JP2017206392A - Glass article - Google Patents

Glass article Download PDF

Info

Publication number
JP2017206392A
JP2017206392A JP2016097764A JP2016097764A JP2017206392A JP 2017206392 A JP2017206392 A JP 2017206392A JP 2016097764 A JP2016097764 A JP 2016097764A JP 2016097764 A JP2016097764 A JP 2016097764A JP 2017206392 A JP2017206392 A JP 2017206392A
Authority
JP
Japan
Prior art keywords
transmittance
glass
wavelength region
visible light
glass article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016097764A
Other languages
Japanese (ja)
Inventor
崇 長田
Takashi Osada
崇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2016097764A priority Critical patent/JP2017206392A/en
Publication of JP2017206392A publication Critical patent/JP2017206392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high transmissible glass article having an anti-reflection film formed on a glass substrate having a specific wavelength range low in transmittance in a visible light wavelength region and having enhanced transmittance of the glass substrate over all visible light wavelength region almost uniformly.SOLUTION: There is provided a glass article having a glass substrate and an anti-reflection film arranged on at least one surface of the glass substrate, the glass substrate has a distribution with a first wavelength range so that transmittance of a light in a visible light wavelength region of 400 to 700 nm injected from the surface has average transmittance lower than average transmittance of whole visible light wavelength range in the visible light wavelength region and average reflection rate of the light in the first wavelength range regarding reflection rate of the light injected from the surface of the anti-reflection film in the glass article is lower than the average reflection of the light of whole visible light wavelength region and is 0.5% or less.SELECTED DRAWING: Figure 3A

Description

本発明は、ガラス物品に関し、特には、可視光波長域の全領域において均一で高い透過率を有するガラス物品に関する。   The present invention relates to a glass article, and more particularly, to a glass article having a uniform and high transmittance in the entire visible light wavelength region.

レンズやプリズムなどの表面に反射防止膜を施した光学製品を、光学機器に用いることで光学機器全体の透過率を向上させることが知られている(例えば、特許文献1を参照)。   It is known that an optical product having an antireflection film on a surface such as a lens or a prism is used in an optical instrument to improve the transmittance of the entire optical instrument (see, for example, Patent Document 1).

一方、プロジェクターやカメラ用途の光学機器にガラスを用いる場合、画像の色合いを均一に表示させることが重要である。そのために、ガラスを透過する光のR領域(波長600〜640nm)、G領域(波長530〜570nm)、B領域(波長410〜500nm)の各波長域における透過率を均一にすることが好ましい。ここで、ガラスには、通常、鉄、ロジウム、白金等のような特定の波長域の透過率を低下させるような不純物成分が混入している。このような不純物成分の含有量をある程度まで減少させることで、可視光波長域において透過率が略均一なガラスが得られるようになっている。   On the other hand, when glass is used for optical equipment for projectors and cameras, it is important to display the color of the image uniformly. Therefore, it is preferable to make uniform the transmittance | permeability in each wavelength range of R area | region (wavelength 600-640 nm), G area | region (wavelength 530-570 nm), and B area | region (wavelength 410-500 nm) of the light which permeate | transmits glass. Here, the glass is usually mixed with an impurity component such as iron, rhodium, platinum or the like that lowers the transmittance in a specific wavelength region. By reducing the content of such impurity components to a certain extent, a glass having a substantially uniform transmittance in the visible light wavelength region can be obtained.

最近では、このようなガラスに、さらに、特許文献1に記載があるような反射防止膜を形成することで透過率を向上させる試みがなされている。しかしながら、反射防止膜を有しない状態では上記のように透過率が略均一なガラスであっても、反射防止膜を形成することで、全体として透過率は高まるものの、該不純物成分の光の吸収領域においては光の吸収量が増大し、それによって、可視光波長域内で透過率が不均一化してしまう問題があった。   Recently, an attempt has been made to improve the transmittance by forming an antireflection film as described in Patent Document 1 on such glass. However, in the state where the antireflection film is not provided, even when the glass has a substantially uniform transmittance as described above, the antireflection film is formed to increase the transmittance as a whole, but the light absorption of the impurity component is increased. There is a problem in that the amount of light absorption increases in the region, thereby causing the transmittance to be nonuniform in the visible light wavelength region.

特開2002−267803号公報JP 2002-267803 A

ガラスに含まれる不純物成分の混入をさらに抑制することで、可視光波長域全域における透過率を均一にすることができるが、この場合、ガラス原料やプロセスからの不純物の混入を厳しく抑制する必要があり製造コストがかかる点で問題がある。また、ガラスの特定の吸収波長領域にあわせて該領域の反射率を調整した反射防止膜を用いて、得られる反射防止膜付きガラスの可視光波長域全域における透過率を均一に高くする試みはこれまでになされていない。   By further suppressing the mixing of impurity components contained in the glass, the transmittance in the entire visible light wavelength region can be made uniform. In this case, it is necessary to strictly suppress the mixing of impurities from the glass raw material and the process. There is a problem in that the manufacturing cost is high. In addition, using an antireflection film that adjusts the reflectivity of the region in accordance with the specific absorption wavelength region of the glass, the attempt to uniformly increase the transmittance of the obtained glass with an antireflection film over the entire visible light wavelength region is It has never been done so far.

本発明は、可視光波長域内に透過率が低い特定の波長域を有するガラス基材に反射防止膜が形成されたガラス物品において、ガラス基材の透過率が可視光波長域の全域にわたって略均一になるように高められた高透過率のガラス物品の提供を目的とする。   The present invention relates to a glass article in which an antireflection film is formed on a glass substrate having a specific wavelength range having low transmittance in the visible light wavelength range, and the transmittance of the glass substrate is substantially uniform over the entire visible wavelength range. It aims at providing the glass article of the high transmittance | permeability raised so that it might become.

本発明のガラス物品は、ガラス基材と前記ガラス基材の少なくとも一つの表面に設けられた反射防止膜を有するガラス物品であって、前記ガラス基材は、前記表面から入射する400〜700nmの可視光波長域の光の透過率が、前記可視光波長域内に前記可視光波長域全体の平均透過率より低い平均透過率を有する第1の波長域を有するような分布を有し、前記ガラス物品における前記反射防止膜の表面から入射する光の反射率について、前記第1の波長域の光の平均反射率は、前記可視光波長域全体の光の平均反射率より低くかつ0.5%以下である、ことを特徴とする。   The glass article of the present invention is a glass article having a glass substrate and an antireflection film provided on at least one surface of the glass substrate, the glass substrate having a wavelength of 400 to 700 nm incident from the surface. The glass has a distribution such that the transmittance of light in the visible light wavelength region has a first wavelength region having an average transmittance lower than the average transmittance of the entire visible light wavelength region in the visible light wavelength region, and the glass. Regarding the reflectance of light incident from the surface of the antireflection film in the article, the average reflectance of light in the first wavelength range is lower than the average reflectance of light in the entire visible wavelength range and 0.5% It is characterized by the following.

本発明のガラス物品においては、前記第1の波長域が400〜500nmの波長域であり、前記ガラス基材の前記表面に入射する前記第1の波長域の光の平均透過率が85〜92%であることが好ましい。   In the glass article of the present invention, the first wavelength region is a wavelength region of 400 to 500 nm, and the average transmittance of light in the first wavelength region incident on the surface of the glass substrate is 85 to 92. % Is preferred.

本発明のガラス物品においては、前記反射防止膜が光学多層膜であることが好ましい。また、前記光学多層膜の層数は8層以下が好ましい。   In the glass article of the present invention, the antireflection film is preferably an optical multilayer film. The number of layers of the optical multilayer film is preferably 8 or less.

本発明のガラス物品においては、前記反射防止膜がSiO層とNb層との交互積層部を含む光学多層膜であることが好ましい。また、前記反射防止膜の厚みは200〜450nmであることが好ましい。 In the glass article of the present invention, it is preferable that the antireflection film is an optical multilayer film including alternating laminated portions of SiO 2 layers and Nb 2 O 5 layers. The antireflection film preferably has a thickness of 200 to 450 nm.

本発明のガラス物品においては、前記反射防止膜を透過するように前記ガラス物品に入射する前記可視光波長域の光の透過率において、平均透過率が93%以上であり、最大値と最小値の差が2%以下であることが好ましい。   In the glass article of the present invention, in the transmittance of light in the visible light wavelength range incident on the glass article so as to pass through the antireflection film, the average transmittance is 93% or more, the maximum value and the minimum value. The difference is preferably 2% or less.

本発明によれば、可視光波長域内に透過率が低い特定の波長域を有するガラス基材に反射防止膜が形成されたガラス物品において、ガラス基材の透過率が可視光波長域の全域にわたって略均一になるように高められた高透過率のガラス物品を提供できる。   According to the present invention, in a glass article in which an antireflection film is formed on a glass base material having a specific wavelength range with low transmittance in the visible light wavelength range, the transmittance of the glass base material covers the entire visible light wavelength range. It is possible to provide a glass article having a high transmittance that is increased to be substantially uniform.

本発明のガラス物品の実施形態の一例の断面図である。It is sectional drawing of an example of embodiment of the glass article of this invention. 実施例における例1(実施例)のガラス物品の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the glass article of Example 1 (Example) in an Example. 実施例における例1(実施例)のガラス物品の反射防止膜側から入射する光の反射率を示すグラフである。It is a graph which shows the reflectance of the light which injects from the antireflection film side of the glass article of Example 1 (Example) in an Example. 実施例における例2(実施例)のガラス物品の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the glass article of Example 2 (Example) in an Example. 実施例における例2(実施例)のガラス物品の反射防止膜側から入射する光の反射率を示すグラフである。It is a graph which shows the reflectance of the light which injects from the antireflection film side of the glass article of Example 2 (Example) in an Example. 実施例における例3(比較例)のガラス物品の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the glass article of Example 3 (comparative example) in an Example. 実施例における例3(比較例)のガラス物品の反射防止膜側から入射する光の反射率を示すグラフである。It is a graph which shows the reflectance of the light which injects from the antireflection film side of the glass article of Example 3 (comparative example) in an Example. 実施例における例4(比較例)のガラス物品の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the glass article of Example 4 (comparative example) in an Example. 実施例における例4(比較例)のガラス物品の反射防止膜側から入射する光の反射率を示すグラフである。It is a graph which shows the reflectance of the light which injects from the antireflection film side of the glass article of Example 4 (comparative example) in an Example. 実施例における例5(参考例)のガラス基材の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the glass base material of Example 5 (reference example) in an Example. 実施例における例5(参考例)のガラス基材の反射率を示すグラフである。It is a graph which shows the reflectance of the glass base material of Example 5 (reference example) in an Example.

以下に、図面を参照しながら本発明の実施の形態を説明する。なお、本発明は、これらの実施形態に限定されるものではなく、これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to these embodiments, and these embodiments can be changed or modified without departing from the spirit and scope of the present invention.

図1は本発明のガラス物品の実施形態の一例の断面図である。ガラス物品3はガラス基材1およびガラス基材1の一方の主面1a側に設けられた反射防止膜2を有する。   FIG. 1 is a cross-sectional view of an example of an embodiment of a glass article of the present invention. Glass article 3 has glass substrate 1 and antireflection film 2 provided on one main surface 1a side of glass substrate 1.

ガラス物品3に用いるガラス基材1は、主面1aから入射する400〜700nmの可視光波長域の光の透過率が、可視光波長域内に可視光波長域全体の平均透過率より低い平均透過率を有する第1の波長域を有するような分布を有する。本明細書において、特に断りのない限り「可視光波長域」は、400〜700nmの波長域を意味する。   The glass substrate 1 used for the glass article 3 has an average transmission of light in the visible light wavelength region of 400 to 700 nm incident from the main surface 1a, which is lower than the average transmittance of the entire visible light wavelength region within the visible light wavelength region. The distribution has a first wavelength region having a rate. In the present specification, unless otherwise specified, the “visible light wavelength region” means a wavelength region of 400 to 700 nm.

また、ガラス物品3においては、反射防止膜2の表面2aから入射する光の反射率について、第1の波長域の光の平均反射率は、可視光波長域全体の光の平均反射率より低く、かつ0.5%以下である。   In the glass article 3, the average reflectance of light in the first wavelength range is lower than the average reflectance of light in the entire visible wavelength range with respect to the reflectance of light incident from the surface 2 a of the antireflection film 2. And 0.5% or less.

本明細書において、ガラス基材およびガラス物品における特定波長、例えば、400〜700nmの可視光波長域の透過率は、一般的な分光光度計、例えば、日立社製U4100等で測定できる。また、ガラス物品およびガラス基材の所定の表面における特定波長、例えば、400〜700nmの可視光波長域の反射率は、通常の分光光度計により測定可能である。分光光度計としては、例えば、大塚電子社製FE3000、日立社製U4100等が挙げられる。   In this specification, the transmittance | permeability of the specific wavelength in a glass base material and a glass article, for example, the visible light wavelength range of 400-700 nm, can be measured with a common spectrophotometer, for example, U4100 by Hitachi. Moreover, the specific wavelength in the predetermined | prescribed surface of a glass article and a glass base material, for example, the reflectance of the visible light wavelength range of 400-700 nm, can be measured with a normal spectrophotometer. As a spectrophotometer, Otsuka Electronics FE3000, Hitachi U4100, etc. are mentioned, for example.

(ガラス基材)
本実施形態において、ガラス基材1は、互いに対向する2つの主面1a、1bを有し、主面1a側に反射防止膜2が形成される。ガラス基材1は、主面1aから入射する400〜700nmの可視光波長域の光の主面1b側で測定される透過率が、可視光波長域内に可視光波長域全体の平均透過率より低い平均透過率を有する第1の波長域を有するような分布を有する。
(Glass substrate)
In this embodiment, the glass base material 1 has two main surfaces 1a and 1b facing each other, and the antireflection film 2 is formed on the main surface 1a side. In the glass substrate 1, the transmittance measured on the main surface 1 b side of light in the visible light wavelength region of 400 to 700 nm incident from the main surface 1 a is less than the average transmittance of the entire visible light wavelength region within the visible light wavelength region. The distribution has a first wavelength region having a low average transmittance.

第1の波長領域は、可視光波長域内にあって可視光波長域より波長域が狭い波長域であり、上記条件を満たす平均透過率を有する波長域であれば、幅(短波長側の波長と長波長側の波長の差)および可視光波長域内における位置、例えば、短波長側、長波長側等は特に制限されない。   The first wavelength region is a wavelength region that is within the visible light wavelength region and narrower than the visible light wavelength region, and has a width (short wavelength side wavelength) as long as it has an average transmittance that satisfies the above conditions. And the position in the visible light wavelength range, such as the short wavelength side and the long wavelength side, are not particularly limited.

第1の波長領域は、可視光波長域の短波長側にあってもよく、中間域にあってもよく、長波長側にあってもよい。第1の波長領域は、例えば、色に対応する波長としての、B領域(波長410〜500nm)、G領域(波長530〜570nm)、R領域(波長600〜640nm)であってもよい。さらに、第1の波長領域は、これら以外の他の色に対応する波長領域であってもよい。   The first wavelength region may be on the short wavelength side of the visible light wavelength region, in the intermediate region, or on the long wavelength side. The first wavelength region may be, for example, a B region (wavelength 410 to 500 nm), a G region (wavelength 530 to 570 nm), and an R region (wavelength 600 to 640 nm) as wavelengths corresponding to colors. Furthermore, the first wavelength region may be a wavelength region corresponding to a color other than these.

第1の波長領域の幅は、好ましくは、100nm程度とされる。本発明における効果が顕著に得られる観点から、第1の波長領域は400〜500nmが好ましい。この場合の第1の波長領域は、B領域(波長410〜500nm)に略相当する。例えば、B領域の平均透過率が可視光波長域全体の平均透過率より低いと、すなわちB領域の平均透過率が可視光波長域におけるB領域以外の領域の平均透過率より低くなると、紫〜青色域の色味が他の色味に比べて明瞭に表れない。   The width of the first wavelength region is preferably about 100 nm. The first wavelength region is preferably 400 to 500 nm from the viewpoint that the effects in the present invention are remarkably obtained. In this case, the first wavelength region substantially corresponds to the B region (wavelength 410 to 500 nm). For example, if the average transmittance of the B region is lower than the average transmittance of the entire visible light wavelength range, that is, if the average transmittance of the B region is lower than the average transmittance of the region other than the B region in the visible light wavelength range, The color in the blue region does not appear clearly compared to other colors.

ガラス基材1において、第1の波長領域における平均透過率は85〜92%であるのが好ましく、87〜92%であるのがより好ましい。また、ガラス基材1における可視光波長域全体の平均透過率は、第1の波長領域の平均透過率より高ければ特に制限されない。可視光波長域内に第1の波長領域を有するガラス基材であっても、通常、可視光波長域の平均透過率と第1の波長領域の平均透過率との差がある程度の範囲に収まるように設定されている。このような観点から、ガラス基材における、可視光波長域全体の平均透過率をTag、第1の波長領域における平均透過率をTbgとした場合、Tag−Tbgで示される両者の差Tdgは、0.1〜1.0%が好ましく、0.1〜0.8%がより好ましい。   In the glass substrate 1, the average transmittance in the first wavelength region is preferably 85 to 92%, and more preferably 87 to 92%. The average transmittance of the entire visible light wavelength region in the glass substrate 1 is not particularly limited as long as it is higher than the average transmittance of the first wavelength region. Even in the case of a glass substrate having a first wavelength region in the visible light wavelength region, the difference between the average transmittance in the visible light wavelength region and the average transmittance in the first wavelength region usually falls within a certain range. Is set to From such a viewpoint, when the average transmittance of the entire visible light wavelength region in the glass substrate is Tag and the average transmittance in the first wavelength region is Tbg, the difference Tdg between the two expressed by Tag−Tbg is: 0.1 to 1.0% is preferable, and 0.1 to 0.8% is more preferable.

ガラス基材1の形状は、特に限定されるものではなく、ブロック状であっても、板状であっても、フィルム状であってもよい。また、金型等で任意の形状に成形されたものであってもよい。ガラス基材1が板状やフィルム状である場合、ガラス基材1の厚みは、ガラス物品3の用途に合わせて適宜調整される。   The shape of the glass substrate 1 is not particularly limited, and may be a block shape, a plate shape, or a film shape. Moreover, what was shape | molded by arbitrary shapes with the metal mold | die etc. may be used. When the glass substrate 1 is plate-shaped or film-shaped, the thickness of the glass substrate 1 is appropriately adjusted according to the application of the glass article 3.

ガラス基材1を構成するガラスの組成は、可視光波長域の光の透過率分布において、可視光波長域全体の平均透過率より低い平均透過率を有する第1の波長域を有するガラス基材が得られる組成であれば特に制限されない。ガラス基材1を構成するガラスとしては、例えば、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、アルミノシリケートガラス、無アルカリアルミノシリケートガラス等が挙げられる。   The glass substrate constituting the glass substrate 1 has a glass substrate having a first wavelength region having an average transmittance lower than the average transmittance of the entire visible light wavelength region in the light transmittance distribution in the visible light wavelength region. If it is a composition which can be obtained, it will not be restrict | limited. Examples of the glass constituting the glass substrate 1 include soda lime glass, borosilicate glass, alkali-free glass, aluminosilicate glass, alkali-free aluminosilicate glass, and the like.

(反射防止膜)
反射防止膜2は、ガラス基材1の一方の主面1a上に形成され、反射防止機能を有することで、得られるガラス物品3の可視光波長域の光の透過性を、ガラス基材1の可視光波長域の光の透過性に比べて、全域にわたって均一に高める機能を有する。より、具体的には、反射防止膜2は、ガラス物品3において反射防止膜2の表面2aから入射する光の反射率について、第1の波長域の光の平均反射率を、可視光波長域全体の光の平均反射率より低く、かつ0.5%以下とする機能を有する。
(Antireflection film)
The antireflection film 2 is formed on one main surface 1a of the glass substrate 1 and has an antireflection function, whereby the glass article 1 has a light transmittance in the visible light wavelength region of the glass article 3 to be obtained. Compared with the light transmittance in the visible light wavelength region, it has a function of uniformly increasing the entire region. More specifically, the antireflection film 2 has an average reflectance of light in the first wavelength range, in the visible light wavelength range, for the reflectance of light incident from the surface 2a of the antireflection film 2 in the glass article 3. It has a function of being lower than the average reflectance of the whole light and not more than 0.5%.

本明細書において、特に断りのない限り反射率はガラス物品3については、反射防止膜2の表面2aから入射する光の反射率をいう。また、ガラス基材1の反射率は、ガラス基材1の主面1aから入射する光の反射率をいう。ガラス物品3における透過率については、反射防止膜2の表面2aから入射する光の、ガラス基材1の主面1b側で測定される透過率である。ガラス基材1の透過率は、ガラス基材1の主面1aから入射する光のガラス基材1の主面1b側で測定される透過率である。   In the present specification, unless otherwise specified, the reflectance refers to the reflectance of light incident from the surface 2 a of the antireflection film 2 for the glass article 3. Further, the reflectance of the glass substrate 1 refers to the reflectance of light incident from the main surface 1 a of the glass substrate 1. About the transmittance | permeability in the glass article 3, it is the transmittance | permeability measured by the main surface 1b side of the glass base material 1 of the light which injects from the surface 2a of the reflection preventing film 2. FIG. The transmittance of the glass substrate 1 is a transmittance measured on the main surface 1b side of the glass substrate 1 of light incident from the main surface 1a of the glass substrate 1.

ガラス物品3において、第1の波長域の光の平均反射率が可視光波長域全体の光の平均反射率より低くないと、第1の波長域における光の透過率と可視光波長域における第1の波長域以外の波長域の透過率との間の差が、ガラス基材1における両者の差に比べて大きくなる。また、第1の波長域の光の平均反射率が0.5%超であると、ガラス物品3において、第1の波長域における光の平均透過率が十分に向上せず、可視光波長域における第1の波長域以外の波長域の平均透過率と同等にすることが困難である。   In the glass article 3, if the average reflectance of light in the first wavelength region is not lower than the average reflectance of light in the entire visible light wavelength region, the light transmittance in the first wavelength region and the first reflectance in the visible light wavelength region. The difference between the transmittances in the wavelength regions other than the wavelength region of 1 is larger than the difference between the two in the glass substrate 1. Further, if the average reflectance of light in the first wavelength range is more than 0.5%, the average transmittance of light in the first wavelength range is not sufficiently improved in the glass article 3, and the visible wavelength range It is difficult to make it equal to the average transmittance in a wavelength region other than the first wavelength region.

ガラス物品3において第1の波長域の光の平均反射率は、0.45%以下が好ましく、0.4%以下が好ましく、0.35%以下が最も好ましい。   In the glass article 3, the average reflectance of light in the first wavelength region is preferably 0.45% or less, preferably 0.4% or less, and most preferably 0.35% or less.

ガラス物品3において、可視光波長域全体の光の平均反射率をRa、第1の波長域の光の平均反射率をRbとすると、上記のとおりRa>Rbである。ガラス物品3において、RaからRbを引いた値をRdとするとRdは、0.01以上が好ましく、0.05以上がより好ましい。   In the glass article 3, when the average reflectance of light in the entire visible light wavelength region is Ra and the average reflectance of light in the first wavelength region is Rb, Ra> Rb as described above. In the glass article 3, when Rd is a value obtained by subtracting Rb from Ra, Rd is preferably 0.01 or more, and more preferably 0.05 or more.

また、ガラス物品3における透過率については、反射防止膜2の表面2aから入射する可視光波長域の光の、ガラス基材1の主面1b側で測定される平均透過率をTaとすると、用いるガラス基材1にもよるが、Taの値は93%以上が好ましく、94%以上がより好ましい。用いるガラス基材1の可視光波長域の光の平均透過率Tagと、得られるガラス物品3の可視光波長域の光の平均透過率のTaとの差(Ta−Tag)は、2.5%以上が好ましく、3.0%以上がより好ましい。   Further, regarding the transmittance in the glass article 3, when the average transmittance measured on the main surface 1b side of the glass substrate 1 of the light in the visible light wavelength range incident from the surface 2a of the antireflection film 2 is Ta, Although it depends on the glass substrate 1 to be used, the Ta value is preferably 93% or more, more preferably 94% or more. The difference (Ta-Tag) between the average transmittance Tag of the visible light wavelength region of the glass substrate 1 to be used and the average transmittance Ta of the visible light wavelength region of the glass article 3 to be obtained is 2.5. % Or more is preferable, and 3.0% or more is more preferable.

可視光波長域の光の透過率と同様に測定されるガラス物品3における第1の波長域の光の平均透過率をTbとした時に、可視光波長域の光の平均透過率Taと第1の波長域の光の平均透過率Tbとの関係は、Ta>Tb、Ta=Tb、Ta<Tbであってもよいが、両者の差(Ta−Tb=Td)の絶対値|Td|は、1.0%以下が好ましく、0.8%以下がより好ましい。   When the average transmittance of light in the first wavelength range in the glass article 3 measured in the same manner as the transmittance of light in the visible wavelength range is Tb, the average transmittance Ta of the light in the visible wavelength range and the first The relationship with the average transmittance Tb of the light in the wavelength range of Ta may be Ta> Tb, Ta = Tb, Ta <Tb, but the absolute value | Td | of the difference between them (Ta−Tb = Td) is 1.0% or less is preferable, and 0.8% or less is more preferable.

別の観点からいうと、TaとTbの差の絶対値|Td|は、用いるガラス基材1における、可視光波長域の光の平均透過率Tagと第1の波長域の光の平均透過率Tbgとの差Tdgと同じか、Tdgより小さいことが好ましい。   From another viewpoint, the absolute value | Td | of the difference between Ta and Tb is the average transmittance Tag of light in the visible wavelength range and the average transmittance of light in the first wavelength range in the glass substrate 1 to be used. It is preferable that the difference from Tbg is the same as Tdg or smaller than Tdg.

さらに、ガラス物品3の可視光波長域の光の透過率における最大値と最小値の差は2%以下が好ましく、1.5%以下がより好ましい。可視光波長域の光の透過率の最大値と最小値の差が2%以下であると、R・G・Bの各領域における透過率差は十分に小さく、各色の見え方が略均一となり、視認性が可視光波長域全体において明瞭となる。   Furthermore, the difference between the maximum value and the minimum value of the light transmittance in the visible light wavelength region of the glass article 3 is preferably 2% or less, and more preferably 1.5% or less. If the difference between the maximum value and the minimum value of the light transmittance in the visible light wavelength range is 2% or less, the transmittance difference in each of the R, G, and B regions is sufficiently small, and the appearance of each color becomes substantially uniform. The visibility becomes clear in the entire visible light wavelength range.

反射防止膜2は、ガラス基材1の少なくとも一つの表面(透光面として利用する表面)に設ける。図1に示すガラス物品3は、ガラス基材1の互いに対向する2つの主面1a、1bの一方の主面1a上に反射防止膜2設けられた例である。反射防止膜2は、必要に応じて複数の表面に同一または異なる膜として形成されてもよい。   The antireflection film 2 is provided on at least one surface of the glass substrate 1 (surface used as a light transmitting surface). A glass article 3 shown in FIG. 1 is an example in which an antireflection film 2 is provided on one main surface 1a of two opposing main surfaces 1a and 1b of a glass substrate 1. The antireflection film 2 may be formed as the same or different film on a plurality of surfaces as required.

反射防止膜2はガラス基材1の表面上に形成されて、ガラス物品3を本発明の条件に合致させられるものであれば、構成は特に制限されない。反射防止膜2は、1層のみで構成される単層膜であってもよく、2層以上が積層された光学多層膜であってもよい。また、反射防止膜2はガラス基材1の表面上に形成されて、ガラス物品3を本発明の条件に合致させられるものであれば、例えば、赤外線遮蔽、紫外線遮蔽、防汚、防塵、耐久性向上等の他の機能を併せもつ膜でもよい。   The configuration is not particularly limited as long as the antireflection film 2 is formed on the surface of the glass substrate 1 and the glass article 3 can be matched with the conditions of the present invention. The antireflection film 2 may be a single layer film composed of only one layer or an optical multilayer film in which two or more layers are laminated. Moreover, if the antireflection film 2 is formed on the surface of the glass substrate 1 and can match the glass article 3 with the conditions of the present invention, for example, infrared shielding, ultraviolet shielding, antifouling, dustproof, durable It may be a film having other functions such as property improvement.

反射防止膜2が光学多層膜である場合、層数は8層以下が好ましい。光学多層膜の層数が8層を超えると、製造コストが増したり、ガラス物品3全体の厚みが増すことにより小型デバイス等への活用がしづらくなったりする場合がある。反射防止膜2の層数は6層以下がより好ましい。   When the antireflection film 2 is an optical multilayer film, the number of layers is preferably 8 or less. If the number of layers of the optical multilayer film exceeds 8, the manufacturing cost may increase, or the overall thickness of the glass article 3 may increase, making it difficult to utilize for a small device or the like. The number of layers of the antireflection film 2 is more preferably 6 or less.

反射防止膜2が光学多層膜の場合、代表的には、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜は、好ましくは、屈折率が1.6以上であり、より好ましくは2.2〜2.5である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、光学多層膜とした際に所望の光学特性が得られる点から、Nbが好ましい。 In the case where the antireflection film 2 is an optical multilayer film, typically, a dielectric in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated. Body multilayer film. The high refractive index film preferably has a refractive index of 1.6 or more, more preferably 2.2 to 2.5. Examples of the material for the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Among these, Nb 2 O 5 is preferable because desired optical characteristics can be obtained when an optical multilayer film is formed.

一方、低屈折率膜は、好ましくは、屈折率1.6未満であり、より好ましくは1.45以上1.55未満である。低屈折率膜の材料としては、例えばSiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。 On the other hand, the low refractive index film preferably has a refractive index of less than 1.6, more preferably 1.45 or more and less than 1.55. Examples of the material for the low refractive index film include SiO 2 and SiO x N y . From the viewpoint of reproducibility, stability, economical efficiency, etc. in film formability, SiO 2 is preferable.

すなわち、反射防止膜2が光学多層膜の場合、酸化珪素(SiO)層と酸化ニオブ(Nb)層の交互積層部を含む膜であることが好ましい。図1に示す例では、ガラス物品3が有する反射防止膜2は、ガラス基材1側から順に符号21〜26が付された6層が積層された光学多層膜である。反射防止膜2は、ガラス基材1の主面1a側から順に、例えば、Nb層21、SiO層22、Nb層23、SiO層24、Nb層25、SiO層26の構成である。 That is, when the antireflective film 2 is an optical multilayer film, it is preferably a film including an alternately laminated portion of a silicon oxide (SiO 2 ) layer and a niobium oxide (Nb 2 O 5 ) layer. In the example illustrated in FIG. 1, the antireflection film 2 included in the glass article 3 is an optical multilayer film in which six layers to which reference numerals 21 to 26 are attached in order from the glass substrate 1 side. The antireflection film 2 is, for example, Nb 2 O 5 layer 21, SiO 2 layer 22, Nb 2 O 5 layer 23, SiO 2 layer 24, Nb 2 O 5 layer 25 in order from the main surface 1 a side of the glass substrate 1. , The structure of the SiO 2 layer 26.

反射防止膜2は、ガラス基材1の主面1a側から順に、SiO層/Nb層/SiO層/Nb層/SiO層の5層構成であってもよい。反射防止膜2の積層構造は、求められる物性に応じて適宜変更可能である。 The antireflection film 2 may have a five-layer structure of SiO 2 layer / Nb 2 O 5 layer / SiO 2 layer / Nb 2 O 5 layer / SiO 2 layer in order from the main surface 1a side of the glass substrate 1. . The laminated structure of the antireflection film 2 can be appropriately changed according to the required physical properties.

反射防止膜2が光学多層膜の場合、各層の厚み(1層あたりの膜厚)は、それぞれ、5nm〜200nmに設定することができる。反射防止膜2における各層の材料(屈折率)、膜厚、ガラス基材1への積層順等を適宜調整することで、ガラス物品3において反射防止膜2の表面2aから入射する光の反射率について、第1の波長域の光の平均反射率を、可視光波長域全体の光の平均反射率より低く、かつ0.5%以下とする機能を有する反射防止膜2が設計できる。なお、本明細書において、光学多層膜の各層の厚み、膜全体の厚みは、特に断りのない限り光学膜厚である。光学膜厚は、例えば、大塚電子社製FE3000等により測定した結果から算出できる。   When the antireflection film 2 is an optical multilayer film, the thickness of each layer (film thickness per layer) can be set to 5 nm to 200 nm, respectively. The reflectance of light incident from the surface 2a of the antireflection film 2 in the glass article 3 by appropriately adjusting the material (refractive index), film thickness, stacking order on the glass substrate 1, etc. of each layer in the antireflection film 2 The antireflection film 2 having the function of setting the average reflectance of light in the first wavelength region to be lower than the average reflectance of light in the entire visible light wavelength region and 0.5% or less can be designed. In this specification, the thickness of each layer of the optical multilayer film and the thickness of the entire film are optical film thicknesses unless otherwise specified. The optical film thickness can be calculated, for example, from the results of measurement using FE3000 manufactured by Otsuka Electronics Co., Ltd.

反射防止膜2においては、1層あたりの膜厚の上限を200nmとすることにより、可視光の透過率減少を抑制することができる。なお、反射防止膜2の1層あたりの膜厚を5nm以上とするのは、反射防止膜2が実際に膜状に存在し、その機能を十分に発揮させるようにするためである。   In the antireflection film 2, by setting the upper limit of the film thickness per layer to 200 nm, it is possible to suppress a decrease in visible light transmittance. The reason why the film thickness of one layer of the antireflection film 2 is 5 nm or more is that the antireflection film 2 actually exists in the form of a film and sufficiently exhibits its function.

反射防止膜2の全体の厚みは200〜450nmが好ましい。反射防止膜2の厚みが450nmを超えると、製造コストの増加や、ガラス物品3全体の厚みの増加により、小型デバイス等への活用がしづらくなる場合がある。反射防止膜2の厚みは430nm以下であることが好ましく、400nm以下であることがより好ましい。また、反射防止膜2の厚みが200nm未満であると、ガラス基材1の透過率向上に必要な反射特性を得ることができない場合がある。反射防止膜2の厚みは210nm以上が好ましく、220nm以上がより好ましい。   The total thickness of the antireflection film 2 is preferably 200 to 450 nm. When the thickness of the antireflection film 2 exceeds 450 nm, it may be difficult to utilize it for a small device or the like due to an increase in manufacturing cost or an increase in the thickness of the entire glass article 3. The thickness of the antireflection film 2 is preferably 430 nm or less, and more preferably 400 nm or less. Moreover, when the thickness of the antireflection film 2 is less than 200 nm, it may be impossible to obtain reflection characteristics necessary for improving the transmittance of the glass substrate 1. The thickness of the antireflection film 2 is preferably 210 nm or more, and more preferably 220 nm or more.

反射防止膜2は、ガラス基材1に公知の成膜方法で形成することができる。具体的には、加熱蒸着法やスパッタリング法、イオンアシスト蒸着(IAD:Ion Assisted Deposition)法などの成膜法を用いて形成する。特に、反射防止膜2として耐擦傷性の高い膜を形成する場合は、緻密な膜が得られるように、スパッタリング法やイオンアシスト蒸着法を用いることが好ましい。   The antireflection film 2 can be formed on the glass substrate 1 by a known film formation method. Specifically, it is formed using a film forming method such as a heat evaporation method, a sputtering method, or an ion assisted deposition (IAD) method. In particular, when a highly scratch-resistant film is formed as the antireflection film 2, it is preferable to use a sputtering method or an ion-assisted vapor deposition method so that a dense film can be obtained.

以上、図1を参照しながらガラス基材1と反射防止膜2からなるガラス物品3について説明した。ガラス物品3は、本発明の効果を損なわない範囲で、ガラス基材1と反射防止膜2の設計を変更可能である。また、ガラス物品3は、本発明の効果を損なわない範囲で、ガラス基材1と反射防止膜2以外の部材を有してもよい。   The glass article 3 including the glass substrate 1 and the antireflection film 2 has been described above with reference to FIG. The glass article 3 can change the design of the glass substrate 1 and the antireflection film 2 as long as the effects of the present invention are not impaired. Moreover, the glass article 3 may have members other than the glass substrate 1 and the antireflection film 2 as long as the effects of the present invention are not impaired.

例えば、ガラス物品3は、ガラス基材1と反射防止膜2の間に、ガラス基材1と反射防止膜2の密着性を高めるための密着強化膜層を有してもよい。ガラス物品3は、密着強化膜層以外にも、紫外線によるガラス基材1へのダメージを軽減するための紫外線吸収層や紫外線反射層等を有してもよい。これらの、紫外線吸収層や紫外線反射層は、例えば、ガラス基材1と反射防止膜2の間に設けられてもよく、反射防止膜2が光学多層膜であれば多層膜の層間に設けられてもよい。いずれの場合にも、紫外線吸収層や紫外線反射層は、層自体の紫外線吸収能や紫外線反射能を有しながら反射防止膜2の一部として反射防止膜2の反射防止能に寄与する設計であってもよい。   For example, the glass article 3 may have an adhesion reinforcing film layer for enhancing the adhesion between the glass substrate 1 and the antireflection film 2 between the glass substrate 1 and the antireflection film 2. The glass article 3 may have an ultraviolet absorption layer, an ultraviolet reflection layer, or the like for reducing damage to the glass substrate 1 due to ultraviolet rays in addition to the adhesion reinforcing film layer. These ultraviolet absorbing layer and ultraviolet reflecting layer may be provided, for example, between the glass substrate 1 and the antireflection film 2, and provided between the multilayer films if the antireflection film 2 is an optical multilayer film. May be. In any case, the ultraviolet absorbing layer and the ultraviolet reflecting layer are designed to contribute to the antireflection ability of the antireflection film 2 as a part of the antireflection film 2 while having the ultraviolet absorption ability and ultraviolet reflection ability of the layer itself. There may be.

本発明のガラス物品は、可視光波長域内に透過率が低い特定の波長域を有するガラス基材に反射防止膜が形成されたガラス物品であって、ガラス基材の透過率が可視光波長域の全域にわたって略均一になるように高められた高透過率のガラス物品である。したがって、本発明のガラス物品は、可視光波長域の透過率が全域にわたって均一に高い特性が求められる、例えば、LCD(Liquid Crystal Display)、LCOS(Liquid Crystal On Silicon)、OLED(Organic Light Emitting Diode)、MEMS(Micro Electro Mechanical System)ディスプレイ、電子ペーパー等の画像表示装置に利用できる。   The glass article of the present invention is a glass article in which an antireflection film is formed on a glass substrate having a specific wavelength range with low transmittance in the visible light wavelength range, and the transmittance of the glass substrate is in the visible wavelength range. It is a glass article having a high transmittance which is increased so as to be substantially uniform over the entire area. Therefore, the glass article of the present invention is required to have a property that the transmittance in the visible light wavelength region is uniformly high over the entire region, for example, LCD (Liquid Crystal Display), LCOS (Liquid Crystal On Silicon), OLED (Organic Light Emitting Diode). ), Image display devices such as MEMS (Micro Electro Mechanical System) displays and electronic paper.

以下に、本発明を実施例によりさらに詳細に説明する。本発明は、以下で説明する実施形態および実施例に何ら限定されるものではない。例1、2が実施例であり、例3、4が比較例である。例5はガラス基材(参考例)である。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the embodiments and examples described below. Examples 1 and 2 are examples, and examples 3 and 4 are comparative examples. Example 5 is a glass substrate (reference example).

[例1〜4]
図1に示す、ガラス基材1と、ガラス基材1の一方の主面1a上に設けられた反射防止膜2と、からなるガラス物品3を作製した。ただし、反射防止膜2の層数は例毎に以下に説明する層数とした。
[Examples 1-4]
A glass article 3 including a glass substrate 1 and an antireflection film 2 provided on one main surface 1a of the glass substrate 1 shown in FIG. 1 was produced. However, the number of layers of the antireflection film 2 was the number of layers described below for each example.

ガラス基材1として、無アルカリアルミノシリケートガラス(旭硝子社製)の基板(板厚0.9mm)を用いた。例5は、該ガラス基材自体である。ガラス基材1の一方の主面1a上に、スパッタリング法により、表1に示す層構成(各層の材料、膜厚)の反射防止膜2を形成して、例1〜4のガラス物品を得た。表1において1層目がガラス基材1の主面1aに接する層である。なお、反射防止膜2の各層の膜厚は、大塚電子社製FE3000で測定した結果から算出したものである。   As the glass substrate 1, a non-alkali aluminosilicate glass (Asahi Glass Co., Ltd.) substrate (thickness 0.9 mm) was used. Example 5 is the glass substrate itself. On one main surface 1a of the glass substrate 1, an antireflection film 2 having a layer structure (material and film thickness of each layer) shown in Table 1 is formed by a sputtering method to obtain glass articles of Examples 1 to 4. It was. In Table 1, the first layer is a layer in contact with the main surface 1 a of the glass substrate 1. In addition, the film thickness of each layer of the antireflection film 2 is calculated from the result of measurement with an FE3000 manufactured by Otsuka Electronics Co., Ltd.

得られた各例のガラス物品および例5のガラス基材について、波長300〜800nmにおける光の反射率および透過率を以下のとおり測定した。   About the obtained glass article of each example and the glass base material of Example 5, the reflectance and transmittance | permeability of the light in wavelength 300-800 nm were measured as follows.

(反射率)
反射率は、大塚電子社製FE3000を用いて、ガラス物品3については反射防止膜2の表面2a側から、ガラス基材1については主面1a側からそれぞれ光を照射して、測定した。得られた測定値をそのまま反射率として評価に用いた。
(Reflectance)
The reflectance was measured by irradiating light from the surface 2a side of the antireflection film 2 for the glass article 3 and from the main surface 1a side for the glass substrate 1 using an FE3000 manufactured by Otsuka Electronics Co., Ltd. The obtained measured value was used for evaluation as the reflectance as it was.

(透過率)
日立製作所社製U4100を用いて、ガラス物品3については、反射防止膜2の表面2aから入射する光のガラス基材1の主面1b側で透過率を測定した。ガラス基材1については、ガラス基材1の主面1aから入射する光のガラス基材1の主面1b側で透過率を測定した。
(Transmittance)
Using U4100 manufactured by Hitachi, Ltd., the transmittance of the glass article 3 was measured on the main surface 1b side of the glass substrate 1 for light incident from the surface 2a of the antireflection film 2. About the glass base material 1, the transmittance | permeability was measured in the main surface 1b side of the glass base material 1 of the light which injects from the main surface 1a of the glass base material 1. FIG.

[ガラス基材の光学特性]
各例のガラス物品に用いたガラス基材(例5)については、波長400〜700nm(可視光波長域)の全体の平均透過率(以下、Tagで示す)は、91.53%であった。また、Tagより低い平均透過率を有する第1の波長域は波長400〜500nmにあり、波長400〜500nmにおける平均透過率(以下、Tbgで示す)は、91.23%であった。第1の波長域の平均透過率は可視光波長域全体の平均透過率に比べて0.30%低い値であった。すなわち、Tag−Tbgで示すTagとTbgの差(以下、Tdgで示す)は0.30%であった。ガラス基材(例5)の波長と透過率の関係を図6Aに示す。
[Optical properties of glass substrate]
About the glass base material (Example 5) used for the glass article of each example, the whole average transmittance (henceforth Tag) of wavelength 400-700 nm (visible light wavelength range) was 91.53%. . Moreover, the 1st wavelength range which has an average transmittance | permeability lower than Tag exists in wavelength 400-500 nm, and the average transmittance (henceforth Tbg) in wavelength 400-500 nm was 91.23%. The average transmittance in the first wavelength region was 0.30% lower than the average transmittance in the entire visible light wavelength region. That is, the difference between Tag and Tbg represented by Tag−Tbg (hereinafter represented by Tdg) was 0.30%. FIG. 6A shows the relationship between the wavelength of the glass substrate (Example 5) and the transmittance.

ガラス基材(例5)の波長400〜700nm(可視光波長域)の全体の平均反射率(以下、Ragで示す)は、7.85%であり、第1の波長域(波長400〜500nm)における平均反射率(以下、Rbgで示す)は、8.46%であった。ガラス基材(例5)の波長と反射率の関係を図6Bに示す。ガラス基材(例5)の透過率特性および反射率特性を表1に示す。   The overall average reflectance (hereinafter referred to as Rag) of the glass substrate (Example 5) having a wavelength of 400 to 700 nm (visible light wavelength range) is 7.85%, and the first wavelength range (wavelength 400 to 500 nm). ) Was 8.46% (hereinafter referred to as Rbg). The relationship between the wavelength of the glass substrate (Example 5) and the reflectance is shown in FIG. 6B. Table 1 shows the transmittance characteristics and reflectance characteristics of the glass substrate (Example 5).

[例1〜4のガラス物品の光学特性評価]
例1〜4のガラス物品について、波長400〜700nmにおける平均透過率(以下、Taで示す)、波長400〜500nmにおける平均透過率(以下、Tbで示す)、Ta−Tbで示される両者の差(以下、Tdで示す)、波長400〜700nmにおける平均反射率(以下、Raで示す)、波長400〜500nmにおける平均反射率(以下、Rbで示す)、Ra−Rbで示される両者の差(以下、Rdで示す)、波長400〜700における最小透過率と最大透過率、および最大透過率と最小透過率の差を算出した。結果を、反射防止膜2の構成とともに表1に示す。
[Evaluation of optical properties of glass articles of Examples 1 to 4]
About the glass articles of Examples 1 to 4, the average transmittance at a wavelength of 400 to 700 nm (hereinafter referred to as Ta), the average transmittance at a wavelength of 400 to 500 nm (hereinafter referred to as Tb), the difference between the two indicated by Ta-Tb (Hereinafter referred to as Td), an average reflectance at a wavelength of 400 to 700 nm (hereinafter referred to as Ra), an average reflectance at a wavelength of 400 to 500 nm (hereinafter referred to as Rb), and a difference between both indicated by Ra-Rb ( Hereinafter, the minimum transmittance and the maximum transmittance at wavelengths 400 to 700, and the difference between the maximum transmittance and the minimum transmittance were calculated. The results are shown in Table 1 together with the configuration of the antireflection film 2.

さらに、ガラス物品における可視光波長域全体の平均透過率が、用いたガラス基材における可視光波長域全体の平均透過率と比べて向上した度合いを両者の差(Ta−Tag)で示した。また、ガラス物品における可視光波長域全体の平均透過率と第1の波長域の平均透過率の差(Td)と、用いたガラス基材における可視光波長域全体の平均透過率と第1の波長域の平均透過率の差(Tdg)との比較を両者の差(Td−Tdg)で示した。結果を表1に示す。   Furthermore, the difference (Ta-Tag) shows the degree of improvement in the average transmittance of the entire visible light wavelength region in the glass article compared to the average transmittance of the entire visible light wavelength region in the used glass substrate. Moreover, the difference (Td) between the average transmittance of the entire visible light wavelength region in the glass article and the average transmittance of the first wavelength region, the average transmittance of the entire visible light wavelength region in the used glass substrate, and the first Comparison with the difference in the average transmittance in the wavelength region (Tdg) is shown as the difference between them (Td−Tdg). The results are shown in Table 1.

例1〜4のガラス物品における波長と透過率の関係をそれぞれ図2A、図3A、図4A、図5Aに示す。各図において破線で示す「未コート」は、例5のガラス基材の透過率である。例1〜4のガラス物品における波長と反射率の関係をそれぞれ図2B、図3B、図4B、図5Bに示す。   The relationship between the wavelength and the transmittance in the glass articles of Examples 1 to 4 is shown in FIGS. 2A, 3A, 4A, and 5A, respectively. “Uncoated” indicated by a broken line in each figure is the transmittance of the glass substrate of Example 5. The relationship between the wavelength and the reflectance in the glass articles of Examples 1 to 4 is shown in FIGS. 2B, 3B, 4B, and 5B, respectively.

Figure 2017206392
Figure 2017206392

表1から、例1、例2で得られたガラス物品は、可視光波長域内に透過率が低い特定の波長域(第1の波長域;上記各例においては400〜500nm)を有するガラス基材に反射防止膜が形成されたガラス物品であって、ガラス物品における反射防止膜の表面から入射する光の反射率について、第1の波長域の光の平均反射率は、可視光波長域全体の光の平均反射率より低く(Rb<Ra)かつ0.5%以下であることがわかる。   From Table 1, the glass articles obtained in Examples 1 and 2 are glass groups having a specific wavelength range (first wavelength range; 400 to 500 nm in each of the above examples) having a low transmittance in the visible wavelength range. A glass article in which an antireflection film is formed on a material, and the reflectance of light incident from the surface of the antireflection film in the glass article is such that the average reflectance of light in the first wavelength range is the entire visible wavelength range It can be seen that it is lower than the average reflectance of light (Rb <Ra) and 0.5% or less.

これにより、例1、例2で得られたガラス物品は、表1で示されるように可視光波長域全体の平均透過率(Ta)と第1の波長域の平均透過率(Tb)における差(Td)が、用いたガラス基材における両者の差(Tdg)と同等またはそれ以下である。さらに、例1、例2で得られたガラス物品における可視光波長域全体の平均透過率(Ta)は、ガラス基材における可視光波長域全体の平均透過率(Tag)に比べて3%以上高い。このように、例1、例2で得られたガラス物品は、ガラス基材の透過率が可視光波長域の全域にわたって略均一になるように高められた高透過率のガラス物品であることがわかる。   Thereby, as shown in Table 1, the glass articles obtained in Examples 1 and 2 are different in the average transmittance (Ta) of the entire visible light wavelength region and the average transmittance (Tb) of the first wavelength region. (Td) is equal to or less than the difference (Tdg) between the two in the glass substrate used. Furthermore, the average transmittance (Ta) of the entire visible light wavelength region in the glass articles obtained in Examples 1 and 2 is 3% or more compared to the average transmittance (Tag) of the entire visible light wavelength region of the glass substrate. high. Thus, the glass article obtained in Example 1 and Example 2 is a glass article having a high transmittance that is increased so that the transmittance of the glass substrate is substantially uniform over the entire visible wavelength range. Recognize.

一方、例3、例4で得られたガラス物品は、ガラス物品における反射防止膜の表面から入射する第1の波長域の光の平均反射率は0.5%以下であるが、反射防止膜の表面から入射する可視光波長域全体の光の平均反射率より高い(Rb>Ra)ことがわかる。これにより、例3、例4で得られたガラス物品は、表1で示されるように可視光波長域全体の平均透過率(Ta)と第1の波長域の平均透過率(Tb)における差(Td)が、用いたガラス基材における両者の差(Tdg)より大きく、さらに、例3、例4で得られたガラス物品における可視光波長域全体の平均透過率(Ta)は、ガラス基材における可視光波長域全体の平均透過率(Tag)に比べて高まっているものの、その差は小さい。   On the other hand, in the glass articles obtained in Examples 3 and 4, the average reflectance of light in the first wavelength range incident from the surface of the antireflection film in the glass article is 0.5% or less. It can be seen that the average reflectance of light in the entire visible light wavelength region incident from the surface of the light is higher (Rb> Ra). Thereby, as shown in Table 1, the glass articles obtained in Examples 3 and 4 are different in the average transmittance (Ta) of the entire visible light wavelength region and the average transmittance (Tb) of the first wavelength region. (Td) is greater than the difference (Tdg) between the two glass substrates used, and the average transmittance (Ta) of the entire visible light wavelength region in the glass articles obtained in Examples 3 and 4 is Although it is higher than the average transmittance (Tag) of the entire visible light wavelength region in the material, the difference is small.

1:ガラス基材、2:反射防止膜、3:ガラス物品   1: glass substrate, 2: antireflection film, 3: glass article

Claims (7)

ガラス基材と前記ガラス基材の少なくとも一つの表面に設けられた反射防止膜を有するガラス物品であって、
前記ガラス基材は、前記表面から入射する400〜700nmの可視光波長域の光の透過率が、前記可視光波長域内に前記可視光波長域全体の平均透過率より低い平均透過率を有する第1の波長域を有するような分布を有し、
前記ガラス物品における前記反射防止膜の表面から入射する光の反射率について、前記第1の波長域の光の平均反射率は、前記可視光波長域全体の光の平均反射率より低くかつ0.5%以下である、ことを特徴とするガラス物品。
A glass article having a glass substrate and an antireflection film provided on at least one surface of the glass substrate,
The glass substrate has an average transmittance of light in a visible light wavelength region of 400 to 700 nm incident from the surface, which is lower than an average transmittance of the entire visible light wavelength region in the visible light wavelength region. Having a distribution having a wavelength range of 1;
Regarding the reflectance of light incident from the surface of the antireflection film in the glass article, the average reflectance of light in the first wavelength region is lower than the average reflectance of light in the entire visible light wavelength region, and 0. A glass article characterized by being 5% or less.
前記第1の波長域が400〜500nmの波長域であり、前記ガラス基材の前記表面に入射する前記第1の波長域の光の平均透過率が85〜92%であることを特徴とする請求項1記載のガラス物品。   The first wavelength region is a wavelength region of 400 to 500 nm, and an average transmittance of light in the first wavelength region incident on the surface of the glass substrate is 85 to 92%. The glass article according to claim 1. 前記反射防止膜が光学多層膜であることを特徴とする請求項1または2に記載のガラス物品。   The glass article according to claim 1, wherein the antireflection film is an optical multilayer film. 前記光学多層膜の層数が8層以下であることを特徴とする請求項3記載のガラス物品。   The glass article according to claim 3, wherein the number of layers of the optical multilayer film is 8 or less. 前記光学多層膜がSiO層とNb層との交互積層部を含むことを特徴とする請求項3または4記載のガラス物品。 The glass article according to claim 3 or 4, wherein the optical multilayer film includes an alternately laminated portion of an SiO 2 layer and an Nb 2 O 5 layer. 前記反射防止膜の厚みが200〜450nmであることを特徴とする請求項1〜5のいずれか1項記載のガラス物品。   The glass article according to any one of claims 1 to 5, wherein the antireflection film has a thickness of 200 to 450 nm. 前記反射防止膜を透過するように前記ガラス物品に入射する前記可視光波長域の光の透過率において、平均透過率が93%以上であり、最大値と最小値の差が2%以下であることを特徴とする請求項1〜6のいずれか1項記載のガラス物品。   In the transmittance of light in the visible light wavelength range incident on the glass article so as to pass through the antireflection film, the average transmittance is 93% or more, and the difference between the maximum value and the minimum value is 2% or less. The glass article according to any one of claims 1 to 6.
JP2016097764A 2016-05-16 2016-05-16 Glass article Pending JP2017206392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097764A JP2017206392A (en) 2016-05-16 2016-05-16 Glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097764A JP2017206392A (en) 2016-05-16 2016-05-16 Glass article

Publications (1)

Publication Number Publication Date
JP2017206392A true JP2017206392A (en) 2017-11-24

Family

ID=60416287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097764A Pending JP2017206392A (en) 2016-05-16 2016-05-16 Glass article

Country Status (1)

Country Link
JP (1) JP2017206392A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019004142A1 (en) 2018-06-13 2019-12-19 AGC Inc. OPTICAL LAMINATE
US20200408954A1 (en) * 2018-03-02 2020-12-31 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
CN113573888A (en) * 2019-03-28 2021-10-29 Agc株式会社 Optical filter
CN115593047A (en) * 2022-09-29 2023-01-13 福耀玻璃工业集团股份有限公司(Cn) Vehicle window glass and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171596A (en) * 1997-12-05 1999-06-29 Sony Corp Reflection preventing film
JP2005031298A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film
US20090052041A1 (en) * 2007-08-20 2009-02-26 Toppan Printing, Co., Ltd. Anti-Reflection Film and Polarizing Plate Using the Same
WO2014199991A1 (en) * 2013-06-11 2014-12-18 日本電気硝子株式会社 Cover member, display device and method for producing cover member
JP2015506895A (en) * 2011-11-30 2015-03-05 コーニング インコーポレイテッド Optical coating methods, equipment, and products
JP2016052992A (en) * 2013-01-30 2016-04-14 旭硝子株式会社 Transparent substrate with antifouling film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171596A (en) * 1997-12-05 1999-06-29 Sony Corp Reflection preventing film
JP2005031298A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film
US20090052041A1 (en) * 2007-08-20 2009-02-26 Toppan Printing, Co., Ltd. Anti-Reflection Film and Polarizing Plate Using the Same
JP2009047876A (en) * 2007-08-20 2009-03-05 Toppan Printing Co Ltd Antireflection film and polarizing plate using the same
JP2015506895A (en) * 2011-11-30 2015-03-05 コーニング インコーポレイテッド Optical coating methods, equipment, and products
JP2016052992A (en) * 2013-01-30 2016-04-14 旭硝子株式会社 Transparent substrate with antifouling film
WO2014199991A1 (en) * 2013-06-11 2014-12-18 日本電気硝子株式会社 Cover member, display device and method for producing cover member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200408954A1 (en) * 2018-03-02 2020-12-31 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
DE102019004142A1 (en) 2018-06-13 2019-12-19 AGC Inc. OPTICAL LAMINATE
US11531140B2 (en) 2018-06-13 2022-12-20 AGC Inc. Optical laminate having antireflection film and light shielding film
CN113573888A (en) * 2019-03-28 2021-10-29 Agc株式会社 Optical filter
CN113573888B (en) * 2019-03-28 2023-02-28 Agc株式会社 Optical filter
CN115593047A (en) * 2022-09-29 2023-01-13 福耀玻璃工业集团股份有限公司(Cn) Vehicle window glass and vehicle
CN115593047B (en) * 2022-09-29 2024-01-23 福耀玻璃工业集团股份有限公司 Window glass and vehicle

Similar Documents

Publication Publication Date Title
US11137521B2 (en) Antireflective film-attached transparent substrate, and display apparatus using same
US10031349B2 (en) Optical product, and spectacle lens and spectacles
US9995852B2 (en) Cover member for exhibit item or display
US9977157B2 (en) Dielectric mirror
KR102392445B1 (en) Scratch-resistant chemically tempered glass substrate and use thereof
WO2006137427A1 (en) Protective film for polarizing plate
CN109311279B (en) Light emitting diode display and insulating glass unit including the same
JP2017206392A (en) Glass article
US20190056539A1 (en) Dielectric mirror
US20140329072A1 (en) Optical product and method for manufacturing same
US10927038B2 (en) Glass article
CN111373291A (en) Optical glass, optical component and optical device
US9651713B2 (en) Optical product and spectacle plastic lens
JP2014065169A (en) Glass film laminate for display object cover
JP5864405B2 (en) Tan coloring lens and tan coloring product
EP1283432B1 (en) Windowpane for head up display
WO2022114037A1 (en) Optical laminate and article
CN111312927B (en) Display device
US20030035939A1 (en) Windowpane for head up display and method for manufacturing the same
KR102177964B1 (en) Low reflection coating glass
US20230039431A1 (en) Optical filter
US20230107099A1 (en) Optical filter
CN116804774A (en) Optical component
CN117665979A (en) Semitransparent anti-reflection assembly for air interface display applications
JP2003313051A (en) Glass sheet for vehicle with combiner for hud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512