後に炭素燃料として再生エネルギー利用によって燃料削減効果と共に二酸炭素が50%以上削減ができる。   At the same time, because the recovery method is a method of molecular dissociation of carbon, hydrogen, and oxygen, a new caloric effect is created in order to make use of it as a regenerative energy. Can be suppressed. This results in further thermal efficiency and an effect of suppressing basic fuel, and as a result, the cause of carbon dioxide emission is suppressed. That is, carbon dioxide can be reduced by 50% or more together with the fuel reduction effect by using renewable energy as carbon fuel after suppressing the recovery of carbon dioxide in the exhaust gas.

図1はは、本発明の二酸化炭素と水性ガスの分離方法に関わる高温・高圧下を発生させる装置の一例であり、その立面図を斜視として表記している。図内の2と4と8は二酸化炭素・水性ガス排気ガス通過する排気口である。図の3は、通常の炭素系燃料の燃焼室である。そして図の5と7はその燃焼後の二酸化炭素・水性排気ガスの分離回収方法技術のガス圧縮室である。この圧縮室によって二酸化炭素と水性ガスを炭素分子・水素分子と酸素分子乖離回収させるガス乖離室である。図内の10と11は、本発明に必要な高温条件と高圧条件を同ガス乖離室で起こさせるための、必要となる高温化と高圧化状態にさせる為の基本技術方法である。そして図の9の圧縮室は、純粋な炭素基と水素基と酸素基が分離状態となり、直ちに再生エネルギーとして再燃焼させる燃焼室になる。図の1Bはその再生エネルギー燃焼を促す、完全燃焼の役割を果たすものである。FIG. 1 is an example of an apparatus for generating high temperature and high pressure related to the method for separating carbon dioxide and water gas according to the present invention, and an elevation view thereof is shown as a perspective view. 2, 4 and 8 in the figure are exhaust ports through which carbon dioxide / water gas exhaust gas passes. 3 in the figure is a normal carbon fuel combustion chamber. 5 and 7 in the figure are gas compression chambers for the method for separating and recovering carbon dioxide / water exhaust gas after combustion. This compression chamber is a gas separation chamber that separates and recovers carbon dioxide and water gas from carbon molecules / hydrogen molecules and oxygen molecules. Reference numerals 10 and 11 in the figure are basic technical methods for achieving the necessary high temperature and high pressure conditions for causing the high temperature condition and high pressure condition necessary for the present invention in the gas separation chamber. The compression chamber 9 in the figure becomes a combustion chamber in which pure carbon groups, hydrogen groups, and oxygen groups are separated and immediately re-burned as regenerated energy. 1B in the figure plays the role of complete combustion that promotes the regeneration energy combustion. 図の2は、本発明技術1つの要因である燃焼方法による発熱放射熱量の根拠である。本発明は、二酸化炭素ガスを炭素基と酸素基に分子剥離に要するエネルギーを1400度の高温下条件で証明している。その必要温度が得られるのが、酸素燃焼と空気燃焼の理論燃焼温度が示している。いわば、通常燃焼から酸素燃焼の外的条件を変えると約50%近くの熱量温度が得られる表である。その温度に比例して有効排ガスも伸びる方法の根拠である。2 in the figure is the basis for the amount of heat generated by the combustion method, which is one factor of the present technology. The present invention proves the energy required for molecular separation of carbon dioxide gas into a carbon group and an oxygen group under high temperature conditions of 1400 degrees. The required temperature is obtained by the theoretical combustion temperature of oxyfuel combustion and air combustion. In other words, when the external conditions of oxyfuel combustion are changed from normal combustion, a calorific temperature of about 50% is obtained. This is the basis for a method in which the effective exhaust gas also increases in proportion to the temperature. 図3において実証結果の例と説明をする。図の3の周辺雰囲気温度を測定した途中結果で約1450度を示している。実験ノズルは市販の2流体(燃料と一次空気)ノズルで燃焼したものであ。空気燃焼だけでは1000度以上の記録はできなかった。この実験方法は、図1の乖離室No,5を測定したものである。そして燃料は、特許文献の2の酸素基のある新燃料を利用した結果である。この温度を図の7.9のように排ガス滞留させて放射熱量を増幅させる。Fig. 3 shows an example of the verification results and explanation. The result of measuring the ambient ambient temperature in Fig. 3 shows about 1450 degrees. The experimental nozzle was burned with a commercially available two-fluid (fuel and primary air) nozzle. Air combustion alone could not record more than 1000 degrees. This experimental method is a measurement of the separation chamber No. 5 in FIG. The fuel is the result of using the new oxygen-containing fuel described in Patent Document 2. This temperature is accumulated in the exhaust gas as shown in the figure 7.9 to amplify the amount of radiant heat.

本発明に二酸化炭素・水性ガスの炭素基と水素基と酸素基の分離回収は、炭素系燃料の燃焼熱を利用してその放射熱量を一定量常に留める仕組みによって、二酸化炭素と水性排気ガスの剥離回収に必要な高温条件と高圧条件に上げて行く方法で、二酸化炭素と水性排気ガスを自ら発生させた放射熱量を利用して分子乖離させる方法を特徴とするものである。   In the present invention, the carbon group, hydrogen group, and oxygen group of carbon dioxide / water gas are separated and recovered by using a mechanism that always keeps a certain amount of radiant heat using the combustion heat of the carbon-based fuel. It is characterized by a method in which molecular separation is performed by using the amount of radiant heat generated by carbon dioxide and aqueous exhaust gas by raising the temperature and pressure conditions necessary for stripping and recovery.

水性排気ガスは高圧化で1100度から1200度によって、炭素との水性ガス反応シフトが起きる事が通常燃焼技術で利用されており、二酸化炭素ガスは高圧化での1400度以上で炭素基と酸素基に分子剥離される科学的熱条件があり、その条件を揃えば分離させる事ができるが、その為の熱エネルギー新たな熱源の為に本技術が利用されていなかった。しかし本発明装置その新たな熱源による高温条件と高圧条件のエネルギーを排出される排ガスの基本熱貯蔵利用方式で外部熱源の利用せずに実現させている。その熱源エネルギー確保は、図面の装置全体で高熱を保持耐熱材のセラミック材や鋼材を利用することで一定の高熱下に燃焼熱を滞留させることで可能となる。そのためには、図の3・5・7・8の高温と高圧下条件の乖離室で可能となる。それによって乖離室温度は1400度に達する。本目的温度になれば、二酸化炭素ガスの剥離回収が容易に進み、再生炭素燃料エネルギーとして再利用燃焼によってさらなる放射熱利用が1Bから得られる事が出来る。   Aqueous exhaust gas is usually used in combustion technology to cause a water-gas reaction shift with carbon from 1100 to 1200 degrees at high pressure, and carbon dioxide gas is carbon group and oxygen at 1400 degrees and above at high pressure. There is a scientific thermal condition that molecules are peeled off based on the condition, and they can be separated if the conditions are aligned. However, this technology has not been used for a new heat source. However, the apparatus of the present invention is realized without using an external heat source in the basic heat storage and utilization system of the exhaust gas from which the energy of the high temperature condition and the high pressure condition by the new heat source is discharged. The heat source energy can be secured by retaining the heat at a constant high temperature by using a ceramic material or a steel material as a heat-resistant material that maintains high heat throughout the apparatus shown in the drawing. For that purpose, it is possible in the separation chamber under the high temperature and high pressure conditions of 3, 5, 7, and 8 in the figure. As a result, the temperature of the separation chamber reaches 1400 degrees. At this target temperature, the separation and recovery of carbon dioxide gas easily proceeds, and further radiant heat utilization can be obtained from 1B by reusing combustion as regenerated carbon fuel energy.

高温・高圧下の排気ガス剥離圧縮室はボイル・シャルルの法則と酸素燃焼理論によって証明される。基本の熱力学では、発熱反応熱量と吸熱反応熱量が放射熱量として利用さてきたが、この方法理論数値には外部の変数が加味されていない。
則本法則がが、本発明装置の必要基本技術は高温を如何に効率よく組成させるかが重要である。それは、燃焼室を直列的に配置する事で燃焼温度を上昇させる事が可能となる。
The exhaust gas separation and compression chamber under high temperature and high pressure is proved by Boyle-Charles' law and oxy-combustion theory. In basic thermodynamics, exothermic reaction heat and endothermic reaction heat have been used as radiant heat, but this method theoretical value does not include external variables.
In principle, it is important that the basic technology necessary for the apparatus of the present invention is to efficiently compose a high temperature. It is possible to raise the combustion temperature by arranging the combustion chambers in series.

本発明の実施例は、二酸化炭素ガスを排出する燃焼バーナー火炎口に、発明の図1を設置をする。図のナンバー3.5.7.9乖離室の温度をモニターして投入燃料の量を調整すれば、利用燃料に応じて分子乖離温度と量を調整して決める。燃焼温度と放射熱量の質量を増加させるのは以下に説明する。   In the embodiment of the present invention, FIG. 1 of the present invention is installed in a combustion burner flame outlet for discharging carbon dioxide gas. If the amount of input fuel is adjusted by monitoring the temperature in the number 3.5.7.9 divergence chamber in the figure, the molecular divergence temperature and amount are adjusted according to the fuel used. Increasing the mass of the combustion temperature and the amount of radiant heat will be described below.

分子が乖離する場合は、当然吸熱反応が熱力学として数式で現れる。要するに発熱した結合化学式を分離させるには熱を奪われるので従来の技術方法では、排気ガスの分離回収には新たな熱エネルギーが必要となり熱力学のエネルギーの法則として利用できるコストに合わなかった。本発明はその吸熱反応と発熱反応の差が大きれば経済効果に出ることを示している。その理論根拠は下記に説明する。   When the molecules are dissociated, naturally the endothermic reaction appears as a thermodynamic equation. In short, since heat is deprived in order to separate the exothermic bond chemical formula, the conventional technology method requires new heat energy for separation and recovery of exhaust gas, and does not meet the cost that can be used as the law of thermodynamic energy. The present invention shows that if the difference between the endothermic reaction and the exothermic reaction is large, an economic effect can be obtained. The rationale is explained below.

図2に示すように、空気燃焼の場合と酸素燃焼に比べた場合の熱効果が40%以上伸びる事が理論値で判明している。但し酸素供給を40%以上の前提条件が必要となる例である。そこで本発明は、特許文献2のような酸素基を含んだ燃料を利用した場合には、この乖離室を設けることで排ガスが滞留しやすい結果、1300度超の高温に達し易いことが実験結果で得られた。その結果次なる乖離室を設けることで、高温排ガス滞留を促す結果、二酸化炭素・水性排気ガスの分子乖離と再燃焼結果が得られた。それによって、1600度以上の排気ガス温度と放射熱量が同時に得られた。その学術根拠は下記に証明する。   As shown in FIG. 2, it has been found from theoretical values that the thermal effect is increased by 40% or more when compared with air combustion and oxyfuel combustion. However, this is an example that requires a precondition of 40% or more for oxygen supply. Therefore, when the present invention uses a fuel containing an oxygen group as in Patent Document 2, by providing this separation chamber, the exhaust gas tends to stay, and it is easy to reach a high temperature exceeding 1300 degrees. Was obtained. As a result, by providing the next divergence chamber, the high temperature exhaust gas stagnation was promoted. As a result, the molecular divergence of carbon dioxide and aqueous exhaust gas and the recombustion result were obtained. As a result, an exhaust gas temperature of more than 1600 degrees and radiant heat were obtained simultaneously. The academic basis is proved below.

その根拠となるのは、空気燃焼と酸素燃焼の高温と排気ガス利用効率は酸素による場合でもあるが、実際の燃焼効率の最大の変数は窒素による素因が発熱量と温度低下の原因と考えられる。実験を繰り返した場合、乖離室直後の場合の分子組成は、炭素基と水素基と酸素基が直ぐに分子同士が存在する。その分子が1400度以上のケースの場で、乖離した場合個別観測は不可能だが、直ちに炭素基と酸素基が結合燃焼し、水素基と酸素基が結合燃焼するのは推測に容易い事が理解できる。その証明は、乖離室を増やすことでその温度が上昇したことで証明ができる。では実施利用可能性は下記に説明する。   The reason for this is that the high temperature and exhaust gas utilization efficiency of air combustion and oxyfuel combustion are due to oxygen, but the largest variable in actual combustion efficiency is presumed to be due to nitrogen predisposition as the cause of heat generation and temperature decrease . When the experiment is repeated, the molecular composition immediately after the separation chamber is such that the carbon group, the hydrogen group, and the oxygen group are immediately present. Individual observations are impossible if the molecule is dissociated in the case where the molecule is 1400 degrees or more, but it is understood that it is easy to guess that carbon groups and oxygen groups will immediately bond and burn, and hydrogen and oxygen groups will bond and burn. it can. The proof can be proved by increasing the temperature by increasing the separation chamber. The practical availability will be explained below.

本発明の実験例と発熱温度と放射発熱量は、排ガス乖離室の形状と個数によって、高温と放射熱量がコントロールできる。これは古来の炭焼小屋や瀬戸物焼の登り窯方式と同じ原理で産業別の消費熱量と温度によって同室の形状を変えることで、容易にできる。実例として下記に述べる。   In the experimental example of the present invention, the heat generation temperature, and the amount of radiant heat, the high temperature and the amount of radiant heat can be controlled by the shape and number of exhaust gas divergence chambers. This can be easily done by changing the shape of the room according to the heat consumption and temperature of each industry, based on the same principle as the traditional charcoal huts and Seto ware climbing kilns. An example is given below.

例えば、産業廃棄物燃焼に利用する場合は、1200度以上によって廃棄物の溶融処理出来る利用価値があるが、それらの場合は乖離室を2.3室で希望温度と熱量供給が出来る。又インゴットの製鋼関係の高熱利用する場合は、乖離室をさらに増やすことで1600度以上の高熱処理利用と再生エネルギー熱量利用が可能である。   For example, when it is used for industrial waste combustion, there is a utility value that can melt the waste at a temperature of 1200 degrees or more, but in those cases, the desired temperature and heat quantity can be supplied in 2.3 separate rooms. In addition, when using high heat related to steel making of ingots, it is possible to use high heat treatment of 1600 degrees or more and heat of renewable energy by further increasing the separation chamber.

図1は、本発明の二酸化炭素ガスと水性ガスの排気ガスの分子乖離方法を可能にする、高温・高圧条件を出す燃焼システムの全体像と分子乖離室の形状の一例わ図柄にしたものである。 FIG. 1 shows an example of the overall shape of a combustion system that produces high-temperature and high-pressure conditions and the shape of the molecular separation chamber, which enables the molecular separation method of carbon dioxide gas and water gas exhaust gas of the present invention. is there.

図2は、図1の二酸化炭素ガスと水性ガスの高温と高圧による分子乖離条件に出す証明根拠の科学的実験データである。本データは純酸素燃焼と空気燃焼の温度比較データが上記に記載されているものである。空気燃焼は通常の燃焼で、純酸素燃焼に比べて、約47%の効率の低さが出る実測データである。このデータは実際の熱力学ヘスの法則下の燃料熱量が、外部変数の前提条件下によって大きく変わることの証明である。これは、同量の燃料の利用方法と利用条件を変えることで、放射熱温度も熱量も変わる変数曲線を示したものである。本発明の二酸化炭素ガスの分子分離に必要な温度は約1400℃であるが、通常空気燃焼では実現できない事が観測データでている。しかし酸素富化燃焼かそれに準じた前提条件を本発明でラジカル反応燃焼を起こさせる、図1の乖離室で起こすことで、1400度以上の放射熱反応が得られた実験データは下記の証明する。   Fig. 2 shows scientific experimental data on the grounds for proving the molecular dissociation conditions of carbon dioxide gas and water gas in Fig. 1 due to high temperature and high pressure. This data is the temperature comparison data of pure oxygen combustion and air combustion described above. Air combustion is actual combustion data, which is about 47% lower efficiency than pure oxygen combustion. This data is proof that the amount of fuel heat under the actual thermodynamic Hess law varies greatly depending on the preconditions of external variables. This shows a variable curve in which the radiant heat temperature and the amount of heat are changed by changing the usage method and usage conditions of the same amount of fuel. The temperature required for molecular separation of carbon dioxide gas according to the present invention is about 1400 ° C., but observation data shows that it cannot be realized by air combustion. However, the experimental data on which the radiant heat reaction of 1400 degrees or more was obtained by causing the radical reaction combustion in the present invention to cause the radical reaction combustion in the present invention, and the radiant heat reaction of 1400 degrees or more is proved as follows. .

図の3は、上記のラジカル熱反応を温度計測反応した実測データである。計測データは、1531度を指針している。本温度は、通常空気燃焼では放射しない温度であるが、本発明の分子乖離後のそく再生エネルギー利用することで、純酸素燃焼したことが証明できた熱量温度と言える。以下参照の図面と実際の利用による温度上昇と科学反応による放射熱量の推移を述べる。   3 in the figure is actual measurement data obtained by temperature measurement reaction of the above-mentioned radical thermal reaction. The measurement data indicates 1531 degrees. This temperature is a temperature that is not normally emitted by air combustion, but can be said to be a calorific temperature at which pure oxygen combustion can be proved by utilizing the regeneration energy after molecular separation of the present invention. Below are the drawings and the transition of radiant heat by scientific reaction and temperature rise by actual use.

以下に基本利用燃料の熱量に対して、燃焼環境前提の変数的条件を変えることで、新たな熱量なり温度が効率よく出せるか検証する。図1のように燃焼室を多段式に据えて、燃焼温度を上げる方法は、日本古来の登り窯の燃焼温度の上昇方法でも証明されている。しかし図2の示すように1400℃の高温に達する為の条件が図1の分子乖離室のように多段に設けることで、それ以上の温度上昇が可能となる。よって、通常燃焼から生じる熱放射を多孔質材質材料を使い、又多段燃焼室の連続利用によって高温度化に進めているのが本発明の特徴である。その結果1400度超に生じる二酸化炭素ガス分子分離による炭素基と酸素基の剥離が生じて、その場の再生エネルギー燃焼が高温下・高圧下によって爆発が起きると考えられる。この条件での化学反応下では、直ちに炭素基と酸素基が激突燃焼は容易に起きる為に、純粋な酸素富化燃焼状態が起きる事は容易である。図の2の証明する高温熱と放射熱が、この燃焼条件には、窒素等の空気燃焼による阻害要因がないので、放射熱量ともに従来の熱量の分子剥離のよる吸熱反応も発熱反応熱量が上回り、燃焼効果が生じる。図3は雰囲気温度1531℃を計測しているがその化学反応の証明であると考察する。   In the following, we will verify whether a new amount of heat and temperature can be generated efficiently by changing the variable conditions of the combustion environment premise against the amount of heat of the basic fuel. The method of raising the combustion temperature by setting the combustion chamber in a multi-stage manner as shown in Fig. 1 has been proven by the method of raising the combustion temperature of ancient Japanese climbing kilns. However, as shown in FIG. 2, if the conditions for reaching a high temperature of 1400 ° C. are provided in multiple stages like the molecular separation chamber in FIG. 1, the temperature can be further increased. Therefore, it is a feature of the present invention that the heat radiation generated from normal combustion is advanced to a higher temperature by using a porous material and continuously using a multistage combustion chamber. As a result, separation of carbon groups and oxygen groups occurs due to carbon dioxide gas molecule separation occurring at over 1400 degrees, and it is considered that explosion of the in-situ regeneration energy combustion occurs under high temperature and high pressure. Under a chemical reaction under these conditions, since a carbon group and an oxygen group readily undergo a collision combustion, it is easy to generate a pure oxygen-enriched combustion state. The high-temperature heat and radiant heat proved in Fig. 2 show that there are no obstructions caused by air combustion such as nitrogen in this combustion condition, so both the radiant heat and the endothermic reaction due to molecular separation of the conventional calorie exceed the exothermic reaction heat. A combustion effect occurs. Figure 3 shows an atmospheric temperature of 1531 ° C, which is considered to be a proof of the chemical reaction.

Claims (3)

本発明は、炭化燃料の液体化及び炭化水素系の液体燃料の利用に及ぶ。 The present invention extends to the liquefaction of carbonized fuel and the use of hydrocarbon-based liquid fuel. 又本発明の応用利用として、固体燃料を粉体にして液化燃料と混合した同燃料主体の液体燃料の利用範囲に及ぶ。 Further, the application of the present invention covers the use range of liquid fuel mainly composed of the same fuel obtained by mixing solid fuel into powder and liquefied fuel. 本発明は、1600度以上の高温が生じる為に、廃棄物扱いの不燃性の材質を粉体にして混合した燃焼方法に及ぶ。 The present invention extends to a combustion method in which a non-combustible material that is handled as a waste is mixed as a powder because a high temperature of 1600 ° C. or higher is generated.
JP2016108403A 2016-05-31 2016-05-31 Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor Pending JP2017215082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016108403A JP2017215082A (en) 2016-05-31 2016-05-31 Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016108403A JP2017215082A (en) 2016-05-31 2016-05-31 Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor

Publications (1)

Publication Number Publication Date
JP2017215082A true JP2017215082A (en) 2017-12-07

Family

ID=60576804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016108403A Pending JP2017215082A (en) 2016-05-31 2016-05-31 Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor

Country Status (1)

Country Link
JP (1) JP2017215082A (en)

Similar Documents

Publication Publication Date Title
JP6105098B2 (en) System and method for high-efficiency power generation using carbon dioxide circulating working fluid
EP0785975B1 (en) Improvements in the combustion and utilisation of fuel gases
RU2406024C2 (en) Method of furnace gas treatment and device for its implementation
ES2678400T3 (en) Industrial production plant with minimal greenhouse gas emissions, particularly carbon dioxide emission, and method for its operation
CN102639213A (en) Method and system for capturing carbon dioxide in an oxyfiring process where oxygen is supplied by regenerable metal oxide sorbents
EP2935132B1 (en) Energy recovery from fumes from a melting furnace with a gas turbine and heat exchangers
TW201319472A (en) Method of operating regenerative heaters in blast furnace plant
RU2016133748A (en) METHOD AND DEVICE FOR SEPARATION OF EXHAUST GASES AT THE BURNING OF CERTAIN METALS
AU2012315483B2 (en) Chemical looping removal of ventilation air methane
CN110452724B (en) Clean coking process and system
JP2017215082A (en) Separation and recycling of carbon dioxide and water exhaust gas, method of utilizing regenerated energy, and production apparatus therefor
EP2935133A1 (en) Energy recovery from fumes from a melting furnace using a gas turbine and heat exchangers
US20160195270A1 (en) Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
WO2010052400A1 (en) Method and device for capturing carbon dioxide on industrial gases at a low temperature
JP6487209B2 (en) Manufacturing method of exhaust heat power generation system
Ahmed et al. Coal seam methane abatement and utilization techniques with availability and feasibility criteria
CN104061795A (en) Heating-furnace internal-circulating tar burning technology
RU2699339C2 (en) Integrated energy-saving process of production of metals or alloys
CN202328284U (en) Tail gas combustion furnace with environmental protection function
CN210193747U (en) Internal heating type cleaning coking system
WO2021198819A1 (en) Incineration process for waste and device therefore
JP2015196698A5 (en)
RU2016121264A (en) METHOD FOR HEATING HEATING AND THERMAL FURNACES
RU152752U1 (en) STEAM ORGANIC FUEL CONVERTER ON THE BASIS OF NON-STABILITY CONSTRUCTION MATERIALS WITH REDUCED ENERGY LOSSES WITH EXHAUST GASES
TW201727047A (en) System and method for high efficiency power generation using a carbon dioxide circulating working fluid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801