JP2017214369A - Method for producing polymethine compound - Google Patents

Method for producing polymethine compound Download PDF

Info

Publication number
JP2017214369A
JP2017214369A JP2017104949A JP2017104949A JP2017214369A JP 2017214369 A JP2017214369 A JP 2017214369A JP 2017104949 A JP2017104949 A JP 2017104949A JP 2017104949 A JP2017104949 A JP 2017104949A JP 2017214369 A JP2017214369 A JP 2017214369A
Authority
JP
Japan
Prior art keywords
compound
formula
group
compound represented
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017104949A
Other languages
Japanese (ja)
Inventor
勝旭 宮崎
Masaaki Miyazaki
勝旭 宮崎
大川 春樹
Haruki Okawa
春樹 大川
大地 藤本
Daichi Fujimoto
大地 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2017214369A publication Critical patent/JP2017214369A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/20Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/14Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polymethine compound efficiently with improved yields by effectively inhibiting occurrence of by-products.SOLUTION: A method for producing a compound represented by the following formula (1) has step (II) for reacting a compound represented by the following formula (2) with a compound represented by the following formula (4) while adding a base to a mixture (M2) containing the compound represented by the following formula (2), a compound represented by the following formula (3), and the compound represented by the following formula (4).SELECTED DRAWING: None

Description

本発明は、ポリメチン化合物の製造方法に関する。   The present invention relates to a method for producing a polymethine compound.

メロシアニン色素やピラゾロン色素等のポリメチン化合物は、一般に、モル吸光係数が大きく、かつ吸収の半値幅が小さいために光の選択吸収性に優れているものが多い。ポリメチン化合物はこれらの特性を有するため、写真印刷用増感色素、光記録媒体用材料、紫外線吸収剤等の用途に利用されており、重要な化合物として認識されている。特許文献1には、カラーフィルターに使用される紫外線吸収剤として、メロシアニン色素及びその製造方法が開示されている。また、特許文献2には油溶性色素として、ピラゾロン色素及びその製造方法が開示されている。   In general, many polymethine compounds such as merocyanine dyes and pyrazolone dyes have a high molar absorption coefficient and a small half-value width of absorption, and thus are excellent in selective light absorption. Since polymethine compounds have these characteristics, they are used in applications such as sensitizing dyes for photographic printing, materials for optical recording media, and UV absorbers, and are recognized as important compounds. Patent Document 1 discloses a merocyanine dye and a method for producing the same as an ultraviolet absorber used in a color filter. Patent Document 2 discloses a pyrazolone dye and a method for producing the same as an oil-soluble dye.

特開2014−194508号公報JP 2014-194508 A 特開2006−16564号公報JP 2006-16564 A

しかし、上記特許文献1に開示のポリメチン化合物(メロシアニン色素)は、電子ドナー部位となる構造がオキサゾリン環を有する化合物に限定されている。そこで、本発明者が、電子ドナー部位をオキサゾリン環に限定しないポリメチン化合物の製造方法を検討したところ、電子ドナー部位において、窒素原子の3位がメチレン構造(例えば、1−ピロリン環やピロリジン環)であるポリメチン化合物を製造する場合に、上記特許文献1及び2に記載された方法を適用すると、副生成物が高い割合で生成し、目的化合物の収率が低下することがわかった。   However, the polymethine compound (merocyanine dye) disclosed in Patent Document 1 is limited to a compound having an oxazoline ring as a structure serving as an electron donor site. Therefore, the present inventor examined a method for producing a polymethine compound in which the electron donor site is not limited to the oxazoline ring. As a result, in the electron donor site, the 3-position of the nitrogen atom is a methylene structure (for example, 1-pyrroline ring or pyrrolidine ring). In the production of the polymethine compound, it was found that by applying the methods described in Patent Documents 1 and 2, the by-product was produced at a high rate, and the yield of the target compound was lowered.

本発明の目的は、副生成物の生成を有効に抑制することにより従来技術より良好な収率で、効率的にポリメチン化合物を製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing a polymethine compound in a yield better than that of the prior art by effectively suppressing the production of by-products.

本発明者は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明には、以下の好適な態様が含まれる。
[1]下記式(1)

Figure 2017214369
[式中、R及びRは互いに独立して、水素原子又は置換基を有していてもよい炭素数1〜20のアルキル基を表し、R及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよく、前記炭素数1〜20のアルキル基を構成する−CH−は、−O−、−S−、又は−NH−と置き換わっていてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキル基を表し、前記炭素数1〜10のアルキル基を構成する−CH−は、−O−又は−S−と置き換わっていてもよい。Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。X及びXは互いに独立して、電子吸引性基を表し、XとXは互いに結合してそれらが結合する炭素原子と共に環を形成していてもよい。]
で表される化合物の製造方法であって、
下記式(2)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。Z-はアニオンを表す。R〜Rは前記と同じ意味を表す。]
で表される化合物、下記式(3)
Figure 2017214369
[式中、R〜R及びZ-は前記と同じ意味を表す。]
で表される化合物、及び下記式(4)
Figure 2017214369
[式中、X及びXは前記と同じ意味を表す。]
で表される化合物を含む混合物(M2)に、塩基を添加しながら、前記式(2)で表される化合物と、前記式(4)で表される化合物とを反応させる工程(II)を含む、製造方法。
[2]下記式(5)
Figure 2017214369
[式中、R〜R及びZ-は前記と同じ意味を表す。]
で表される化合物に、下記式(6)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表し、R及びRは前記と同じ意味を表す。]
で表される化合物を添加しながら、前記式(5)で表される化合物と前記式(6)で表される化合物とを反応させることで、前記式(2)で表される化合物と、前記式(3)で表される化合物とを含む混合物(M1)を得る工程(I)を含む、[1]に記載の方法。
[3]前記式(1)で表される化合物、前記式(2)で表される化合物及び前記式(3)で表される化合物は、それぞれR及びRが互いに結合して、それらが結合する炭素原子及び窒素原子とともに環を形成している化合物である、[1]に記載の方法。
[4]前記式(5)で表される化合物は、R及びRが互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成している化合物であり、前記式(6)で表される化合物は、Rが水素原子であり、R及びRがそれぞれ置換基を有していてもよい炭素数6〜12のアリール基である化合物である、[2]に記載の方法。
[5]前記工程(II)において、前記式(2)で表される化合物1モルに対して、塩基を一時間あたり0.17〜10モルの速度で添加する、[1]〜[4]のいずれかに記載の方法。
[6]前記工程(I)において、前記式(5)で表される化合物1モルに対して、前記式(6)で表される化合物を一時間あたり0.02〜300モルの速度で添加する、[2]又は[4]に記載の方法。
[7]前記塩基は、酢酸塩、第二級アミン、第三級アミン、及びイミン類からなる群から選択される少なくとも1種である、[1]〜[6]のいずれかに記載の方法。
[8]前記式(4)で表される化合物は、メルドラム酸、バルビツール酸、ジメドン、ベンゾイルアセトニトリル、マロノニトリル、シアノ酢酸エステル、マロン酸エステル、又は、それらの誘導体である、[1]〜[7]のいずれかに記載の方法。
[9]前記工程(II)後に、工程(II)で得られた反応混合物を水中に加える工程を含む、[1]〜[8]のいずれかに記載の方法。
[10]下記式(5)
Figure 2017214369
[式中、R及びRは互いに独立して、水素原子又は置換基を有していてもよい炭素数1〜20のアルキル基を表し、R及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよく、前記炭素数1〜20のアルキル基を構成する−CH−は、−O−、−S−、又は−NH−と置き換わっていてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキル基を表し、前記炭素数1〜10のアルキル基を構成する−CH−は、−O−又は−S−と置き換わっていてもよい。Z-はアニオンを表す。]
で表される化合物に、下記式(6)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。R及びRは互いに独立して、水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。]
で表される化合物を添加しながら、前記式(5)で表される化合物と前記式(6)で表される化合物とを反応させることで、下記式(2)
Figure 2017214369
[式中、R〜R及びZ-は式(5)中と、R及びRは式(6)中と同じ意味を表す。]
で表される化合物と、下記式(3)
Figure 2017214369
[式中、R〜R及びZ-は式(5)中と、R及びRは式(6)中と同じ意味を表す。]
で表される化合物とを含む混合物(M1)を製造する方法。
[11]前記式(5)で表される化合物は、R及びRが互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成している化合物であり、前記式(6)で表される化合物は、Rが水素原子であり、R及びRがそれぞれ置換基を有していてもよい炭素数6〜12のアリール基である化合物である、[10]に記載の方法。
なお、本明細書中、「C1−6アルキル基」は、炭素数1〜6のアルキル基を意味し、他の置換基についても同様の意味であり、例えば「C6−10アリール基」は、炭素数6〜10のアリール基を示す。 As a result of intensive studies in order to solve the above problems, the present inventors have completed the present invention. That is, the following preferred embodiments are included in the present invention.
[1] The following formula (1)
Figure 2017214369
[Wherein, R 1 and R 2 independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 1 and R 2 are bonded to each other, May form a ring together with the carbon atom and nitrogen atom to which — is bonded, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms is replaced with —O—, —S—, or —NH—. It may be. R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and —CH 2 — constituting the alkyl group having 1 to 10 carbon atoms is replaced with —O— or —S—. It may be. R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. X 1 and X 2 each independently represent an electron-withdrawing group, and X 1 and X 2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded. ]
A process for producing a compound represented by
Following formula (2)
Figure 2017214369
[Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group having 6 to 12 carbon atoms which may have a substituent. Z represents an anion. R 1 to R 4 represent the same meaning as described above. ]
A compound represented by the following formula (3)
Figure 2017214369
[Wherein R 1 to R 5 and Z represent the same meaning as described above. ]
And a compound represented by the following formula (4)
Figure 2017214369
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
A step (II) of reacting the compound represented by the formula (2) with the compound represented by the formula (4) while adding a base to the mixture (M2) containing the compound represented by A manufacturing method.
[2] The following formula (5)
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as described above. ]
In the compound represented by the following formula (6)
Figure 2017214369
[Wherein R 6 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms; 4 and R 5 represent the same meaning as described above. ]
While adding the compound represented by the formula (5), the compound represented by the formula (5) and the compound represented by the formula (6) are reacted, The method according to [1], comprising a step (I) of obtaining a mixture (M1) containing the compound represented by the formula (3).
[3] In the compound represented by the formula (1), the compound represented by the formula (2), and the compound represented by the formula (3), R 1 and R 2 are bonded to each other. The method according to [1], wherein is a compound that forms a ring with a carbon atom and a nitrogen atom to which is bonded.
[4] The compound represented by the formula (5) is a compound in which R 1 and R 2 are bonded to each other to form a ring together with the carbon atom and the nitrogen atom to which they are bonded, and the formula (6) ) Is a compound in which R 4 is a hydrogen atom, and R 5 and R 6 are each an aryl group having 6 to 12 carbon atoms which may have a substituent. The method described.
[5] In the step (II), a base is added at a rate of 0.17 to 10 mol per hour with respect to 1 mol of the compound represented by the formula (2). [1] to [4] The method in any one of.
[6] In the step (I), the compound represented by the formula (6) is added at a rate of 0.02 to 300 mol per hour with respect to 1 mol of the compound represented by the formula (5). The method according to [2] or [4].
[7] The method according to any one of [1] to [6], wherein the base is at least one selected from the group consisting of acetates, secondary amines, tertiary amines, and imines. .
[8] The compound represented by the formula (4) is Meldrum's acid, barbituric acid, dimedone, benzoylacetonitrile, malononitrile, cyanoacetic acid ester, malonic acid ester, or a derivative thereof. [7] The method according to any one of [7].
[9] The method according to any one of [1] to [8], comprising a step of adding the reaction mixture obtained in the step (II) into water after the step (II).
[10] The following formula (5)
Figure 2017214369
[Wherein, R 1 and R 2 independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 1 and R 2 are bonded to each other, May form a ring together with the carbon atom and nitrogen atom to which — is bonded, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms is replaced with —O—, —S—, or —NH—. It may be. R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and —CH 2 — constituting the alkyl group having 1 to 10 carbon atoms is replaced with —O— or —S—. It may be. Z represents an anion. ]
In the compound represented by the following formula (6)
Figure 2017214369
[Wherein, R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. R 5 and R 6 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. Represents. ]
The compound represented by the above formula (5) is reacted with the compound represented by the above formula (6) while adding the compound represented by the following formula (2).
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as in formula (5), and R 4 and R 5 represent the same meaning as in formula (6). ]
And a compound represented by the following formula (3)
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as in formula (5), and R 4 and R 5 represent the same meaning as in formula (6). ]
The method of manufacturing the mixture (M1) containing the compound represented by these.
[11] The compound represented by the formula (5) is a compound in which R 1 and R 2 are bonded to each other and form a ring together with the carbon atom and the nitrogen atom to which they are bonded. In the compound represented by [10], R 4 is a hydrogen atom, and R 5 and R 6 are each an aryl group having 6 to 12 carbon atoms that may have a substituent. The method described.
In the present specification, “C 1-6 alkyl group” means an alkyl group having 1 to 6 carbon atoms, and other substituents have the same meaning. For example, “C 6-10 aryl group” Represents an aryl group having 6 to 10 carbon atoms.

本発明の製造方法によれば、副生成物の生成を有効に抑制することにより従来技術より良好な収率で、効率的にポリメチン化合物を得ることができる。   According to the production method of the present invention, a polymethine compound can be efficiently obtained in a yield better than that of the prior art by effectively suppressing the production of by-products.

本発明の製造方法により得られるポリメチン化合物は、下記式(1)で表される化合物[以下、化合物(1)又はポリメチン化合物(1)と示す場合があり、他の化合物についても同様に示す場合がある。]であり、好ましい実施態様においては、以下に示すように、工程(I)、及び工程(II)により製造できる。より詳細には、工程(I)において、下記式(5)で表される化合物に、下記式(6)で表される化合物を添加しながら化合物(5)と化合物(6)とを反応させることで、下記式(2)で表される化合物と下記式(3)で表される化合物とを含む混合物(M1)を得、さらに工程(II)において、工程(I)で得られた化合物(2)及び化合物(3)、並びに下記式(4)で表される化合物を含む混合物(M2)に、塩基を添加しながら、化合物(2)と化合物(4)とを反応させることで、化合物(1)を製造することができる。以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。   The polymethine compound obtained by the production method of the present invention is a compound represented by the following formula (1) [hereinafter sometimes referred to as a compound (1) or a polymethine compound (1), and other compounds are also represented in the same manner. There is. In a preferred embodiment, it can be produced by steps (I) and (II) as shown below. More specifically, in the step (I), the compound (5) and the compound (6) are reacted while adding the compound represented by the following formula (6) to the compound represented by the following formula (5). Thus, a mixture (M1) containing a compound represented by the following formula (2) and a compound represented by the following formula (3) is obtained, and further, in the step (II), the compound obtained in the step (I) By reacting compound (2) and compound (4) while adding a base to (2), compound (3), and a mixture (M2) containing a compound represented by the following formula (4), Compound (1) can be produced. Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.

Figure 2017214369
[式中、R及びRは互いに独立して、水素原子又は置換基を有していてもよい炭素数1〜20のアルキル基を表し、R及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよく、前記炭素数1〜20のアルキル基を構成する−CH−は、−O−、−S−、又は−NH−と置き換わっていてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキル基を表し、前記炭素数1〜10のアルキル基を構成する−CH−は、−O−又は−S−と置き換わっていてもよい。Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。R及びRは互いに独立して、水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表し、X及びXは互いに独立して、電子吸引性基を表し、XとXは互いに結合してそれらが結合する炭素原子と共に環を形成していてもよく、Z-はアニオンを表す。]
Figure 2017214369
[Wherein, R 1 and R 2 independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 1 and R 2 are bonded to each other, May form a ring together with the carbon atom and nitrogen atom to which — is bonded, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms is replaced with —O—, —S—, or —NH—. It may be. R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and —CH 2 — constituting the alkyl group having 1 to 10 carbon atoms is replaced with —O— or —S—. It may be. R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. R 5 and R 6 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. X 1 and X 2 each independently represent an electron-withdrawing group, X 1 and X 2 may be bonded together to form a ring together with the carbon atom to which they are bonded, Z is Represents an anion. ]

<工程(I)>
工程(I)は、化合物(5)に化合物(6)を添加しながら、化合物(5)と化合物(6)とを反応させることで、化合物(2)及び化合物(3)を含む混合物(M1)を得る工程である。
工程(I)では、化合物(5)が窒素原子の3位にメチレン基[Rに隣接するメチレン基(−CH−)]を有するので、該メチレン基(−CH−)に起因する副反応が生じ、副生成物として化合物(3)が生じる。しかし、本発明の工程(I)では、化合物(5)に、化合物(6)を添加(又は滴下)しつつ反応を行うことにより、副生成物である化合物(3)の生成を有効に抑制できる。このため、ポリメチン化合物(1)の製造方法に工程(I)を含むことにより、化合物(2)の収率が従来技術より良好となり、更には目的化合物である化合物(1)を良好な収率で得ることができる。
<Process (I)>
In the step (I), the compound (5) and the compound (6) are reacted with each other while the compound (6) is added to the compound (5), whereby a mixture (M1) containing the compound (2) and the compound (3) is reacted. ).
In the step (I), since the compound (5) has a methylene group [methylene group (—CH 2 —) adjacent to R 1 ] at the 3-position of the nitrogen atom, it originates from the methylene group (—CH 2 —). Side reaction occurs, and compound (3) is produced as a by-product. However, in the step (I) of the present invention, the production of the by-product compound (3) is effectively suppressed by reacting the compound (5) while adding (or dropping) the compound (6). it can. Therefore, by including the step (I) in the production method of the polymethine compound (1), the yield of the compound (2) becomes better than that of the prior art, and further, the target compound, the compound (1), has a good yield. Can be obtained at

化合物(5)において、R及びRは互いに独立して、水素原子、又は置換基を有していてもよい炭素数1〜20のアルキル基を表す。目的化合物である化合物(1)の種々の溶媒への溶解性、及び光吸収選択性の観点から、その炭素数は2〜15であることが好ましく、3〜12であることがより好ましく、4〜10であることが更に好ましい。炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−デシル基、n−ドデシル基、n−オクタデシル基等の直鎖アルキル基;イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、イソヘキシル基、2−エチルヘキシル基等の分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロオクチル貴等のシクロアルキル基;ノルボルニル基、アダマンチル基等の架橋環式アルキル基等が挙げられる。これらアルキル基は、上記の好ましい炭素数を満たせば特に限定されない。 In the compound (5), R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms. From the viewpoints of solubility of the target compound (1) in various solvents and light absorption selectivity, the carbon number is preferably 2-15, more preferably 3-12, and more preferably 4 More preferably, it is 10-10. Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-decyl group, n-dodecyl group, n A linear alkyl group such as octadecyl group; a branched alkyl group such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, isohexyl group, 2-ethylhexyl group; cyclopentyl group; Examples thereof include cycloalkyl groups such as cyclohexyl group and cyclooctyl noble; bridged cyclic alkyl groups such as norbornyl group and adamantyl group. These alkyl groups are not particularly limited as long as the above preferable carbon number is satisfied.

及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよい。つまりこの場合、R、R、それらが結合する炭素原子、窒素原子、並びに、当該炭素原子及び当該窒素原子が結合する炭素原子と共に環を形成する。環を形成する場合、目的化合物である化合物(1)の種々の溶媒への溶解性、及び光吸収選択性の観点から、RとRの合計の炭素数は2〜11であることが好ましく、2〜9であることがより好ましく、2〜7であることが更に好ましい。すなわち、当該環は、5〜14員環であることが好ましく、5〜12員環であることがより好ましく、5〜10員環であることが更に好ましい。
また、R又はRで表される炭素数1〜20のアルキル基を構成する−CH−は(炭素数1〜20のアルキル基が−CH−を有する場合)、−O−、−S−、又は−NH−と置き換わっていてもよい。
R 1 and R 2 may be bonded to each other to form a ring together with the carbon atom and nitrogen atom to which they are bonded. That is, in this case, R 1 and R 2 , a carbon atom to which they are bonded, a nitrogen atom, and a carbon atom to which the carbon atom and the nitrogen atom are bonded form a ring. In the case of forming a ring, the total carbon number of R 1 and R 2 is 2 to 11 from the viewpoints of solubility of the target compound (1) in various solvents and light absorption selectivity. Preferably, it is 2-9, more preferably 2-7. That is, the ring is preferably a 5- to 14-membered ring, more preferably a 5- to 12-membered ring, and even more preferably a 5- to 10-membered ring.
In addition, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms represented by R 1 or R 2 (when the alkyl group having 1 to 20 carbon atoms has —CH 2 —), —O—, -S- or -NH- may be substituted.

及びRが互いに結合して形成する環の具体例としては、例えば、下記式で表される環(a)〜(h)が例示できる。

Figure 2017214369
Specific examples of the ring formed by combining R 1 and R 2 with each other include, for example, rings (a) to (h) represented by the following formulae.
Figure 2017214369

及びRは置換基を有していてよい。置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;上記R及びRとして上記に例示したアルキル基;フェニル基、ナフチル基、ビフェニル基等のC6−12アリール基;ベンジル基、フェネチル基等のC6−10アリール−C1−4アルキル基などのアラルキル基;水酸基;メトキシ基、エトキシ基、エトキシエチル基等のC1−6アルコキシ基などのアルコキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基等のC4−10シクロアルコキシ基などのシクロアルコキシ基;フェノキシ基、ナフチルオキシ基、トルイルオキシ基等のC6−10アリールオキシ基などのアリールオキシ基;ベンジルオキシ基等のC6−10アリール−C1−4アルキルオキシ基などのアラルキルオキシ基;メチルチオ基、エチルチオ基等のC1−10アルキルチオ基などのアルキルチオ基;シクロへキシルチオ基等のC5−10シクロアルキルチオ基などのシクロアルキルチオ基;チオフェノキシ等のC6−10アリールチオ基などのアリールチオ基;ベンジルチオ等のC6−10アリール−C1−4アルキルチオ基などのアラルキルチオ基;アセチル基等のC1−6アシル基などのアシル基;アミノ基;ジメチルアミノ基等のジC1−4アルキル−アミノ基などのジアルキルアミノ基;ジアセチルアミノ基等のジC1−4アルキル−カルボニルアミノ基などのジアルキルカルボニルアミノ基;メタンスルホンアミド等のC1−4アルキルスルホンアミド基などのスルホンアミド基;スクシンイミド、フタルイミドなどのイミド基;ベンジリデンアミノなどのイミノ基;メタンスルホニル等のC1−4アルキルスルホニル基などのアルキルスルホニル基;ベンゼンスルホニル等のC6−10アリールスルホニル基などのアリールスルホニル基;ピリジル、モルホリノなどのヘテロ環基等が例示できる。これらのうち、ハロゲン原子;メチル基、エチル基、n−プロピル基、n−ブチル基、イソプロピル基、イソブチル基等のC1−6アルキル基;フェニル基等のC6−12アリール基;特にメチル基、エチル基等のC1−4アルキル基が好ましい。 R 1 and R 2 may have a substituent. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups exemplified above as R 1 and R 2 ; C 6− such as phenyl group, naphthyl group and biphenyl group. 12 aryl group; aralkyl group such as C 6-10 aryl-C 1-4 alkyl group such as benzyl group and phenethyl group; hydroxyl group; alkoxy such as C 1-6 alkoxy group such as methoxy group, ethoxy group and ethoxyethyl group A group; a cycloalkoxy group such as a C 4-10 cycloalkoxy group such as a cyclopentyloxy group or a cyclohexyloxy group; an aryloxy group such as a C 6-10 aryloxy group such as a phenoxy group, a naphthyloxy group, or a toluyloxy group; Aralkylo such as C 6-10 aryl-C 1-4 alkyloxy group such as oxy group An alkylthio group such as a C 1-10 alkylthio group such as a methylthio group or an ethylthio group; a cycloalkylthio group such as a C 5-10 cycloalkylthio group such as a cyclohexylthio group; a C 6-10 arylthio group such as a thiophenoxy Arylthio groups such as benzylthio; aralkylthio groups such as C 6-10 aryl-C 1-4 alkylthio groups such as benzylthio; acyl groups such as C 1-6 acyl groups such as acetyl groups; amino groups; such as C 1-4 alkyl sulfonamide group such as methanesulfonamide; dialkyl carbonyl amino group such as a carbonyl amino group - di C 1-4 alkyl, such as diacetyl amino group; - C 1-4 alkyl dialkylamino group such as an amino group Sulfonamide groups; Imido groups such as succinimide and phthalimide Arylsulfonyl group such as a C 6-10 arylsulfonyl group such as benzenesulfonyl; alkylsulfonyl group such as a C 1-4 alkylsulfonyl group such as methanesulfonyl; imino group such as benzylidene amino pyridyl, heterocyclic groups such as morpholino Can be illustrated. Among these, halogen atom; C 1-6 alkyl group such as methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, isobutyl group; C 6-12 aryl group such as phenyl group; C 1-4 alkyl groups such as a group and an ethyl group are preferred.

及びRは、製造される化合物(1)の光の吸収選択性や化合物(1)の耐光性の観点から、互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成しているのが好ましい。 R 1 and R 2 are bonded to each other from the viewpoint of light absorption selectivity of the compound (1) to be produced and light resistance of the compound (1) to form a ring together with the carbon atom and nitrogen atom to which they are bonded. It is preferable.

は、置換基を有していてもよい炭素数1〜10のアルキル基を表し、Rにおいて−CH−は−O−又は−S−に置き換わっていてもよい。炭素数1〜10のアルキル基としては、例えば、R及びRとして上記に例示した炭素数1〜10のアルキル基などが例示できる。また、Rのアルキル基は置換基を有していてもよい。有していてもよい置換基としては、例えば、R及びRが有していても良い置換基として上記に例示したものが挙げられる。Rとしてはメチル基、エチル基、n−プロピル基、イソプロピル、n−ブチル基、イソブチル基などが好ましい。 R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and in R 3 , —CH 2 — may be replaced by —O— or —S—. Examples of the alkyl group having 1 to 10 carbon atoms include the alkyl groups having 1 to 10 carbon atoms exemplified above as R 1 and R 2 . The alkyl group of R 3 may have a substituent. Examples of the substituent that may be included include those exemplified above as the substituent that R 1 and R 2 may have. R 3 is preferably a methyl group, ethyl group, n-propyl group, isopropyl, n-butyl group, isobutyl group or the like.

-はアニオン(カウンターアニオン)を表し、当該アニオンは、通常、ハロゲン原子、アルキル硫酸、又はハロゲン化ホウ素の陰イオンである。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が例示でき、アルキル硫酸としては、例えばメチル硫酸、エチル硫酸等の炭素数1〜6のアルキル硫酸等が例示でき、ハロゲン化ホウ素としては、例えばトリメチルオキソニウムテトラフルオロボレート、トリエチルオキソニウムテトラフルオロボレート等のMeerwein試薬が例示できる。これらのZのうち、ハロゲン原子(例えば、塩素、臭素、ヨウ素等)が好ましく、ヨウ素が最も好ましい。Zがハロゲン原子、特にヨウ素であると、式(2)で表される化合物、及び式(3)で表される化合物がアルコール系有機溶媒やニトリル系有機溶媒に不溶であるため、工程(I)における精製プロセスが容易になるため、好ましい。 Z represents an anion (counter anion), and the anion is usually a halogen atom, an alkylsulfuric acid, or an anion of boron halide. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl sulfuric acid include an alkyl sulfuric acid having 1 to 6 carbon atoms such as methyl sulfuric acid and ethyl sulfuric acid. Examples of the Meerwein reagent include trimethyloxonium tetrafluoroborate and triethyloxonium tetrafluoroborate. Among these Z, a halogen atom (for example, chlorine, bromine, iodine, etc.) is preferable, and iodine is most preferable. When Z is a halogen atom, particularly iodine, the compound represented by the formula (2) and the compound represented by the formula (3) are insoluble in alcohol-based organic solvents and nitrile-based organic solvents. ) Is preferable because the purification process in (1) becomes easy.

化合物(6)において、Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を示す。炭素数1〜10のアルキル基としては、例えば、R及びRとして上記に例示した炭素数1〜10のアルキル基などが挙げられ、これらのうち、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等の直鎖状又は分岐鎖状C1−6アルキル基が好ましく、特にメチル基が好ましい。また、炭素数6〜12のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基が最も好ましい。これらのRの中でも、水素原子、メチル基、エチル基、n−プロピル基、n−ブチル基、イソプロピル基、イソブチル基等のC1−4アルキル基が好ましく、水素原子が最も好ましい。また、Rのアルキル基又はアリール基は置換基を有していてもよく、置換基としては、例えば、R及びRの置換基として上記に例示した置換基等が挙げられる。 In the compound (6), R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. . Examples of the alkyl group having 1 to 10 carbon atoms, for example, an alkyl group having 1 to 10 carbon atoms exemplified above as R 1 and R 2. Of those, a methyl group, an ethyl group, n- propyl group A linear or branched C 1-6 alkyl group such as isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like is preferable, and a methyl group is particularly preferable. Moreover, as a C6-C12 aryl group, a phenyl group, a naphthyl group, a biphenyl group etc. are mentioned, for example, A phenyl group and a naphthyl group are preferable and a phenyl group is the most preferable. Among these R 4 , a C 1-4 alkyl group such as a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isopropyl group, or an isobutyl group is preferable, and a hydrogen atom is most preferable. Further, the alkyl group or aryl group of R 4 may have a substituent, and examples of the substituent include the substituents exemplified above as the substituents of R 1 and R 2 .

及びRは互いに独立して、水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を示す。炭素数1〜6のアルキル基としては、例えば、R及びRとして上記に例示した炭素数1〜6のアルキル基などが挙げられる。炭素数6〜12のアリール基としては、例えば、Rとして上記に例示した炭素数6〜12のアリール基等が挙げられる。これらのR及びRのうち、メチル基、エチル基等のC1−4アルキル基、フェニル基等のC6−12アリール基が好ましい。また、R及びRのアルキル基又はアリール基は置換基を有していてもよく、置換基としては、例えば、R及びRの置換基として上記に例示した置換基等が挙げられる。 R 5 and R 6 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. Indicates. Examples of the alkyl group having 1 to 6 carbon atoms include the alkyl groups having 1 to 6 carbon atoms exemplified above as R 1 and R 2 . Examples of the aryl group having 6 to 12 carbon atoms include the aryl groups having 6 to 12 carbon atoms exemplified above as R 4 . Of these R 5 and R 6 , C 1-4 alkyl groups such as a methyl group and an ethyl group, and C 6-12 aryl groups such as a phenyl group are preferable. Moreover, the alkyl group or aryl group of R 5 and R 6 may have a substituent, and examples of the substituent include the substituents exemplified above as the substituents of R 1 and R 2. .

なお、化合物(5)及び化合物(6)は、市販品を使用してもよく、慣用の方法により製造してもよい。化合物(6)の製造方法は、『新実験化学講座14 有機化合物の合成と反応III(1978年、丸善出版株式会社)』に例示されているものが挙げられる。化合物(6)は、例えば、Rを有するオルトカルボン酸エチルと、Rを有する第一級アミンと、Rを有する第一級アミンとを、酸触媒の共存下で混合加熱することで得られる粗生成物を、含水エタノールで再結晶することで得ることができる。化合物(5)は、例えば、以下に示す方法(工程A)、すなわち、下記式(7)で表される化合物と下記式(8)で表される化合物とを反応させて得てもよい。

Figure 2017214369
(式中、R〜R及びZ-は前記と同じ意味を表す。)
好ましい化合物(8)としては、例えばヨウ化メチル、ヨウ化エチル、ヨウ化n−プロピル、ヨウ化イソプロピル、ヨウ化n−ブチル、及びこれらの化合物のヨウ素原子を塩素原子又は臭素原子で置き換えた化合物、硫酸ジメチル、硫酸ジエチル等のアルキル硫酸エステル、Meerwein試薬に代表されるハロゲン化ホウ素化合物等が例示できる。 In addition, a commercial item may be used for a compound (5) and a compound (6), and you may manufacture it by a conventional method. Examples of the method for producing the compound (6) include those exemplified in “New Experimental Chemistry Course 14 Synthesis and Reaction III of Organic Compounds III (1978, Maruzen Publishing Co., Ltd.)”. Compound (6) is obtained by, for example, mixing and heating ethyl orthocarboxylate having R 4 , primary amine having R 5, and primary amine having R 6 in the presence of an acid catalyst. The resulting crude product can be obtained by recrystallization from hydrous ethanol. The compound (5) may be obtained, for example, by reacting the compound represented by the following formula (7) with the method represented by the following formula (8) (step A).
Figure 2017214369
(In the formula, R 1 to R 3 and Z represent the same meaning as described above.)
Preferred compounds (8) include, for example, methyl iodide, ethyl iodide, n-propyl iodide, isopropyl iodide, n-butyl iodide, and compounds in which the iodine atom of these compounds is replaced with a chlorine atom or a bromine atom. Examples thereof include alkyl sulfates such as dimethyl sulfate and diethyl sulfate, and boron halide compounds represented by Meerwein reagent.

工程(A)で使用する化合物(8)の割合は、化合物(7)1モルに対して、例えば0.5〜5モル、好ましくは1〜3モル、さらに好ましくは1.2〜2モルである。化合物(8)が上記割合であると、予期せぬ副反応なく良好な収率で化合物(5)を得られるため、好ましい。   The ratio of the compound (8) used at a process (A) is 0.5-5 mol with respect to 1 mol of compounds (7), Preferably it is 1-3 mol, More preferably, it is 1.2-2 mol is there. It is preferable for the compound (8) to be in the above ratio because the compound (5) can be obtained in a good yield without unexpected side reaction.

工程(A)における反応は、反応に不活性な溶媒(Y1)中で行ってもよい。溶媒(Y1)としては、反応に影響を与えない限り特に限定されないが、例えば、メタノール、エタノール、2−プロパノール、1−ブタノール、2−ブタノール等のアルコール類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類;アセトン、2−ブタノン、メチルイソブチルケトン等のケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒;酢酸メチル、酢酸エチル、酢酸n−ブチル等のエステル類;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素溶媒;塩化メチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素溶媒などが例示できる。これらの溶媒のうち、化合物(7)、及び化合物(5)の溶解性の観点から、アルコール類、エーテル類、ニトリル類が好ましい。溶媒(Y1)の使用量は、化合物(7)1質量部に対して、好ましくは0.5〜30質量部、より好ましくは1〜20質量部、更に好ましくは3〜12質量部である。溶媒(Y1)の使用量が上記範囲であると、化合物(7)、及び化合物(5)を十分に溶解し、かつ副反応を有効に抑制できるため、好ましい。   The reaction in the step (A) may be performed in a solvent (Y1) inert to the reaction. The solvent (Y1) is not particularly limited as long as it does not affect the reaction. For example, alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 2-butanol; diethyl ether, diisopropyl ether, tetrahydrofuran, 1 Ethers such as 1,4-dioxane; ketones such as acetone, 2-butanone and methyl isobutyl ketone; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2 -Aprotic polar solvents such as pyrrolidone and dimethyl sulfoxide; esters such as methyl acetate, ethyl acetate and n-butyl acetate; nitrile solvents such as acetonitrile and benzonitrile; n-pentane, n-hexane, n-heptane, Octane, cyclohexane, methylcyclo Hydrocarbon solvents such as xanthones; aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene; halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, monochlorobenzene, dichlorobenzene, etc. Can be illustrated. Of these solvents, alcohols, ethers, and nitriles are preferable from the viewpoint of solubility of the compound (7) and the compound (5). The amount of the solvent (Y1) to be used is preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, and further preferably 3 to 12 parts by mass with respect to 1 part by mass of the compound (7). It is preferable for the amount of solvent (Y1) used to be in the above-mentioned range since compound (7) and compound (5) can be sufficiently dissolved and side reactions can be effectively suppressed.

工程(A)の反応温度は、例えば、15〜50℃、好ましくは20〜30℃であってよく、反応時間は、例えば、1分〜72時間、好ましくは30分〜10時間、さらに好ましくは2時間〜6時間であってよい。反応は、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]中、攪拌しながら行うことができ、常圧下、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。   The reaction temperature in step (A) may be, for example, 15 to 50 ° C., preferably 20 to 30 ° C., and the reaction time is, for example, 1 minute to 72 hours, preferably 30 minutes to 10 hours, more preferably It may be 2 hours to 6 hours. The reaction can be performed with stirring in air or an inert gas atmosphere [eg, nitrogen, rare gas (such as argon)], and may be performed under normal pressure, increased pressure, or reduced pressure. In a preferred embodiment, it is carried out with stirring under normal pressure and / or inert gas atmosphere.

工程(A)の好ましい態様は、化合物(7)を前記溶媒(Y1)に溶解させた溶液に対して、化合物(8)を添加(又は滴下)して反応させる。この際、化合物(8)が常温、常圧環境で液体であれば、そのまま添加(又は滴下)してもよいし、溶媒(Y1)によって希釈して添加(又は滴下)してもよい。また、化合物(8)が常温、常圧環境で固体であれば、固体のまま添加してもよいし、溶媒(Y1)に溶解させて添加(又は滴下)してもよい。   In a preferred embodiment of the step (A), the compound (8) is added (or dropped) and reacted with a solution in which the compound (7) is dissolved in the solvent (Y1). At this time, if the compound (8) is liquid in a normal temperature and normal pressure environment, it may be added (or dropped) as it is, or may be diluted with a solvent (Y1) and added (or dropped). Moreover, if a compound (8) is a solid in normal temperature and a normal pressure environment, you may add as a solid and may be dissolved in a solvent (Y1) and may be added (or dripped).

生成した化合物(5)は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製してもよいし、未精製の状態で続く工程(I)に供してもよい。   The produced compound (5) may be separated and purified by a conventional method, for example, separation means such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these. You may use for the following process (I) in an unpurified state.

[化合物(5)と化合物(6)との反応]
工程(I)は化合物(5)に化合物(6)を添加しながら、両化合物を反応させることを特徴とする。
工程(I)において、化合物(5)に添加する(又は滴下する)化合物(6)の割合は、化合物(5)1モルに対して、例えば、0.5〜5モルであって、好ましくは0.6〜3モル、より好ましくは0.7〜2モル、さらに好ましくは0.8〜1.5モル、とりわけ0.9〜1.1モルであることが好ましい。化合物(6)の割合が上記範囲であると、未反応で残存する化合物(5)の量を少なく抑えることができ、良好な転化率で反応を進行させることができ、かつ、副生する化合物(3)の量を効果的に抑制することができるため、好ましい。
[Reaction of Compound (5) with Compound (6)]
Step (I) is characterized by reacting both compounds while adding compound (6) to compound (5).
In the step (I), the ratio of the compound (6) to be added (or added dropwise) to the compound (5) is, for example, 0.5 to 5 mol, preferably 1 mol to 1 mol of the compound (5). It is preferable that it is 0.6-3 mol, More preferably, it is 0.7-2 mol, More preferably, it is 0.8-1.5 mol, Especially 0.9-1.1 mol. When the ratio of the compound (6) is in the above range, the amount of the unreacted compound (5) can be suppressed to a small amount, the reaction can proceed at a good conversion rate, and a by-product is produced. Since the amount of (3) can be effectively suppressed, it is preferable.

工程(I)において、化合物(5)に添加(又は滴下)する化合物(6)の速度(モル速度)は、化合物(5)1モルに対して1時間あたり0.02〜300モルであり、好ましくは0.05〜6モル、より好ましくは0.07〜2モル、さらに好ましくは0.1〜1モル、とりわけ0.15〜0.55モルであることが好ましい。この範囲の速度で添加(又は滴下)すると、化合物(3)の生成をさらに有効に抑制できるため好ましい。   In step (I), the rate (molar rate) of compound (6) added (or dropped) to compound (5) is 0.02 to 300 mol per hour per 1 mol of compound (5), Preferably it is 0.05-6 mol, More preferably, it is 0.07-2 mol, More preferably, it is 0.1-1 mol, It is especially preferable that it is 0.15-0.55 mol. Addition (or dropwise addition) at a rate in this range is preferable because generation of the compound (3) can be more effectively suppressed.

好ましい実施態様においては、化合物(5)と溶媒(Y2)とを含む混合物(M3)に対して、化合物(6)と溶媒(Y3)とを含む混合物(M4)を添加する。   In a preferred embodiment, the mixture (M4) containing the compound (6) and the solvent (Y3) is added to the mixture (M3) containing the compound (5) and the solvent (Y2).

前記混合物(M3)は、化合物(5)と溶媒(Y2)とを混合(又は混合撹拌)することにより得ることができ、前記混合物(M4)は、化合物(6)と溶媒(Y3)とを混合(又は混合撹拌)することにより得ることができる。   The mixture (M3) can be obtained by mixing (or mixing and stirring) the compound (5) and the solvent (Y2), and the mixture (M4) includes the compound (6) and the solvent (Y3). It can be obtained by mixing (or mixing and stirring).

前記溶媒(Y2)及び前記溶媒(Y3)としては、例えば、溶媒(Y1)として上記に例示した溶媒等が例示できる。これらの溶媒のうち、アルコール類、ニトリル類、炭化水素類(特に芳香族炭化水素類)が好ましく、化合物(5)、及び化合物(6)の溶解性、及び反応による化合物(3)の生成比率を有効に抑制できる観点から、アルコール類、ニトリル類が好ましく、アルコール類が特に好ましい。これらの溶媒は単独で用いてもよく、二種類以上を組み合わせて使用してもよい。なお、溶媒(Y2)と溶媒(Y3)は同一であってもよく、又は異なっていてもよい。通常、溶媒(Y2)と溶媒(Y3)は同一である。   Examples of the solvent (Y2) and the solvent (Y3) include the solvents exemplified above as the solvent (Y1). Among these solvents, alcohols, nitriles, and hydrocarbons (especially aromatic hydrocarbons) are preferable, the solubility of the compound (5) and the compound (6), and the production ratio of the compound (3) by the reaction. From the viewpoint of effectively suppressing the above, alcohols and nitriles are preferable, and alcohols are particularly preferable. These solvents may be used alone or in combination of two or more. In addition, the solvent (Y2) and the solvent (Y3) may be the same or different. Usually, the solvent (Y2) and the solvent (Y3) are the same.

混合物(M3)において、溶媒(Y2)の使用量は、化合物(5)1質量部に対して、例えば0.5〜30質量部であり、好ましくは1〜20質量部、より好ましくは2〜10質量部、特に好ましくは2.5〜5質量部である。溶媒(Y2)の使用量が上記範囲であると、化合物(5)の溶解性を維持しながら化合物(6)と反応できるため、好ましい。   In the mixture (M3), the amount of the solvent (Y2) used is, for example, 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 2 to 2 parts by mass with respect to 1 part by mass of the compound (5). 10 parts by mass, particularly preferably 2.5 to 5 parts by mass. It is preferable for the amount of solvent (Y2) used to be in the above range because it can react with compound (6) while maintaining the solubility of compound (5).

混合物(M4)において、溶媒(Y3)の使用量は、化合物(6)1質量部に対して、例えば1〜30質量部、好ましくは2〜20質量部、より好ましくは3〜15質量部、特に好ましくは4〜10質量部である。溶媒(Y3)の使用量が上記範囲であると、反応によって生成する化合物(3)の生成比率をより有効に抑制できるため、好ましい。   In the mixture (M4), the amount of the solvent (Y3) used is, for example, 1 to 30 parts by mass, preferably 2 to 20 parts by mass, more preferably 3 to 15 parts by mass, relative to 1 part by mass of the compound (6). Especially preferably, it is 4-10 mass parts. It is preferable for the amount of solvent (Y3) used to be in the above-mentioned range since the production ratio of compound (3) produced by the reaction can be more effectively suppressed.

化合物(5)と溶媒(Y2)、又は化合物(6)と溶媒(Y3)の混合温度は、溶媒に化合物を溶解可能な温度、もしくは化合物(5)、又は化合物(6)が均一に分散される状態であれば特に限定されないが、好ましくは40〜130℃、より好ましくは50〜100℃、さらに好ましくは60〜90℃である。また、混合時間は、溶媒に化合物を溶解可能な時間、もしくは化合物(5)、又は化合物(6)が均一に分散される時間であれば特に限定されない。当該混合は通常、撹拌しながら行ってもよく、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]下で行ってもよく、常圧、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下にて、撹拌しながら行う。   The mixing temperature of the compound (5) and the solvent (Y2) or the compound (6) and the solvent (Y3) is a temperature at which the compound can be dissolved in the solvent, or the compound (5) or the compound (6) is uniformly dispersed. Although it will not specifically limit if it is a state to be, It becomes like this. Preferably it is 40-130 degreeC, More preferably, it is 50-100 degreeC, More preferably, it is 60-90 degreeC. The mixing time is not particularly limited as long as the compound can be dissolved in the solvent or the compound (5) or the compound (6) can be uniformly dispersed. The mixing may be usually performed with stirring, may be performed in air or under an inert gas atmosphere [for example, nitrogen, rare gas (argon, etc.)], or may be performed under normal pressure, increased pressure, or reduced pressure. Good. In a preferred embodiment, it is carried out with stirring under normal pressure and / or an inert gas atmosphere.

化合物(5)に化合物(6)[好ましい態様では混合物(M3)に混合物(M4)]を添加する際の添加温度は、例えば、20〜130℃、好ましくは40〜100℃、より好ましくは60〜90℃である。また、添加する時間は、例えば、1分〜24時間、好ましくは30分〜12時間、より好ましくは1時間〜10時間、さらに好ましくは1.5時間〜8時間、とりわけ2時間〜6時間であってよい。この範囲の添加温度又は添加時間であると、化合物(3)の生成をさらに有効に抑制できる。また、当該添加は化合物(5)を撹拌しながら行ってもよく、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]下で行ってもよく、常圧、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下にて、化合物(5)を撹拌しながら化合物(6)を添加する。   The addition temperature at the time of adding the compound (6) to the compound (5) [in the preferred embodiment, the mixture (M4) to the mixture (M3)] is, for example, 20 to 130 ° C., preferably 40 to 100 ° C., more preferably 60 ~ 90 ° C. The time for addition is, for example, 1 minute to 24 hours, preferably 30 minutes to 12 hours, more preferably 1 hour to 10 hours, still more preferably 1.5 hours to 8 hours, especially 2 hours to 6 hours. It may be. The production | generation of a compound (3) can be suppressed more effectively as it is the addition temperature or addition time of this range. In addition, the addition may be performed while stirring the compound (5), and may be performed in the air or in an inert gas atmosphere [for example, nitrogen, rare gas (argon, etc.)], at normal pressure, under pressure or under reduced pressure. You may do it below. In a preferred embodiment, the compound (6) is added while stirring the compound (5) under normal pressure and / or an inert gas atmosphere.

化合物(5)に化合物(6)を添加後、得られた混合物をを直ぐに後述する精製工程に供してもよいが、該混合物を所定温度で、所定時間撹拌混合することが好ましい。撹拌混合する温度としては、例えば、20〜130℃の範囲であり、好ましくは40〜100℃、より好ましくは60〜90℃である。また、撹拌混合する時間としては、例えば、1分〜24時間の範囲であり、好ましくは30分〜18時間、より好ましくは1〜12時間、特に好ましくは2〜6時間である。撹拌混合する温度、及び時間が上記範囲内であると、化合物(5)及び化合物(6)が残存することなく反応できるため、好ましい。   After adding the compound (6) to the compound (5), the obtained mixture may be immediately subjected to the purification step described later, but it is preferable to stir and mix the mixture at a predetermined temperature for a predetermined time. As temperature which stirs and mixes, it is the range of 20-130 degreeC, for example, Preferably it is 40-100 degreeC, More preferably, it is 60-90 degreeC. Further, the time for stirring and mixing is, for example, in the range of 1 minute to 24 hours, preferably 30 minutes to 18 hours, more preferably 1 to 12 hours, and particularly preferably 2 to 6 hours. It is preferable for the temperature and time for stirring and mixing to be within the above ranges because the compound (5) and the compound (6) can be reacted without remaining.

工程(I)で得られた化合物(2)及び化合物(3)(混合物(M1))は、慣用の方法、特に晶析により分離精製することができる。好ましい実施態様においては、工程(I)で得られた反応混合物(又は反応溶液)を、例えば、−20〜40℃、好ましくは−10〜20℃、更に好ましくは−5〜10℃に冷却し、晶析により混合物(M1)の結晶を得る。この方法では、簡便かつ容易に混合物(M1)の結晶を得ることができるため、好ましい。   Compound (2) and compound (3) (mixture (M1)) obtained in step (I) can be separated and purified by a conventional method, particularly by crystallization. In a preferred embodiment, the reaction mixture (or reaction solution) obtained in step (I) is cooled to, for example, -20 to 40 ° C, preferably -10 to 20 ° C, more preferably -5 to 10 ° C. Crystal of the mixture (M1) is obtained by crystallization. This method is preferable because crystals of the mixture (M1) can be obtained easily and easily.

[工程(I)で得られる混合物(M1)]
工程(I)により、化合物(2)及び化合物(3)を含む混合物(M1)を得ることができる。本発明では、上述したように、化合物(5)に、所定の流量(モル流量)で化合物(6)を添加(又は滴下)しながら反応させるため、滴下せずに両者を一度に混合して反応させる場合或いは化合物(6)に、化合物(5)を添加(又は滴下)しながら反応させる場合と比較し、副生成物である化合物(3)の生成割合を低減することができる。このため、混合物(M1)に含有される化合物(2)と化合物(3)との割合[化合物(2):化合物(3)]は、通常60:40〜99:1の範囲で得られる。なお、化合物(2)と化合物(3)の割合は、慣用の方法(例えば、高速液体クロマトグラフィー等)により測定できる。また、工程(I)の方法では、化合物(2)及び化合物(3)との総量に係る収率(%)は、通常70〜99%の範囲で得られる。なお、化合物(2)及び化合物(3)との総量に係る収率(%)は、工程(I)に供した化合物(5)のモル量が工程(I)に供した化合物(6)のモル量以上である場合には、次式:[化合物(2)と化合物(3)との総モル量/化合物(6)のモル量]×100を用いて算出でき、工程(I)に供した化合物(5)のモル量が化合物(6)のモル量未満である場合には、次式:[化合物(2)と化合物(3)との総モル量/化合物(5)のモル量]×100を用いて算出できる。
[Mixture (M1) obtained in step (I)]
By the step (I), a mixture (M1) containing the compound (2) and the compound (3) can be obtained. In the present invention, as described above, the compound (5) is reacted while adding (or dropping) the compound (6) at a predetermined flow rate (molar flow rate). Compared with the case of making it react or making it react, adding (or dripping) a compound (5) to a compound (6), the production | generation ratio of the compound (3) which is a by-product can be reduced. For this reason, the ratio [compound (2): compound (3)] of the compound (2) and the compound (3) contained in the mixture (M1) is usually obtained in the range of 60:40 to 99: 1. In addition, the ratio of a compound (2) and a compound (3) can be measured by a usual method (for example, high performance liquid chromatography etc.). In the method of step (I), the yield (%) related to the total amount of the compound (2) and the compound (3) is usually in the range of 70 to 99%. In addition, the yield (%) related to the total amount of the compound (2) and the compound (3) is the molar amount of the compound (5) subjected to the step (I) is that of the compound (6) subjected to the step (I). When the amount is equal to or greater than the molar amount, it can be calculated using the following formula: [total molar amount of compound (2) and compound (3) / molar amount of compound (6)] × 100, and used for step (I). When the molar amount of the compound (5) is less than the molar amount of the compound (6), the following formula: [total molar amount of the compound (2) and the compound (3) / molar amount of the compound (5)] It can be calculated using x100.

化合物(2)及び化合物(3)を含む混合物(M1)の具体例としては、以下の表1に示す混合物等が例示できる。なお、表1の各行に記載の混合物は、各行に示されるR〜Rを有する化合物(2)及び化合物(3)を含む混合物(M1)を意味する。また、表1において、Meはメチル基、Etはエチル基、i-Prはイソプロピル基、t-Buはtert−ブチル基、Hは水素原子、Phはフェニル基を示し、R及びRの環構造は、R及びRが互いに形成する環を示す。

Figure 2017214369
Specific examples of the mixture (M1) containing the compound (2) and the compound (3) include the mixtures shown in Table 1 below. In addition, the mixture described in each line of Table 1 means the mixture (M1) containing the compound (2) and the compound (3) having R 1 to R 5 shown in each line. In Table 1, Me represents a methyl group, Et represents an ethyl group, i-Pr represents an isopropyl group, t-Bu represents a tert-butyl group, H represents a hydrogen atom, Ph represents a phenyl group, and R 1 and R 2 The ring structure indicates a ring formed by R 1 and R 2 with each other.
Figure 2017214369

<工程(II)>
工程(II)は、工程(I)で得られた前記化合物(2)及び前記化合物(3)、並びに前記式(4)で表される化合物を含む混合物(M2)に塩基を添加しながら、化合物(2)と化合物(4)とを反応させることで化合物(1)を得る工程である。工程(II)の方法では、化合物(2)と化合物(4)とを選択的に反応できるため、工程(I)の副生成物である化合物(3)と、化合物(4)との反応(副反応)により生じる副生成物の生成を有効に抑制できる。このため、目的化合物であるポリメチン化合物(1)を良好な収率で得ることができる。さらには、かかる製造方法によれば、簡便な精製操作を経ることによって高純度のポリメチン化合物(1)を得ることができる。
<Process (II)>
In the step (II), a base is added to the mixture (M2) containing the compound (2) and the compound (3) obtained in the step (I) and the compound represented by the formula (4). In this step, compound (1) is obtained by reacting compound (2) with compound (4). In the method of the step (II), the compound (2) and the compound (4) can be selectively reacted. Therefore, the reaction between the compound (3) which is a by-product of the step (I) and the compound (4) ( The production of by-products generated by side reactions can be effectively suppressed. For this reason, the polymethine compound (1) which is a target compound can be obtained with a favorable yield. Furthermore, according to this production method, a highly pure polymethine compound (1) can be obtained through a simple purification operation.

化合物(4)において、X及びXは互いに独立して、電子吸引性基を示す。電子吸引性基としては、例えば、塩素、臭素、ヨウ素等のハロゲン原子;シアノ基;カルボキシル基;カルバモイル基;メチルアミド基、エチルアミド等のC1−10アルキルアミド基などのアルキルアミド基;メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、イソペントキシカルボニル基、ヘキトキシカルボニル基、2−メチル−ヘトキシカルボニル基、2−エチルブトキシカルボニル基、2−エチルヘトキシカルボニル基、ヘプトキシカルボニル基、オクトキシカルボニル基、2−ブチルオクトキシカルボニル基等の直鎖状又は分岐鎖状C1−20アルコキシ−カルボニル基、好ましくは直鎖状又は分岐鎖状C1−10アルコキシ−カルボニル基などのアルコキシカルボニル基;2−エトキシエトキシカルボニル基、2−メトキシエトキシカルボニル基、1−エトキシメトキシカルボニル基、2−プロポキシエトキシカルボニル基等のC1−6アルコキシC1−6アルコキシ−カルボニル基などのポリ(アルコキシ)カルボニル基;フェノキシ基等のC6−10アリールオキシ基などのアリールオキシ基;メチルカルボニル基、エチルカルボニル基等の直鎖状又は分岐鎖状C1−10アルキル−カルボニル基などのアルキルカルボニル基;フェニルカルボニル基等のC6−10アリール−カルボニル基などのアリールカルボニル基;メチルスルホニル基、エチルスルホニル基等の直鎖状又は分岐鎖状C1−10アルキルスルホニル基などのアルキルスルホニル基;フェニルスルホニル基等のC6−10アリール−スルホニル基などのアリールスルホニル基等が例示できる。これらのうち、シアノ基、アルコキシカルボニル基、ポリ(アルコキシ)カルボニル基、アルキルカルボニル基、カルバモイル基などが好ましい。 In the compound (4), X 1 and X 2 each independently represent an electron withdrawing group. Examples of the electron withdrawing group include halogen atoms such as chlorine, bromine and iodine; cyano group; carboxyl group; carbamoyl group; alkylamide group such as C 1-10 alkylamide group such as methylamide group and ethylamide; methoxycarbonyl group , Ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, isopentoxycarbonyl group, hexoxycarbonyl group, 2-methyl-he Linear or branched C 1-20 alkoxy such as toxoxycarbonyl group, 2-ethylbutoxycarbonyl group, 2-ethylhexoxycarbonyl group, heptoxycarbonyl group, octoxycarbonyl group, 2-butyloctoxycarbonyl group -Carbonyl group Preferably a straight chain or branched chain C 1-10 alkoxy - alkoxycarbonyl group such as a carbonyl group; 2-ethoxyethoxy group, 2-methoxyethoxy group, 1-ethoxy methoxycarbonyl group, 2-propoxy ethoxycarbonyl C 1-6 alkoxy such as C 1-6 alkoxy-carbonyl group such as C 1-6 alkoxy-carbonyl group; aryloxy group such as C 6-10 aryloxy group such as phenoxy group; methylcarbonyl group, ethylcarbonyl group etc. An alkylcarbonyl group such as a linear or branched C 1-10 alkyl-carbonyl group; an arylcarbonyl group such as a C 6-10 aryl-carbonyl group such as a phenylcarbonyl group; a straight chain such as a methylsulfonyl group or an ethylsulfonyl group; chain or branched chain C 1-10 Alkylsulfonyl groups such as alkylsulfonyl group; C 6-10 aryl such as phenylsulfonyl group - such as an arylsulfonyl group such as a sulfonyl group can be exemplified. Of these, cyano group, alkoxycarbonyl group, poly (alkoxy) carbonyl group, alkylcarbonyl group, carbamoyl group and the like are preferable.

また、XとXは互いに結合してそれらが結合する炭素原子と共に環を形成していてもよく、この環は、例えば、5〜10員環であり、好ましくは5〜8員環、さらに好ましくは5員環又は6員環である。 X 1 and X 2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded, and this ring is, for example, a 5- to 10-membered ring, preferably a 5- to 8-membered ring, More preferably, it is a 5-membered ring or a 6-membered ring.

化合物(4)の具体例としては、例えば、メルドラム酸;バルビツール酸;1,3−ジメチルバルビツール酸、1,3−ジエチルバルビツール酸等の1,3−ジアルキルバルビツール酸;1,3−ジフェニルバルビツール酸等の1,3−ジアリールバルビツール酸;ジメドン;ベンゾイルアセトニトリル;マロノニトリル;シアノ酢酸メチル、シアノ酢酸エチル、シアノ酢酸n−プロピル、シアノ酢酸イソプロピル、シアノ酢酸n−ブチル、シアノ酢酸sec−ブチル、シアノ酢酸tert−ブチル、シアノ酢酸イソペンチル、シアノ酢酸ヘキシル、シアノ酢酸2−メチルヘキシル、シアノ酢酸2−エチルブチル、シアノ酢酸2−エチルヘキシル、シアノ酢酸2−ブチルオクチル等のシアノ酢酸C1−20アルキル、好ましくはシアノ酢酸C1−10アルキル、シアノ酢酸2−エトキシエチル、シアノ酢酸2−メトキシエチル、シアノ酢酸1−エトキシメチル、シアノ酢酸2−プロポキシエチル等のシアノ酢酸C1−6アルコキシC1−6アルキルなどのシアノ酢酸エステル;マロン酸ジメチル、マロン酸ジエチル等のマロン酸ジC1−10アルキルなどのマロン酸エステル又はそれらの誘導体などが挙げられる。 Specific examples of the compound (4) include, for example, Meldrum acid; barbituric acid; 1,3-dialkylbarbituric acid such as 1,3-dimethylbarbituric acid and 1,3-diethylbarbituric acid; -1,3-diaryl barbituric acid such as diphenyl barbituric acid; dimedone; benzoyl acetonitrile; malononitrile; methyl cyanoacetate, ethyl cyanoacetate, n-propyl cyanoacetate, isopropyl cyanoacetate, n-butyl cyanoacetate, sec cyanoacetate sec C 1-20 cyanoacetate such as -butyl, tert-butyl cyanoacetate, isopentyl cyanoacetate, hexyl cyanoacetate, 2-methylhexyl cyanoacetate, 2-ethylbutyl cyanoacetate, 2-ethylhexyl cyanoacetate, 2-butyloctyl cyanoacetate Alkyl, preferably cyanoacetic acid C Cyanoacetic acid such as 1-10 alkyl, 2-ethoxyethyl cyanoacetate, 2-methoxyethyl cyanoacetate, 1-ethoxymethyl cyanoacetate, 2-propoxyethyl cyanoacetate, C 1-6 alkoxy C 1-6 alkoxy, etc. ester; dimethyl malonate, such as malonic acid esters or their derivatives, such as malonate C 1-10 alkyl diethyl malonate and the like.

前記混合物(M2)に添加する塩基としては、例えば酢酸塩、第二級アミン、第三級アミン、及びイミン類からなる群から選択される少なくとも1種が例示できる。   Examples of the base added to the mixture (M2) include at least one selected from the group consisting of acetates, secondary amines, tertiary amines, and imines.

酢酸塩としては、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム等の酢酸アルカリ金属塩又はアルカリ土類金属塩、酢酸アンモニウムなどが例示できる。これらの酢酸塩は単独で使用してもよいし二種以上を組み合わせて使用してもよい。   Examples of the acetate include alkali metal acetates such as sodium acetate, potassium acetate, and calcium acetate, alkaline earth metal salts, ammonium acetate, and the like. These acetates may be used alone or in combination of two or more.

第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン等の脂肪族第二級アミン;ピロリジン、ピペリジン、モルホリン、ピペラジン等の脂環式第二級アミン;N−メチルアニリン、ジベンジルアミン等の芳香族第二級アミンなどが例示できる。第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリイソプロピルアミン、N,N−ジイソプロピルエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルプロパンジアミン、1,4−ジアザビシクロ[2.2.2]オクタン等の脂肪族第三級アミン;ジシクロヘキシルエチルアミン、ジエチルシクロヘキシルアミン、1−メチルピペリジン、1−エチルピペリジン、1−メチルピロリジン、1−エチルピロリジン等の脂環式第三級アミン;N,N−ジメチルアニリン、N,N−ジエチルアニリン、トリベンジルアミン等の芳香族第三級アミンなどが例示できる。これらのアミン類は単独で用いてもよいし、二種以上を組み合わせて使用してもよい。   Examples of the secondary amine include aliphatic secondary amines such as dimethylamine, diethylamine, di-n-propylamine, and diisopropylamine; alicyclic secondary amines such as pyrrolidine, piperidine, morpholine, and piperazine; N— Aromatic secondary amines such as methylaniline and dibenzylamine can be exemplified. As the tertiary amine, for example, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, N, N-diisopropylethylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′ , N′-tetramethylpropanediamine, aliphatic tertiary amines such as 1,4-diazabicyclo [2.2.2] octane; dicyclohexylethylamine, diethylcyclohexylamine, 1-methylpiperidine, 1-ethylpiperidine, 1- Examples thereof include alicyclic tertiary amines such as methylpyrrolidine and 1-ethylpyrrolidine; aromatic tertiary amines such as N, N-dimethylaniline, N, N-diethylaniline and tribenzylamine. These amines may be used alone or in combination of two or more.

イミン類としては、例えば、1−プロパンイミン、イソプロパンイミン、1−ブタンイミン、N−ベンジリデンメチルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネンなどが例示できる。これのイミン類は単独で用いてもよいし、二種以上を組み合わせて使用してもよい。また、上述の酢酸塩、第二級アミン、第三級アミンと併用して使用してもよい。   Examples of the imines include 1-propanimine, isopropaneimine, 1-butanimine, N-benzylidenemethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4. .3.0] -5-nonene. These imines may be used alone or in combination of two or more. Moreover, you may use together with the above-mentioned acetate, secondary amine, and tertiary amine.

これらの塩基のうち、酢酸塩、第二級アミン、第三級アミンから選ばれる少なくとも一つが好ましく、酢酸塩、第三級アミンがさらに好ましく、特に第三級アミンが好ましい。第三級アミンの中でも、脂肪族第三級アミンが特に好ましい。工程(II)において化合物(2)と化合物(4)のみを選択的に反応できる観点から、好ましい。   Among these bases, at least one selected from acetates, secondary amines, and tertiary amines is preferable, acetates and tertiary amines are more preferable, and tertiary amines are particularly preferable. Of the tertiary amines, aliphatic tertiary amines are particularly preferred. In the step (II), it is preferable from the viewpoint that only the compound (2) and the compound (4) can be selectively reacted.

混合物(M2)に添加する塩基の使用量は、化合物(2)1モルに対して、例えば、0.5〜5モルであり、好ましくは0.8〜3モル、さらに好ましくは1〜2モル、特に好ましくは1.1〜1.5モルである。塩基の使用量が上記範囲内であると、意図しない副反応を抑制しながら化合物(2)と化合物(4)とを選択的に反応でき、良好な収率で化合物(1)を得ることができるため、好ましい。さらには、簡便な精製操作を経ることによって高純度のポリメチン化合物(1)を得ることができるため、好ましい。   The usage-amount of the base added to a mixture (M2) is 0.5-5 mol with respect to 1 mol of compounds (2), Preferably it is 0.8-3 mol, More preferably, it is 1-2 mol Particularly preferred is 1.1 to 1.5 mol. When the amount of the base used is within the above range, the compound (2) and the compound (4) can be selectively reacted while suppressing unintended side reactions, and the compound (1) can be obtained in a good yield. This is preferable because it is possible. Furthermore, it is preferable because a highly pure polymethine compound (1) can be obtained through a simple purification operation.

工程(II)において、混合物(M2)に添加(又は滴下)する塩基の速度(モル速度)は、化合物(2)1モルに対して一時間あたり、例えば、0.17〜10モルであり、好ましくは0.2〜7.5モル、より好ましくは0.25〜6.7モル、さらに好ましくは0.5〜5モルである。これらの範囲の速度で塩基を添加(又は滴下)すると、化合物(2)と化合物(4)とを選択的に反応させ、化合物(3)と化合物(4)との反応(副反応)により生じる副生成物の生成を有効に抑制できるため、好ましい。   In step (II), the rate (molar rate) of the base added (or added dropwise) to the mixture (M2) is, for example, 0.17 to 10 mol per hour relative to 1 mol of the compound (2), Preferably it is 0.2-7.5 mol, More preferably, it is 0.25-6.7 mol, More preferably, it is 0.5-5 mol. When a base is added (or added dropwise) at a rate within these ranges, the compound (2) and the compound (4) are selectively reacted to form a reaction (side reaction) between the compound (3) and the compound (4). Since the production | generation of a by-product can be suppressed effectively, it is preferable.

工程(II)において、混合物(M2)に添加(又は滴下)する塩基の添加時間は、例えば10分〜6時間の範囲であり、好ましくは40分〜5時間、より好ましくは45分〜4時間、さらに好ましくは1〜2時間の範囲である。塩基の添加時間が上記範囲内であると、前述の好ましい塩基の添加流量を得られるため、好ましい。   In step (II), the addition time of the base added (or added dropwise) to the mixture (M2) is, for example, in the range of 10 minutes to 6 hours, preferably 40 minutes to 5 hours, more preferably 45 minutes to 4 hours. More preferably, it is in the range of 1 to 2 hours. It is preferable for the addition time of the base to be in the above-mentioned range since the above-mentioned preferable base addition flow rate can be obtained.

[化合物(2)と化合物(4)との反応]
工程(II)は、化合物(2)、化合物(3)、及び化合物(4)を含む混合物(M2)に塩基を添加しながら、化合物(2)と化合物(4)とを反応させることを特徴とする。このような方法であると、化合物(3)と化合物(4)との反応を抑制しながら化合物(2)と化合物(4)とを選択的に反応させることができる。このため、良好な収率で化合物(1)を得ることができる。さらには、簡便な精製操作を経ることによって高純度のポリメチン化合物(1)を得ることができる。
[Reaction between Compound (2) and Compound (4)]
The step (II) is characterized by reacting the compound (2) and the compound (4) while adding a base to the mixture (M2) containing the compound (2), the compound (3), and the compound (4). And With such a method, the compound (2) and the compound (4) can be selectively reacted while suppressing the reaction between the compound (3) and the compound (4). For this reason, a compound (1) can be obtained with a favorable yield. Furthermore, a high-purity polymethine compound (1) can be obtained through a simple purification operation.

工程(II)において、化合物(4)の使用量は、化合物(2)1モルに対して、例えば、0.5〜5モルであり、好ましくは0.8〜3モル、さらに好ましくは1〜2モル、特に好ましくは1.1〜1.5モルでる。化合物(4)の使用量が上記範囲であると、化合物(2)と化合物(4)とを選択的に反応できるため、好ましい。   In step (II), the amount of compound (4) to be used is, for example, 0.5 to 5 mol, preferably 0.8 to 3 mol, more preferably 1 to 1 mol, relative to 1 mol of compound (2). 2 mol, particularly preferably 1.1 to 1.5 mol. It is preferable that the amount of compound (4) used be in the above range because compound (2) and compound (4) can be selectively reacted.

工程(II)における好ましい態様において、混合物(M2)はカルボン酸無水物(以下、酸無水物と記す。)を含む。混合物(M2)に酸無水物を含有させると、工程(II)の反応を温和な条件で行うことができる。   In a preferred embodiment in step (II), the mixture (M2) contains a carboxylic acid anhydride (hereinafter referred to as an acid anhydride). When an acid anhydride is contained in the mixture (M2), the reaction of the step (II) can be performed under mild conditions.

工程(II)で使用する酸無水物としては、例えば、無水酢酸、無水プロピオン酸、n−酪酸無水物、イソ酪酸無水物、無水コハク酸、無水マレイン酸、無水フタル酸等が挙げられる。使用する酸無水物と化合物(2)との反応性の観点から、脂肪族カルボン酸の酸無水物が好ましく、中でも無水酢酸が特に好ましい。   Examples of the acid anhydride used in step (II) include acetic anhydride, propionic anhydride, n-butyric anhydride, isobutyric anhydride, succinic anhydride, maleic anhydride, and phthalic anhydride. From the viewpoint of the reactivity between the acid anhydride to be used and the compound (2), an acid anhydride of an aliphatic carboxylic acid is preferable, and acetic anhydride is particularly preferable.

工程(II)における酸無水物の使用量は、化合物(2)1モルに対して、例えば、0.5〜5モルであり、好ましくは0.8〜3モル、さらに好ましくは1〜2モル、特に好ましくは1.1〜1.8モルである。酸無水物の使用量が上記範囲内であると、目的とする化合物(2)と化合物(4)との反応を阻害することなく化合物(1)を高収率で得られるため、好ましい。   The usage-amount of the acid anhydride in process (II) is 0.5-5 mol with respect to 1 mol of compounds (2), Preferably it is 0.8-3 mol, More preferably, it is 1-2 mol Particularly preferred is 1.1 to 1.8 mol. It is preferable that the amount of the acid anhydride used be within the above range because the compound (1) can be obtained in high yield without inhibiting the reaction between the target compound (2) and the compound (4).

工程(II)の好ましい実施態様においては、化合物(2)、化合物(3)、化合物(4)、必要に応じて酸無水物、及び溶媒(Y4)を含む混合物(M2)に対して、塩基を添加する。   In a preferred embodiment of the step (II), a base is used with respect to the mixture (M2) containing the compound (2), the compound (3), the compound (4), and optionally an acid anhydride and a solvent (Y4). Add.

溶媒(Y4)を含む混合物(M2)は、化合物(2)、化合物(3)、化合物(4)、必要に応じて酸無水物と溶媒(Y4)とを混合(又は撹拌混合)することにより得ることができる。   The mixture (M2) containing the solvent (Y4) is obtained by mixing (or stirring and mixing) the compound (2), the compound (3), the compound (4) and, if necessary, the acid anhydride and the solvent (Y4). Can be obtained.

溶媒(Y4)としては、例えば、溶媒(Y1)として上記に例示した溶媒が例示でき、その中でもアルコール類、ニトリル類が好ましく、特に、メタノール、エタノール、2−プロパノール、1−ブタノール、アセトニトリルから選ばれる少なくとも一つが好ましい。溶媒(Y4)がこれらから選ばれる少なくとも一つであると、後述する精製工程において溶媒(Y4)が水と任意の割合で混和し、反応で得られた化合物(1)と反応せずに残存した化合物(3)とを容易に分離できるため、好ましい。溶媒(Y4)として、これらの溶媒を単独で用いてもよく、二種以上を組み合わせて使用してもよい。   As the solvent (Y4), for example, the solvents exemplified above as the solvent (Y1) can be exemplified, and among them, alcohols and nitriles are preferable, and particularly selected from methanol, ethanol, 2-propanol, 1-butanol and acetonitrile. At least one of these is preferred. When the solvent (Y4) is at least one selected from these, the solvent (Y4) is mixed with water at an arbitrary ratio in the purification step described later, and remains without reacting with the compound (1) obtained by the reaction. The compound (3) is preferred because it can be easily separated. As a solvent (Y4), these solvents may be used independently and may be used in combination of 2 or more type.

混合物(M2)において、溶媒(Y4)の使用量は、化合物(2)及び化合物(3)の混合物1質量部に対して、例えば0.5〜30質量部であり、好ましくは1〜20質量部、より好ましくは2〜10質量部、さらに好ましくは3〜5質量部である。溶媒(Y4)の使用量が上記範囲内であると、化合物(2)と化合物(4)とを選択的に反応でき、かつ後述する精製工程において高収率で化合物(1)の結晶を得られるため、好ましい。   In the mixture (M2), the amount of the solvent (Y4) used is, for example, 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 1 part by mass of the mixture of the compound (2) and the compound (3). Parts, more preferably 2 to 10 parts by mass, and still more preferably 3 to 5 parts by mass. When the amount of the solvent (Y4) used is within the above range, the compound (2) and the compound (4) can be selectively reacted, and crystals of the compound (1) can be obtained in a high yield in the purification step described later. Therefore, it is preferable.

混合物(M2)の各成分の混合温度は、溶媒に化合物を溶解可能な温度であれば特に限定されないが、好ましくは0〜65℃、より好ましくは10〜50℃、さらに好ましくは20〜30℃である。また、混合時間は、特に限定されないが、好ましくは1分〜2時間、さらに好ましくは10分〜1時間である。当該混合は通常、撹拌しながら行ってもよく、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]下で行ってもよく、常圧、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。   The mixing temperature of each component of the mixture (M2) is not particularly limited as long as the compound can be dissolved in the solvent, but is preferably 0 to 65 ° C, more preferably 10 to 50 ° C, and still more preferably 20 to 30 ° C. It is. The mixing time is not particularly limited, but is preferably 1 minute to 2 hours, and more preferably 10 minutes to 1 hour. The mixing may be usually performed with stirring, may be performed in air or under an inert gas atmosphere [for example, nitrogen, rare gas (argon, etc.)], or may be performed under normal pressure, increased pressure, or reduced pressure. Good. In a preferred embodiment, it is carried out with stirring under normal pressure and / or inert gas atmosphere.

混合物(M2)に塩基を添加する際の添加温度は、例えば、0〜100℃であり、好ましくは5〜80℃、より好ましくは10〜70℃、さらに好ましくは15〜60℃である。添加温度が上記範囲内であると、化合物(2)と化合物(4)とを選択的に反応させ、化合物(3)と化合物(4)との反応(副反応)により生じる副生成物の生成を有効に抑制できるため、好ましい。   The addition temperature at the time of adding a base to a mixture (M2) is 0-100 degreeC, for example, Preferably it is 5-80 degreeC, More preferably, it is 10-70 degreeC, More preferably, it is 15-60 degreeC. When the addition temperature is within the above range, the compound (2) and the compound (4) are selectively reacted to produce a by-product generated by the reaction (side reaction) between the compound (3) and the compound (4). Can be effectively suppressed, which is preferable.

また、塩基の添加は混合物(M2)を撹拌しながら行ってもよく、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]下で行ってもよく、常圧、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、混合物(M2)を撹拌しながら塩基を添加する。   The addition of the base may be performed while stirring the mixture (M2), may be performed in the air or in an inert gas atmosphere [eg, nitrogen, rare gas (argon, etc.)] You may carry out under reduced pressure. In a preferred embodiment, the base is added while stirring the mixture (M2) under normal pressure and / or an inert gas atmosphere.

混合物(M2)に塩基を添加後、混合物(M2)を直ぐに後述する精製工程に供してもよいが、混合物(M2)を所定温度で所定時間撹拌混合することが好ましい。撹拌混合する温度としては、通常、0〜100℃の範囲であり、好ましくは5〜80℃、さらに好ましくは10〜60℃である。撹拌混合する時間としては、通常、1分〜24時間の範囲であり、好ましくは30分〜18時間、さらに好ましくは1〜8時間である。撹拌混合する温度、及び時間が上記範囲内であると、化合物(2)を残存することなく消費でき、かつ化合物(3)と化合物(4)との反応(副反応)を有効に抑制できる結果、化合物(1)が良好な収率で得られるため、好ましい。さらには、簡便な精製操作を経ることによって高純度のポリメチン化合物(1)を得ることができるため、好ましい。
<化合物(1)の精製方法>
After adding the base to the mixture (M2), the mixture (M2) may be immediately subjected to the purification step described later. However, the mixture (M2) is preferably stirred and mixed at a predetermined temperature for a predetermined time. As temperature to stir and mix, it is the range of 0-100 degreeC normally, Preferably it is 5-80 degreeC, More preferably, it is 10-60 degreeC. The time for stirring and mixing is usually in the range of 1 minute to 24 hours, preferably 30 minutes to 18 hours, and more preferably 1 to 8 hours. When the temperature and time for stirring and mixing are within the above range, the compound (2) can be consumed without remaining, and the reaction (side reaction) between the compound (3) and the compound (4) can be effectively suppressed. Since the compound (1) is obtained in a good yield, it is preferable. Furthermore, it is preferable because a highly pure polymethine compound (1) can be obtained through a simple purification operation.
<Purification method of compound (1)>

以下、工程(II)で得られた化合物(1)の精製方法について説明する。工程(II)の後に、工程(II)で得られた反応混合物(又は反応溶液)を水中に加える(又は添加する)工程(以下、晶析工程という場合がある)を行い、化合物(1)を晶析させると同時に、工程(II)において未反応で残存した化合物(3)を溶媒中に溶解させて分離することができる。   Hereinafter, the purification method of the compound (1) obtained in the step (II) will be described. After the step (II), a step of adding (or adding) the reaction mixture (or reaction solution) obtained in the step (II) to water (hereinafter sometimes referred to as a crystallization step) is performed, and the compound (1) At the same time, the compound (3) remaining unreacted in the step (II) can be dissolved in a solvent and separated.

晶析工程における水の温度は、通常0〜40℃の範囲であり、好ましくは0〜10℃、さらに好ましくは0〜5℃である。また、工程(II)で得られた反応混合物(又は反応溶液)は、晶析工程に供する前に上記の好ましい水の温度範囲と同様の温度に調製しておき、晶析工程を実施している間も内温を上記の好ましい温度範囲に維持することが好ましい。晶析工程における内温が上記範囲内であると、化合物(1)を良好な性状(例えば、粉状、もしくは粒状の形状)で得られ、かつ、化合物(3)の溶媒への溶解性を維持できるため、好ましい。   The temperature of water in the crystallization step is usually in the range of 0 to 40 ° C, preferably 0 to 10 ° C, more preferably 0 to 5 ° C. In addition, the reaction mixture (or reaction solution) obtained in step (II) is prepared at the same temperature as the above preferred water temperature range before being subjected to the crystallization step, and the crystallization step is carried out. It is preferable to maintain the internal temperature within the above-mentioned preferable temperature range even during the period. When the internal temperature in the crystallization step is within the above range, the compound (1) can be obtained in good properties (for example, powder or granular shape), and the solubility of the compound (3) in the solvent can be increased. Since it can maintain, it is preferable.

晶析工程における水の使用量は、工程(II)で使用した溶媒(Y4)1質量部に対して、通常、0.5〜30質量部であり、好ましくは1〜20質量部、より好ましくは2〜10質量部、さらに好ましくは3〜7質量部である。水の使用量が上記範囲内であると、化合物(1)の溶媒への溶解を抑制でき、かつ化合物(3)の溶媒への溶解性を維持できるため、このような簡便な精製操作によって、良好な収率で、高純度の化合物(1)の結晶が得られるため、好ましい。   The amount of water used in the crystallization step is usually 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 1 part by mass of the solvent (Y4) used in step (II). Is 2 to 10 parts by mass, more preferably 3 to 7 parts by mass. When the amount of water used is within the above range, the dissolution of the compound (1) in the solvent can be suppressed, and the solubility of the compound (3) in the solvent can be maintained. This is preferable because high-purity crystals of compound (1) can be obtained in good yield.

晶析工程は、水を撹拌した状態で工程(II)で得られた反応混合物(又は反応溶液)を水中へ添加(又は滴下)するのが好ましい。また、晶析工程は、空気中又は不活性ガス雰囲気[例えば窒素、希ガス(アルゴン等)]下で行ってもよく、常圧、加圧下又は減圧下で行ってもよい。好ましい態様では、常圧及び/又は不活性ガス雰囲気下、水を撹拌しながら工程(II)で得られた反応混合物(又は反応溶液)を添加する。   In the crystallization step, it is preferable to add (or add dropwise) the reaction mixture (or reaction solution) obtained in step (II) to water while stirring water. The crystallization step may be performed in air or in an inert gas atmosphere [for example, nitrogen, rare gas (such as argon)], or may be performed under normal pressure, increased pressure, or reduced pressure. In a preferred embodiment, the reaction mixture (or reaction solution) obtained in step (II) is added with stirring water under normal pressure and / or an inert gas atmosphere.

晶析工程で得られた化合物(1)の結晶は、溶媒を用いて分散洗浄する工程(分散洗浄工程という場合がある)を行うことにより、純度を更に向上させることができる。特に、工程(II)において酸無水物を使用した場合、反応により下記式(9)で表される化合物を副生するため、分散洗浄を実施することが好ましい。

Figure 2017214369
(式(9)中、Rは式(6)中と同様であり、Rは工程(II)で使用した酸無水物に起因するアルキル基を表す。例えば、工程(II)で無水酢酸を使用した場合、Rはメチル基を表し、無水プロピオン酸を使用した場合、Rはn−プロピル基を表す。) The purity of the crystal of the compound (1) obtained in the crystallization step can be further improved by carrying out a step of dispersion cleaning using a solvent (sometimes referred to as a dispersion cleaning step). In particular, when an acid anhydride is used in step (II), it is preferable to carry out dispersion washing because a compound represented by the following formula (9) is by-produced by the reaction.
Figure 2017214369
(In formula (9), R 5 is the same as in formula (6), and R 7 represents an alkyl group derived from the acid anhydride used in step (II). For example, acetic anhydride is used in step (II). R 7 represents a methyl group, and when propionic anhydride is used, R 7 represents an n-propyl group.)

分散洗浄は、複数回(例えば、2〜10回)行ってもよく、異なる溶媒を用いて複数回行ってもよいし、複数の溶媒を組み合わせて複数回行ってもよい。分散洗浄に使用する溶媒としては、例えば、溶媒(Y1)として上記に例示した溶媒の中から適宜選択できるが、水、炭化水素類(例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類など)、水とニトリル類(例えばアセトニトリル等)との混合溶媒が好ましい。特に好ましい態様においては、水とアセトニトリルとの混合溶媒により、複数回分散洗浄した後、脂肪族炭化水素類(好ましくはヘキサン、ヘプタン等)で複数回分散洗浄を行う。水とアセトニトリルの混合溶媒において、アセトニトリルの割合は、水100質量部に対して、好ましくは1〜100質量部、より好ましくは5〜50質量部、さらに好ましくは10〜30質量部である。このように、本発明では、水中添加工程及び/又は分散洗浄工程により、工程(II)で得られた化合物(1)を容易かつ簡便な分離精製方法によって、高純度の化合物(1)を良好な性状で、かつ高収率で得ることができる。   The dispersion cleaning may be performed a plurality of times (for example, 2 to 10 times), may be performed a plurality of times using different solvents, or may be performed a plurality of times by combining a plurality of solvents. The solvent used for the dispersion cleaning can be appropriately selected from, for example, the solvents exemplified above as the solvent (Y1), but water, hydrocarbons (for example, aliphatic hydrocarbons such as hexane, heptane, octane, etc.) A mixed solvent of water and nitriles (for example, acetonitrile) is preferable. In a particularly preferred embodiment, the dispersion cleaning is performed a plurality of times with a mixed solvent of water and acetonitrile, and then the dispersion cleaning is performed a plurality of times with an aliphatic hydrocarbon (preferably hexane, heptane, etc.). In the mixed solvent of water and acetonitrile, the proportion of acetonitrile is preferably 1 to 100 parts by mass, more preferably 5 to 50 parts by mass, and still more preferably 10 to 30 parts by mass with respect to 100 parts by mass of water. As described above, in the present invention, the compound (1) obtained in the step (II) is easily and simply separated and purified by the water addition step and / or the dispersion washing step. And can be obtained in high yield.

[工程(II)で得られる化合物(1)]
本発明によれば、工程(II)において化合物(2)と化合物(4)とを選択的に反応させることにより、化合物(3)と化合物(4)との反応(副反応)による副生成物の発生を有効に抑制する。また、続く晶析工程、場合によっては更に分散洗浄工程を実施することにより、高純度の化合物(1)を得ることができる。得られる化合物(1)の純度は、通常、80〜99.9%の範囲である。
なお、化合物(1)の純度(%)は、次式:[ポリメチン化合物(1)の質量/ポリメチン化合物(1)と他の成分との総質量]×100を用いて算出できる。他の成分は、目的化合物であるポリメチン化合物(1)に混入した成分、例えば、副生成物などを示す。また、工程(II)では、化合物(3)と化合物(4)との反応により生じる副生成物の生成を有効に抑制できるため、目的化合物である化合物(1)が高い収率(例えば、70〜99%)で得られる。なお、化合物(1)の収率(%)は、化合物(2)のモル量が化合物(4)のモル量以上である場合には、次式:[化合物(1)のモル量/化合物(4)のモル量]×100を用いて算出でき、化合物(2)のモル量が化合物(4)のモル量未満である場合には、次式:[化合物(1)のモル量/化合物(2)のモル量]×100を用いて算出できる。
[Compound (1) obtained in step (II)]
According to the present invention, the by-product resulting from the reaction (side reaction) between the compound (3) and the compound (4) by selectively reacting the compound (2) and the compound (4) in the step (II). Effectively suppress the occurrence of Moreover, a highly purified compound (1) can be obtained by implementing the subsequent crystallization process and the dispersion | distribution washing process depending on the case. The purity of the obtained compound (1) is usually in the range of 80 to 99.9%.
The purity (%) of compound (1) can be calculated using the following formula: [mass of polymethine compound (1) / total mass of polymethine compound (1) and other components] × 100. The other component indicates a component mixed in the target compound polymethine compound (1), such as a by-product. Further, in the step (II), the production of by-products generated by the reaction between the compound (3) and the compound (4) can be effectively suppressed, so that the target compound (1) has a high yield (for example, 70 ~ 99%). In addition, the yield (%) of the compound (1) is expressed by the following formula: [mol amount of compound (1) / compound (2) when the molar amount of compound (2) is not less than the molar amount of compound (4). 4) molar amount] × 100, and when the molar amount of compound (2) is less than the molar amount of compound (4), the following formula: [molar amount of compound (1) / compound ( 2) molar amount] × 100.

本発明の製造方法により得られるポリメチン化合物(1)は、副生成物の含有量が少ない、好ましくは副生成物を含有しないため、光の吸収選択能(例えば、紫外線の吸収選択能)に優れている。ポリメチン化合物(1)の光の極大吸収波長は、通常、300〜450nmの範囲であり、好ましくは350〜430nm、より好ましくは380〜400nmの範囲である。当該ポリメチン化合物(1)は、写真印刷用増感色素、光記録媒体用材料、紫外線吸収剤等として有用である。   The polymethine compound (1) obtained by the production method of the present invention is excellent in light absorption selectivity (for example, ultraviolet absorption selectivity) because it contains a small amount of by-products, and preferably contains no by-products. ing. The maximum absorption wavelength of light of the polymethine compound (1) is usually in the range of 300 to 450 nm, preferably 350 to 430 nm, more preferably 380 to 400 nm. The polymethine compound (1) is useful as a sensitizing dye for photographic printing, an optical recording medium material, an ultraviolet absorber, and the like.

化合物(1)のR及びRが互いに形成する環の具体例としては、例えば、下記式で表される環(i)〜(p)等が例示できる。

Figure 2017214369
Specific examples of the ring formed by R 1 and R 2 of compound (1) include rings (i) to (p) represented by the following formulas.
Figure 2017214369

化合物(1)の具体例としては、例えば、以下の表2及び表3に示す化合物等が例示できる。なお、表2及び表3の各行に記載された化合物は、各行に示されるR〜R、X及びXを有する化合物(1)を意味する。また、表2及び表3において、Meはメチル基、Etはエチル基、i-Prはイソプロピル基、t-Buはtert−ブチル基、Hは水素原子、Phはフェニル基、CNはシアノ基、CO2Meはメトキシカルボニル基、CO2Etはエトキシカルボニル基、CO2Ht(2-Et)は2−エチルヘトキシカルボニル基、CO2Et(2-OEt)は2−エトキシエトキシカルボニル基、COPhはフェニルカルボニル基を示し、R及びRの環構造は、R及びRが互いに形成する環を示し、X及びXの環構造はX及びXが互いに形成する環を示し、環(I)は2,2-ジメチル−1,3−ジオキサン−4,6−ジオン、環(II)はピリミジン-2,4,6(1H,3H,5H)−トリオン、環(III)は5,5−ジメチル−1,3−シクロヘキサンジオンを示す。 Specific examples of the compound (1) include the compounds shown in Table 2 and Table 3 below. Incidentally, the compounds described in each line of table 2 and table 3 refers to a compound having R 1 to R 4, X 1 and X 2 shown in each row (1). In Tables 2 and 3, Me is a methyl group, Et is an ethyl group, i-Pr is an isopropyl group, t-Bu is a tert-butyl group, H is a hydrogen atom, Ph is a phenyl group, CN is a cyano group, CO 2 Me is a methoxycarbonyl group, CO 2 Et is an ethoxycarbonyl group, CO 2 Ht (2-Et) is a 2-ethylhexoxycarbonyl group, CO 2 Et (2-OEt) is a 2-ethoxyethoxycarbonyl group, COPh represents a phenyl group, ring structure of R 1 and R 2 is a ring R 1 and R 2 form together a ring structure X 1 and X 2 are the ring X 1 and X 2 form together Ring (I) is 2,2-dimethyl-1,3-dioxane-4,6-dione, ring (II) is pyrimidine-2,4,6 (1H, 3H, 5H) -trione, ring (III ) Represents 5,5-dimethyl-1,3-cyclohexanedione.

Figure 2017214369
Figure 2017214369

Figure 2017214369
Figure 2017214369

本発明の製造方法は、少なくとも工程(II)を含む方法であればよい。工程(II)を含むと、上述したように副生成物の生成を有効に抑制でき、良好な収率でポリメチン化合物を効率良く得ることができる。また、上述した本発明の好ましい製造方法、すなわち、工程(II)に加えて工程(I)を含む方法は、両工程において上記副生成物の生成を抑制できるため、より良好な収率でポリメチン化合物(1)を得ることができる。特に好ましい実施態様、すなわち、工程(II)に加えて工程(I)及び水中添加工程(好ましくは水中添加工程及び分散洗浄工程)を含む方法を用いると、高純度の化合物(1)を効率的に製造することも可能となる。この方法の場合、化合物(1)を、好ましくは90%以上、さらに好ましくは95%以上、とりわけ99%以上の純度で得ることができる。このため、吸収選択性に優れたポリメチン化合物を効率的に得ることが可能である。なお、本発明の製造方法は、工程(A)、工程(I)及び工程(II)を含む方法であってもよい。   The production method of the present invention may be any method including at least step (II). When the step (II) is included, the production of by-products can be effectively suppressed as described above, and the polymethine compound can be efficiently obtained with a good yield. Moreover, since the preferable manufacturing method of the present invention described above, that is, the method including the step (I) in addition to the step (II) can suppress the formation of the by-product in both steps, the polymethine can be produced in a better yield. Compound (1) can be obtained. When using a particularly preferred embodiment, that is, a method comprising the step (I) and the water addition step (preferably the water addition step and the dispersion washing step) in addition to the step (II), the highly pure compound (1) is efficiently obtained. It can also be manufactured. In the case of this method, the compound (1) can be obtained with a purity of preferably 90% or more, more preferably 95% or more, especially 99% or more. For this reason, it is possible to efficiently obtain a polymethine compound having excellent absorption selectivity. The production method of the present invention may be a method including the step (A), the step (I) and the step (II).

本発明の別の実施態様においては、前記式(5)で表される化合物に、前記式(6)で表される化合物を添加しながら、前記式(5)で表される化合物と前記式(6)で表される化合物とを反応させて、前記式(2)で表される化合物及び前記式(3)で表される化合物を含む混合物(M1)を製造する方法も提供される。   In another embodiment of the present invention, the compound represented by the formula (5) and the formula are added to the compound represented by the formula (5) while adding the compound represented by the formula (6). There is also provided a method for producing a mixture (M1) containing the compound represented by the formula (2) and the compound represented by the formula (3) by reacting with the compound represented by (6).

この方法では、化合物(5)に、化合物(6)を添加(又は滴下)しつつ反応を行うことにより、化合物(3)の生成を有効に抑制でき、化合物(2)の含有率が高い混合物(M2)を効率的に得ることができる。このため、例えば、化合物(2)を原料とする前記ポリメチン化合物(1)を製造する場合に、このような方法で製造された混合物(M1)を原料として用いることにより、良好な収率で効率的に化合物(1)を得ることができる。   In this method, by reacting compound (5) while adding (or dropping) compound (6), formation of compound (3) can be effectively suppressed, and the mixture having a high content of compound (2) (M2) can be obtained efficiently. For this reason, for example, when producing the polymethine compound (1) using the compound (2) as a raw material, the mixture (M1) produced by such a method is used as a raw material, thereby improving the efficiency with a good yield. Thus, compound (1) can be obtained.

以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。なお、特記がない限り、例中の「%」及び「部」は、質量%及び質量部を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited by these examples. Unless otherwise specified, “%” and “part” in the examples indicate mass% and mass part.

高速液体クロマトグラフィー(HPLC)の分析条件を以下に示す。
<HPLC分析条件1>
測定装置:LC−10AT[(株)島津製作所製]
カラム:Kinetex(登録商標) ODS(5μm、4.6mmφ×10cm)
カラム温度:40℃
移動相:
A:0.1%トリフルオロ酢酸水溶液
B:0.1%トリフルオロ酢酸アセトニトリル溶液
グラジエント:
0分 B=2%
25分 B=30%
30分 B=30%
30.1分 B=2%
40分 STOP(TOTAL分析時間40分)
流量:1.0mL/分
検出:紫外吸収(波長:254nm)
Analytical conditions for high performance liquid chromatography (HPLC) are shown below.
<HPLC analysis condition 1>
Measuring apparatus: LC-10AT [manufactured by Shimadzu Corporation]
Column: Kinexex (registered trademark) ODS (5 μm, 4.6 mmφ × 10 cm)
Column temperature: 40 ° C
Mobile phase:
A: 0.1% trifluoroacetic acid aqueous solution B: 0.1% trifluoroacetic acid acetonitrile solution gradient:
0 minutes B = 2%
25 minutes B = 30%
30 minutes B = 30%
30.1 minutes B = 2%
40 minutes STOP (TOTAL analysis time 40 minutes)
Flow rate: 1.0 mL / min Detection: UV absorption (wavelength: 254 nm)

<HPLC分析条件2>
測定装置:LC−10AT[(株)島津製作所製]
カラム:Kinetex(登録商標) ODS(5μm、4.6mmφ×10cm)
カラム温度:40℃
移動相:
A:0.1%トリフルオロ酢酸水溶液
B:0.1%トリフルオロ酢酸アセトニトリル溶液
グラジエント:0分 B=2%
30分 B=100%
35分 B=100%
35.1分 B=2%
45分 STOP(TOTAL分析時間45分)
流量:1.0mL/分
検出:紫外吸収(波長:254nm)
<HPLC analysis condition 2>
Measuring apparatus: LC-10AT [manufactured by Shimadzu Corporation]
Column: Kinexex (registered trademark) ODS (5 μm, 4.6 mmφ × 10 cm)
Column temperature: 40 ° C
Mobile phase:
A: 0.1% trifluoroacetic acid aqueous solution B: 0.1% trifluoroacetic acid acetonitrile solution Gradient: 0 minutes B = 2%
30 minutes B = 100%
35 minutes B = 100%
35.1 minutes B = 2%
45 minutes STOP (TOTAL analysis time 45 minutes)
Flow rate: 1.0 mL / min Detection: UV absorption (wavelength: 254 nm)

(合成例1)

Figure 2017214369
(Synthesis Example 1)
Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した300mL−四ツ口フラスコ内に、窒素雰囲気下、2−メチル−1−ピロリン(シグマ・アルドリッチジャパン(株)製)20g、アセトニトリル200gを仕込んで攪拌を開始し、内温25℃にて保温した。ヨウ化メチル(和光純薬工業(株)製)51.2gを滴下漏斗からで2時間かけて滴下し、滴下終了後、さらに2時間保温した。次いで、減圧エバポレーターを用いて減圧濃縮し、アセトニトリルを除去した後、析出した薄茶色結晶を温度35℃の減圧乾燥器に投入し、化合物(A−1)の乾燥粗結晶を53.6g得た。見かけ収率は99%であった。   In a 300 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 20 g of 2-methyl-1-pyrroline (manufactured by Sigma-Aldrich Japan) and 200 g of acetonitrile were stirred in a nitrogen atmosphere. The temperature was kept at an internal temperature of 25 ° C. 51.2 g of methyl iodide (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped from the dropping funnel over 2 hours, and the temperature was further maintained for 2 hours after the completion of the dropping. Next, the solution was concentrated under reduced pressure using a vacuum evaporator to remove acetonitrile, and then the precipitated light brown crystals were put into a vacuum dryer at a temperature of 35 ° C. to obtain 53.6 g of dry crude crystals of compound (A-1). . The apparent yield was 99%.

H−NMR解析により、上記化合物(5−1)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[CDCl、δ(ppm)]:2.36(quin.2H)、2.63(s、3H)、3.40−3.48(m、2H)、3.57(s、3H)、4.30−4.36(m、2H)。
1 H-NMR analysis confirmed that the compound (5-1) was produced. The results of 1 H-NMR analysis are shown below.
1 H-NMR [CDCl 3 , δ (ppm)]: 2.36 (quin. 2H), 2.63 (s, 3H), 3.40-3.48 (m, 2H), 3.57 (s 3H), 4.30-4.36 (m, 2H).

(実施例1)
<工程(I)>

Figure 2017214369
Example 1
<Process (I)>
Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した300mL−四ツ口フラスコ内に、窒素雰囲気下、化合物(5−1)の粗結晶50g及び1−ブタノール(和光純薬工業(株)製)150gを仕込んで攪拌を開始し、混合物(M3−1)を調製後、オイルバスを用いて内温を80℃にした。   In a 300 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, under a nitrogen atmosphere, 50 g of crude crystal of compound (5-1) and 1-butanol (manufactured by Wako Pure Chemical Industries, Ltd.) 150 g Was added, and stirring was started. After preparing the mixture (M3-1), the internal temperature was set to 80 ° C. using an oil bath.

別途準備した、攪拌機、ジムロート冷却管及び温度計を設置した300mL−四ツ口フラスコ内に、窒素雰囲気下、N,N’−ジフェニルホルムアミジン(東京化成工業(株)製)43.2g及び1−ブタノール216gを仕込んで攪拌を開始し、混合物(M4−1)を調製後、オイルバスを用いて内温を80℃にした。次いで、混合物(M3−1)中へ混合物(M4−1)を、化合物(5−1)1モルに対して、N,N’−ジフェニルホルムアミジンを滴下して添加する速度が一時間あたり0.25モルとなるように、4時間かけて滴下し、さらに内温80℃にて4時間保温した。   43.2 g and 1 of N, N′-diphenylformamidine (manufactured by Tokyo Chemical Industry Co., Ltd.) under a nitrogen atmosphere in a separately prepared 300 mL-four-necked flask equipped with a stirrer, a Dimroth condenser and a thermometer. -Butanol 216g was prepared, stirring was started, and after preparing a mixture (M4-1), the internal temperature was 80 degreeC using the oil bath. Next, the rate at which N, N′-diphenylformamidine is added dropwise to the mixture (M3-1) and the mixture (M4-1) to 1 mol of the compound (5-1) is 0 per hour. The mixture was added dropwise over 4 hours so as to be 25 mol, and further kept at an internal temperature of 80 ° C. for 4 hours.

HPLC分析により、N,N’−ジフェニルホルムアミジンの消費を確認した後、冷却して内温を10℃にし、析出した湿結晶を濾取した。該湿結晶を2−プロパノールで洗浄した後、40℃の減圧乾燥器に投入し、化合物(2−1)と化合物(3−1)の混合物の乾燥結晶62.8gを得た。   After confirming the consumption of N, N′-diphenylformamidine by HPLC analysis, the mixture was cooled to an internal temperature of 10 ° C., and the deposited wet crystals were collected by filtration. The wet crystals were washed with 2-propanol and then placed in a vacuum dryer at 40 ° C. to obtain 62.8 g of dry crystals of a mixture of the compound (2-1) and the compound (3-1).

乾燥結晶のHPLC分析(上記分析条件1)を行った結果、化合物(2−1)と化合物(3−1)との検出ピーク面積比は81:19だった。
また、H−NMR解析により、上記化合物(2−1)と化合物(3−1)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[DMF−d6、δ(ppm)]:1.70−1.81(quin.2H)、2.31(s、0.6H)、2.50−2.62(m、0.4H)、2.89(s、3H)、3.00−3.08(m、5H)、3.54−3.60(m、2H)、3.69−3.75(m、0.4H)、5.62(d、1H)、6.67−6.80(m、1H)、6.94−7.15(m、5H)、7.60(s、0.2H)、7.96(s、0.1H)、8.12(d、1H)、10.89(s、1H)。
As a result of performing HPLC analysis (analysis condition 1) of the dried crystals, the detection peak area ratio between the compound (2-1) and the compound (3-1) was 81:19.
Moreover, it confirmed that the said compound (2-1) and the compound (3-1) produced | generated by < 1 > H-NMR analysis. The results of 1 H-NMR analysis are shown below.
1 H-NMR [DMF-d6, δ (ppm)]: 1.70-1.81 (quin.2H), 2.31 (s, 0.6H), 2.50-2.62 (m, 0 .4H), 2.89 (s, 3H), 3.00-3.08 (m, 5H), 3.54-3.60 (m, 2H), 3.69-3.75 (m, 0) .4H), 5.62 (d, 1H), 6.67-6.80 (m, 1H), 6.94-7.15 (m, 5H), 7.60 (s, 0.2H), 7.96 (s, 0.1H), 8.12 (d, 1H), 10.89 (s, 1H).

<工程(II)>

Figure 2017214369
<Process (II)>
Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した100mL−四ツ口フラスコ内に、窒素雰囲気下、化合物(2−1)と化合物(3−1)の混合物の乾燥結晶10g、無水酢酸(和光純薬工業(株)製)3.0g、シアノ酢酸エチル(東京化成工業(株)製)3.3g、及びアセトニトリル(和光純薬工業(株)製)30gを仕込んで攪拌を開始し、内温を25℃にした。25℃の内温下、滴下漏斗からトリエチルアミン(和光純薬工業(株)製)3.0gを、化合物(2−1)1モルに対してトリエチルアミンを滴下して添加する速度が一時間あたり約0.62モルとなるように、2時間かけて滴下し、さらに内温25℃にて2時間保温した。   In a 100 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, in a nitrogen atmosphere, 10 g of dry crystals of a mixture of the compound (2-1) and the compound (3-1), acetic anhydride (Wako Pure) Yakuhin Kogyo Co., Ltd. (3.0 g), ethyl cyanoacetate (Tokyo Kasei Kogyo Co., Ltd.) 3.3 g, and acetonitrile (Wako Pure Chemical Industries, Ltd.) 30 g were charged and stirring was started. Was brought to 25 ° C. Under an internal temperature of 25 ° C., 3.0 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise from a dropping funnel, and triethylamine was added dropwise to 1 mol of compound (2-1). The solution was added dropwise over 2 hours so as to be 0.62 mol, and further kept at an internal temperature of 25 ° C. for 2 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。次いで300mLビーカーに氷水150gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−1)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。このようにして得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−1)(乾燥結晶)を4.16g得た。収率は74%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. Next, 150 g of ice water was placed in a 300 mL beaker and stirred, the reaction solution was dropped into the beaker to crystallize the compound (1-1), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The wet crystals thus obtained were dried in a vacuum dryer at 75 ° C. to obtain 4.16 g of yellow powdered compound (1-1) (dry crystals). The yield was 74%.

H−NMR解析により、上記化合物(1−1)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[CDCl、δ(ppm)]: 1.31(t、3H)、2.09(quin.2H)、3.01(m、5H)、3.64(t、2H)、4.23(q、2H)、5.52(d、1H)、7.92(d、1H)。
1 H-NMR analysis confirmed that the compound (1-1) was produced. The results of 1 H-NMR analysis are shown below.
1 H-NMR [CDCl 3 , δ (ppm)]: 1.31 (t, 3H), 2.09 (quin. 2H), 3.01 (m, 5H), 3.64 (t, 2H), 4.23 (q, 2H), 5.52 (d, 1H), 7.92 (d, 1H).

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、上記化合物(3−1)に起因する下記構造の副生成物(A)が混入していないことを確認した。

Figure 2017214369
As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the byproduct (A) having the following structure derived from the above compound (3-1) was not mixed.
Figure 2017214369

(実施例2)

Figure 2017214369
(Example 2)
Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した200mL−四ツ口フラスコ内に、窒素雰囲気下、実施例1の工程(I)で得られた化合物(2−1)と化合物(3−1)の混合物の乾燥結晶20g、無水酢酸(和光純薬工業(株)製)6.0g、シアノ酢酸2−エチルヘキシル(東京化成工業(株)製)11.6g、及びアセトニトリル(和光純薬工業(株)製)60gを仕込んで攪拌を開始し、内温を25℃にした。25℃の内温下、滴下漏斗からN,N’−ジイソプロピルエチルアミン(以下、DIPEAと略す。東京化成工業(株)製)7.6gを、化合物(2−1)1モルに対してDIPEAを滴下して添加する速度が一時間あたり約0.62モルとなるように、2時間かけて滴下し、さらに内温25℃にて2時間保温した。   In a 200 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, the compound (2-1) and the compound (3-1) obtained in step (I) of Example 1 under a nitrogen atmosphere 20 g of dry crystals, 6.0 g of acetic anhydride (Wako Pure Chemical Industries, Ltd.), 11.6 g of 2-ethylhexyl cyanoacetate (Tokyo Chemical Industry Co., Ltd.), and acetonitrile (Wako Pure Chemical Industries, Ltd.) ) 60g) was charged and stirring was started, and the internal temperature was adjusted to 25 ° C. Under an internal temperature of 25 ° C., 7.6 g of N, N′-diisopropylethylamine (hereinafter abbreviated as “DIPEA”, manufactured by Tokyo Chemical Industry Co., Ltd.) was added from the dropping funnel to DIPEA with respect to 1 mol of the compound (2-1). The solution was added dropwise over 2 hours so that the rate of dropwise addition was about 0.62 mol per hour, and further kept at an internal temperature of 25 ° C. for 2 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。次いで500mLビーカーに氷水300gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−2)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。このようにして得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−2)(乾燥結晶)を12.9g得た。収率は83%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. Next, 300 g of ice water was placed in a 500 mL beaker and stirred. The reaction solution was dropped into the beaker to crystallize the compound (1-2), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The wet crystals thus obtained were dried in a vacuum dryer at 75 ° C. to obtain 12.9 g of yellow powdered compound (1-2) (dry crystals). The yield was 83%.

H−NMR解析により、上記化合物(1−2)が生成したことを確認した。以下にH−NMR分析の結果を示す。
1H−NMR[CDCl、δ(ppm)]:0.87−0.94(m、6H)、1.32−1.67(m、8H)、1.59−1.66(m、2H)、2.09(quin、2H)、3.00(m、5H)、3.64(t、2H)、4.10(dd、2H)、5.52(d、2H)、7.87(d、2H)。
1 H-NMR analysis confirmed that the compound (1-2) was produced. The results of 1 H-NMR analysis are shown below.
1H-NMR [CDCl 3 , δ (ppm)]: 0.87-0.94 (m, 6H), 1.32-1.67 (m, 8H), 1.59-1.66 (m, 2H) ), 2.09 (quin, 2H), 3.00 (m, 5H), 3.64 (t, 2H), 4.10 (dd, 2H), 5.52 (d, 2H), 7.87 (D, 2H).

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、上記化合物(3−1)に起因する下記構造の副生成物(B)が混入していないことを確認した。

Figure 2017214369
As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the by-product (B) having the following structure derived from the above compound (3-1) was not mixed.
Figure 2017214369

(実施例3)

Figure 2017214369
(Example 3)
Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した200mL−四ツ口フラスコ内に、窒素雰囲気下、実施例1の工程(I)で得られた化合物(2−1)と化合物(3−1)の混合物の乾燥結晶20g、無水酢酸(和光純薬工業(株)製)6.0g、シアノ酢酸2−エトキシエチル(東京化成工業(株)製)9.3g、及びアセトニトリル(和光純薬工業(株)製)120gを仕込んで攪拌を開始し、内温を25℃にした。25℃の内温下、滴下漏斗からDIPEA(東京化成工業(株)製)7.6gを、化合物(2−1)1モルに対してDIPEAを滴下して添加する速度が一時間あたり約0.62モルとなるように、2時間かけて滴下し、さらに内温25℃にて2時間保温した。   In a 200 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, the compound (2-1) and the compound (3-1) obtained in step (I) of Example 1 under a nitrogen atmosphere 20 g of dry crystals, 6.0 g of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.), 9.3 g of 2-ethoxyethyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.), and acetonitrile (Wako Pure Chemical Industries, Ltd. ( 120 g) was charged and stirring was started, and the internal temperature was adjusted to 25 ° C. Under an internal temperature of 25 ° C., 7.6 g of DIPEA (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise from a dropping funnel, and DIPEA was added dropwise to 1 mol of compound (2-1) at a rate of about 0 per hour. The solution was added dropwise over 2 hours so that the amount was 0.62 mol, and further kept at an internal temperature of 25 ° C. for 2 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。次いで500mLビーカーに氷水300gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−3)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−3)(乾燥結晶)を9.05g得た。収率は67%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. Next, 300 g of ice water was placed in a 500 mL beaker and stirred. The reaction solution was dropped into the beaker to crystallize the compound (1-3), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The obtained wet crystals were dried in a vacuum dryer at 75 ° C. to obtain 9.05 g of yellow powder compound (1-3) (dry crystals). The yield was 67%.

H−NMR解析により、上記化合物(1−3)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[CDCl、δ(ppm)]:1.21(t、3H)、2.10(quin.2H)、2.98−3.04(m、5H)、3.54−3.72(m、6H)、4.31(t、2H)、5.53(d、2H)、7.93(d、2H)。
1 H-NMR analysis confirmed that the compound (1-3) was produced. The results of 1 H-NMR analysis are shown below.
1 H-NMR [CDCl 3 , δ (ppm)]: 1.21 (t, 3H), 2.10 (quin. 2H), 2.98-3.04 (m, 5H), 3.54-3 .72 (m, 6H), 4.31 (t, 2H), 5.53 (d, 2H), 7.93 (d, 2H).

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する下記構造の副生成物(C)が混入していないことを確認した。

Figure 2017214369
As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the by-product (C) having the following structure derived from the compound (3-1) was not mixed.
Figure 2017214369

(実施例4)
反応に使用する溶媒をアセトニトリルに代えて、エタノール(ナカライテスク(株)製)を使用したこと以外は全て実施例1と同様にして、黄色粉末の化合物(1−1)を3.66g得た。収率は65%であった。
Example 4
3.66 g of yellow powder compound (1-1) was obtained in the same manner as in Example 1 except that ethanol (manufactured by Nacalai Tesque) was used instead of acetonitrile for the solvent used in the reaction. . The yield was 65%.

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する上記に示した副生成物(A)が混入していないことを確認した。 As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the by-product (A) shown above due to the compound (3-1) was not mixed.

(実施例5)
DIPEAを滴下する際の四ツ口フラスコ内の内温を70℃とし、DIPEAの滴下終了時点でHPLC分析を行い、反応終了を確認したこと以外は全て実施例2と同様にして、黄色粉末の化合物(1−2)を12.3g得た。収率は79%であった。
(Example 5)
The internal temperature in the four-necked flask when DIPEA was dropped was set to 70 ° C., HPLC analysis was performed at the end of DIPEA dropping, and the completion of the reaction was confirmed. 12.3 g of compound (1-2) was obtained. The yield was 79%.

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する上記に示した副生成物(B)が混入していないことを確認した。   As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the byproduct (B) shown above due to the compound (3-1) was not mixed.

(実施例6)

Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した200mL−四ツ口フラスコ内に、窒素雰囲気下、実施例1の工程(I)で得られた化合物(2−1)と化合物(3−1)の混合物の乾燥結晶20g、無水酢酸(和光純薬工業(株)製)6.3g、シアノ酢酸−2−エチルブチル10.4g、及びアセトニトリル(和光純薬工業(株)製)60gを仕込んで攪拌を開始し、内温を25℃にした。25℃の内温下、滴下漏斗からDIPEA(東京化成工業(株)製)8.0gを、化合物(2−1)1モルに対してDIPEAを滴下して添加する速度が一時間あたり約0.63モルとなるように、2時間かけて滴下し、さらに内温25℃にて2時間保温した。 (Example 6)
Figure 2017214369

In a 200 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, the compound (2-1) and the compound (3-1) obtained in step (I) of Example 1 under a nitrogen atmosphere 20 g of dry crystals of the mixture, 6.3 g of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.), 10.4 g of 2-ethylbutyl cyanoacetate, and 60 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were stirred. The internal temperature was brought to 25 ° C. Under an internal temperature of 25 ° C., 8.0 g of DIPEA (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise from a dropping funnel and DIPEA was added dropwise to 1 mol of the compound (2-1). The solution was added dropwise over 2 hours so as to be 0.63 mol, and further kept at an internal temperature of 25 ° C. for 2 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。次いで500mLビーカーに氷水300gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−4)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−4)(乾燥結晶)を11.6g得た。収率は85%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. Next, 300 g of ice water was placed in a 500 mL beaker and stirred. The reaction solution was dropped into the beaker to crystallize the compound (1-4), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The obtained wet crystals were dried in a vacuum dryer at 75 ° C. to obtain 11.6 g of yellow powder compound (1-4) (dry crystals). The yield was 85%.

H−NMR解析により、上記化合物(1−4)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[CDCl、δ(ppm)]:0.91(t、6H)、1.35−1.46(m、4H)、1.53−1.63(m、1H)、2.09(quin.2H)2.98−3.04(m、5H)、3.64(t、2H)、4.10(d、2H)、5.52(d、1H)、7.92(d、2H)。
1 H-NMR analysis confirmed that the compound (1-4) was produced. The results of 1 H-NMR analysis are shown below.
1 H-NMR [CDCl 3 , δ (ppm)]: 0.91 (t, 6H), 1.35 to 1.46 (m, 4H), 1.53-1.63 (m, 1H), 2 .09 (quin.2H) 2.98-3.04 (m, 5H), 3.64 (t, 2H), 4.10 (d, 2H), 5.52 (d, 1H), 7.92 (D, 2H).

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する下記構造の副生成物(D)が混入していないことを確認した。

Figure 2017214369
As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the by-product (D) having the following structure derived from the compound (3-1) was not mixed.
Figure 2017214369

(実施例7)

Figure 2017214369

攪拌機、ジムロート冷却管、及び温度計を設置した200mL−四ツ口フラスコ内に、窒素雰囲気下、実施例1の工程(I)で得られた化合物(2−1)と化合物(3−1)の混合物の乾燥結晶20g、無水酢酸(和光純薬工業(株)製)6.3g、シアノ酢酸−2−ブチルオクチル15.6g、及びアセトニトリル(和光純薬工業(株)製)60gを仕込んで攪拌を開始し、内温を25℃にした。25℃の内温下、滴下漏斗からN,N’−ジイソプロピルエチルアミン(以下、DIPEAと略す。東京化成工業(株)製)8.0gを、化合物(2−1)1モルに対してDIPEAを滴下して添加する速度が一時間あたり約0.63モルとなるように、2時間かけて滴下し、さらに内温25℃にて2時間保温した。 (Example 7)
Figure 2017214369

In a 200 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, the compound (2-1) and the compound (3-1) obtained in step (I) of Example 1 under a nitrogen atmosphere 20 g of dry crystals of the mixture, 6.3 g of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.), 15.6 g of cyanoacetic acid-2-butyloctyl, and 60 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) Agitation was started and the internal temperature was adjusted to 25 ° C. Under an internal temperature of 25 ° C., 8.0 g of N, N′-diisopropylethylamine (hereinafter abbreviated as DIPEA, manufactured by Tokyo Chemical Industry Co., Ltd.) was added from the dropping funnel, and DIPEA was added to 1 mol of the compound (2-1). The solution was added dropwise over 2 hours so that the rate of dropwise addition was about 0.63 mol per hour, and further kept at an internal temperature of 25 ° C. for 2 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。次いで500mLビーカーに氷水300gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−5)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−5)(乾燥結晶)を14.8g得た。収率は83%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. Next, 300 g of ice water was placed in a 500 mL beaker and stirred, and the reaction solution was dropped into the beaker to crystallize the compound (1-5), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The obtained wet crystals were dried in a vacuum dryer at 75 ° C. to obtain 14.8 g of yellow powder compound (1-5) (dry crystals). The yield was 83%.

H−NMR解析により、上記化合物(1−5)が生成したことを確認した。以下にH−NMR分析の結果を示す。
H−NMR[CDCl、δ(ppm)]:0.85−0.90(m、6H)、1.26(m、16H)1.68(m、1H)、2.09(quin.2H)2.94−3.03(m、5H)、3.64(t、2H)、4.07(d、2H)、5.52(d、1H)、7.91(d、2H)。
1 H-NMR analysis confirmed that the compound (1-5) was produced. The results of 1 H-NMR analysis are shown below.
1 H-NMR [CDCl 3 , δ (ppm)]: 0.85-0.90 (m, 6H), 1.26 (m, 16H) 1.68 (m, 1H), 2.09 (quin. 2H) 2.94-3.03 (m, 5H), 3.64 (t, 2H), 4.07 (d, 2H), 5.52 (d, 1H), 7.91 (d, 2H) .

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する下記構造の副生成物(E)が混入していないことを確認した。

Figure 2017214369
As a result of performing HPLC analysis (the above analysis condition 2) of the obtained dried crystal, it was confirmed that the by-product (E) having the following structure derived from the compound (3-1) was not mixed.
Figure 2017214369

(比較例1)
<工程(I)>
攪拌機、ジムロート冷却管、及び温度計を設置した300mL−四ツ口フラスコ内に、窒素雰囲気下、化合物(5−1)の粗結晶50g、N,N’−ジフェニルホルムアミジン(東京化成工業(株)製)43.6g及び1−ブタノール(和光純薬工業(株)製)200gを仕込んで攪拌を開始し、オイルバスを用いて内温を80℃にし、4時間保温した。HPLC分析により、N,N’−ジフェニルホルムアミジンの消費を確認し、冷却して内温を10℃にし、析出した湿結晶を濾取した。この湿結晶を2−プロパノールで洗浄した後、40℃の減圧乾燥器に投入し、化合物(2−1)と化合物(3−1)の混合物の乾燥結晶を60.3g得た。
(Comparative Example 1)
<Process (I)>
In a 300 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, under a nitrogen atmosphere, 50 g of crude crystals of compound (5-1), N, N′-diphenylformamidine (Tokyo Chemical Industry Co., Ltd.) )) 43.6 g and 1-butanol (manufactured by Wako Pure Chemical Industries, Ltd.) 200 g were charged, stirring was started, the internal temperature was set to 80 ° C. using an oil bath, and the temperature was kept for 4 hours. The consumption of N, N′-diphenylformamidine was confirmed by HPLC analysis, cooled to an internal temperature of 10 ° C., and the deposited wet crystals were collected by filtration. The wet crystals were washed with 2-propanol, and then put into a 40 ° C. vacuum dryer to obtain 60.3 g of dry crystals of a mixture of the compound (2-1) and the compound (3-1).

乾燥結晶のHPLC分析(上記分析条件1)を行った結果、化合物(2−1)と化合物(3−1)との検出ピーク面積比は57:43であった。この結果を実施例1の結果と比較すると、化合物(2−1)の収率が24%低下していることがわかった。   As a result of performing the HPLC analysis (the above-mentioned analysis condition 1) of the dried crystal, the detection peak area ratio between the compound (2-1) and the compound (3-1) was 57:43. When this result was compared with the result of Example 1, it was found that the yield of compound (2-1) was reduced by 24%.

<工程(II)>
攪拌機、ジムロート冷却管、及び温度計を設置した100mL−四ツ口フラスコ内に、窒素雰囲気下、化合物(2−1)と化合物(3−1)の混合物の乾燥結晶10g、無水酢酸(和光純薬工業(株)製)3.0g、トリエチルアミン(和光純薬工業(株)製)3.0g、シアノ酢酸エチル(東京化成工業(株)製)3.3g、及びアセトニトリル(和光純薬工業(株)製)30gを仕込んで攪拌を開始し、内温25℃で3時間保温した。
<Process (II)>
In a 100 mL four-necked flask equipped with a stirrer, a Dimroth condenser, and a thermometer, in a nitrogen atmosphere, 10 g of dry crystals of a mixture of the compound (2-1) and the compound (3-1), acetic anhydride (Wako Pure) 3.0 g of Yakuhin Kogyo Co., Ltd., 3.0 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.), 3.3 g of ethyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.), and acetonitrile (Wako Pure Chemical Industries, Ltd.) 30 g) was charged and stirring was started, and the temperature was kept at 25 ° C. for 3 hours.

HPLC分析(上記分析条件2)により反応の終了を確認後、フラスコを氷浴に浸して内温を2℃にした。300mLビーカーに氷水150gを仕込んで攪拌し、該ビーカー中へ反応溶液を滴下して化合物(1−1)を晶析し、得られた湿結晶を濾取した。この湿結晶の分散洗浄を、水:アセトニトリル=5:1の混合溶媒を用いて、合計5回実施した後、さらにヘプタンを用いて、湿結晶の分散洗浄を合計3回実施した。このようにして得られた湿結晶を75℃の減圧乾燥器中で乾燥し、黄色粉末の化合物(1−1)(乾燥結晶)を3.99g得た。収率は71%であった。   After confirming the completion of the reaction by HPLC analysis (analysis condition 2 above), the flask was immersed in an ice bath to bring the internal temperature to 2 ° C. A 300 mL beaker was charged with 150 g of ice water and stirred. The reaction solution was dropped into the beaker to crystallize the compound (1-1), and the resulting wet crystals were collected by filtration. The wet crystals were dispersed and washed five times in total using a mixed solvent of water: acetonitrile = 5: 1, and then wet crystals were further washed three times in total using heptane. The wet crystals thus obtained were dried in a vacuum dryer at 75 ° C. to obtain 3.99 g of yellow powder compound (1-1) (dry crystals). The yield was 71%.

得られた乾燥結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)に起因する上記に示した副生成物(A)が17%(面積百分率)混入していることを確認した。また、HPLC装置に付属のフォトダイオードアレイ(PDA)検出器を用いて各成分の極大吸収波長を測定した結果、化合物(1−1)は383nmであるのに対し、副生成物(A)は404nmであり、副生成物(A)が着色成分として混入することを確認した。   As a result of performing HPLC analysis (analysis condition 2) of the obtained dried crystal, 17% (area percentage) of the by-product (A) shown above due to the compound (3-1) is mixed. It was confirmed. Moreover, as a result of measuring the maximum absorption wavelength of each component using a photodiode array (PDA) detector attached to the HPLC apparatus, the compound (1-1) was 383 nm, whereas the by-product (A) was It was 404 nm, and it was confirmed that the by-product (A) was mixed as a coloring component.

(比較例2)
混合物(M4−1)中へ混合物(M3−1)を、化合物(5−1)1モルに対して、N,N’−ジフェニルホルムアミジンを滴下して添加する速度が一時間あたり0.25モルとなるように、4時間かけて滴下し、さらに内温80℃にて4時間保温したこと以外は、全て実施例1の工程(I)と同様にして、化合物(2−1)と化合物(3−1)の混合物の乾燥結晶を62.5g得た。
(Comparative Example 2)
The rate at which N, N′-diphenylformamidine is added dropwise to the mixture (M4-1) and the mixture (M3-1) to 1 mol of the compound (5-1) is 0.25 per hour. The compound (2-1) and the compound were all added in the same manner as in the step (I) of Example 1 except that the solution was added dropwise over 4 hours so as to be a mole, and further kept at an internal temperature of 80 ° C. for 4 hours. 62.5 g of dry crystals of the mixture of (3-1) was obtained.

乾燥結晶のHPLC分析(上記分析条件1)を行った結果、化合物(2−1)と化合物(3−1)との検出ピーク面積比は55:45であった。この結果を実施例1の結果と比較すると、化合物(2−1)の収率が26%低下していることがわかった。   As a result of performing HPLC analysis (the above analysis condition 1) of the dried crystals, the detection peak area ratio of the compound (2-1) to the compound (3-1) was 55:45. When this result was compared with the result of Example 1, it was found that the yield of compound (2-1) was reduced by 26%.

(参考例1)
実施例1において、工程(II)の反応終了を確認した時点で析出していた結晶を濾取し、湿結晶を得た。該湿結晶のHPLC分析(上記分析条件2)を行った結果、化合物(3−1)が6.1%(面積百分率)混入していることを確認した。
(Reference Example 1)
In Example 1, crystals that had precipitated when the completion of the reaction in step (II) was confirmed were collected by filtration to obtain wet crystals. As a result of performing HPLC analysis (the above analysis condition 2) of the wet crystal, it was confirmed that 6.1% (area percentage) of the compound (3-1) was mixed.

Claims (11)

下記式(1)
Figure 2017214369
[式中、R及びRは互いに独立して、水素原子又は置換基を有していてもよい炭素数1〜20のアルキル基を表し、R及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよく、前記炭素数1〜20のアルキル基を構成する−CH−は、−O−、−S−、又は−NH−と置き換わっていてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキル基を表し、前記炭素数1〜10のアルキル基を構成する−CH−は、−O−又は−S−と置き換わっていてもよい。Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。X及びXは互いに独立して、電子吸引性基を表し、XとXは互いに結合してそれらが結合する炭素原子と共に環を形成していてもよい。]
で表される化合物の製造方法であって、
下記式(2)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。Z-はアニオンを表す。R〜Rは前記と同じ意味を表す。]
で表される化合物、下記式(3)
Figure 2017214369
[式中、R〜R及びZ-は前記と同じ意味を表す。]
で表される化合物、及び下記式(4)
Figure 2017214369
[式中、X及びXは前記と同じ意味を表す。]
で表される化合物を含む混合物(M2)に、塩基を添加しながら、前記式(2)で表される化合物と、前記式(4)で表される化合物とを反応させる工程(II)を含む、製造方法。
Following formula (1)
Figure 2017214369
[Wherein, R 1 and R 2 independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 1 and R 2 are bonded to each other, May form a ring together with the carbon atom and nitrogen atom to which — is bonded, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms is replaced with —O—, —S—, or —NH—. It may be. R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and —CH 2 — constituting the alkyl group having 1 to 10 carbon atoms is replaced with —O— or —S—. It may be. R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. X 1 and X 2 each independently represent an electron-withdrawing group, and X 1 and X 2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded. ]
A process for producing a compound represented by
Following formula (2)
Figure 2017214369
[Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aryl group having 6 to 12 carbon atoms which may have a substituent. Z represents an anion. R 1 to R 4 represent the same meaning as described above. ]
A compound represented by the following formula (3)
Figure 2017214369
[Wherein R 1 to R 5 and Z represent the same meaning as described above. ]
And a compound represented by the following formula (4)
Figure 2017214369
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
A step (II) of reacting the compound represented by the formula (2) with the compound represented by the formula (4) while adding a base to the mixture (M2) containing the compound represented by A manufacturing method.
下記式(5)
Figure 2017214369
[式中、R〜R及びZ-は前記と同じ意味を表す。]
で表される化合物に、下記式(6)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表し、R及びRは前記と同じ意味を表す。]
で表される化合物を添加しながら、前記式(5)で表される化合物と前記式(6)で表される化合物とを反応させることで、前記式(2)で表される化合物と、前記式(3)で表される化合物とを含む混合物(M1)を得る工程(I)を含む、請求項1に記載の方法。
Following formula (5)
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as described above. ]
In the compound represented by the following formula (6)
Figure 2017214369
[Wherein R 6 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms; 4 and R 5 represent the same meaning as described above. ]
While adding the compound represented by the formula (5), the compound represented by the formula (5) and the compound represented by the formula (6) are reacted, The method of Claim 1 including the process (I) of obtaining the mixture (M1) containing the compound represented by the said Formula (3).
前記式(1)で表される化合物、前記式(2)で表される化合物及び前記式(3)で表される化合物は、それぞれR及びRが互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成している化合物である、請求項1に記載の方法。 In the compound represented by the formula (1), the compound represented by the formula (2), and the compound represented by the formula (3), R 1 and R 2 are bonded to each other, and they are bonded. The method of Claim 1 which is a compound which forms the ring with a carbon atom and a nitrogen atom. 前記式(5)で表される化合物は、R及びRが互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成している化合物であり、前記式(6)で表される化合物は、Rが水素原子であり、R及びRがそれぞれ置換基を有していてもよい炭素数6〜12のアリール基である化合物である、請求項2に記載の方法。 The compound represented by the formula (5) is a compound in which R 1 and R 2 are bonded to each other and form a ring together with the carbon atom and nitrogen atom to which they are bonded, and represented by the formula (6). The method according to claim 2, wherein R 4 is a hydrogen atom, and R 5 and R 6 are each an aryl group having 6 to 12 carbon atoms that may have a substituent. . 前記工程(II)において、前記式(2)で表される化合物1モルに対して、塩基を一時間あたり0.17〜10モルの速度で添加する、請求項1〜4のいずれかに記載の方法。   In the said process (II), a base is added at a speed | rate of 0.17-10 mol per hour with respect to 1 mol of compounds represented by the said Formula (2). the method of. 前記工程(I)において、前記式(5)で表される化合物1モルに対して、前記式(6)で表される化合物を一時間あたり0.02〜300モルの速度で添加する、請求項2又は4に記載の方法。   In the step (I), the compound represented by the formula (6) is added at a rate of 0.02 to 300 mol per hour with respect to 1 mol of the compound represented by the formula (5). Item 5. The method according to Item 2 or 4. 前記塩基は、酢酸塩、第二級アミン、第三級アミン、及びイミン類からなる群から選択される少なくとも1種である、請求項1〜6のいずれかに記載の方法。   The method according to claim 1, wherein the base is at least one selected from the group consisting of acetates, secondary amines, tertiary amines, and imines. 前記式(4)で表される化合物は、メルドラム酸、バルビツール酸、ジメドン、ベンゾイルアセトニトリル、マロノニトリル、シアノ酢酸エステル、マロン酸エステル、又は、それらの誘導体である、請求項1〜7のいずれかに記載の方法。   The compound represented by the formula (4) is Meldrum's acid, barbituric acid, dimedone, benzoylacetonitrile, malononitrile, cyanoacetic acid ester, malonic acid ester, or a derivative thereof. The method described in 1. 前記工程(II)後に、工程(II)で得られた反応混合物を水中に加える工程を含む、請求項1〜8のいずれかに記載の方法。   The method according to any one of claims 1 to 8, comprising a step of adding the reaction mixture obtained in the step (II) into water after the step (II). 下記式(5)
Figure 2017214369
[式中、R及びRは互いに独立して、水素原子又は置換基を有していてもよい炭素数1〜20のアルキル基を表し、R及びRは互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成していてもよく、前記炭素数1〜20のアルキル基を構成する−CH−は、−O−、−S−、又は−NH−と置き換わっていてもよい。Rは置換基を有していてもよい炭素数1〜10のアルキル基を表し、前記炭素数1〜10のアルキル基を構成する−CH−は、−O−又は−S−と置き換わっていてもよい。Z-はアニオンを表す。]
で表される化合物に、下記式(6)
Figure 2017214369
[式中、Rは水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。R及びRは互いに独立して、水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、又は置換基を有していてもよい炭素数6〜12のアリール基を表す。]
で表される化合物を添加しながら、前記式(5)で表される化合物と前記式(6)で表される化合物とを反応させることで、下記式(2)
Figure 2017214369
[式中、R〜R及びZ-は式(5)中と、R及びRは式(6)中と同じ意味を表す。]
で表される化合物と、下記式(3)
Figure 2017214369
[式中、R〜R及びZ-は式(5)中と、R及びRは式(6)中と同じ意味を表す。]
で表される化合物とを含む混合物(M1)を製造する方法。
Following formula (5)
Figure 2017214369
[Wherein, R 1 and R 2 independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 20 carbon atoms, and R 1 and R 2 are bonded to each other, May form a ring together with the carbon atom and nitrogen atom to which — is bonded, —CH 2 — constituting the alkyl group having 1 to 20 carbon atoms is replaced with —O—, —S—, or —NH—. It may be. R 3 represents an optionally substituted alkyl group having 1 to 10 carbon atoms, and —CH 2 — constituting the alkyl group having 1 to 10 carbon atoms is replaced with —O— or —S—. It may be. Z represents an anion. ]
In the compound represented by the following formula (6)
Figure 2017214369
[Wherein, R 4 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. R 5 and R 6 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted aryl group having 6 to 12 carbon atoms. Represents. ]
The compound represented by the above formula (5) is reacted with the compound represented by the above formula (6) while adding the compound represented by the following formula (2).
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as in formula (5), and R 4 and R 5 represent the same meaning as in formula (6). ]
And a compound represented by the following formula (3)
Figure 2017214369
[Wherein R 1 to R 3 and Z represent the same meaning as in formula (5), and R 4 and R 5 represent the same meaning as in formula (6). ]
The method of manufacturing the mixture (M1) containing the compound represented by these.
前記式(5)で表される化合物は、R及びRが互いに結合して、それらが結合する炭素原子及び窒素原子と共に環を形成している化合物であり、前記式(6)で表される化合物は、Rが水素原子であり、R及びRがそれぞれ置換基を有していてもよい炭素数6〜12のアリール基である化合物である、請求項10に記載の方法。 The compound represented by the formula (5) is a compound in which R 1 and R 2 are bonded to each other and form a ring together with the carbon atom and nitrogen atom to which they are bonded, and represented by the formula (6). The compound according to claim 10, wherein R 4 is a hydrogen atom, and R 5 and R 6 are each an aryl group having 6 to 12 carbon atoms which may have a substituent. .
JP2017104949A 2016-05-31 2017-05-26 Method for producing polymethine compound Pending JP2017214369A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109235 2016-05-31
JP2016109235 2016-05-31

Publications (1)

Publication Number Publication Date
JP2017214369A true JP2017214369A (en) 2017-12-07

Family

ID=60477423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104949A Pending JP2017214369A (en) 2016-05-31 2017-05-26 Method for producing polymethine compound

Country Status (3)

Country Link
JP (1) JP2017214369A (en)
TW (1) TW201811745A (en)
WO (1) WO2017208905A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446848B2 (en) * 2019-02-28 2024-03-11 住友化学株式会社 Optical layer and laminate including the optical layer
KR20210144814A (en) * 2019-03-28 2021-11-30 스미또모 가가꾸 가부시키가이샤 adhesive composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE883025C (en) * 1940-12-02 1953-07-13 Hoechst Ag Process for the preparation of sensitizing dyes
DE902290C (en) * 1942-02-20 1954-03-22 Hoechst Ag Process for the preparation of sensitizing dyes
GB1120047A (en) * 1966-04-26 1968-07-17 Ilford Ltd Cyanine dyes
JPS53134431A (en) * 1977-04-27 1978-11-24 Fuji Photo Film Co Ltd Photographic photosensitive material of silver halide
JPS54111826A (en) * 1978-02-21 1979-09-01 Konishiroku Photo Ind Co Ltd Silver halide photographic material
JPS56111847A (en) * 1980-02-08 1981-09-03 Mitsubishi Paper Mills Ltd Silver halide photographic emulsion
DE10109243A1 (en) * 2001-02-26 2002-09-05 Few Chemicals Gmbh New pyrrolidine or oxazolidine merocyanine compounds useful as dyes in optical data recording media, especially recordable DVD disks
JP2006016564A (en) * 2004-07-05 2006-01-19 Konica Minolta Holdings Inc Pyrazolone dye
JP2014194508A (en) * 2013-03-29 2014-10-09 Fujifilm Corp Photosensitive resin composition, cured film, image forming method, solid-state imaging element, color filter and ultraviolet absorbent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649800B1 (en) * 2015-12-28 2024-03-20 스미또모 가가꾸 가부시끼가이샤 Light absorptive compound, polymer composition containing the compound, polymer film, and cured layer
CN106918862B (en) * 2015-12-28 2021-05-25 住友化学株式会社 Phase difference film
KR20170077817A (en) * 2015-12-28 2017-07-06 스미또모 가가꾸 가부시끼가이샤 Optical laminate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE883025C (en) * 1940-12-02 1953-07-13 Hoechst Ag Process for the preparation of sensitizing dyes
DE902290C (en) * 1942-02-20 1954-03-22 Hoechst Ag Process for the preparation of sensitizing dyes
GB1120047A (en) * 1966-04-26 1968-07-17 Ilford Ltd Cyanine dyes
JPS53134431A (en) * 1977-04-27 1978-11-24 Fuji Photo Film Co Ltd Photographic photosensitive material of silver halide
JPS54111826A (en) * 1978-02-21 1979-09-01 Konishiroku Photo Ind Co Ltd Silver halide photographic material
JPS56111847A (en) * 1980-02-08 1981-09-03 Mitsubishi Paper Mills Ltd Silver halide photographic emulsion
DE10109243A1 (en) * 2001-02-26 2002-09-05 Few Chemicals Gmbh New pyrrolidine or oxazolidine merocyanine compounds useful as dyes in optical data recording media, especially recordable DVD disks
JP2006016564A (en) * 2004-07-05 2006-01-19 Konica Minolta Holdings Inc Pyrazolone dye
JP2014194508A (en) * 2013-03-29 2014-10-09 Fujifilm Corp Photosensitive resin composition, cured film, image forming method, solid-state imaging element, color filter and ultraviolet absorbent

Also Published As

Publication number Publication date
TW201811745A (en) 2018-04-01
WO2017208905A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
TWI410413B (en) Preparation method of methylene disulfonate compound
RU2419617C2 (en) Method of producing dihydroquinazolines
Sternativo et al. One-pot synthesis of aziridines from vinyl selenones and variously functionalized primary amines
JP2017214369A (en) Method for producing polymethine compound
Meshram et al. Convenient and simple synthesis of 2-aminothiazoles by the reaction of α-halo ketone carbonyls with ammonium thiocyanate in the presence of N-methylimidazole
Lohar et al. Synthesis and characterization of new quaternary ammonium surfactant [C 18-Dabco][Br] and its catalytic application in the synthesis of spirocarbocycles under ultrasonic condition
WO2012026266A1 (en) Method for producing a methylene disulfonate compound
Thirupathaiah et al. Solvent-free sonochemical multi-component synthesis of benzopyranopyrimidines catalyzed by polystyrene supported p-toluenesulfonic acid
US20240140956A1 (en) Novel Pharmaceutical Intermediates and Methods for Preparing the Same
JP7387599B2 (en) Cookson type derivatization reagent, method for producing Cookson type derivatization reagent, method for producing ene compound, and method for analyzing ene compound
Jalani et al. An efficient synthesis of 2-aminopyrroles from enaminone–amidine adduct and phenacyl/benzyl/heteroalkyl-halides
JP5008404B2 (en) Method for producing methylene disulfonate compound
CN108658805A (en) A kind of preparation method of asymmetry azobenzene
JP5130521B2 (en) Heteropolycyclic phenazine compounds
Ko et al. Development of new DMAP-related organocatalysts for use in the Michael addition reaction of β-ketoesters in water
Adib et al. TBHP/R4N+ X–promoted hydroaroylation of dialkyl azodicarboxylates with methyl arenes, aldehydes, aryl methanols and arylmethyl chlorides
Punda et al. Simple and novel synthesis of 3-(thio) phosphoryl-β-lactams by radical cyclization
JP4963970B2 (en) Method for producing methylene disulfonate compound
JP6289177B2 (en) Method for producing nitrogen-containing heterocyclic compound
RU2425047C1 (en) Method of producing substituted 4-hydroxy-3-oxo-3,4-dihydro-2h-1,4-benzoxazine-6,7-dicarbonitriles based on 4-bromo-5-nitrophthalonitrile
JP2006265154A (en) Method for producing pyrazoloazole-based coupler
JP2008013506A (en) Method for producing furan derivative
AU2014221468A1 (en) Substituted (R)-3-(4-methylcarbamoyl-3-fluorophenylamino)tetrahydrofuran-3-enecarboxylic acid (variants) and ester thereof, method for producing and using same
KR101105966B1 (en) Tetrapyrazinoporphyrazine derivatives and Tetrapyrazinoporphyrazinato metal complex
CN110804007A (en) Polysubstituted pyrrole derivative and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102