JP2017207374A - Liquid level detector - Google Patents

Liquid level detector Download PDF

Info

Publication number
JP2017207374A
JP2017207374A JP2016100073A JP2016100073A JP2017207374A JP 2017207374 A JP2017207374 A JP 2017207374A JP 2016100073 A JP2016100073 A JP 2016100073A JP 2016100073 A JP2016100073 A JP 2016100073A JP 2017207374 A JP2017207374 A JP 2017207374A
Authority
JP
Japan
Prior art keywords
vibration
propagation
liquid level
wave
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016100073A
Other languages
Japanese (ja)
Inventor
博行 鈴木
Hiroyuki Suzuki
博行 鈴木
政稔 市村
Masatoshi Ichimura
政稔 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2016100073A priority Critical patent/JP2017207374A/en
Publication of JP2017207374A publication Critical patent/JP2017207374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level detector capable of precisely detecting a liquid level using an ultrasonic wave.SOLUTION: A liquid level detector F includes: a propagation body 1 immersed in a liquid L; vibration generation means 2 for applying vibration to the propagation body 1; vibration detection means 2 for detecting vibration of the propagation body 1; and position detection means 3 for outputting a driving signal S1 to drive the vibration generation means 2, receiving a measurement signal S3 detected by the vibration detection means 2 measuring a propagation wave that is generated by the vibration of the vibration generation means 2, propagates through the propagation body 1 and is reflected, and detecting the position of a liquid level LS of liquid L. The propagation body 1 includes a groove 1a substantially orthogonal to a longitudinal direction, and a groove section 1d is further formed on a lower surface 1c of the groove 1a.SELECTED DRAWING: Figure 6

Description

本発明は、超音波を利用し、タンク内の液体の液面を検出する液面検出装置に関するものである。   The present invention relates to a liquid level detection device that detects the liquid level of a liquid in a tank using ultrasonic waves.

従来の液面検出装置は、気体中における超音波良導体の一部が液体中にある時の前記超音波良導体と液体との接触長さの変化によって、前記超音波良導体を伝搬する超音波の表面波の伝搬時間が変化することを利用して液体のレベルを計測するものであった(特許文献1を参照)。   The conventional liquid level detection device is a method for detecting the surface of an ultrasonic wave propagating through the ultrasonic good conductor by a change in the contact length between the ultrasonic good conductor and the liquid when a part of the ultrasonic good conductor in the gas is in the liquid. The level of the liquid was measured using the fact that the wave propagation time changes (see Patent Document 1).

特開平4−86525号公報Japanese Patent Laid-Open No. 4-86525

超音波を利用した液面検出装置は、原理上温度による影響を受けるため、前記液面検出装置もしくは測定する液体の温度を検出する温度センサを設け、前記温度センサで検出した温度による補正を行って液面を検出することが考えられていた。しかし、前記温度センサを設けることは、製造コストの上昇を招くとともに、前記温度センサによる計測を行う必要があり、検出処理が煩雑となるといった問題点があった。   Since the liquid level detection device using ultrasonic waves is influenced by temperature in principle, the liquid level detection device or a temperature sensor for detecting the temperature of the liquid to be measured is provided, and the temperature detected by the temperature sensor is corrected. It has been considered to detect the liquid level. However, the provision of the temperature sensor causes an increase in manufacturing cost, and it is necessary to perform measurement using the temperature sensor, which causes a problem that the detection process becomes complicated.

そこで、本発明は、前述の問題点に着目し、精度良く超音波を利用した液面検出が可能な液面検出装置を提供する。   Therefore, the present invention provides a liquid level detection device that can accurately detect a liquid level using ultrasonic waves, paying attention to the above-described problems.

液体Lに浸る伝搬体1と、伝搬体1に振動を与える振動発生手段2と、伝搬体1の振動を検出する振動検出手段2と、振動発生手段2を駆動する駆動信号S1を出力するとともに振動発生手段2の振動によって発生した伝搬波が伝搬体1を伝搬し反射し振動検出手段2で検出した測定信号S3を受信し液体Lの液面LSの位置を検出する位置検出手段3と、を備えた液面検出装置Fにおいて、伝搬体1は、長手方向に略直交する溝1aを備え、この溝1aの下面1cには、さらに溝部1dが形成されることを特徴とする。   While transmitting the propagation body 1 immersed in the liquid L, the vibration generation means 2 for applying vibration to the propagation body 1, the vibration detection means 2 for detecting the vibration of the propagation body 1, and the drive signal S1 for driving the vibration generation means 2 are output. A position detecting means 3 for detecting a position of the liquid surface LS of the liquid L by receiving a measurement signal S3 detected by the vibration detecting means 2 when a propagating wave generated by the vibration of the vibration generating means 2 propagates and is reflected by the propagating body 1; In the liquid level detection device F having the above, the propagation body 1 includes a groove 1a substantially orthogonal to the longitudinal direction, and a groove 1d is further formed on the lower surface 1c of the groove 1a.

また、溝部1d1は、溝1a側よりも、伝搬体1の端部1e側が広く開口していることを特徴とする。   Further, the groove portion 1d1 is characterized in that the end portion 1e side of the propagation body 1 is wider than the groove 1a side.

また、溝部1d2が、複数個設けられていることを特徴とする。   Further, a plurality of groove portions 1d2 are provided.

以上、本発明によれば、所期の目的を達成することができ、精度良く超音波を利用した液面検出が可能な液面検出装置を提供することができる。   As described above, according to the present invention, it is possible to provide a liquid level detection apparatus that can achieve the intended purpose and that can accurately detect the liquid level using ultrasonic waves.

本発明の第1実施形態の構成図。The block diagram of 1st Embodiment of this invention. 同実施形態の伝搬体の側面図。The side view of the propagation body of the embodiment. 同実施形態の表面波と内部伝搬波とを示す波形図。The wave form diagram which shows the surface wave and internal propagation wave of the embodiment. 同実施形態の液面検出処理を表すフロー図。The flowchart showing the liquid level detection process of the embodiment. (a)は、内部伝搬波の伝搬時間と温度との関係を示す図、(b)は、表面波の伝搬時間と液面位置との関係を示す図。(A) is a figure which shows the relationship between the propagation time of an internal propagation wave, and temperature, (b) is a figure which shows the relationship between the propagation time of a surface wave, and a liquid level position. 同実施形態の伝搬体の要部拡大図。The principal part enlarged view of the propagation body of the embodiment. 第2実施形態の伝搬体の要部拡大図。The principal part enlarged view of the propagation body of 2nd Embodiment. 第3実施形態の伝搬体の要部拡大図。The principal part enlarged view of the propagation body of 3rd Embodiment. 第1実施形態の別の実施形態の伝搬体の要部拡大図。The principal part enlarged view of the propagation body of another embodiment of 1st Embodiment. 別の実施形態の伝搬体の正面図。The front view of the propagation body of another embodiment. 別の実施形態の伝搬体の側面図。The side view of the propagation body of another embodiment. 別の実施形態の伝搬体の側面図。The side view of the propagation body of another embodiment.

以下、添付図面を用いて本発明の第1実施形態を説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の実施形態による液面検出装置Fは、図1に示すように伝搬体1と、振動発生検出手段2と、位置検出手段3とを少なくとも備えている。   As shown in FIG. 1, the liquid level detection device F according to the embodiment of the present invention includes at least a propagation body 1, vibration generation detection means 2, and position detection means 3.

伝搬体1は、例えば、図2に示すようにタンク内に貯留した液体L、例えば、ガソリンやアルコールなどの媒質に浸るものである。   The propagation body 1 is immersed in a liquid L stored in a tank, for example, a medium such as gasoline or alcohol, as shown in FIG.

伝搬体1は、振動を良好に伝達可能な材質であり、本実施形態では、合成樹脂、特に、ポリフェニレンサルファイド(PPS)を主体とし、場合によっては添加剤を加えたものである。伝搬体1の形状は、柱状体であり、後述する表面波W1が伝搬する平面からなる伝搬面を備えており、本実施形態では、棒状の四角柱である。伝搬体1には、長手方向に略直交するように一部に切り欠いた溝1aを備えている。この溝1aの振動発生検出手段2側には、後述する内部伝搬波を反射する内部伝搬波反射部1bを備えている。   The propagating body 1 is a material capable of satisfactorily transmitting vibrations. In this embodiment, the propagating body 1 is mainly made of a synthetic resin, particularly polyphenylene sulfide (PPS), and optionally added with additives. The shape of the propagating body 1 is a columnar body, and includes a propagation surface formed of a plane through which a surface wave W1 described later propagates. In the present embodiment, the propagating body 1 is a rod-shaped square column. The propagating body 1 is provided with a groove 1a that is partially cut out so as to be substantially orthogonal to the longitudinal direction. On the vibration generation detecting means 2 side of the groove 1a, an internal propagation wave reflecting portion 1b for reflecting an internal propagation wave described later is provided.

振動発生検出手段2は、伝搬体1に振動を与える振動発生手段であるとともに、伝搬体1の振動を検出する振動検出手段である。   The vibration generation detection unit 2 is a vibration generation unit that applies vibration to the propagation body 1 and is a vibration detection unit that detects vibration of the propagation body 1.

振動発生検出手段2は、圧電素子2aと、圧電素子2aを駆動する信号を送信する送信回路2bと、圧電素子2aで検出した信号を受信する受信回路2cとから構成されている。   The vibration generation detection means 2 includes a piezoelectric element 2a, a transmission circuit 2b that transmits a signal for driving the piezoelectric element 2a, and a reception circuit 2c that receives a signal detected by the piezoelectric element 2a.

圧電素子2aは、伝搬体1に表面波W1と内部伝搬波W2を発生させるとともに、表面波W1と内部伝搬波W2を検出するために、伝搬体1の他端まで溝1aを設けていない面に圧電素子2aが突き出るように設置してある。伝搬体1と圧電素子2aとは、密着状態で固定されている。このように構成したことによって、圧電素子2aは、伝搬体1に振動を与え、伝搬体1の表面に表面波W1を発生させるとともに、伝搬体1の内部に内部伝搬波W2を発生させるものであり、さらに、伝搬体1の振動(表面波W1と内部伝搬波W2による振動)を検出し電圧に変換するものである。なお、表面波W1としては、レイリー波や漏洩レイリー波や横波表面弾性波があり、内部伝搬波W2としては、横波がある。   The piezoelectric element 2a generates a surface wave W1 and an internal propagation wave W2 on the propagating body 1 and has no groove 1a up to the other end of the propagating body 1 in order to detect the surface wave W1 and the internal propagating wave W2. The piezoelectric element 2a is installed so as to protrude. The propagating body 1 and the piezoelectric element 2a are fixed in close contact. With this configuration, the piezoelectric element 2a applies vibration to the propagating body 1 to generate a surface wave W1 on the surface of the propagating body 1 and an internal propagation wave W2 inside the propagating body 1. Furthermore, vibration of the propagating body 1 (vibration caused by the surface wave W1 and the internal propagation wave W2) is detected and converted into a voltage. The surface wave W1 includes a Rayleigh wave, a leaky Rayleigh wave, and a transverse surface acoustic wave, and the internal propagation wave W2 includes a transverse wave.

送信回路2bは、圧電素子2aを駆動するものであり、例えば、図示しない駆動回路とトランスとから構成されており、位置検出手段3が出力した所定周期で出力する駆動信号S1によって圧電素子2aに電圧を加えるものである。   The transmission circuit 2b drives the piezoelectric element 2a. For example, the transmission circuit 2b includes a drive circuit and a transformer (not shown). A voltage is applied.

受信回路2cは、圧電素子2aが出力した信号を検出し、位置検出手段3に信号を出力するものであり、例えば、図示しない入力保護回路、増幅回路、バンドパスフィルタ及び波形整形回路などから構成されており、圧電素子2aが検出した振動を位置検出手段3に信号として出力するものである。   The receiving circuit 2c detects a signal output from the piezoelectric element 2a and outputs a signal to the position detecting means 3, and includes, for example, an input protection circuit, an amplifier circuit, a band pass filter, a waveform shaping circuit, etc. (not shown). The vibration detected by the piezoelectric element 2a is output to the position detection means 3 as a signal.

伝搬体1に生じる振動について、図3を用いて説明する。図3は、模式的に示してある。図中、最も左の振動が、位置検出手段3が出力した駆動信号S1によって圧電素子2aが発生させた振動V1である。左から二番目の振動が、伝搬体1内を伝わって伝搬体1の内部伝搬波反射部1bで反射し戻ってきた内部伝搬波W2の振動V2である。最も右の振動が、伝搬体1の表面を伝わって伝搬体1の他端で反射し戻ってきた表面波W1の振動V3である。本実施形態では、表面波W1の振動V3によって受信回路2cが出力する信号を測定信号S3と呼び、内部伝搬波W2の振動V2によって受信回路2cが出力する信号を基準信号S2と呼ぶ。なお、表面波W1は、伝搬体1が液体Lに浸かった部分では、表面波W1の伝搬体1を進む速度が遅くなる性質があり、表面波W1の伝搬時間T2によって液体Lの液面LSを検出することができる。   The vibration which arises in the propagation body 1 is demonstrated using FIG. FIG. 3 is shown schematically. In the figure, the leftmost vibration is the vibration V1 generated by the piezoelectric element 2a by the drive signal S1 output from the position detecting means 3. The second vibration from the left is the vibration V <b> 2 of the internal propagation wave W <b> 2 that has traveled through the propagation body 1 and reflected back by the internal propagation wave reflection portion 1 b of the propagation body 1. The rightmost vibration is the vibration V <b> 3 of the surface wave W <b> 1 that is transmitted through the surface of the propagating body 1, reflected at the other end of the propagating body 1, and returned. In the present embodiment, a signal output from the receiving circuit 2c due to the vibration V3 of the surface wave W1 is referred to as a measurement signal S3, and a signal output from the receiving circuit 2c due to the vibration V2 of the internal propagation wave W2 is referred to as a reference signal S2. It should be noted that the surface wave W1 has a property that the speed of the surface wave W1 traveling through the propagating body 1 is slow in the portion where the propagating body 1 is immersed in the liquid L, and the liquid surface LS of the liquid L is affected by the propagation time T2 of the surface wave W1. Can be detected.

なお、内部伝搬波W2の伝搬時間T1は、位置検出手段3の制御部3aが駆動信号S1を出力した時点t1から内部伝搬波W2が発生し、振動発生検出手段2で反射した内部伝搬波W2を検出して出力した基準信号S2を受ける時点t2までの時間であり、表面波W1の伝搬時間T2は、位置検出手段3の制御部3aが駆動信号S1を出力した時点t1から表面波W1が発生し、伝搬体1の他端で反射した表面波W1を検出して出力した測定信号S3を受ける時点t3までの時間である。   The propagation time T1 of the internal propagation wave W2 is the internal propagation wave W2 that is generated by the internal propagation wave W2 from the time t1 when the control unit 3a of the position detection unit 3 outputs the drive signal S1 and reflected by the vibration generation detection unit 2. The time T2 from the time t1 when the control unit 3a of the position detecting means 3 outputs the drive signal S1 to the time t2 until the time t2 at which the reference signal S2 is detected and output is received. This is the time until time t3 when receiving the measurement signal S3 generated and detected by the surface wave W1 reflected at the other end of the propagating body 1.

振動発生検出手段2の受信回路2cは、表面波W1が伝搬体1を伝搬し反射した表面波W1の振動V3を検出した測定信号S3を位置検出手段3へ出力するとともに内部伝搬波W2が伝搬体1を伝搬し反射した内部伝搬波W2の振動V2を検出した基準信号S2を位置検出手段3へ出力するものである。   The receiving circuit 2c of the vibration generation detecting means 2 outputs a measurement signal S3 obtained by detecting the vibration V3 of the surface wave W1 propagated and reflected by the surface wave W1 through the propagation body 1 to the position detecting means 3, and the internal propagation wave W2 propagates. A reference signal S2 obtained by detecting the vibration V2 of the internal propagation wave W2 propagated and reflected by the body 1 is output to the position detection means 3.

位置検出手段3は、少なくともマイクロコンピュータなどからなる制御部3aと記憶手段3bとを備えている。位置検出手段3は、振動発生検出手段2を駆動し振動させる駆動信号S1を出力するとともに、振動発生検出手段2の振動によって発生した伝搬波である表面波W1と内部伝搬波W2が伝搬体1を伝搬し反射し、振動発生検出手段2で表面波W1と内部伝搬波W2の振動を検出することによって、液体Lの液面LSの位置を検出するものである。   The position detection unit 3 includes a control unit 3a composed of at least a microcomputer and a storage unit 3b. The position detection unit 3 outputs a drive signal S1 that drives and vibrates the vibration generation detection unit 2, and the surface wave W1 and the internal propagation wave W2, which are propagation waves generated by the vibration of the vibration generation detection unit 2, are propagated by the propagation body 1. The position of the liquid surface LS of the liquid L is detected by detecting the vibration of the surface wave W1 and the internal propagation wave W2 by the vibration generation detecting means 2.

制御部3aは、制御部3aが実行する処理を行うCPUと、CPUのメインメモリとして機能するRAMと、制御部3aに所定の処理などを実行させる各種プログラムを記憶するROMと、制御部3aに入出力される情報(信号)をCPU用にデジタル変換したり出力用にアナログ変換したりする各種変換器と、を備える。   The control unit 3a includes a CPU that performs processing executed by the control unit 3a, a RAM that functions as a main memory of the CPU, a ROM that stores various programs that cause the control unit 3a to execute predetermined processing, and the control unit 3a. And various converters that digitally convert input / output information (signals) for the CPU and analog convert for output.

記憶手段3bは、不揮発性メモリなどであり、後述する内部伝搬波の伝搬時間と伝搬体1の温度との関係など各種データを格納できる。   The storage means 3b is a non-volatile memory or the like, and can store various data such as a relationship between a propagation time of an internal propagation wave described later and the temperature of the propagation body 1.

位置検出手段3は、駆動信号S1と基準信号S2によって求められる内部伝搬波W2の伝搬時間T1によって、記憶手段3bを参照して伝搬体1の温度を求め、この伝搬体1の温度によって、駆動信号S1と測定信号S3によって求められる表面波W1の伝搬時間T2を補正し液面LSを精度良く検出するものである。   The position detection means 3 obtains the temperature of the propagation body 1 with reference to the storage means 3b based on the propagation time T1 of the internal propagation wave W2 obtained from the drive signal S1 and the reference signal S2, and is driven by the temperature of the propagation body 1. The liquid surface LS is accurately detected by correcting the propagation time T2 of the surface wave W1 obtained from the signal S1 and the measurement signal S3.

次に、図3、図4を用いて、位置検出手段3の処理動作について説明する。   Next, the processing operation of the position detection means 3 will be described with reference to FIGS.

ステップST1にて、位置検出手段3は、駆動信号S1を出力する。   In step ST1, the position detection means 3 outputs a drive signal S1.

ステップST2にて、位置検出手段3は、駆動信号S1によって、伝搬体1に生じた内部伝搬波W2に基づく基準信号S2の検出の有無を判定する。基準信号S2を検出したと判定した場合は、ステップST3へ進み。検出しないと判定した場合は、ステップST1へ戻る。   In step ST2, the position detection means 3 determines whether or not the reference signal S2 is detected based on the internal propagation wave W2 generated in the propagation body 1 based on the drive signal S1. If it is determined that the reference signal S2 has been detected, the process proceeds to step ST3. When it determines with not detecting, it returns to step ST1.

ステップST3にて、位置検出手段3は、内部伝搬波W2が、伝搬体1を伝搬した伝搬時間T1を求める。本実施形態では、伝搬時間T1は、駆動信号S1を出力してから基準信号S2を入力するまでの伝搬時間T1で求めている。本実施形態では、位置検出手段3が、駆動信号S1を出力してから圧電素子2aが振動するまでの時間と、圧電素子2aが振動を検出し、受信回路2cを介して位置検出手段3が信号を受けるまでの時間は、無視できるほど短い時間と考えている。   In step ST3, the position detection means 3 obtains a propagation time T1 in which the internal propagation wave W2 has propagated through the propagation body 1. In the present embodiment, the propagation time T1 is obtained as the propagation time T1 from the output of the drive signal S1 to the input of the reference signal S2. In the present embodiment, the time from when the position detection means 3 outputs the drive signal S1 until the piezoelectric element 2a vibrates, the piezoelectric element 2a detects the vibration, and the position detection means 3 detects the vibration via the receiving circuit 2c. The time to receive the signal is considered to be negligible.

ステップST4にて、位置検出手段3は、基準信号S2の伝搬時間T1から記憶手段3bを参照し伝搬体1の温度を求める。   In step ST4, the position detection means 3 obtains the temperature of the propagation body 1 with reference to the storage means 3b from the propagation time T1 of the reference signal S2.

ステップST5にて、位置検出手段3は、駆動信号S1によって、伝搬体1の表面に生じた表面波W1に基づく測定信号S3の検出の有無を判定する。測定信号S3を検出したと判定した場合は、ステップST6へ進み。検出しないと判定した場合は、ステップST1へ戻る。   In step ST5, the position detection means 3 determines whether or not the measurement signal S3 is detected based on the surface wave W1 generated on the surface of the propagation body 1 based on the drive signal S1. If it is determined that the measurement signal S3 has been detected, the process proceeds to step ST6. When it determines with not detecting, it returns to step ST1.

ステップST6にて、位置検出手段3は、表面波W1が、伝搬体1の表面を伝搬した伝搬時間T2を求める。   In step ST <b> 6, the position detection unit 3 obtains a propagation time T <b> 2 when the surface wave W <b> 1 propagates through the surface of the propagation body 1.

ステップST7にて、位置検出手段3は、ステップST4にて求めた伝搬体1の温度に基づいて、伝搬体1の温度に基づく補正係数(a、b)によって、表面波W1の伝搬時間T2を補正し、補正した伝搬時間に基づいて液面LSを検出する。なお、伝搬時間T2を解とする式は、下記の一次式により表されるものである。   In step ST7, the position detecting means 3 calculates the propagation time T2 of the surface wave W1 based on the temperature of the propagating body 1 obtained in step ST4 by the correction coefficient (a, b) based on the temperature of the propagating body 1. The liquid level LS is detected based on the corrected propagation time. In addition, the formula which makes propagation time T2 a solution is represented by the following linear formula.

T2=ax+b   T2 = ax + b

なお、記憶手段3bは、図5(a)に示すように内部伝搬波W2の伝搬時間T1と伝搬体1の温度との関係や、図5(b)で示すように伝搬体1の所定の温度毎(例えば、摂氏5度毎)に表面波W1の伝搬時間T2に関連した液面LSの位置を記憶しておく。図5(b)では、摂氏0度、摂氏5度、摂氏10度他の例を図示している。位置検出手段3は、記憶手段3bで記憶した伝搬体1の温度に基づく表面波W1の伝搬時間T2に関連した液面LSの位置を求めて、液面LSの位置を検出するものであってもよい。   The storage means 3b stores the relationship between the propagation time T1 of the internal propagation wave W2 and the temperature of the propagating body 1 as shown in FIG. 5 (a), and a predetermined value of the propagating body 1 as shown in FIG. 5 (b). The position of the liquid level LS related to the propagation time T2 of the surface wave W1 is stored for each temperature (for example, every 5 degrees Celsius). FIG. 5B illustrates another example of 0 degrees Celsius, 5 degrees Celsius, and 10 degrees Celsius. The position detecting means 3 detects the position of the liquid level LS by obtaining the position of the liquid level LS related to the propagation time T2 of the surface wave W1 based on the temperature of the propagating body 1 stored in the storage means 3b. Also good.

以上、液体Lに浸る伝搬体1と、伝搬体1に振動を与える振動発生手段2と、伝搬体1の振動を検出する振動検出手段2と、振動発生手段2を駆動する駆動信号を出力するとともに、振動発生手段2の振動によって発生した伝搬波が伝搬体1を伝搬し反射し振動検出手段2で検出した測定信号を受信し液体Lの液面LSの位置を検出する位置検出手段3と、を備えた液面検出装置Fにおいて、伝搬体1に溝1aを形成し、この溝1aを利用して内部伝搬波反射部1bを備えたことにより、温度センサを用いることなく精度良く超音波を利用した液面検出が可能な液面検出装置を提供することができる。   As described above, the propagating body 1 immersed in the liquid L, the vibration generating means 2 for applying vibration to the propagating body 1, the vibration detecting means 2 for detecting the vibration of the propagating body 1, and the drive signal for driving the vibration generating means 2 are output. A position detecting means 3 for detecting a position of the liquid level LS of the liquid L by receiving a measurement signal detected by the vibration detecting means 2 when a propagation wave generated by the vibration of the vibration generating means 2 propagates and reflects the propagation body 1 and reflects. In the liquid level detection device F provided with the above, the groove 1a is formed in the propagation body 1, and the internal propagation wave reflection portion 1b is provided using the groove 1a, so that the ultrasonic wave can be accurately obtained without using a temperature sensor. It is possible to provide a liquid level detection device capable of detecting a liquid level using

次に、本発明の特徴となる伝搬体1について説明する。
伝搬体1は、図6に示すように、内部伝搬波反射部1bに対向する面1cに溝部1dを備えている。この場合、溝部1dは、溝1aの下方側の面1cの一部を切り欠くスリット状に形成され溝1aの隙間よりも幅狭に形成される。
したがって、内部伝搬波反射部1bと対向する溝1aの下面1cに、溝部1dを設けたことにより、タンク内の燃料が減るなどして溝1aが液面LSから露出したとしても、表面張力によって溝1aに留まろうとする液体Lを毛細管現象や重力を利用して導出し易くし、溝1aに液体Lが残留する状態を抑止できる。このため、溝1aに溜まった液体L中を伝わる漏洩波によって検出精度が低下してしまうことを防止できる。
Next, the propagation body 1 that is a feature of the present invention will be described.
As shown in FIG. 6, the propagating body 1 has a groove 1d on a surface 1c facing the internal propagation wave reflecting portion 1b. In this case, the groove portion 1d is formed in a slit shape in which a part of the lower surface 1c of the groove 1a is cut out, and is formed narrower than the gap of the groove 1a.
Therefore, even if the groove 1a is exposed from the liquid level LS by reducing the fuel in the tank by providing the groove 1d on the lower surface 1c of the groove 1a facing the internal propagation wave reflecting portion 1b, the surface tension The liquid L that is to remain in the groove 1a can be easily derived using capillary action or gravity, and the state in which the liquid L remains in the groove 1a can be suppressed. For this reason, it can prevent that detection accuracy falls by the leaky wave which propagates in the liquid L collected in the groove | channel 1a.

また、第2実施形態として図7に示すように、溝部1d1は、内部伝搬波反射部1b側よりも、伝搬体の端部1e側を広く開口したり、第3実施形態として図8に示すように、溝部1d2を複数個設けることによって、溝1aから液体Lをよりスムーズに導出でき、液体Lの残留しにくくなることが期待できる。   Further, as shown in FIG. 7 as the second embodiment, the groove 1d1 opens wider on the end 1e side of the propagating body than the internal propagation wave reflection portion 1b side, or as shown in FIG. 8 as the third embodiment. Thus, by providing a plurality of groove portions 1d2, it can be expected that the liquid L can be led out more smoothly from the groove 1a and the liquid L is less likely to remain.

なお、本発明は、前記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更(構成要素の削除を含む)が可能であることはもちろんである。上述実施形態では、溝部1dが伝搬体1の端部1eまで到達する場合について例示したが、図9に示すように、溝部1d3が伝搬体1の面1cの略中央から前面に向かい端部1eまで到達しない形状であっても、また、図10に示すように溝部1d4が、面1cの略中央から伝搬体1の側面に向かい端部1eまで到達しない形状であっても、同様の効果が期待できる。   Note that the present invention is not limited to the above-described embodiment, and various modifications (including deletion of constituent elements) can be made without departing from the spirit of the invention. In the above-described embodiment, the case where the groove portion 1d reaches the end portion 1e of the propagating body 1 is illustrated. However, as illustrated in FIG. 9, the groove portion 1d3 extends from the substantially center of the surface 1c of the propagating body 1 toward the front surface. Even if the groove 1d4 has a shape that does not reach the end 1e from the approximate center of the surface 1c toward the side surface of the propagating body 1 as shown in FIG. I can expect.

また、上述実施形態では、ガソリンやアルコールなどの液体燃料の液面を検出するものであったが、ガソリンやアルコールなどの液体燃料のみに限定されるものではなく、水などの他の液体を検出することも可能である。また、用途は、車両などの乗物に限定されるものではなく、広い用途に利用することができる。   In the above-described embodiment, the liquid level of liquid fuel such as gasoline or alcohol is detected. However, the liquid level is not limited to liquid fuel such as gasoline or alcohol, and other liquids such as water are detected. It is also possible to do. Moreover, a use is not limited to vehicles, such as a vehicle, It can utilize for a wide use.

また、伝搬体1の形状は、四角柱に限定されるものではなく、表面波W1が伝搬可能な平面を備えていればよく、例えば、伝搬体1の長手方向に対して垂直方向の断面形状が、Dの字形状などであってもよい。   In addition, the shape of the propagating body 1 is not limited to a quadrangular prism, and may be any plane as long as the surface wave W1 can propagate. For example, a cross-sectional shape perpendicular to the longitudinal direction of the propagating body 1 However, it may be D-shaped or the like.

また、上述実施形態では、内部伝搬波反射部1bと面1cが略平行な場合を例示したが、図11に示すように伝搬体1の中心側が低くなるように傾斜する傾斜面1c1や、図12に示すように伝搬体1の前側が低くなるように傾斜する傾斜面1c2を設けることで溝1aに残留した液体を所望の方向へ排出する作用が高まることが期待できる。   In the above-described embodiment, the case where the internal propagation wave reflecting portion 1b and the surface 1c are substantially parallel is illustrated. However, as shown in FIG. 11, the inclined surface 1c1 that is inclined so that the center side of the propagating body 1 is lowered, As shown in FIG. 12, by providing the inclined surface 1c2 that is inclined so that the front side of the propagation body 1 is lowered, it can be expected that the action of discharging the liquid remaining in the groove 1a in a desired direction is enhanced.

本発明は、液面検出装置に関し、特に、超音波を利用し、液面を検出する液面検出装置に利用可能である。   The present invention relates to a liquid level detection device, and in particular, can be used for a liquid level detection device that detects a liquid level using ultrasonic waves.

F 液面検出装置
L 液体
LS 液面
S1 駆動信号
S2 基準信号(内部伝搬波W2)
S3 測定信号(表面波W1)
T1 伝搬時間(内部伝搬波W2)
T2 伝搬時間(表面波W1)
V1 振動
V2 振動(内部伝搬波)
V3 振動(表面波)
W1 表面波
W2 内部伝搬波
1 伝搬体
1a 溝
1b 内部伝搬波反射部
1c 面(伝搬波反射部と対向する面)
1c1 面(伝搬波反射部と対向する面)
1c2 面(伝搬波反射部と対向する面)
1d 溝部
1d1 溝部
1d2 溝部
1d3 溝部
1d4 溝部
1e 端部
2 振動発生検出手段(振動発生手段、振動検出手段)
2a 圧電素子
2b 送信回路
2c 受信回路
3 位置検出手段
3a 制御部
3b 記憶手段


F Liquid level detection device L Liquid LS Liquid level S1 Drive signal S2 Reference signal (internal propagation wave W2)
S3 Measurement signal (surface wave W1)
T1 propagation time (internal propagation wave W2)
T2 Propagation time (surface wave W1)
V1 vibration V2 vibration (internal propagation wave)
V3 vibration (surface wave)
W1 Surface wave W2 Internal propagating wave 1 Propagating body 1a Groove 1b Internal propagating wave reflecting portion 1c surface (surface facing the propagating wave reflecting portion)
1c1 plane (surface facing the propagating wave reflector)
1c2 plane (surface facing the propagating wave reflector)
1d Groove 1d1 Groove 1d2 Groove 1d3 Groove 1d4 Groove 1e End 2 Vibration generation detection means (vibration generation means, vibration detection means)
2a Piezoelectric element 2b Transmission circuit 2c Reception circuit 3 Position detection means 3a Control unit 3b Storage means


Claims (3)

液体に浸る伝搬体と、前記伝搬体に振動を与える振動発生手段と、前記伝搬体の振動を検出する振動検出手段と、前記振動発生手段を駆動する駆動信号を出力するとともに前記振動発生手段の振動によって発生した伝搬波が前記伝搬体を伝搬し反射し前記振動検出手段で検出した測定信号を受信し前記液体の液面の位置を検出する位置検出手段と、を備えた液面検出装置において、
前記伝搬体は、長手方向に略直交する溝を備え、この溝の下面には、さらに溝部が形成されること
を特徴とする液面検出装置。
A propagating body immersed in a liquid; vibration generating means for applying vibration to the propagating body; vibration detecting means for detecting vibration of the propagating body; a drive signal for driving the vibration generating means; In a liquid level detection apparatus, comprising: a position detection means for detecting a position of the liquid level of the liquid by receiving a measurement signal that is propagated and reflected by the propagation body and reflected by the propagation body and received by the vibration detection means ,
The liquid level detecting device, wherein the propagation body includes a groove substantially orthogonal to the longitudinal direction, and a groove is further formed on a lower surface of the groove.
前記溝部は、前記溝側よりも、前記伝搬体の端部側が広く開口していることを特徴とする請求項1に記載の液面検出装置。   2. The liquid level detection device according to claim 1, wherein the groove portion is wider at an end portion side of the propagating body than at the groove side. 前記溝部が、複数個設けられていることを特徴とする請求項1または請求項2に記載の液面検出装置。
The liquid level detection device according to claim 1, wherein a plurality of the groove portions are provided.
JP2016100073A 2016-05-19 2016-05-19 Liquid level detector Pending JP2017207374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016100073A JP2017207374A (en) 2016-05-19 2016-05-19 Liquid level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100073A JP2017207374A (en) 2016-05-19 2016-05-19 Liquid level detector

Publications (1)

Publication Number Publication Date
JP2017207374A true JP2017207374A (en) 2017-11-24

Family

ID=60417112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100073A Pending JP2017207374A (en) 2016-05-19 2016-05-19 Liquid level detector

Country Status (1)

Country Link
JP (1) JP2017207374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128966A (en) * 2019-02-12 2020-08-27 矢崎総業株式会社 Liquid level detector unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128966A (en) * 2019-02-12 2020-08-27 矢崎総業株式会社 Liquid level detector unit

Similar Documents

Publication Publication Date Title
US20150355002A1 (en) Clamp-on ultrasonic flowmeter and flow rate measuring method
US20170160126A1 (en) Device For Determining a Speed of a Sound Signal in a Fluid
JP6384382B2 (en) Liquid level detection device
JP6131088B2 (en) Liquid level position detection device and liquid level position detection method
JP2017207374A (en) Liquid level detector
JP6270055B2 (en) Liquid level detector
JP2015010878A (en) Liquid level position detector and method for detecting liquid level position
JP2017067474A (en) Liquid level detector
JP2016138850A (en) Liquid level detector
JP2022068840A (en) Surface wave detection device, liquid level detection device, liquid kind determination device, solution concentration detection device, and liquid droplet detection device
JP5827809B2 (en) Ultrasonic probe and method for measuring circumference of tubular object
US9285261B2 (en) Acoustic flexural order level sensor
JP2018040661A (en) Liquid level detector and method for manufacturing liquid level detector
JP2017062118A (en) Liquid level detector
JP6729141B2 (en) Liquid level position detector
JP2021071307A (en) Propagation time measuring device
WO2019167660A1 (en) Liquid level position detection device
CN107206428B (en) method for producing a sound transducer of an automation field device
JP2018128331A (en) Liquid level detector
JP2693000B2 (en) Ultrasonic transducer
JP3885700B2 (en) Liquid level detector
JP7218682B2 (en) Ultrasonic distance measuring device
JP2023037923A (en) Bubble detection device
JP2018054321A (en) Liquid type specifying apparatus
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter