JP2017210888A - Ground heat recovery device including three or more u-shaped inner pipe - Google Patents

Ground heat recovery device including three or more u-shaped inner pipe Download PDF

Info

Publication number
JP2017210888A
JP2017210888A JP2016102797A JP2016102797A JP2017210888A JP 2017210888 A JP2017210888 A JP 2017210888A JP 2016102797 A JP2016102797 A JP 2016102797A JP 2016102797 A JP2016102797 A JP 2016102797A JP 2017210888 A JP2017210888 A JP 2017210888A
Authority
JP
Japan
Prior art keywords
shaped inner
geothermal
pipe
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016102797A
Other languages
Japanese (ja)
Inventor
計哉 竹丸
Kazuya Takemaru
計哉 竹丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Tech Co Ltd
Original Assignee
Kyodo Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Tech Co Ltd filed Critical Kyodo Tech Co Ltd
Priority to JP2016102797A priority Critical patent/JP2017210888A/en
Publication of JP2017210888A publication Critical patent/JP2017210888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PURPOSE: To provide a ground heat recovery device including three or more U-shaped inner pipe, capable of efficiently exchanging heat between ground heat and fluid flowing underground for heat exchange with ground heat.CONSTITUTION: A ground heat recovery device includes: an outer pipe to which ground heat is transmitted under the ground, and whose lower portion containing at least a bottom part is blocked; and three or more U-shaped inner pipes arranged in the outer pipe. The three or more U-shaped inner pipes each are configured to circulate fluid between themselves and ground load equipment with heat exchanged between their insides and ground heat. The three or more U-shaped inner pipes are arranged so as to deviate from their positions in a gravity direction and cross with each other in a horizontal direction, in the outer pipe.SELECTED DRAWING: Figure 1

Description

本発明は地熱発電システムなどに使用可能な地熱回収装置に関する。   The present invention relates to a geothermal recovery apparatus that can be used in a geothermal power generation system or the like.

従来より、地熱貯留層まで掘削した生産井から地熱による蒸気や熱水を採取して地上での発電に利用する地熱発電システムが実用化されている。図5はこのような従来の地熱発電システムの一例を示す図である。図5に示す従来例では、生産井1から取り出した熱水と地熱蒸気をセパレータ3により分離し、分離した蒸気によりタービン4を駆動して発電機5により発電を行い、発電に使用された後の蒸気は、復水器6において冷却水で冷却されて復水され、セパレータ3からの熱水と共に還元井2から地中に還元される。   Conventionally, a geothermal power generation system that collects steam and hot water from geothermal heat from a production well excavated to a geothermal reservoir and uses it for power generation on the ground has been put into practical use. FIG. 5 is a diagram showing an example of such a conventional geothermal power generation system. In the conventional example shown in FIG. 5, after hot water and geothermal steam taken out from the production well 1 are separated by the separator 3, the turbine 4 is driven by the separated steam to generate power by the generator 5 and used for power generation. The steam is cooled by the cooling water in the condenser 6 to be condensed, and is reduced into the ground from the reduction well 2 together with the hot water from the separator 3.

特開2010−270679号公報JP 2010-270679 A 特許第4485465号公報Japanese Patent No. 4485465

しかしながら、上記の図5に示すような従来の地熱発電システムにおいては、地熱貯留層からの熱水又は蒸気を生産井1のストレーナ(多数のスリット又は穴を有する部分)を通して生産井1の内部に直接取り入れ、これを地上に汲み上げて発電に使用する(一部は還元井2で地中に戻す)ようにしていたので、近くの温泉を枯渇させるなど地熱貯留層周辺の地下水系に悪影響を与えてしまう、地熱発電の過程で地熱貯留層からの熱水又は蒸気中の硫黄等の成分が地熱発電に使用する装置にスケールとして固着・堆積し配管等が劣化したりスケールを取り除くために多額のメンテナンス費用が発生してしまうなどの問題があった。   However, in the conventional geothermal power generation system as shown in FIG. 5 described above, hot water or steam from the geothermal reservoir is passed through the strainer (part having a large number of slits or holes) of the production well 1 into the production well 1. Since it was directly taken in and pumped up to the ground and used for power generation (partially returned to the ground with the reduction well 2), it has an adverse effect on the groundwater system around the geothermal reservoir, such as depleting nearby hot springs. In the process of geothermal power generation, components such as hot water from the geothermal reservoir or sulfur in the steam adhere to and accumulate on the equipment used for geothermal power generation as a scale, and the piping etc. deteriorates or removes a large amount of scale. There were problems such as maintenance costs.

ところで、このような問題点を解決するために、まだ公知ではないが図6に示すような循環型地熱発電システムが発明されている(特願2014−239236)。図6において、11は地中の例えば約300〜600m深さ、例えば約500m深さの地熱貯留層13まで埋設された例えばステンレス鋼製(良熱伝導性材料ならば他の素材でもよい)の外管(この外管11は、地中に埋設された温泉井用管であって過去には温泉井用に使用されていたが現在は温泉井用として使用されていない温泉井用管の内部に配置されるものでもよい)、12は前記外管11内に配置される例えばステンレス鋼製の内管であってその底部12c又はその近傍部分が開放されている内管である。図6において、前記外管11は、内径が例えば30mmに形成され側方及び下方部分は全て閉塞されている。前記内管12は、内径が例えば15mmに形成され上端側開口部12bと底部(下端部)12aが共に開口部となっている。前記内管12の底部12cは、前記外管11の底部11a(又はその上面11aa)の近傍の位置(例えば約100mだけ上方の位置)に配置されている。   By the way, in order to solve such problems, a circulation type geothermal power generation system as shown in FIG. 6 has been invented (Japanese Patent Application No. 2014-239236). In FIG. 6, 11 is made of, for example, stainless steel (other materials may be used as long as they have good thermal conductivity) embedded in the geothermal reservoir 13 at a depth of about 300 to 600 m, for example, about 500 m in the ground. Outer pipe (This outer pipe 11 is a hot spring well pipe buried in the ground and used for hot spring wells in the past, but is currently not used as a hot spring well pipe. , 12 is an inner tube made of, for example, stainless steel, which is disposed in the outer tube 11, and an inner tube whose bottom 12c or its vicinity is open. In FIG. 6, the outer tube 11 has an inner diameter of, for example, 30 mm, and the side and lower portions are all closed. The inner tube 12 has an inner diameter of 15 mm, for example, and has an upper end opening 12b and a bottom (lower end) 12a as openings. The bottom portion 12c of the inner tube 12 is disposed at a position (for example, a position above about 100 m) near the bottom portion 11a of the outer tube 11 (or its upper surface 11aa).

図6の地熱発電システムでは、流体、例えば工業用水(熱媒体でもよい)が、前記外管11と内管12との間の隙間15内を下降させられ、前記内管12の底部12cと前記外管11の底部11aとの間が例えば約100mの長さを有する底部近傍領域14に送られて前記底部近傍領域14の中を流動している間に、外部の地熱貯留層13中の地熱と熱交換されて高温の熱水となった後、前記内管12内を地上方向へ上昇する。   In the geothermal power generation system of FIG. 6, a fluid such as industrial water (which may be a heat medium) is lowered in the gap 15 between the outer tube 11 and the inner tube 12, and the bottom 12c of the inner tube 12 and the The geothermal heat in the external geothermal reservoir 13 is transferred to the bottom vicinity region 14 having a length of, for example, about 100 m between the outer tube 11 and the bottom tube 11 while flowing in the bottom vicinity region 14. After the heat is exchanged to become hot hot water, the inside of the inner pipe 12 rises in the ground direction.

また図6のシステムにおいて、16は、前記内管12中を下降した後に前記外管11内の底部近傍領域14において地熱と熱交換されて前記内管12内を地上まで上昇した熱水が前記内管12の上端側開口部12bを介して供給される蒸発器であって前記熱水を加熱(及び減圧)して蒸気を発生させる蒸発器、17は前記蒸発器16からの蒸気により駆動される発電用タービン、17aは前記タービン17により駆動される発電機、18は前記タービン17の駆動に使用された蒸気を水に戻す復水器、19aは前記復水器からの水及び前記蒸発器16において蒸気と分離された熱水をいったん貯留する貯水槽、19は前記貯水槽19aからの熱水を上端側開口部11bから前記外管11と内管12との間の隙間15内に加圧注入する循環ポンプである。また図6の地熱発電システムにおいて、20は、前記内管12、前記外管11内の底部近傍領域14、前記内管12と外管11の隙間15、前記蒸発器16、前記タービン17、前記復水器18、及び前記貯水槽19aを繋ぐ閉流路であって、前記循環ポンプ19により前記熱水が循環される閉流路である。   In the system of FIG. 6, the reference numeral 16 indicates that the hot water that has been lowered in the inner pipe 12 and exchanged with the geothermal heat in the region 14 near the bottom in the outer pipe 11 has risen to the ground in the inner pipe 12. An evaporator supplied via the upper end side opening 12b of the inner pipe 12 and heating (and depressurizing) the hot water to generate steam, 17 is driven by the steam from the evaporator 16 Turbine for power generation, 17a is a generator driven by the turbine 17, 18 is a condenser for returning the steam used to drive the turbine 17 to water, 19a is water from the condenser and the evaporator A water storage tank 19 temporarily stores the hot water separated from the steam in 16, and 19 adds hot water from the water storage tank 19 a into the gap 15 between the outer pipe 11 and the inner pipe 12 from the upper end side opening 11 b. Circulating pump for pressure injection It is. In the geothermal power generation system of FIG. 6, reference numeral 20 denotes the inner pipe 12, a bottom vicinity region 14 in the outer pipe 11, a gap 15 between the inner pipe 12 and the outer pipe 11, the evaporator 16, the turbine 17, It is a closed flow path connecting the condenser 18 and the water storage tank 19a, and is a closed flow path through which the hot water is circulated by the circulation pump 19.

ところで、前述のような循環型地熱発電システム(図6)においては、地熱貯留層13中の熱水又は蒸気そのものを地上に汲み上げることがないので近くの温泉を枯渇させるなど地熱貯留層13周辺の地下水系に悪影響を与えることを避けることができる、地熱発電の過程で地熱貯留層13中の熱水又は蒸気中に含まれている硫黄等の成分が装置にスケールとして固着・堆積してしまうことによる配管等の劣化やスケールを除去するためのランニングコストの増大化を防ぐことができるなどのメリットが存在する。しかし、上記の循環型地熱発電システム(図6)においても、循環される水等が前記外管11と内管12との間の隙間15と外管11内の底部近傍領域14とにおいて地熱と熱交換される際の熱交換効率をさらに大きく向上させることが強く要請されていた。   By the way, in the circulation type geothermal power generation system (FIG. 6) as described above, the hot water or the steam itself in the geothermal reservoir 13 is not pumped up to the ground, so that the nearby hot springs are depleted, for example, around the geothermal reservoir 13 Components such as sulfur contained in the hot water or steam in the geothermal reservoir 13 can be fixed and deposited on the device as a scale during the process of geothermal power generation, which can avoid adversely affecting the groundwater system. There is a merit that it is possible to prevent deterioration of piping and the like due to, and increase in running cost for removing scale. However, also in the above-mentioned circulation type geothermal power generation system (FIG. 6), the circulated water or the like is not generated in the gap 15 between the outer tube 11 and the inner tube 12 and the bottom vicinity region 14 in the outer tube 11. There has been a strong demand to further improve the heat exchange efficiency during heat exchange.

本発明はこのような課題に着目して為されたものであって、地熱との熱交換のために流通される水等の流体が地下パイプ中でより効率的に地熱と熱交換されるようにした地熱回収装置を提供することを目的とする。   The present invention was made paying attention to such a problem, and fluid such as water circulated for heat exchange with geothermal heat is more efficiently exchanged with geothermal heat in the underground pipe. An object of the present invention is to provide a geothermal recovery apparatus.

以上のような課題を解決するための本発明による3本以上のU字状内管を備えた地熱回収装置は、地下において地熱が伝導される外管であって少なくとも底部を含む下方部分が閉塞されている外管と、前記外管内に配置される3本以上のU字状内管とを備えており、前記3本以上のU字状内管は、それぞれ、流体(例えば、発電用タービンを駆動する蒸気となる流体又は発電用タービンを駆動する蒸気を生成するための流体)が、自らの内部で地熱と熱交換されながら、地上の負荷機器(例えば前記発電用タービン)との間を循環的に流通するように、構成されてなるものである。   The geothermal recovery apparatus having three or more U-shaped inner pipes according to the present invention for solving the above-described problems is an outer pipe through which geothermal heat is conducted in the underground, and at least a lower part including the bottom is blocked. And three or more U-shaped inner pipes disposed in the outer pipe, and each of the three or more U-shaped inner pipes is a fluid (for example, a power generation turbine). Between the load equipment on the ground (for example, the power generation turbine), while the fluid that becomes the steam that drives the steam or the fluid that generates the steam that drives the power generation turbine) It is configured to circulate in a circulating manner.

また本発明において、前記3本以上のU字状内管は、それぞれ、その各側面が前記外管の内壁面に近接又は当接するように且つその各底部が前記外管の底部又はその近傍(前記外管11の底部から上方に数十〜200m前後の範囲内を含む)に位置するように、配置されているものであってもよい。   Further, in the present invention, each of the three or more U-shaped inner pipes is such that each side surface thereof is close to or abuts on the inner wall surface of the outer pipe, and each bottom part is the bottom part of the outer pipe or its vicinity ( It may be arranged so as to be located above the bottom of the outer tube 11 (including within a range of about several tens to 200 m).

また本発明において、前記3本以上のU字状内管は、前記外管内において、互いに重力方向に位置をずらしながら且つ互いに水平方向に交差しながら、配置されているものであってもよい。   In the present invention, the three or more U-shaped inner pipes may be arranged in the outer pipe while being shifted in the direction of gravity and intersecting each other in the horizontal direction.

さらに本発明において、前記外管と前記3本以上のU字状内管との間の隙間には、熱伝導性の良い材料が充填されていてもよい。   Furthermore, in the present invention, the gap between the outer tube and the three or more U-shaped inner tubes may be filled with a material having good thermal conductivity.

本発明においては、地下において地熱が伝導される外管の内部に3本以上のU字状内管が配置され、前記各U字状内管内を流体が流通しながら、外管に伝導された地熱と熱交換される。この場合、本発明によるときは、前記各U字状内管内を流体が流通しながら外管に伝導・保持された地熱と熱交換されるときの流体の流通距離は、例えば「外管とその内部に配置された直線状の(U字管でない)内管との間の隙間」内に流体を流通させる場合(図6に示す場合。この場合の流体が熱交換されるときの流体の流通距離は外管の重力方向の長さ以下に止まる)と比較して、約2倍に大幅に延びることになる。よって、本発明によれば、例えば外管とその内部に配置された直線状の(U字管でない)内管との間の隙間中に流体を流通させる場合(図6に示す場合)と比較して、前記外管内での前記流体(前記各U字状内管内を流通する流体)の地熱との熱交換効率を、大幅に向上させることができる。   In the present invention, three or more U-shaped inner pipes are arranged inside the outer pipe through which geothermal heat is conducted underground, and the fluid is conducted to the outer pipe while fluid flows through each of the U-shaped inner pipes. Exchanged with geothermal heat. In this case, according to the present invention, the flow distance of the fluid when the fluid flows through each U-shaped inner pipe and is exchanged with the geothermal heat conducted and held by the outer pipe is, for example, “the outer pipe and its When fluid is circulated in a “gap between linear pipes (not U-shaped pipes) arranged inside” (in the case shown in FIG. 6, fluid circulation when the fluid is heat-exchanged in this case) The distance extends substantially twice as much as the distance of the outer tube stays below the length of the outer tube in the gravitational direction. Therefore, according to the present invention, for example, compared with a case where a fluid is circulated in a gap between an outer tube and a linear (not U-shaped) inner tube disposed therein (as shown in FIG. 6). And the heat exchange efficiency with the geothermal heat of the said fluid (fluid which distribute | circulates each said U-shaped inner pipe | tube) in the said outer pipe | tube can be improved significantly.

また、本発明において、前記3本以上のU字状内管を、それぞれ、その各外側の側面が前記外管の内壁面にそれぞれ近接又は当接するように且つその各底部が前記外管の底部又はその近傍に位置するように配置するようにしたときは、前記外管に伝導・保持された地熱を前記3本以上のU字状内管及びその内部の流体に効率的に伝導することができるので、前記外管内での前記流体(前記各U字状内管内を流通する流体)の地熱との熱交換効率をより高めることができる。   Further, in the present invention, the three or more U-shaped inner pipes are arranged such that the respective outer side surfaces thereof are close to or abut against the inner wall surface of the outer pipe, and the bottom parts thereof are the bottom parts of the outer pipes. Or, when arranged so as to be located in the vicinity thereof, the geothermal heat conducted and held in the outer pipe can be efficiently conducted to the three or more U-shaped inner pipes and the fluid inside thereof. Therefore, the efficiency of heat exchange with the geothermal heat of the fluid (fluid flowing in each U-shaped inner tube) in the outer tube can be further increased.

また、本発明において、前記3本以上のU字状内管を、前記外管内において互いに重力方向に位置をずらしながら且つ互いに水平方向に交差しながら配置するようにしたときは、前記外管内の空間において複数のU字状内管を効率的に配置することができる結果、前記外管内に配置できるU字状内管の個数をより多くすることができるので、前記外管内での前記流体(前記各U字状内管内を流通する流体)の地熱との熱交換効率をより高めることができる。   In the present invention, when the three or more U-shaped inner pipes are arranged in the outer pipe while being shifted in the direction of gravity and intersecting each other in the horizontal direction, As a result of being able to efficiently arrange a plurality of U-shaped inner tubes in the space, the number of U-shaped inner tubes that can be arranged in the outer tube can be increased, so that the fluid ( The heat exchange efficiency with the geothermal heat of the fluid flowing through each U-shaped inner pipe can be further increased.

さらに本発明において、前記外管と前記3本以上のU字状内管との間の隙間に熱伝導性の良い材料(水などの物質)を充填するようにしたときは、前記外管に伝導・保持された地熱を前記3本以上のU字状内管及びその内部の流体に、前記隙間内に充填された物質を介して、より効率的に伝導できるようになる。   Furthermore, in the present invention, when the gap between the outer tube and the three or more U-shaped inner tubes is filled with a material having good thermal conductivity (substance such as water), the outer tube Conducted and retained geothermal heat can be more efficiently conducted to the three or more U-shaped inner pipes and the fluid inside thereof through the material filled in the gap.

(a)は本発明の実施形態に係る3本のU字状内管を備えた地熱回収装置を説明するための一部に断面を含む概略図、(b)はそのA−A’線断面図である。(A) is the schematic which includes a cross section in part for demonstrating the geothermal recovery apparatus provided with the three U-shaped inner pipes which concern on embodiment of this invention, (b) is the AA 'line cross section FIG. 本実施形態の製造に使用される3本のU字状内管及びそれらの外管内での配置方法を説明するための図である。It is a figure for demonstrating the arrangement method in three U-shaped inner pipes used for manufacture of this embodiment, and those outer pipes. 本実施形態の製造に使用される3本のU字状内管及びそれらの外管内での配置方法を説明するための図である。It is a figure for demonstrating the arrangement method in three U-shaped inner pipes used for manufacture of this embodiment, and those outer pipes. 本実施形態の製造に使用される3本のU字状内管及びそれらの外管内での配置方法を説明するための図である。It is a figure for demonstrating the arrangement method in three U-shaped inner pipes used for manufacture of this embodiment, and those outer pipes. 従来の地熱発電システムの一例を説明するための概略図である。It is the schematic for demonstrating an example of the conventional geothermal power generation system. まだ公知ではないが発明されている循環型地熱発電システム(特願2014−239236)を示す概略図である。It is the schematic which shows the circulation type geothermal power generation system (Japanese Patent Application No. 2014-239236) invented although it is not yet well-known.

以下、本発明の実施形態に掛かる地熱回収装置を図面を参照して説明する(なお、図1などにおいて図6と共通する部分には同一の符号を付している)。図1(a)は、本発明の実施形態に係る3本のU字状内管を備えた地熱回収装置を説明するための一部に断面を含む概略図、同(b)はそのA−A’線断面図である。図1(a)において、11は地中の50〜1500m、例えば500mの深さまで埋設された外管である。前記外管11の外径は、例えば約200〜300mmである。   Hereinafter, a geothermal recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings (in FIG. 1 and the like, parts common to FIG. 6 are assigned the same reference numerals). FIG. 1A is a schematic diagram including a cross section in part for explaining a geothermal recovery apparatus including three U-shaped inner pipes according to an embodiment of the present invention, and FIG. It is A 'sectional view. In Fig.1 (a), 11 is an outer pipe | tube embed | buried to the depth of 50-1500m in the ground, for example, 500m. The outer diameter of the outer tube 11 is, for example, about 200 to 300 mm.

また図1において、12は、前記外管11内に配置される内管であって、互いに平行で細長い2つの側管12a,12bが底部12cにおいて折れ曲げられて形成されて成る1本のU字状内管である。前記U字状内管12の底部12cは、前記外管11の底部11aの近傍に配置されている。前記U字状内管12中の互いに平行で細長い2つの側管12a,12bは、それぞれの外側の側面(外壁面)12aa,12baが外管11の内壁面に近接(又は当接)するように配置されている。以上の構成は、他の2つのU字状内管13,14についても同様である(他の2つのU字状内管13,14については、図1では詳しく示していないが、図2以下に関して後述する)。   In FIG. 1, reference numeral 12 denotes an inner tube disposed in the outer tube 11, which is formed by bending two parallel and elongated side tubes 12a and 12b at the bottom 12c. It is a letter-shaped inner tube. The bottom portion 12 c of the U-shaped inner tube 12 is disposed in the vicinity of the bottom portion 11 a of the outer tube 11. In the U-shaped inner tube 12, two parallel and elongated side tubes 12 a and 12 b are arranged such that the outer side surfaces (outer wall surfaces) 12 aa and 12 ba approach (or abut) the inner wall surface of the outer tube 11. Is arranged. The above configuration is the same for the other two U-shaped inner tubes 13 and 14 (the other two U-shaped inner tubes 13 and 14 are not shown in detail in FIG. Will be described later).

図1は、本実施形態が例えば図6に示すような循環型地熱発電システムに適用された例を示している。図1において、前記U字状内管12は、その一方の上端側開口部12abに循環ポンプ19がパイプ20で接続され、その他方の上端側開口部12bbに蒸発器16が接続されている。前記循環ポンプ19と蒸発器16は、発電用タービン17及び復水器18を介して互いにパイプ20で接続されている。これにより、前記の蒸発器16、発電用タービン17、復水器18、貯水槽19a、循環ポンプ19、及びU字状内管12により閉流路が形成されている。他の2つのU字状内管13,14についても同様である。   FIG. 1 shows an example in which the present embodiment is applied to a circulation type geothermal power generation system as shown in FIG. 6, for example. In FIG. 1, the U-shaped inner pipe 12 has a circulating pump 19 connected to one upper end opening 12ab by a pipe 20 and an evaporator 16 connected to the other upper end opening 12bb. The circulation pump 19 and the evaporator 16 are connected to each other by a pipe 20 via a power generation turbine 17 and a condenser 18. Thereby, a closed flow path is formed by the evaporator 16, the power generation turbine 17, the condenser 18, the water storage tank 19 a, the circulation pump 19, and the U-shaped inner pipe 12. The same applies to the other two U-shaped inner tubes 13 and 14.

前記外管11内に配置される他の2つのU字状内管13,14の中、U字状内管13は、図1の外管11内の下方に示すように、前記U字状内管12の底部12cの上方に(すなわち、重力方向において少し位置を上方にずらして)、且つ側方の2つの側管が前記U字状内管12に対して水平方向において約120度だけ交差する方向となるように(図1(b)参照)、配置されている。また前記他の2つのU字状内管13,14の中、U字状内管14は、前記U字状内管13の底部の上方に(すなわち、重力方向において少し位置を上方にずらして)、且つ側方の2つの側管が前記各U字状内管12及び13に対して水平方向において約120度だけ交差する方向となるように(図1(b)参照)、配置されている(なお、前記他の2つのU字状内管13,14については、図1では詳しく示していないが、図2以下に関して後述する)。   Among the other two U-shaped inner tubes 13 and 14 arranged in the outer tube 11, the U-shaped inner tube 13 is formed in the U-shape as shown below in the outer tube 11 of FIG. Above the bottom portion 12c of the inner tube 12 (that is, with the position slightly shifted upward in the direction of gravity), and the two side tubes on the sides are only about 120 degrees in the horizontal direction with respect to the U-shaped inner tube 12 It arrange | positions so that it may become a crossing direction (refer FIG.1 (b)). Of the other two U-shaped inner tubes 13, 14, the U-shaped inner tube 14 is positioned above the bottom of the U-shaped inner tube 13 (that is, slightly shifted upward in the direction of gravity). ) And the two side pipes on the side are arranged so as to intersect the U-shaped inner pipes 12 and 13 by about 120 degrees in the horizontal direction (see FIG. 1B). (Note that the other two U-shaped inner tubes 13 and 14 are not shown in detail in FIG. 1, but will be described later with reference to FIG. 2 and subsequent figures).

また、前記外管11と前記3本のU字状内管12〜14との間の隙間には、外管11に伝導・保持されている地熱を各U字状内管12〜14に伝導し易いように、熱伝導性の良い物質、例えば水などが充填されている。   Further, in the gap between the outer tube 11 and the three U-shaped inner tubes 12 to 14, the geothermal heat conducted and held in the outer tube 11 is transmitted to the U-shaped inner tubes 12 to 14. In order to facilitate this, a material having good thermal conductivity, such as water, is filled.

次に、前記3本のU字状内管12〜14の構成について図2〜4を参照して説明する。なお図2〜4においては、図示の便宜上、外管11及び3本のU字状内管12〜14の重力方向の長さを実際よりも短く示している。   Next, the configuration of the three U-shaped inner pipes 12 to 14 will be described with reference to FIGS. 2 to 4, for convenience of illustration, the length in the gravity direction of the outer tube 11 and the three U-shaped inner tubes 12 to 14 is shown to be shorter than the actual length.

図2(a)は3本のU字状内管12〜14中の1つのU字状内管12を示す斜視図、同(b)はこのU字状内管12が配置される外管11の側断面図、同(c)は外管11内に前記U字状内管12だけをとりあえず配置した状態を示す平面図である。図1(c)に示すように、前記U字状内管12の2つの側管12a,12bの各外側の側面(外壁面)12aa,12baは、外管11の内壁面11bと近接(又は当接)するように配置されている。   FIG. 2A is a perspective view showing one U-shaped inner tube 12 among the three U-shaped inner tubes 12 to 14, and FIG. 2B is an outer tube on which the U-shaped inner tube 12 is arranged. 11 is a plan view showing a state in which only the U-shaped inner tube 12 is disposed in the outer tube 11 for the time being. As shown in FIG. 1C, the outer side surfaces (outer wall surfaces) 12aa and 12ba of the two side tubes 12a and 12b of the U-shaped inner tube 12 are close to (or are close to) the inner wall surface 11b of the outer tube 11 (or It is arranged so as to make contact.

次に、図3(a)は3本のU字状内管12〜14中の2つのU字状内管12,13を示す斜視図、同(b)は前記2つのU字状内管12,13が配置される外管11の側断面図、同(c)は外管11内に前記2つのU字状内管12,13をとりあえず配置した状態を示す平面図である。図3(a)に示すように、前記2つのU字状内管12,13の中、U字状内管13の底部13cは、U字状内管12の底部12cに対してその上方の位置に(すなわち、重力方向において上方に少しズレた位置に)配置されている。   Next, FIG. 3A is a perspective view showing two U-shaped inner tubes 12 and 13 in the three U-shaped inner tubes 12 to 14, and FIG. 3B is the two U-shaped inner tubes. 12 is a side cross-sectional view of the outer tube 11 on which 12 and 13 are disposed, and FIG. 8C is a plan view showing a state in which the two U-shaped inner tubes 12 and 13 are disposed in the outer tube 11 for the time being. As shown in FIG. 3 (a), the bottom 13 c of the U-shaped inner tube 13 is above the bottom 12 c of the U-shaped inner tube 12 among the two U-shaped inner tubes 12, 13. It is arranged at a position (that is, at a position slightly shifted upward in the direction of gravity).

また図3(c)に示すように、前記2つのU字状内管12,13は、互いに水平方向に約120度だけ交差するように配置されている。その結果、前記U字状内管13の2つの側管13a,13bの各外側の側面(外壁面)13aa,13baは、前記U字状内管12の2つの側管12a,12bの各外側の側面(外壁面)12aa,12baと同様に、外管11の内壁面11bと近接(又は当接)するように配置されている。   As shown in FIG. 3C, the two U-shaped inner pipes 12 and 13 are arranged so as to intersect each other by about 120 degrees in the horizontal direction. As a result, the outer side surfaces (outer wall surfaces) 13aa and 13ba of the two side tubes 13a and 13b of the U-shaped inner tube 13 are respectively connected to the outer sides of the two side tubes 12a and 12b of the U-shaped inner tube 12. Similarly to the side surfaces (outer wall surfaces) 12aa and 12ba, the inner wall surface 11b of the outer tube 11 is disposed so as to come close (or abut).

次に、図4(a)は3本のU字状内管12〜14を示す斜視図、同(b)は前記3本のU字状内管12〜14が配置される外管11の側断面図、同(c)は外管11内に前記3本のU字状内管12〜14を配置した状態を示す平面図である。図4(a)に示すように、前記3本のU字状内管12〜14の中、U字状内管14の底部14cは、U字状内管13の底部13cに対してその上方の位置に(すなわち、重力方向において上方に少しズレた位置に)配置されている。   Next, FIG. 4A is a perspective view showing the three U-shaped inner tubes 12 to 14, and FIG. 4B is the outer tube 11 on which the three U-shaped inner tubes 12 to 14 are arranged. FIG. 3C is a side sectional view showing the state in which the three U-shaped inner tubes 12 to 14 are arranged in the outer tube 11. 4A, among the three U-shaped inner tubes 12 to 14, the bottom portion 14c of the U-shaped inner tube 14 is located above the bottom portion 13c of the U-shaped inner tube 13. (That is, at a position slightly shifted upward in the direction of gravity).

また図4(c)に示すように、前記3つのU字状内管12,13,14は、互いに水平方向に、約120度ずつ順次、交差するように配置されている。その結果、図4(c)に示すように、前記3本のU字状内管12〜14の各側管の外側の側面(外壁面)の全てが、すなわち、(i)前記U字状内管12の2つの側管12a,12bの各外側の側面(外壁面)12aa,12ba、(ii)前記U字状内管13の2つの側管13a,13bの各外側の側面(外壁面)13aa,13ba、及び(iii)前記U字状内管14の2つの側管14a,14bの各外側の側面(外壁面)14aa,14baのいずれもが、前記外管11の内壁面11bと近接(又は当接)するように、配置されている。   Further, as shown in FIG. 4C, the three U-shaped inner tubes 12, 13, and 14 are arranged so as to cross each other in the horizontal direction sequentially by about 120 degrees. As a result, as shown in FIG. 4 (c), all of the outer side surfaces (outer wall surfaces) of the respective side tubes of the three U-shaped inner tubes 12 to 14, that is, (i) the U-shape The outer side surfaces (outer wall surfaces) 12aa, 12ba of the two side tubes 12a, 12b of the inner tube 12 (ii) The outer side surfaces (outer wall surfaces) of the two side tubes 13a, 13b of the U-shaped inner tube 13 ) 13aa, 13ba, and (iii) The outer side surfaces (outer wall surfaces) 14aa, 14ba of the two side tubes 14a, 14b of the U-shaped inner tube 14 are connected to the inner wall surface 11b of the outer tube 11, respectively. It arrange | positions so that it may adjoin (or contact | abut).

次に本実施形態の動作を図1を参照して説明する。本実施形態においては、前記循環ポンプ19により、前記各3本のU字状内管12〜14のそれぞれの一方の上端側開口部(例えば図1の符号12ab参照)から水が加圧注水される(図1の矢印A参照)。U字状内管12について説明すると、前記加圧注水された水は、前記U字状内管12の一方の側管12a内を下降して(図1の矢印B参照)底部12c(外管11の底部近傍領域11c内)まで下降した後(図1の矢印C参照)、反転して、他方の側管12b内を上昇する(図1の矢印D参照)。前記水は、前述のように一方の側管12a内を下降して(図1の矢印B参照)底部12cまで下降し(図1の矢印C参照)さらに他方の側管12b内を上昇する(図1の矢印D参照)過程で、外管11に伝導・保持された地熱(地下の地熱貯留層から外管11に伝導され保持された地熱)と熱交換されて熱水となる。   Next, the operation of this embodiment will be described with reference to FIG. In the present embodiment, water is pressurized and injected from the upper end opening (for example, reference numeral 12ab in FIG. 1) of each of the three U-shaped inner pipes 12 to 14 by the circulation pump 19. (See arrow A in FIG. 1). The U-shaped inner pipe 12 will be described. The water injected under pressure is lowered in one side pipe 12a of the U-shaped inner pipe 12 (see arrow B in FIG. 1). 11 (inside the bottom vicinity region 11c) of 11 (see arrow C in FIG. 1), reverse, and ascend in the other side tube 12b (see arrow D in FIG. 1). As described above, the water descends in one side pipe 12a (see arrow B in FIG. 1) and descends to the bottom 12c (see arrow C in FIG. 1) and further rises in the other side pipe 12b (see FIG. 1). In the process (see arrow D in FIG. 1), heat is exchanged with the geothermal heat conducted and held in the outer pipe 11 (geothermal heat conducted and held from the underground geothermal reservoir to the outer pipe 11) to become hot water.

前記のようにして熱交換された熱水は、前記循環ポンプ19の力により、前記他方の側管12b内を上昇した後、前記U字状内管12の他方の上端側開口部12bbから蒸発器16に供給される。前記蒸発器16に供給された熱水は、そこで蒸気に変換されて発電用タービン17を回転させた後、復水器18から前記貯水槽19aを経て循環ポンプ19へと流通する。この熱水は、前記循環ポンプ19により、さらに前記U字状内管12の上端側開口部12abから前記U字状内管12の一方の側管12a内に加圧注水され、以後は前記の閉流路中を前記と同様に循環する。なお、本実施形態では、前記のように熱水を連続的に循環させる場合、循環される熱水の温度は概ね50〜60℃となる。   The hot water subjected to heat exchange as described above rises in the other side pipe 12b by the force of the circulation pump 19, and then evaporates from the other upper end side opening 12bb of the U-shaped inner pipe 12. Supplied to the vessel 16. The hot water supplied to the evaporator 16 is converted into steam there, rotates the power generation turbine 17, and then circulates from the condenser 18 to the circulation pump 19 through the water storage tank 19 a. The hot water is further pressurized and injected into the one side pipe 12a of the U-shaped inner pipe 12 from the upper end side opening 12ab of the U-shaped inner pipe 12 by the circulation pump 19, and thereafter It circulates in the closed flow path as described above. In the present embodiment, when hot water is continuously circulated as described above, the temperature of the circulated hot water is approximately 50 to 60 ° C.

以上はU字状内管12に関して説明したが、他の2つのU字状内管13,14に関しても、上記と同様の動作が行われ、前記水が前記の閉流路中を前記と同様に循環する。   Although the above description has been made with respect to the U-shaped inner tube 12, the same operation as described above is performed with respect to the other two U-shaped inner tubes 13, 14, and the water flows in the closed flow path in the same manner as described above. It circulates to.

以上のように、本実施形態によれば、従来例(図5に示す例)のように地熱貯留層13中の熱水又は蒸気を直接に地上に汲み上げることがないので、従来のように近くの温泉を枯渇させるなど地熱貯留層近傍の地下水系に悪影響を与えてしまうという不都合を避けることができる。また本実施形態によれば、従来例(図5に示す例)のように地熱貯留層13中の熱水又は蒸気を直接に地上に汲み上げることがないので、従来のように地熱発電の過程で地熱貯留層からの熱水又は蒸気中に含まれている硫黄等の成分が地熱発電などに使用する装置にスケールとして固着・堆積して配管等が劣化したり前記スケールを取り除くために多額のメンテナンス費用が発生してしまうという不都合を避けることができる。   As described above, according to the present embodiment, unlike the conventional example (example shown in FIG. 5), the hot water or steam in the geothermal reservoir 13 is not directly pumped to the ground. It is possible to avoid the inconvenience of adversely affecting the groundwater system near the geothermal reservoir, such as depletion of hot springs. Further, according to the present embodiment, unlike the conventional example (example shown in FIG. 5), the hot water or steam in the geothermal reservoir 13 is not directly pumped to the ground. Components such as sulfur contained in the hot water or steam from the geothermal reservoir are fixed and deposited as scales on equipment used for geothermal power generation, etc., and pipes etc. deteriorate and large maintenance is required to remove the scales It is possible to avoid the disadvantage that costs are incurred.

また本実施形態では、地下において地熱が伝導される外管11の内部に3本のU字状内管12〜14が配置され、前記各U字状内管12〜14内を水が流通しながら、外管11に伝導された地熱と熱交換される。この場合、本実施形態によるときは、前記各U字状内管12〜14内を水が流通しながら外管11に伝導された地熱と熱交換されるときの水の流通距離は、例えば「外管11とその内部に配置された直線状の(U字管でない)内管との間の隙間」内に流体を流通させる場合(図6に示す場合。この場合の水が熱交換されるときの水の流通距離は外管11の重力方向の長さ以下に止まる)と比較して、約2倍に大幅に延びることになる。よって、本実施形態によれば、例えば「外管11とその内部に配置された直線状の(U字管でない)内管との間の隙間」内に流体を流通させる場合(図6に示す場合)と比較して、前記外管11内での水(前記各U字状内管12〜14内を流通する水)の地熱との熱交換効率を、大幅に向上させることができる。   In the present embodiment, three U-shaped inner tubes 12 to 14 are arranged inside the outer tube 11 through which geothermal heat is conducted in the underground, and water flows through each of the U-shaped inner tubes 12 to 14. However, heat exchange with the geothermal heat conducted to the outer tube 11 is performed. In this case, according to the present embodiment, the water circulation distance when the heat is exchanged with the geothermal heat conducted to the outer pipe 11 while water flows through each of the U-shaped inner pipes 12 to 14 is, for example, “ When fluid is circulated in the “gap between the outer tube 11 and a straight (not U-shaped) inner tube disposed therein” (in the case shown in FIG. 6, water is exchanged in this case) The flow distance of water at that time is substantially less than the length of the outer tube 11 in the direction of gravity), and the water will extend substantially twice as much. Therefore, according to the present embodiment, for example, when fluid is circulated in the “gap between the outer tube 11 and a linear (not U-shaped) inner tube disposed therein” (shown in FIG. 6). Compared with the case), the heat exchange efficiency with the geothermal heat of the water in the outer pipe 11 (water flowing through the U-shaped inner pipes 12 to 14) can be greatly improved.

また、本実施形態においては、前記3本のU字状内管12〜14を、それぞれ、その各外側の側面(例えば図4(c)の符号12aa,12ba,13aa,13ba,14aa,14baを参照)が前記外管11の内壁面11bにそれぞれ近接(又は当接)するように、且つその各底部(例えば図4(a)の符号12c,13c,14cを参照)が前記外管11の底部11a又はその近傍に位置するように、配置するようにしたので、前記外管11に伝導された地熱を前記3本のU字状内管12〜14及びその内部の水に対して効率的に伝導することができ、前記外管11内での前記水(前記各U字状内管12〜14内を流通する水)の地熱との熱交換効率をより高めることができる。   In the present embodiment, the three U-shaped inner tubes 12 to 14 are respectively connected to the outer side surfaces thereof (for example, reference numerals 12aa, 12ba, 13aa, 13ba, 14aa, and 14ba in FIG. 4C). (Refer to reference numerals 12c, 13c, and 14c in FIG. 4 (a)) so that each of the bottom portions (see, for example, reference numerals 12c, 13c, and 14c) of the outer tube 11 Since it is arranged so as to be located at the bottom portion 11a or in the vicinity thereof, the geothermal heat conducted to the outer tube 11 is efficient with respect to the three U-shaped inner tubes 12 to 14 and the water inside thereof. The heat exchange efficiency with the geothermal heat of the water (water flowing through the U-shaped inner pipes 12 to 14) in the outer pipe 11 can be further increased.

また、本実施形態においては、前記3本のU字状内管12〜14を、前記外管11内において互いに重力方向に位置をずらしながら且つ互いに水平方向に交差しながら配置するようにした(図4(a)参照)ので、前記外管11内の空間において3本のU字状内管12〜14を効率的に配置することができ、前記外管11内での前記水(前記各U字状内管12〜14内を流通する水)の地熱との熱交換効率をより高めることができる。   In the present embodiment, the three U-shaped inner pipes 12 to 14 are arranged in the outer pipe 11 while shifting their positions in the gravitational direction and intersecting each other in the horizontal direction ( 4 (a)), the three U-shaped inner tubes 12 to 14 can be efficiently arranged in the space in the outer tube 11, and the water in the outer tube 11 (each of the above-mentioned The heat exchange efficiency with the geothermal heat of water flowing through the U-shaped inner pipes 12 to 14 can be further increased.

さらに本実施形態において、前記外管11と前記3本のU字状内管12〜14との間の隙間に熱伝導性の良い材料、例えば水を充填するようにしたので、前記外管に伝導・保持された地熱を前記3本のU字状内管12〜14及びその内部の水に、より効率的に伝導できるようになる。   Furthermore, in this embodiment, since the gap between the outer tube 11 and the three U-shaped inner tubes 12 to 14 is filled with a material having good thermal conductivity, for example, water, The conducted and retained geothermal heat can be more efficiently conducted to the three U-shaped inner pipes 12 to 14 and the water therein.

以上本発明の実施形態について説明したが、本発明はこれに限られるものではなく、様々な変更が可能である。例えば、前記実施形態では、水などの流体を流通させながら外管11に伝導・保持されている地熱と熱交換させるためのU字状内管を3本のU字状内管12〜14としたが、本発明ではこれに限られることなく、例えば4本、6本、8本などの任意の複数の本数とすることができる。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made. For example, in the above-described embodiment, the U-shaped inner tube for exchanging heat with the geothermal heat conducted and held in the outer tube 11 while flowing a fluid such as water is replaced with the three U-shaped inner tubes 12 to 14. However, in the present invention, the number is not limited to this, and any number of four, six, eight, etc. can be used.

また、例えば、前記実施形態では、地中に対して直接に外管11を埋設した例を示したが、本発明はこれに限定されるものではなく、例えば、地中の例えば500m以上の深さまで埋設された温泉井用管であって過去には温泉井用に使用されていたが現在は温泉井用として使用されていない温泉井用管(その下方部分には、外部の地熱貯留層13中の熱水及び蒸気を自ら(温泉井用管)の内部に導入するための多数のスリット又は穴を有するストレーナが形成されている)の内部に、前記外管11などを配置するようにしてもよい。   Further, for example, in the above-described embodiment, the example in which the outer tube 11 is directly embedded in the ground has been shown, but the present invention is not limited to this, for example, a depth of 500 m or more in the ground, for example. A hot spring well pipe buried in the past and used in the past for hot spring wells but not currently used for hot spring wells (in the lower part, an external geothermal reservoir 13 The outer pipe 11 and the like are arranged inside a strainer having a large number of slits or holes for introducing hot water and steam therein (hot spring well pipe). Also good.

また、前記図1に示す例(前記実施形態が図6に示すような循環型地熱発電システムに適用された例)では、前記3本のU字状内管12〜14を流通する過程で地熱(地熱貯留層から外管11に伝導され保持された地熱)と熱交換された熱水を地上に上昇させて前記蒸発器16で蒸気化し、この蒸気により発電用タービン17を駆動する方式を採用した例を示したが、本発明が適用可能な地熱発電システムはこれに限定されるものではなく、例えば、前記地熱と熱交換された熱水を地上に上昇させた後は、この熱水を低沸点の熱媒体を蒸気化する蒸発器の1次側に供給し、前記蒸発器の2次側から低沸点の熱媒体の蒸気を取り出し、この低沸点の熱媒体の蒸気により発電用タービンを駆動するバイナリー発電方式を採用することも可能である(この場合、前記3本のU字状内管12〜14の内部で地熱と熱交換された熱水は、例えば前記3本のU字状内管12〜14内を地上まで上昇した後、蒸発器(熱交換器)に送られて熱媒体を蒸気化するために使用され、その後、循環ポンプにより例えば前記3本のU字状内管12〜14内に圧入されるので、前記地熱と熱交換された後の熱水は、前記のような3本のU字状内管12〜14、蒸発器及び循環ポンプなどが設けられた閉流路中を循環するだけで、発電用タービンの駆動には直接には利用されない。このようにした場合は、前記外管11の外側の地熱貯留層13中に存在する地熱エネルギーが弱いため前記熱水に含まれる地熱エネルギーが比較的小さなものに止まるような場合でも、蒸発器により低沸点の熱媒体を蒸気化させることにより発電用タービンを駆動して発電することが容易に可能になる)。   Further, in the example shown in FIG. 1 (the example in which the embodiment is applied to a circulation type geothermal power generation system as shown in FIG. 6), the geothermal heat is passed through the three U-shaped inner pipes 12-14. (The geothermal heat conducted from the geothermal reservoir to the outer tube 11) and the hot water exchanged with the heat are raised to the ground and vaporized by the evaporator 16, and the power generation turbine 17 is driven by this vapor. However, the geothermal power generation system to which the present invention is applicable is not limited to this. For example, after the hot water exchanged with the geothermal heat is raised to the ground, the hot water is The low boiling point heat medium is supplied to the primary side of the evaporator for vaporizing, the low boiling point heat medium steam is taken out from the secondary side of the evaporator, and the low temperature boiling point heat medium steam is used to generate a power generation turbine. It is also possible to adopt a driving binary power generation method In this case, the hot water heat-exchanged with the geothermal heat inside the three U-shaped inner pipes 12 to 14 evaporates after rising up to the ground in the three U-shaped inner pipes 12 to 14, for example. Is used to evaporate the heat medium, and is then press-fitted into, for example, the three U-shaped inner pipes 12 to 14 by a circulation pump. The hot water after the replacement only circulates in the closed flow path provided with the three U-shaped inner pipes 12 to 14, the evaporator, the circulation pump and the like as described above, thereby driving the power generation turbine. In such a case, since the geothermal energy existing in the geothermal reservoir 13 outside the outer tube 11 is weak, the geothermal energy contained in the hot water remains relatively small. Even in such a case, a low boiling point heat medium is vaporized by an evaporator. It becomes readily possible to generate power by driving the power generating turbine with a).

また、前記実施形態においては、前記循環ポンプ19により圧入されて3本のU字状内管12〜14内で地熱と熱交換される流体を水としたが、本発明では他の様々な種類の流体(熱媒体を含む)を使用することができる。また、前記実施形態では、外管11が地中の50〜1500m、例えば500m程度まで埋設されている場合について説明したが、本発明においてはこのような場合に限られるものではなく、例えば外管11が100〜400m程度の深さに埋設される場合や600〜1000mの深さに埋設される場合でもよい。また、本発明による地熱回収装置は、典型的には図6に示すような循環型地熱発電システムに適用されることを予定しているが、これに限られるものではなく他の用途、例えば住宅の冷暖房システムなどにも適用できることは勿論である。   Moreover, in the said embodiment, although the fluid press-fitted by the said circulation pump 19 and heat-exchanged with geothermal heat in the three U-shaped inner pipes 12-14 was made into water, in this invention, other various kinds Other fluids (including heat media) can be used. Moreover, although the said embodiment demonstrated the case where the outer pipe | tube 11 was embed | buried to 50-1500m in the ground, for example, about 500m, in this invention, it is not restricted to such a case, For example, an outer pipe | tube 11 may be embedded at a depth of about 100 to 400 m, or may be embedded at a depth of 600 to 1000 m. In addition, the geothermal recovery apparatus according to the present invention is typically applied to a circulation type geothermal power generation system as shown in FIG. 6, but is not limited thereto, and is used for other purposes such as a house. Of course, the present invention can be applied to other air conditioning systems.

11 外管
11a 外管の底部
11aa 上面
11b 外管の上端側開口部
11b 外管の内壁面
11c 外管の底部近傍領域
12,13,14 U字状内管
12a,12b,13a,13b,14a,14b U字状内管の側管
12aa,12ba,13aa,13ba,14aa,14ba U字状内管中の側管の外壁面
12ab,12bb U字状内管の上端側開口部
12c,13c,14c U字状内管の底部
13,14 字状内管
16 蒸発器
17 発電用タービン
17a 発電機
18 復水器
19 循環ポンプ
19a 貯水槽
11 Outer tube 11a Outer tube bottom 11aa Top surface 11b Outer tube upper end side opening 11b Outer tube inner wall surface 11c Outer tube bottom area 12, 13, 14 U-shaped inner tubes 12a, 12b, 13a, 13b, 14a , 14b U-shaped inner tube side tubes 12aa, 12ba, 13aa, 13ba, 14aa, 14ba Outer wall surface 12ab of the side tube in the U-shaped inner tube, 12bb Upper end side openings 12c, 13c of the U-shaped inner tube, 14c U-shaped inner pipe bottom 13, 14-shaped inner pipe 16 Evaporator 17 Power generation turbine 17a Generator 18 Condenser 19 Circulation pump 19a Water storage tank

Claims (4)

地下において地熱が伝導される外管であって少なくとも底部を含む下方部分が閉塞されている外管と、前記外管内に配置される3本以上のU字状内管とを備えており、前記3本以上のU字状内管は、それぞれ、流体が、地熱と熱交換されるように、自らの内部と地上の負荷機器との間を循環的に流通するように、構成されている、3本以上のU字状内管を備えた地熱回収装置。   An outer pipe through which geothermal heat is conducted in the underground and having a closed lower portion including at least a bottom, and three or more U-shaped inner pipes arranged in the outer pipe, Each of the three or more U-shaped inner tubes is configured so that the fluid circulates between its own interior and the load equipment on the ground so that the heat exchanges with the geothermal heat. A geothermal recovery device with three or more U-shaped inner tubes. 前記3本以上のU字状内管は、それぞれ、その各外側の側面が前記外管の内壁面に近接又は当接するように且つその各底部が前記外管の底部又はその近傍に位置するように、配置されている、請求項1に記載の3本以上のU字状内管を備えた地熱回収装置。   Each of the three or more U-shaped inner pipes is arranged such that the outer side surfaces thereof are close to or abut on the inner wall surface of the outer pipe and the bottom parts thereof are located at or near the bottom part of the outer pipe. The geothermal recovery apparatus provided with three or more U-shaped inner pipes according to claim 1, wherein 前記3本以上のU字状内管は、前記外管内において、互いに重力方向に位置をずらしながら且つ互いに水平方向において交差しながら、配置されている、請求項1又は2に記載の3本以上のU字状内管を備えた地熱回収装置。   The three or more U-shaped inner pipes are arranged in the outer pipe while being displaced from each other in the direction of gravity and intersecting each other in the horizontal direction in the outer pipe. A geothermal recovery device with a U-shaped inner tube. 前記外管と前記3本以上のU字状内管との間の隙間には、熱伝導性の良い材料が充填されている、請求項1,2又は3に記載の3本以上のU字状内管を備えた地熱回収装置。
The three or more U-characters according to claim 1, 2 or 3, wherein a gap between the outer tube and the three or more U-shaped inner tubes is filled with a material having good thermal conductivity. Geothermal recovery device with an inner pipe.
JP2016102797A 2016-05-23 2016-05-23 Ground heat recovery device including three or more u-shaped inner pipe Pending JP2017210888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102797A JP2017210888A (en) 2016-05-23 2016-05-23 Ground heat recovery device including three or more u-shaped inner pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102797A JP2017210888A (en) 2016-05-23 2016-05-23 Ground heat recovery device including three or more u-shaped inner pipe

Publications (1)

Publication Number Publication Date
JP2017210888A true JP2017210888A (en) 2017-11-30

Family

ID=60475301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102797A Pending JP2017210888A (en) 2016-05-23 2016-05-23 Ground heat recovery device including three or more u-shaped inner pipe

Country Status (1)

Country Link
JP (1) JP2017210888A (en)

Similar Documents

Publication Publication Date Title
AU2009258086B2 (en) System and method of capturing geothermal heat from within a drilled well to generate electricity
US20160281689A1 (en) Solar thermal power generation system using single hot molten salt thermal energy storage tank
CN106488687B (en) For carrying out cooling device to closed cabinet
JP6393602B2 (en) Circulating geothermal power generation method and apparatus
WO2016093736A2 (en) Horizontal steam generator for a reactor plant with a water-cooled, water-moderated reactor, and reactor plant with such a steam generator
JP2016023837A (en) Air conditioner for server system
JP6164461B2 (en) Geothermal utilization system
JP2017210951A (en) Ground heat recovery device including triple pipe
JP2008190738A (en) Heat storage device
CN104596335A (en) Heat storing device and heat circulating method of pulsating heat pipes
JP2017227130A (en) Independence arrangement type geothermal recovery device and geothermal power generation system with the same
JP2017210888A (en) Ground heat recovery device including three or more u-shaped inner pipe
JP2013007370A (en) Waste heat power generator
JP2017211171A (en) High-density heat ground recovery device having landslide prevention function
JP2017210889A (en) Ground heat recovery device including eight or more thin pipes
JP6041187B2 (en) Heat pipe with automatic reversal of heat transport direction
JP7315952B2 (en) Geothermal recovery equipment
JP5224609B2 (en) Geothermal equipment
KR101632724B1 (en) Method of Calculating Temperature of Geothermal Well and Program and Storagemedia
KR102314799B1 (en) Coaxial type geothermal heat exchanging system
KR20150098451A (en) Shell and tube type heat exchanger
JP2017210910A (en) Thermoelectric generation device
KR102438772B1 (en) Solar heat storage system and power generation system adopting the storage system
RU2611537C2 (en) Method and device for reducing movement effect in “core-shell” type heat exchanger
KR100753333B1 (en) Power generation system using waste heat