JP2017212045A - battery - Google Patents

battery Download PDF

Info

Publication number
JP2017212045A
JP2017212045A JP2016102583A JP2016102583A JP2017212045A JP 2017212045 A JP2017212045 A JP 2017212045A JP 2016102583 A JP2016102583 A JP 2016102583A JP 2016102583 A JP2016102583 A JP 2016102583A JP 2017212045 A JP2017212045 A JP 2017212045A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016102583A
Other languages
Japanese (ja)
Inventor
相吾 東
Shogo Higashi
相吾 東
ツエイ イ
Zei Li
ツエイ イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Leland Stanford Junior University
Original Assignee
Toyota Central R&D Labs Inc
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Leland Stanford Junior University filed Critical Toyota Central R&D Labs Inc
Priority to JP2016102583A priority Critical patent/JP2017212045A/en
Publication of JP2017212045A publication Critical patent/JP2017212045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To further reliably prevent a short circuit of an electrode.SOLUTION: A battery 10 comprises: a positive electrode 11; a negative electrode 14; a shield member 17, arranged between the positive electrode 11 and the negative electrode 14, which does not conduct ions and includes an insulator; and an ion conduction medium 21 which conducts the ions between a surface other than an opposite face 11a of the positive electrode 11 (for example, a back face 11b or a lateral face 11c) and a surface other than an opposite face 14a of the negative electrode 14 (for example, a back face 14b or a lateral face 14c). The battery 10 has a back-face electrodeposition structure in which battery chemical reactions such as electrodeposition and dissolution are performed on the back face 11b side of the positive electrode 11 and the back face 14b side of the negative electrode 14.SELECTED DRAWING: Figure 1

Description

本発明は、電池に関する。   The present invention relates to a battery.

従来、電池としては、例えば、充電時に電極に導電性物質が形成されるものもがある。この電池では、形成される導電性物質が対向極に到達し、電池が短絡することがあった。その要因としては、電極表面形状の不完全性に伴う幾何学的配置からくる電場勾配と電池充電時における平衡条件からの逸脱などが挙げられる。このような短絡を防ぐ方法としては、電極表面形状を完全にフラットなものにして電場勾配を無くし、平衡条件からのずれを全く起きないようにすることが挙げられるが、完全にフラットな表面を得ることは工学的見地から困難である。一方、物理的に導電性物質が対向極に到達することを防ぐ目的でポリマー電解質や固体電解質を電極間に適用することが検討されている。また、電解液をフローさせるフロー電池の構成とすることで電極の短絡を防止することも試みられている(例えば、特許文献1参照)。   Conventionally, as a battery, for example, there is a battery in which a conductive substance is formed on an electrode during charging. In this battery, the formed conductive material may reach the counter electrode, and the battery may be short-circuited. The factors include the electric field gradient resulting from the geometrical arrangement due to the imperfection of the electrode surface shape and the deviation from the equilibrium condition during battery charging. As a method for preventing such a short circuit, the electrode surface shape can be made completely flat to eliminate the electric field gradient so as not to cause any deviation from the equilibrium condition. Obtaining is difficult from an engineering point of view. On the other hand, application of a polymer electrolyte or a solid electrolyte between the electrodes has been studied for the purpose of physically preventing the conductive material from reaching the counter electrode. In addition, attempts have been made to prevent short-circuiting of electrodes by adopting a flow battery configuration in which an electrolytic solution flows (see, for example, Patent Document 1).

特開2014−135218号公報JP 2014-135218 A

しかしながら、上述の特許文献1のようなフロー電池では、電池短絡を避けることが可能な構成とすることができる一方で、ポンプなどのフロー電池の駆動に欠かせない構成要素があり、全体としてのエネルギー密度損が大きく、ポータブル用途などには適用しにくいなど、制約が多かった。また、電極間に固体電解質を用いる場合においても、固体電解質が還元されるなどする場合があり、このような場合は、電池短絡することもあり得た。電極の短絡をより確実に防止することが望まれていた。   However, the flow battery such as the above-mentioned Patent Document 1 can be configured to avoid a battery short circuit, while there are components indispensable for driving a flow battery such as a pump. There were many restrictions such as large energy density loss and difficult to apply to portable applications. Even when a solid electrolyte is used between the electrodes, the solid electrolyte may be reduced. In such a case, the battery may be short-circuited. It has been desired to more reliably prevent short-circuiting of electrodes.

本発明は、このような課題に鑑みなされたものであり、電極の短絡をより確実に防止することができる電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the battery which can prevent the short circuit of an electrode more reliably.

上述した目的を達成するために鋭意研究したところ、本発明者らは、正極と負極との間に絶縁体とイオン伝導を遮蔽する部材を設け、正極及び負極が対向する反対側の背面で電気化学反応を行う構成にすると、電極の短絡をより確実に防止することができることを見いだし、本発明を完成するに至った。   As a result of diligent research in order to achieve the above-described object, the present inventors have provided an insulator and a member that shields ionic conduction between the positive electrode and the negative electrode, and the back surface on the opposite side where the positive electrode and the negative electrode face each other. It has been found that the short circuit of the electrode can be prevented more reliably when the chemical reaction is performed, and the present invention has been completed.

即ち、本発明の電池は、
正極と、
負極と、
前記正極と前記負極との間に配設されイオンを伝導せず絶縁体を含む遮蔽部材と、
前記正極の前記負極に対向する対向面以外の面と、前記負極の前記正極に対向する対向面以外の面とでイオンを伝導するイオン伝導媒体と、
を備えたものである。
That is, the battery of the present invention is
A positive electrode;
A negative electrode,
A shielding member that is disposed between the positive electrode and the negative electrode and does not conduct ions and includes an insulator;
An ion conductive medium that conducts ions between a surface of the positive electrode other than the facing surface facing the negative electrode and a surface of the negative electrode other than the facing surface facing the positive electrode;
It is equipped with.

本発明の電池は、電極の短絡をより確実に防止することができる。このような効果が得られる理由は、以下のように推測される。例えば、この電池では、正極と負極との間にはイオンが伝導せず絶縁体を含む遮蔽部材が存在し、正極の対向面以外の面と負極の対向面以外の面(例えば背面や側面)で電気化学反応を進行させる構造を有する。このため、導電性物質が電極上で成長しても、その先には対向する電極がないため、物理的に対向極と接触することがない。このため、電極の短絡をより確実に防止することができる。   The battery of this invention can prevent the short circuit of an electrode more reliably. The reason why such an effect is obtained is presumed as follows. For example, in this battery, there is a shielding member that does not conduct ions and includes an insulator between the positive electrode and the negative electrode, and a surface other than the opposing surface of the positive electrode and a surface other than the opposing surface of the negative electrode (for example, the back surface or the side surface). And has a structure for causing an electrochemical reaction to proceed. For this reason, even if the conductive material grows on the electrode, there is no electrode facing it, so that it does not physically come into contact with the counter electrode. For this reason, the short circuit of an electrode can be prevented more reliably.

電池10の構成の概要を示す説明図。FIG. 3 is an explanatory diagram showing an outline of a configuration of a battery. 電池10Bの構成の概要を示す説明図。Explanatory drawing which shows the outline | summary of a structure of the battery 10B. 半電池の充放電サイクルとクーロン効率との関係図。The relationship diagram of the half-cell charge / discharge cycle and coulomb efficiency. 作用極表面のSEM写真。SEM photograph of working electrode surface. Ni−Zn電池の充放電サイクルと電池容量との関係図。The relationship figure of the charging / discharging cycle and battery capacity of a Ni-Zn battery. 従来の電池110の構成の概要を示す説明図。Explanatory drawing which shows the outline | summary of a structure of the conventional battery 110. FIG.

本実施形態で開示する電池を図面を用いて説明する。図1は、本発明の構成を有する電池10の構成の概要を示す説明図である。この電池10は、正極活物質層12を有する正極11と、負極活物質層15を有する負極14と、正極11と負極14との間に配設されイオンを伝導せず絶縁体を含む遮蔽部材17と、正極11の対向面11a以外の面(例えば背面11bや側面11c)と負極14の対向面14a以外の面(例えば背面14bや側面14c)とでイオンを伝導するイオン伝導媒体20と、を備えている。この正極11は、負極14に対向する側の対向面11aと、対向面11aの反対側である背面11bと、側面11cとを備える。また、負極14は、正極11に対向する側の対向面14aと、対向面14aの反対側である背面14bと、側面14cとを備える。また、電池10は、正極11、負極14、遮蔽部材17及びイオン伝導媒体21などを密閉状態で収容する絶縁性のケース23を備える。この電池10は、正極11の背面11b側(側面11cを含むものとしてもよい)と負極14の背面14b側(側面14cを含むものとしてもよい)とで電池化学反応である電析、溶解を行う背面電析構造を有している。なお、各電極の各面は、平面のみならず、曲面や、球面、凹凸面などであるものとしてもよい。   A battery disclosed in this embodiment will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the configuration of a battery 10 having the configuration of the present invention. The battery 10 includes a positive electrode 11 having a positive electrode active material layer 12, a negative electrode 14 having a negative electrode active material layer 15, and a shielding member that is disposed between the positive electrode 11 and the negative electrode 14 and does not conduct ions and includes an insulator. 17 and an ion conducting medium 20 that conducts ions between a surface other than the facing surface 11a of the positive electrode 11 (for example, the back surface 11b and the side surface 11c) and a surface other than the facing surface 14a of the negative electrode 14 (for example, the back surface 14b and the side surface 14c); It has. The positive electrode 11 includes a facing surface 11a facing the negative electrode 14, a back surface 11b opposite to the facing surface 11a, and a side surface 11c. The negative electrode 14 includes a facing surface 14a facing the positive electrode 11, a back surface 14b opposite to the facing surface 14a, and a side surface 14c. The battery 10 also includes an insulating case 23 that accommodates the positive electrode 11, the negative electrode 14, the shielding member 17, the ion conductive medium 21, and the like in a sealed state. This battery 10 performs electrodeposition and dissolution, which are battery chemical reactions, on the back surface 11b side of the positive electrode 11 (which may include the side surface 11c) and on the back surface 14b side of the negative electrode 14 (which may include the side surface 14c). It has a back electrodeposition structure to perform. Each surface of each electrode may be not only a flat surface but also a curved surface, a spherical surface, an uneven surface, or the like.

遮蔽部材17は、正極11と負極14との間に配設され、正極11と負極14との間を絶縁すると共に、正極11と負極14との間でイオンを伝導しない部材である。この遮蔽部材17は、絶縁性とイオンの非伝導性を1つの部材で実現するものとしてもよいし、複数の部材で実現するものとしてもよい。例えば、遮蔽部材17は、絶縁体であり、且つイオン伝導性のない緻密体であるものとしてもよい。このようなものとしては、例えば、アルミナ、ジルコニア、シリカなどのセラミックス体や、樹脂などが挙げられる。樹脂としては、例えば、フェノール樹脂、エポキシ系樹脂、メラミン系樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリメタクリル酸メチル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂のほか、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレンなどの汎用プラスチックなどが挙げられる。また、後述する結着材の樹脂なども用いることができる。また、遮蔽部材17が2以上の部材を備える場合は、例えば、絶縁性の多孔体の表面及び裏面にイオン伝導性のない金属を配設した構造などが挙げられる。図1に示した遮蔽部材17は、絶縁体である板状体18と、正極11と板状体18との間に形成されイオン伝導を遮蔽し且つ導電性を有する集電体13と、負極14と板状体18との間に形成されイオン伝導を遮蔽し且つ導電性を有する集電体16と、を備えているものとした。電池10において、正極活物質層12及び集電体13を正極11としてもよいし、負極活物質層15及び集電体16を負極14としてもよいし、板状体18と集電体13と集電体16とを遮蔽部材17としてもよい。なお、正極活物質層12が導電性を有する部材(例えば金属)である場合には、集電体13を省略することができる。同様に、負極活物質層15が導電性を有する部材(例えば金属)である場合には、集電体16を省略することができる。   The shielding member 17 is a member that is disposed between the positive electrode 11 and the negative electrode 14, insulates the positive electrode 11 from the negative electrode 14, and does not conduct ions between the positive electrode 11 and the negative electrode 14. The shielding member 17 may be realized by a single member, and may be realized by a plurality of members. For example, the shielding member 17 may be an insulator and a dense body having no ion conductivity. Examples of such a material include ceramic bodies such as alumina, zirconia, and silica, and resins. Examples of the resin include phenol resin, epoxy resin, melamine resin, acrylonitrile butadiene styrene resin, polymethyl methacrylate resin, polyamide resin, polyimide resin, polyvinyl butyral resin, polyethylene, polypropylene, polyvinyl chloride, and polyvinyl chloride. General-purpose plastics such as vinylidene, polystyrene, polyvinyl acetate, polyurethane, and polytetrafluoroethylene are listed. Also, a binder resin described later can be used. Moreover, when the shielding member 17 includes two or more members, for example, a structure in which a metal having no ion conductivity is disposed on the front surface and the back surface of the insulating porous body. The shielding member 17 shown in FIG. 1 includes a plate-like body 18 that is an insulator, a current collector 13 that is formed between the positive electrode 11 and the plate-like body 18 and shields ionic conduction, and has a negative electrode. 14 and the plate-like body 18, and a current collector 16 that shields ion conduction and has conductivity. In the battery 10, the positive electrode active material layer 12 and the current collector 13 may be the positive electrode 11, the negative electrode active material layer 15 and the current collector 16 may be the negative electrode 14, the plate-like body 18, the current collector 13, The current collector 16 may be used as the shielding member 17. When the positive electrode active material layer 12 is a conductive member (for example, metal), the current collector 13 can be omitted. Similarly, when the negative electrode active material layer 15 is a conductive member (for example, metal), the current collector 16 can be omitted.

遮蔽部材17は、負極14に対向する正極11の対向面11aを被覆すると共に、正極11に対向する負極14の対向面14aを被覆しているものとしてもよい。この構造では、正極11の対向面11aや負極14の対向面14aでの電析、溶解反応などを防止することができ好ましい。遮蔽部材17は、正極11と負極14との間に配設される絶縁性の板状体18を備える。この遮蔽部材17は、正極11や負極14よりも大きい板状体18を備えることが好ましい。こうすれば、正極11の対向面11aや負極14の対向面14aでの電析、溶解反応などを防止することができ好ましい。なお、板状体18の厚さは、特に限定されないが、100μm以上としてもよいし、100μm以下の膜状としてもよい。また、遮蔽部材17は、正極11の側面11c及び角部11dを被覆する被覆部19と、負極14の側面14c及び角部14dを被覆する被覆部20とのうち少なくとも一方を有することが好ましい。被覆部19及び被覆部20は、絶縁性物質で形成されることが好ましい。電極の側面11c,14c及び角部11d,14dは、電場勾配が最も大きくなることから、これらを絶縁性物質で被覆することが好ましい。被覆部19及び被覆部20は、板状体18と同じ材質で形成されているものとしてもよいし、異なる材質で形成されているものとしてもよい。遮蔽部材17において、被覆部19及び被覆部20のうちいずれか1以上は、電極の側面11c,14cのみを被覆し、電極の角部11d,14dを被覆しないものとしてもよい。あるいは、遮蔽部材17は、被覆部19及び被覆部20のうちいずれか1以上を有さないものとしてもよい。   The shielding member 17 may cover the facing surface 11 a of the positive electrode 11 facing the negative electrode 14 and may cover the facing surface 14 a of the negative electrode 14 facing the positive electrode 11. This structure is preferable because electrodeposition, dissolution reaction, and the like on the facing surface 11a of the positive electrode 11 and the facing surface 14a of the negative electrode 14 can be prevented. The shielding member 17 includes an insulating plate-like body 18 disposed between the positive electrode 11 and the negative electrode 14. The shielding member 17 preferably includes a plate-like body 18 that is larger than the positive electrode 11 and the negative electrode 14. By doing so, it is possible to prevent electrodeposition, dissolution reaction and the like on the facing surface 11a of the positive electrode 11 and the facing surface 14a of the negative electrode 14. The thickness of the plate-like body 18 is not particularly limited, but may be 100 μm or more or a film shape of 100 μm or less. The shielding member 17 preferably has at least one of a covering portion 19 that covers the side surface 11c and the corner portion 11d of the positive electrode 11, and a covering portion 20 that covers the side surface 14c and the corner portion 14d of the negative electrode 14. The covering portion 19 and the covering portion 20 are preferably formed of an insulating material. The side surfaces 11c and 14c and the corners 11d and 14d of the electrode have the largest electric field gradient, and therefore it is preferable to coat them with an insulating material. The covering portion 19 and the covering portion 20 may be made of the same material as the plate-like body 18 or may be made of a different material. In the shielding member 17, any one or more of the covering portion 19 and the covering portion 20 may cover only the side surfaces 11c and 14c of the electrode and may not cover the corner portions 11d and 14d of the electrode. Alternatively, the shielding member 17 may not include any one or more of the covering portion 19 and the covering portion 20.

正極11は、例えば、正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体13の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、電池構成に合わせて適宜選択した物質を用いるものとすればよい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。集電体13としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体13の厚さは、例えば1〜500μmとしてもよい。   For example, the positive electrode 11 is prepared by mixing a positive electrode active material, a conductive material, and a binder and adding a suitable solvent to form a paste-like positive electrode mixture on the surface of the current collector 13. Depending on the case, the electrode may be compressed to increase the electrode density. As the positive electrode active material, a material appropriately selected according to the battery configuration may be used. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), a fluorine-containing resin such as fluororubber, polypropylene, Thermoplastic resins such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, and N, N-dimethylaminopropylamine. Organic solvents such as ethylene oxide and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the current collector 13, in addition to aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., aluminum and copper are used for the purpose of improving adhesiveness, conductivity and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector 13 may be, for example, 1 to 500 μm.

負極14は、例えば、負極活物質と集電体16とを密着させて形成したものとしてもよいし、負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体16の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、電池構成に合わせて適宜選択した物質を用いるものとすればよい。また、負極14に用いられる集電体16、導電材、結着材、溶剤などは、それぞれ正極11で例示したものを用いることができる。負極14において、背面14b上に、イオン伝導性を有するセパレータ22が配設されるものとしてもよい。このセパレータ22の存在により、負極14とケース23との間に空間を確保でき、背面14b上に形成される電析物からケース23を保護することができる。   The negative electrode 14 may be formed, for example, by bringing a negative electrode active material and a current collector 16 into close contact, or by mixing a negative electrode active material, a conductive material, and a binder, and adding an appropriate solvent to form a paste. The negative electrode composite material may be applied and dried on the surface of the current collector 16, and may be compressed to increase the electrode density as necessary. As the negative electrode active material, a material appropriately selected according to the battery configuration may be used. In addition, as the current collector 16, the conductive material, the binder, the solvent, and the like used for the negative electrode 14, those exemplified for the positive electrode 11 can be used. In the negative electrode 14, a separator 22 having ion conductivity may be disposed on the back surface 14b. Due to the presence of the separator 22, a space can be secured between the negative electrode 14 and the case 23, and the case 23 can be protected from an electrodeposit formed on the back surface 14b.

イオン伝導媒体21は、正極11の背面11b側(側面11cを含むものとしてもよい)と負極14の背面14b側(側面14cを含むものとしてもよい)とでイオンを伝導するものであれば、特に限定されず、液体、固体、液体を含むゲルなどとしてもよい。このイオン伝導媒体21は、支持塩を含む水溶液系電解液や、支持塩を含む非水系電解液、水溶液系又は非水系のゲル電解液などとしてもよい。支持塩や溶媒は、電池構成に合わせて適宜選択した物質を用いるものとすればよい。例えば、水溶液系の電解液としては、KOH水溶液や希硫酸水溶液などが挙げられる。非水系電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート類などが挙げられる。水溶液系電解液の支持塩や非水系電解液の支持塩としては、1族元素(例えば、Li、Na、Kなど)、2族元素(例えば、MgやCaなど)、及び遷移金属(例えば、Znなど)などのうち1以上のカチオンを含む無機塩や有機塩などが挙げられる。   As long as the ion conduction medium 21 conducts ions on the back surface 11b side (which may include the side surface 11c) of the positive electrode 11 and the back surface 14b side (which may include the side surface 14c) of the negative electrode 14, It does not specifically limit and it is good also as a liquid, solid, the gel containing a liquid, etc. The ion conductive medium 21 may be an aqueous electrolytic solution containing a supporting salt, a non-aqueous electrolytic solution containing a supporting salt, an aqueous or non-aqueous gel electrolytic solution, or the like. As the supporting salt and the solvent, a substance appropriately selected according to the battery configuration may be used. For example, examples of the aqueous electrolyte include KOH aqueous solution and dilute sulfuric acid aqueous solution. Examples of the solvent for the non-aqueous electrolyte include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specific examples of the carbonates include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. Examples of supporting salts for aqueous electrolytes and non-aqueous electrolytes include group 1 elements (eg, Li, Na, K, etc.), group 2 elements (eg, Mg, Ca, etc.), and transition metals (eg, Inorganic salts and organic salts containing one or more cations among Zn).

あるいは、イオン伝導媒体21は、固体のイオン伝導性ポリマーとしてもよい。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、フッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと電解液とを組み合わせて用いることもできる。また、イオン伝導媒体21は、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Alternatively, the ion conductive medium 21 may be a solid ion conductive polymer. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, vinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and an electrolytic solution can be used in combination. Further, the ion conductive medium 21 can use an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like.

この電池10は、鉛蓄電池、リチウム空気電池、亜鉛空気電池、リチウムイオン二次電池、リン酸鉄リチウムイオン電池、リチウム硫黄電池、チタン酸リチウム電池、ニッケルカドミウム蓄電池、ニッケル水素充電池、ニッケル鉄電池、ニッケル亜鉛蓄電池、二酸化マンガン亜鉛電池、シリコン電池のうち1以上であるものとしてもよい。電池10が鉛蓄電池である場合は、例えば、正極11に二酸化鉛、負極14に鉛、イオン伝導媒体21として希硫酸を用いるものとすればよい。電池10がリチウム空気電池である場合は、例えば、正極活物質として酸素、負極14にリチウム金属、リチウム合金及びリチウムを吸蔵放出する材料(例えば黒鉛などの炭素材料)のうち1以上、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。電池10が亜鉛空気電池である場合は、例えば、正極活物質として酸素、負極14に亜鉛金属、亜鉛合金又は亜鉛を吸蔵放出する材料のうち1以上、イオン伝導媒体21として亜鉛イオンを伝導する非水系電解液を用いるものとすればよい。電池10がリチウムイオン二次電池である場合は、例えば、正極活物質としてリチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケルマンガンコバルト複合酸化物のうち1以上、負極14にリチウムを吸蔵放出する材料(例えば黒鉛などの炭素材料)、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。電池10がリン酸鉄リチウムイオン電池である場合は、例えば、正極活物質としてリン酸鉄リチウム、負極14にリチウムを吸蔵放出する材料(例えば黒鉛などの炭素材料)、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。電池10がリチウム硫黄電池である場合は、例えば、正極活物質として硫黄、負極14にリチウム金属、リチウム合金及びリチウムを吸蔵放出する材料(例えば黒鉛などの炭素材料)のうち1以上、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。電池10がチタン酸リチウム電池である場合は、例えば、正極活物質としてリチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケルマンガンコバルト複合酸化物のうち1以上、負極活物質としてチタン酸リチウム、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。電池10がニッケルカドミウム蓄電池である場合は、例えば、正極11に水酸化ニッケルなどのニッケル化合物、負極14にカドミウム、イオン伝導媒体21に水酸化カリウム水溶液などのアルカリ水溶液を用いるものとすればよい。電池10がニッケル水素充電池である場合は、例えば、正極11に水酸化ニッケルなどのニッケル化合物、負極14に水素または水素吸蔵合金を用い、イオン伝導媒体21に濃水酸化カリウム水溶液などのアルカリ水溶液を用いるものとすればよい。電池10がニッケル鉄電池である場合は、例えば、正極11に水酸化ニッケルなどのニッケル化合物、負極14に鉄、イオン伝導媒体21に水酸化カリウム水溶液などのアルカリ水溶液を用いるものとすればよい。電池10がニッケル亜鉛蓄電池である場合は、例えば、正極11に水酸化ニッケルなどのニッケル化合物、負極14に亜鉛、イオン伝導媒体21に水酸化カリウム水溶液などのアルカリ水溶液を用いるものとすればよい。電池10が二酸化マンガン亜鉛電池である場合は、例えば、正極11に二酸化マンガン、負極14に亜鉛、イオン伝導媒体21に水酸化カリウム水溶液などのアルカリ水溶液を用いるものとすればよい。電池10がシリコン電池である場合は、例えば、正極活物質としてリチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物及びリチウムニッケルマンガンコバルト複合酸化物のうち1以上、負極14にシリコン、イオン伝導媒体21としてリチウムイオンを伝導する非水系電解液を用いるものとすればよい。   The battery 10 includes a lead storage battery, a lithium air battery, a zinc air battery, a lithium ion secondary battery, a lithium iron phosphate battery, a lithium sulfur battery, a lithium titanate battery, a nickel cadmium storage battery, a nickel hydrogen rechargeable battery, and a nickel iron battery. One or more of nickel-zinc storage battery, manganese zinc dioxide battery, and silicon battery may be used. When the battery 10 is a lead storage battery, for example, lead dioxide may be used for the positive electrode 11, lead for the negative electrode 14, and dilute sulfuric acid as the ion conductive medium 21. In the case where the battery 10 is a lithium-air battery, for example, oxygen as the positive electrode active material, lithium metal, lithium alloy, and one or more materials that occlude and release lithium (such as carbon materials such as graphite) in the negative electrode 14, an ion conductive medium A non-aqueous electrolyte that conducts lithium ions may be used as 21. When the battery 10 is a zinc-air battery, for example, oxygen as the positive electrode active material, one or more of zinc metal, zinc alloy or a material that occludes and releases zinc in the negative electrode 14, and non-conducting zinc ions as the ion conductive medium 21. An aqueous electrolyte may be used. When the battery 10 is a lithium ion secondary battery, for example, one or more of a lithium nickel composite oxide, a lithium manganese composite oxide, a lithium cobalt composite oxide, and a lithium nickel manganese cobalt composite oxide as a positive electrode active material, a negative electrode 14 may be a material that occludes and releases lithium (for example, a carbon material such as graphite) and a nonaqueous electrolytic solution that conducts lithium ions as the ion conducting medium 21. When the battery 10 is a lithium iron phosphate battery, for example, lithium iron phosphate as the positive electrode active material, a material that absorbs and releases lithium into the negative electrode 14 (for example, a carbon material such as graphite), and lithium ions as the ion conductive medium 21 What is necessary is just to use the nonaqueous electrolyte solution which conducts. When the battery 10 is a lithium-sulfur battery, for example, one or more of sulfur as a positive electrode active material, lithium metal, a lithium alloy, and a material that absorbs and releases lithium (such as carbon material such as graphite) in the negative electrode 14, an ion conductive medium A non-aqueous electrolyte that conducts lithium ions may be used as 21. When the battery 10 is a lithium titanate battery, for example, at least one of a lithium nickel composite oxide, a lithium manganese composite oxide, a lithium cobalt composite oxide, and a lithium nickel manganese cobalt composite oxide as a positive electrode active material, Lithium titanate may be used as the substance, and a non-aqueous electrolyte solution that conducts lithium ions may be used as the ion conductive medium 21. When the battery 10 is a nickel cadmium storage battery, for example, a nickel compound such as nickel hydroxide may be used for the positive electrode 11, cadmium for the negative electrode 14, and an alkaline aqueous solution such as an aqueous potassium hydroxide solution for the ion conductive medium 21. When the battery 10 is a nickel metal hydride rechargeable battery, for example, a nickel compound such as nickel hydroxide is used for the positive electrode 11, hydrogen or a hydrogen storage alloy is used for the negative electrode 14, and an alkaline aqueous solution such as a concentrated potassium hydroxide aqueous solution is used for the ion conductive medium 21. May be used. When the battery 10 is a nickel iron battery, for example, a nickel compound such as nickel hydroxide may be used for the positive electrode 11, iron may be used for the negative electrode 14, and an alkaline aqueous solution such as a potassium hydroxide aqueous solution may be used for the ion conductive medium 21. When the battery 10 is a nickel zinc storage battery, for example, a nickel compound such as nickel hydroxide may be used for the positive electrode 11, zinc may be used for the negative electrode 14, and an alkaline aqueous solution such as a potassium hydroxide aqueous solution may be used for the ion conductive medium 21. In the case where the battery 10 is a manganese dioxide zinc battery, for example, manganese dioxide may be used for the positive electrode 11, zinc may be used for the negative electrode 14, and an alkaline aqueous solution such as an aqueous potassium hydroxide solution may be used for the ion conductive medium 21. When the battery 10 is a silicon battery, for example, one or more of a lithium nickel composite oxide, a lithium manganese composite oxide, a lithium cobalt composite oxide, and a lithium nickel manganese cobalt composite oxide as a positive electrode active material, and silicon in the negative electrode 14 As the ion conductive medium 21, a nonaqueous electrolytic solution that conducts lithium ions may be used.

電池10の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。また、正極11、負極14及び遮蔽部材17の積層体をイオン伝導媒体21中に吊り下げる構造としてもよい。図2は、電池10Bの構成の概要を示す説明図である。この電池10Bは、正極11、負極14及び遮蔽部材17Bの積層体をイオン伝導媒体21としての電解液に吊り下げる構造を有している。遮蔽部材17Bは、被覆部19,20を備えないものする。また、遮蔽部材17Bは、正極11及び負極14よりも大きいものとする。こうすれば、電極の側面11c,14c及び角部11d,14dは、電場勾配が最も大きくなる側面や角部で生成する電析物による短絡を防止することができる。   The shape of the battery 10 is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. Alternatively, a stacked body of the positive electrode 11, the negative electrode 14, and the shielding member 17 may be suspended in the ion conductive medium 21. FIG. 2 is an explanatory diagram showing an outline of the configuration of the battery 10B. This battery 10 </ b> B has a structure in which a laminate of the positive electrode 11, the negative electrode 14, and the shielding member 17 </ b> B is suspended from an electrolytic solution serving as the ion conductive medium 21. The shielding member 17B does not include the covering portions 19 and 20. The shielding member 17B is assumed to be larger than the positive electrode 11 and the negative electrode 14. By doing so, the side surfaces 11c and 14c and the corner portions 11d and 14d of the electrode can prevent a short circuit due to an electrodeposit formed on the side surface or corner portion where the electric field gradient becomes the largest.

以上詳述した電池10,10Bでは、正極11の対向面11a以外の面(背面11b側)と負極14の対向面14a以外の面(背面14b側)とで電池化学反応である電析、溶解を行う背面電析構造を有しているため、電極の短絡をより確実に防止することができる。この理由は、例えば、正極11と負極14との間にはイオンが伝導せず絶縁体を含む遮蔽部材17,17Bが存在し、正極11の背面11b側と負極14の背面14b側とで電気化学反応を進行させる構造を有し、導電性の電析物が電極上で成長しても、その先には対向する電極が存在せず、物理的に接触することがないためである。このように、電池10,10Bでは、遮蔽部材17,17Bを用いた背面電析構造という簡素な構造によって、電極の短絡をより確実に防止することができる。   In the batteries 10 and 10B described in detail above, electrodeposition and dissolution that are battery chemical reactions between the surface of the positive electrode 11 other than the facing surface 11a (back surface 11b side) and the surface of the negative electrode 14 other than the facing surface 14a (back surface 14b side). Since it has the back surface electrodeposition structure which performs this, the short circuit of an electrode can be prevented more reliably. This is because, for example, shielding members 17 and 17B that do not conduct ions and contain an insulator exist between the positive electrode 11 and the negative electrode 14, and the back surface 11b side of the positive electrode 11 and the back surface 14b side of the negative electrode 14 are electrically connected. This is because even if a conductive electrodeposit is grown on an electrode and has a structure for advancing a chemical reaction, there is no opposite electrode and physical contact does not occur. Thus, in the batteries 10 and 10B, short-circuiting of the electrodes can be more reliably prevented by a simple structure called a back electrodeposition structure using the shielding members 17 and 17B.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明の電池を具体的に作製した例を実施例として説明する。なお、本発明はこの実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   Hereinafter, an example in which the battery of the present invention was specifically manufactured will be described as an example. In addition, this invention is not limited to this Example at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.

[実施例1]
Zn金属箔(厚さ100μm)を対向極とし、Cu金属箔(厚さ30μm)を作用極、即ちZnの析出基板とした半電池を背面電析構成(図2参照)で作製した。Zn対向極とCu作用極との間にポリプロピレン製の絶縁膜を配置して固定した積層体を作製し、電解液としてZnOを飽和させた6MのKOH水溶液にこの積層体の下側半分を浸漬させた。また、作用極の背面上には、空間確保及び保護のため電解液を浸透可能なセパレータを配設した。得られた半電池を実施例1とした。なお、比較例1及び実施例1では、Zn対向極及びCu作用極が図2における集電体を兼ねるものとした。
[Example 1]
A half cell having a Zn metal foil (thickness: 100 μm) as a counter electrode and a Cu metal foil (thickness: 30 μm) as a working electrode, that is, a Zn deposition substrate, was fabricated in a back electrodeposition configuration (see FIG. 2). A laminated body in which a polypropylene insulating film is disposed and fixed between a Zn counter electrode and a Cu working electrode is manufactured, and the lower half of the laminated body is immersed in a 6M KOH aqueous solution saturated with ZnO as an electrolytic solution. I let you. In addition, on the back surface of the working electrode, a separator capable of penetrating electrolyte was disposed for securing and protecting the space. The obtained half battery was referred to as Example 1. In Comparative Example 1 and Example 1, the Zn counter electrode and the Cu working electrode also serve as the current collector in FIG.

[比較例1]
Zn金属箔を対向極とし、Cu金属箔を作用極、即ちZnの析出基板とした半電池を従来の電池構成(図6参照)で作製した。Zn対向極とCu作用極との間にセパレータを配置した積層体を作製し、電解液としてZnOを飽和させた6MのKOH水溶液にこの積層体を浸漬させた。対向極と作用極との間は0.3mmとした。得られた半電池を比較例1とした。
[Comparative Example 1]
A half battery having a Zn metal foil as a counter electrode and a Cu metal foil as a working electrode, that is, a Zn deposition substrate, was produced with a conventional battery configuration (see FIG. 6). A laminated body in which a separator was disposed between the Zn counter electrode and the Cu working electrode was produced, and this laminated body was immersed in a 6M KOH aqueous solution saturated with ZnO as an electrolytic solution. The distance between the counter electrode and the working electrode was 0.3 mm. The obtained half battery was referred to as Comparative Example 1.

[実施例2]
実施例1のZn対向極を市販品水酸化ニッケルに変えて正極とし、Cu金属箔を集電体としてこの集電体上にZnを1.2mg電析させた電極を負極としたNi−Zn電池を作製した。正極は、以下のように作製した。正極活物質としての水酸化ニッケル(シグマアルドリッチ製700mg)と、導電材としてのアセチレンブラック(200mg)と、結着材としてのポリフッ化ビニリデン(PVdF,100mg)とを10mLのN−メチルピロリドン(NMP)を溶媒として混合して正極合材とした。集電体としてのNiフォーム(厚さ2mm)上にこの正極合材をディップコートし、80℃の減圧乾燥炉で乾燥させた。乾燥後、プレスして厚さを0.1mmとし、正極とした。負極の側面及びエッジ部には、非結晶の絶縁炭素層をスパッタリングにより形成した。また、負極の背面上には、空間確保及び保護のため電解液を浸透可能なセパレータを配設した。
[Example 2]
The Zn counter electrode of Example 1 was changed to a commercially available nickel hydroxide as a positive electrode, and a Cu metal foil was used as a current collector, and an electrode obtained by depositing 1.2 mg of Zn on the current collector was used as a negative electrode. A battery was produced. The positive electrode was produced as follows. Nickel hydroxide (700 mg made by Sigma-Aldrich) as a positive electrode active material, acetylene black (200 mg) as a conductive material, and polyvinylidene fluoride (PVdF, 100 mg) as a binder were added with 10 mL of N-methylpyrrolidone (NMP). ) As a solvent to prepare a positive electrode mixture. This positive electrode mixture was dip coated on a Ni foam (thickness 2 mm) as a current collector, and dried in a vacuum drying oven at 80 ° C. After drying, it was pressed to a thickness of 0.1 mm to obtain a positive electrode. An amorphous insulating carbon layer was formed by sputtering on the side and edge portions of the negative electrode. In addition, a separator capable of penetrating electrolyte was disposed on the back surface of the negative electrode for securing and protecting the space.

[比較例2]
比較例1のZn対向極を市販品水酸化ニッケルに変えて正極とし、Cu金属箔を集電体としてこの集電体上にZnを1.2mg電析させた電極を負極としたNi−Zn電池を作製した。得られた電池を比較例2とした。
[Comparative Example 2]
The Zn counter electrode of Comparative Example 1 was replaced with a commercially available nickel hydroxide as a positive electrode, and a Cu metal foil was used as a current collector, and an electrode obtained by depositing 1.2 mg of Zn on the current collector was used as a negative electrode. A battery was produced. The obtained battery was referred to as Comparative Example 2.

(充放電サイクル試験)
得られた電池を用い、Znの電析(充電)、溶解(放電)を繰り返し実施した。この充放電サイクル試験において、Znの電析、溶解時の電流密度は20mA/cm2とした。
(Charge / discharge cycle test)
Using the resulting battery, Zn electrodeposition (charging) and dissolution (discharging) were repeated. In this charge / discharge cycle test, the current density during Zn electrodeposition and dissolution was set to 20 mA / cm 2 .

(電極のSEM観察)
実施例1及び比較例1の20サイクル目の作用極を走査型電子顕微鏡(FEI XL30 Sirion)を用い、加速電圧5kVの条件で観察した。
(SEM observation of electrode)
The working electrode at the 20th cycle in Example 1 and Comparative Example 1 was observed using a scanning electron microscope (FEI XL30 Sirion) under the condition of an acceleration voltage of 5 kV.

(結果と考察)
図3は、実施例1及び比較例1の半電池の充放電サイクルとクーロン効率との関係図である。図4は、作用極表面のSEM写真である。比較例1では、図3に示すように、電析溶解の繰り返し試験回数約30回で電池が短絡した。これに対して、実施例1では、約160サイクルの電析溶解繰り返し試験範囲においても短絡現象は確認されなかった。図4(b)に示すように、作用極の表面は、その大部分の領域において、多面体の結晶粒子が規則的に析出していた。しかしながら、作用極表面には、図4(a)に示すように、20サイクルの電析、溶解のサイクルによって、5〜10μmの大きさのデンドライトが生成することが確認された。このデンドライトが成長することにより、比較例1では、対向極と作用極との短絡が発生したものと推察された。一方、背面電析構造を有する実施例1では、デンドライトの成長先に対向極は存在しないため、160サイクル以上行っても短絡しなかった。
(Results and discussion)
FIG. 3 is a relationship diagram between the charge / discharge cycle of the half-cells of Example 1 and Comparative Example 1 and Coulomb efficiency. FIG. 4 is an SEM photograph of the working electrode surface. In Comparative Example 1, as shown in FIG. 3, the battery was short-circuited after about 30 repeated electrodeposition dissolution tests. On the other hand, in Example 1, the short circuit phenomenon was not confirmed in the electrodeposition dissolution repeated test range of about 160 cycles. As shown in FIG. 4B, polyhedral crystal grains were regularly deposited on the surface of the working electrode in the most area. However, on the surface of the working electrode, as shown in FIG. 4A, it was confirmed that dendrites having a size of 5 to 10 μm were generated by 20 cycles of electrodeposition and dissolution cycles. It was speculated that in this comparative example 1, a short circuit between the counter electrode and the working electrode occurred due to the growth of the dendrite. On the other hand, in Example 1 having the back electrodeposition structure, there was no counter electrode at the dendrite growth destination.

図5は、実施例2及び比較例2のNi−Zn電池の充放電サイクルと電池容量との関係図である。図5に示すように、比較例2の電池では、約200回の充放電サイクル数で電池が短絡した。一方、実施例2の電池では、800回の充放電サイクル試験においても電池短絡現象は確認されなかった。このように、背面電析構造を有する実施例1、2の電池では、電極の短絡がより確実に防止され、より安定した充放電を行うことができることがわかった。なお、本実施例においては、Ni−Zn電池を一例として背面電析構造の効果を検討したが、他の電池構成、例えば、鉛蓄電池、リチウム空気電池、亜鉛空気電池、リチウムイオン二次電池、リン酸鉄リチウムイオン電池、リチウム硫黄電池、チタン酸リチウム電池、ニッケルカドミウム蓄電池、ニッケル水素充電池、ニッケル鉄電池、ニッケル亜鉛蓄電池、シリコン電池などにおいても同様の効果が得られることが推察された。   FIG. 5 is a relationship diagram between the charge / discharge cycle and the battery capacity of the Ni—Zn batteries of Example 2 and Comparative Example 2. As shown in FIG. 5, in the battery of Comparative Example 2, the battery was short-circuited after about 200 charge / discharge cycles. On the other hand, in the battery of Example 2, the battery short-circuit phenomenon was not confirmed even in the 800 charge / discharge cycle tests. Thus, it was found that in the batteries of Examples 1 and 2 having the back electrodeposition structure, short-circuiting of the electrodes was prevented more reliably and more stable charge / discharge could be performed. In this example, the effect of the back electrodeposition structure was examined using a Ni-Zn battery as an example. However, other battery configurations such as a lead storage battery, a lithium air battery, a zinc air battery, a lithium ion secondary battery, It was speculated that the same effect can be obtained in a lithium iron phosphate battery, a lithium sulfur battery, a lithium titanate battery, a nickel cadmium storage battery, a nickel hydrogen rechargeable battery, a nickel iron battery, a nickel zinc storage battery, a silicon battery, and the like.

本発明は、電池の技術分野に利用可能である。   The present invention can be used in the technical field of batteries.

10,10B 電池、11 正極、11a 対向面、11b 背面、11c 側面、11d 角部、12 正極活物質層、13 集電体、14 負極、14a 対向面、14b 背面、14c 側面、14d 角部、15 負極活物質層、16 集電体、17,17B 遮蔽部材、18 板状体、19 被覆部、20 被覆部、21 イオン伝導媒体、22 セパレータ、23 ケース。 10, 10B battery, 11 positive electrode, 11a facing surface, 11b back surface, 11c side surface, 11d corner, 12 positive electrode active material layer, 13 current collector, 14 negative electrode, 14a facing surface, 14b back surface, 14c side surface, 14d corner, DESCRIPTION OF SYMBOLS 15 Negative electrode active material layer, 16 Current collector, 17, 17B Shield member, 18 Plate body, 19 Cover part, 20 Cover part, 21 Ion conduction medium, 22 Separator, 23 Case.

Claims (7)

正極と、
負極と、
前記正極と前記負極との間に配設されイオンを伝導せず絶縁体を含む遮蔽部材と、
前記正極の前記負極に対向する対向面以外の面と、前記負極の前記正極に対向する対向面以外の面とでイオンを伝導するイオン伝導媒体と、
を備えた電池。
A positive electrode;
A negative electrode,
A shielding member that is disposed between the positive electrode and the negative electrode and does not conduct ions and includes an insulator;
An ion conductive medium that conducts ions between a surface of the positive electrode other than the facing surface facing the negative electrode and a surface of the negative electrode other than the facing surface facing the positive electrode;
With battery.
前記遮蔽部材は、前記負極に対向する前記正極の対向面を被覆すると共に、前記正極に対向する前記負極の対向面を被覆している、請求項1に記載の電池。   The battery according to claim 1, wherein the shielding member covers a facing surface of the positive electrode facing the negative electrode and covers a facing surface of the negative electrode facing the positive electrode. 前記遮蔽部材は、前記正極の側面を被覆する被覆部と、前記負極の側面を被覆する被覆部とのうち少なくとも一方を有する、請求項1又は2に記載の電池。   The battery according to claim 1, wherein the shielding member has at least one of a covering portion that covers a side surface of the positive electrode and a covering portion that covers a side surface of the negative electrode. 前記遮蔽部材は、前記正極の側面及び角部を被覆する被覆部と、前記負極の側面及び角部を被覆する被覆部とのうち少なくとも一方を有する、請求項1〜3のいずれか1項に記載の電池。   The said shielding member has at least one among the coating part which coat | covers the side surface and corner | angular part of the said positive electrode, and the coating | coated part which coat | covers the side surface and corner | angular part of the said negative electrode in any one of Claims 1-3. The battery described. 前記遮蔽部材は、前記正極及び前記負極よりも大きい板状体を備える、請求項1〜4のいずれか1項に記載の電池。   The battery according to claim 1, wherein the shielding member includes a plate-like body that is larger than the positive electrode and the negative electrode. 前記遮蔽部材は、絶縁体である板状体と、前記正極及び/又は前記負極と前記板状体との間に形成されイオン伝導を遮蔽し且つ導電性を有する集電体と、を備えている、請求項1〜5のいずれか1項に記載の電池。   The shielding member includes a plate-like body that is an insulator, and a current collector that is formed between the positive electrode and / or the negative electrode and the plate-like body and shields ion conduction and has conductivity. The battery according to any one of claims 1 to 5. 前記電池は、鉛蓄電池、リチウム空気電池、亜鉛空気電池、リチウムイオン二次電池、リン酸鉄リチウムイオン電池、リチウム硫黄電池、チタン酸リチウム電池、ニッケルカドミウム蓄電池、ニッケル水素充電池、ニッケル鉄電池、ニッケル亜鉛蓄電池、二酸化マンガン亜鉛電池、シリコン電池のうち1以上である、請求項1〜6のいずれか1項に記載の電池。   The battery is a lead storage battery, a lithium air battery, a zinc air battery, a lithium ion secondary battery, a lithium iron phosphate battery, a lithium sulfur battery, a lithium titanate battery, a nickel cadmium storage battery, a nickel hydrogen rechargeable battery, a nickel iron battery, The battery according to any one of claims 1 to 6, which is one or more of a nickel-zinc storage battery, a manganese zinc dioxide battery, and a silicon battery.
JP2016102583A 2016-05-23 2016-05-23 battery Pending JP2017212045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102583A JP2017212045A (en) 2016-05-23 2016-05-23 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102583A JP2017212045A (en) 2016-05-23 2016-05-23 battery

Publications (1)

Publication Number Publication Date
JP2017212045A true JP2017212045A (en) 2017-11-30

Family

ID=60475585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102583A Pending JP2017212045A (en) 2016-05-23 2016-05-23 battery

Country Status (1)

Country Link
JP (1) JP2017212045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129496A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Electrolyte solution and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129496A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Electrolyte solution and secondary battery

Similar Documents

Publication Publication Date Title
CN109994740B (en) Composite current collector, composite pole piece comprising same and electrochemical device
JP5313761B2 (en) Lithium ion battery
EP3696881B1 (en) Method for controlling dendritic growth in an electrochemical cell
CN100399603C (en) Non-aqueous solution electrochemical device polar plate and its manufacturing method
JP2018505538A5 (en)
JP2008226605A (en) Nonaqueous electrolyte secondary battery
WO2011079482A1 (en) Battery
US10938028B2 (en) Negative electrode for lithium secondary battery and method of manufacturing
CN107275673A (en) A kind of lithium battery solid electrolyte film and its preparation method and application
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
CN105322230A (en) Graphene-combining rechargeable lithium-ion battery and manufacturing method thereof
KR20200028258A (en) Anode for secondary battery and Secondary battery including the same
JP2018120706A (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20190056844A (en) Surface-modified separator for lithium-sulfur battery and lithium-sulfur battery including the same
JP2004327422A (en) Composite polymer electrolyte having different morphology for lithium secondary battery and method of manufacturing the same
WO2001035482A1 (en) Secondary lithium battery
KR20150016018A (en) Composite electrode comprising different electrode active material and electrode assembly
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
KR20170090720A (en) Electrode for lithium secondary battery and lithium secondary battery indluding the same
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
CN105990549B (en) Electric storage element
KR20190032933A (en) Metal secondary battery having metal electrode
KR102531615B1 (en) Method for modifying graphene separator using aqueous binder and graphene separator thereof and electrochemical device including same
KR20180000697A (en) Lithium secondary battery and manufacturing method thereof
CN109273670B (en) Metal lithium cathode with high-specific-surface-area mesoporous protective film and preparation method thereof