JP2017204613A - Conductive steel sheet - Google Patents

Conductive steel sheet Download PDF

Info

Publication number
JP2017204613A
JP2017204613A JP2016097115A JP2016097115A JP2017204613A JP 2017204613 A JP2017204613 A JP 2017204613A JP 2016097115 A JP2016097115 A JP 2016097115A JP 2016097115 A JP2016097115 A JP 2016097115A JP 2017204613 A JP2017204613 A JP 2017204613A
Authority
JP
Japan
Prior art keywords
conductive steel
steel plate
thin
steel sheet
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016097115A
Other languages
Japanese (ja)
Other versions
JP6739995B2 (en
Inventor
俊平 林
Jiun-Ping Lin
俊平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016097115A priority Critical patent/JP6739995B2/en
Publication of JP2017204613A publication Critical patent/JP2017204613A/en
Application granted granted Critical
Publication of JP6739995B2 publication Critical patent/JP6739995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive steel sheet capable of reducing classical eddy current loss.SOLUTION: The conductive steel sheet has a plurality of thin portions. Each of the plurality of thin portions is formed in a concave shape. The thin portion inhibits passage of a current generated by electromagnetic induction and generates an eddy current between adjacent thin portions when a magnetic flux passes through the conductive steel sheet.SELECTED DRAWING: Figure 1

Description

本発明は、渦電流損を低減しうる導電性鋼板に関する。   The present invention relates to a conductive steel sheet that can reduce eddy current loss.

従来、一方向性電磁鋼板の板幅方向に延びる溝を設けることで、磁区を細分化して異常渦電流損を低減することが行われている。特許文献1には、板幅方向に延びる主溝を起点として、圧延方向に延びる線分状の複数の副溝を設けることで、さらに異常渦電流損に関する特性を向上させた一方向性電磁鋼板が開示されている。   Conventionally, by providing a groove extending in the plate width direction of a unidirectional electrical steel sheet, the magnetic domains are subdivided to reduce abnormal eddy current loss. Patent Document 1 discloses a unidirectional electrical steel sheet in which characteristics relating to abnormal eddy current loss are further improved by providing a plurality of line-shaped sub-grooves extending in the rolling direction starting from a main groove extending in the sheet width direction. Is disclosed.

特許第4719319号Japanese Patent No. 4719319

特許文献1に記載された一方向性電磁鋼板は、磁壁移動による異常渦電流損を低減するものであり、導体である鋼板に生じる渦電流による渦電流損(古典的渦電流損)を低減することはできない。   The unidirectional electrical steel sheet described in Patent Document 1 reduces abnormal eddy current loss due to domain wall motion, and reduces eddy current loss (classical eddy current loss) due to eddy current generated in a steel sheet as a conductor. It is not possible.

本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、古典的渦電流損を低減できる導電性鋼板を提供することにある。   This invention is made | formed in view of such a situation, The main objective is to provide the electroconductive steel plate which can reduce a classic eddy current loss.

上述した課題を解決するために、本発明の一の態様の導電性鋼板は、それぞれが凹状に形成された複数の薄肉部と、隣り合う前記薄肉部の間に形成された厚肉部と、を備え、磁界の中に置かれた場合に、前記薄肉部が電磁誘導によって生じる電流の通過を阻害することにより、前記厚肉部において渦電流を生じさせるように構成されている。   In order to solve the above-described problem, the conductive steel sheet according to one aspect of the present invention includes a plurality of thin portions each formed in a concave shape, and a thick portion formed between the adjacent thin portions, The thin-walled portion is configured to generate an eddy current in the thick-walled portion by inhibiting the passage of current generated by electromagnetic induction when placed in a magnetic field.

この態様において、前記厚肉部において凸部が、前記薄肉部において凹部が形成されており、2つの前記導電性鋼板が重ねられたときに、一方の前記導電性鋼板の前記凹部に、他方の前記導電性鋼板の前記凸部が収容されるように構成されていてもよい。   In this aspect, a convex portion is formed in the thick-walled portion, and a concave portion is formed in the thin-walled portion, and when the two conductive steel plates are overlapped, the other concave portion of the one conductive steel plate You may be comprised so that the said convex part of the said electroconductive steel plate may be accommodated.

また、上記態様において、前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の幅方向及び長さ方向の何れか一方に連続して繰り返し設けられていてもよい。   Moreover, the said aspect WHEREIN: Each of the said thin part and the said thick part may be repeatedly provided continuously in any one of the width direction of the said electrically conductive steel plate, and the length direction.

また、上記態様において、前記薄肉部は、屈曲可能に構成されていてもよい。   Moreover, the said aspect WHEREIN: The said thin part may be comprised so that bending is possible.

また、上記態様において、前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の平面に向かい合う方向から見たときに、前記連続して繰り返す方向と直交する方向に延びるように構成されていてもよい。   Further, in the above aspect, each of the thin portion and the thick portion is configured to extend in a direction orthogonal to the continuously repeating direction when viewed from a direction facing the plane of the conductive steel plate. May be.

また、上記態様において、前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の幅方向及び長さ方向の両方に連続して繰り返し設けられていてもよい。   Moreover, the said aspect WHEREIN: Each of the said thin part and the said thick part may be continuously provided repeatedly in both the width direction and the length direction of the said electrically conductive steel plate.

また、上記態様において、前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の平面に向かい合う方向から見たときに四角形をなすように構成されていてもよい。   Moreover, the said aspect WHEREIN: Each of the said thin part and the said thick part may be comprised so that a square may be made when it sees from the direction facing the plane of the said electrically conductive steel plate.

また、上記態様において、前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の表面に平行な、互いに交差する3つの方向のそれぞれに連続して繰り返し設けられていてもよい。   Moreover, the said aspect WHEREIN: Each of the said thin part and the said thick part may be repeatedly provided continuously in each of the three directions which cross | intersect mutually parallel to the surface of the said electrically conductive steel plate.

また、上記態様において、前記薄肉部は、前記導電性鋼板の平面に向かい合う方向から見たときに三角形をなすように構成されており、前記厚肉部は、前記平面に向かい合う方向から見たときに倒立三角形をなすように構成されていてもよい。   Further, in the above aspect, the thin portion is configured to form a triangle when viewed from a direction facing the plane of the conductive steel sheet, and the thick portion is viewed from a direction facing the plane. It may be configured to form an inverted triangle.

本発明によれば、古典的渦電流損を低減できる。   According to the present invention, classical eddy current loss can be reduced.

実施の形態1に係る導電性鋼板の構成を示す斜視図。FIG. 2 is a perspective view showing a configuration of a conductive steel plate according to Embodiment 1. 実施の形態1に係る導電性鋼板の構成を示す正面図。1 is a front view showing a configuration of a conductive steel plate according to Embodiment 1. FIG. 2つの導電性鋼板を重ねたときの状態を示す正面図。The front view which shows a state when two electroconductive steel plates are piled up. 導電性鋼板を変形させたときの状態を示す斜視図。The perspective view which shows a state when deforming a conductive steel plate. 従来の一般的な導電性鋼板を示す斜視図。The perspective view which shows the conventional general electroconductive steel plate. 図5に示す導電性鋼板に生じる渦電流の経路を説明するための正面断面図。Front sectional drawing for demonstrating the path | route of the eddy current which arises in the conductive steel plate shown in FIG. 板幅が小さい導電性鋼板を複数並べた場合を示す斜視図。The perspective view which shows the case where two or more conductive steel plates with a small board width are arranged. 図7に示す導電性鋼板に生じる渦電流の経路を説明するための正面断面図。Front sectional drawing for demonstrating the path | route of the eddy current which arises in the conductive steel plate shown in FIG. 実施の形態1に係る導電性鋼板に生じる渦電流の経路を説明するための正面断面図。FIG. 3 is a front cross-sectional view for explaining a path of eddy current generated in the conductive steel plate according to the first embodiment. 従来の導電性鋼板における渦電流の解析結果を示す図。The figure which shows the analysis result of the eddy current in the conventional electroconductive steel plate. 実施の形態1にかかる導電性鋼板における渦電流の解析結果を示す図。The figure which shows the analysis result of the eddy current in the electrically conductive steel plate concerning Embodiment 1. FIG. 評価試験の結果を示すグラフ。The graph which shows the result of an evaluation test. 実施の形態2に係る導電性鋼板の構成を示す斜視図。The perspective view which shows the structure of the electrically conductive steel plate which concerns on Embodiment 2. FIG. 実施の形態2に係る導電性鋼板の構成を示す側面断面図。Side surface sectional drawing which shows the structure of the electrically conductive steel plate which concerns on Embodiment 2. FIG. 2つの導電性鋼板を重ねたときの状態を示す側面断面図。Side surface sectional drawing which shows a state when two conductive steel plates are piled up. 実施の形態2に係る導電性鋼板に生じる渦電流の経路を説明するための正面断面図。FIG. 6 is a front sectional view for explaining a path of eddy current generated in the conductive steel plate according to the second embodiment. 実施の形態3に係る導電性鋼板の構成を示す平面図。FIG. 6 is a plan view showing a configuration of a conductive steel plate according to a third embodiment. 図16におけるA−A線による断面図。Sectional drawing by the AA in FIG. 図16におけるB−B線による断面図。Sectional drawing by the BB line in FIG. 図16におけるC−C線による断面図。Sectional drawing by CC line in FIG. 図16におけるD−D線による断面図。Sectional drawing by the DD line | wire in FIG. 2つの導電性鋼板を重ねたときの状態を示す断面図。Sectional drawing which shows a state when two conductive steel plates are piled up. 実施の形態4に係る導電性鋼板に生じる渦電流の経路を説明するための断面図。Sectional drawing for demonstrating the path | route of the eddy current which arises in the electrically conductive steel plate which concerns on Embodiment 4. FIG.

以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
本実施の形態では、板幅方向に延びる薄肉部及び厚肉部が圧延方向に連続して繰り返し設けられた導電性鋼板について説明する。なお、ここで導電性鋼板とは導電性を有する鋼板をいい、磁性体及び非磁性体の何れであってもよい。導電性鋼板は、軟磁性体の電磁鋼板であってもよく、また電磁鋼板である場合、無方向性及び方向性の何れの電磁鋼板であってもよい。以下の各実施の形態では、電磁鋼板ではない導電性鋼板について説明する。
(Embodiment 1)
In the present embodiment, a conductive steel plate in which a thin portion and a thick portion extending in the plate width direction are repeatedly provided continuously in the rolling direction will be described. Here, the conductive steel plate refers to a steel plate having conductivity, and may be either a magnetic material or a non-magnetic material. The conductive steel sheet may be a soft magnetic electromagnetic steel sheet, and when it is an electromagnetic steel sheet, it may be a non-directional or directional magnetic steel sheet. In the following embodiments, a conductive steel plate that is not an electromagnetic steel plate will be described.

図1は、本実施の形態に係る導電性鋼板の構成を示す斜視図であり、図2は、その正面図である。なお、以下の説明において、導電性鋼板の幅方向をX方向、導電性鋼板の長手方向(圧延方向)をY方向、導電性鋼板の厚さ方向をZ方向という。   FIG. 1 is a perspective view showing a configuration of a conductive steel plate according to the present embodiment, and FIG. 2 is a front view thereof. In the following description, the width direction of the conductive steel plate is referred to as the X direction, the longitudinal direction (rolling direction) of the conductive steel plate is referred to as the Y direction, and the thickness direction of the conductive steel plate is referred to as the Z direction.

図1に示すように、導電性鋼板100は、X方向視において複数の菱形の部分がY方向に並んだ構成となっている。図2に示すように、かかる菱形部分はY方向中央部分において厚さが大きく、Y方向の両側に向かうにしたがって厚さが小さくなっている。隣り合う菱形部分は、2つの菱形の対向する頂点が接続されるように連結されている。つまり、導電性鋼板100の上面にはX方向視において倒立三角状の凹部102がY方向に等間隔に並んで設けられており、その下面にはX方向視において三角状の凹部102がY方向に等間隔に並んで設けられている。上面及び下面のそれぞれに設けられた凹部102は、その頂点をZ方向に向かい合わせるようにして、Y方向の同一位置に設けられており、その2つの頂点に挟まれた領域が薄肉部101である。   As shown in FIG. 1, the conductive steel plate 100 has a configuration in which a plurality of rhombus portions are arranged in the Y direction when viewed in the X direction. As shown in FIG. 2, the rhombus portion has a large thickness at the center portion in the Y direction, and the thickness decreases toward both sides in the Y direction. Adjacent rhombus portions are connected so that the opposite vertices of two rhombuses are connected. That is, the upper surface of the conductive steel plate 100 is provided with inverted triangular concave portions 102 arranged at equal intervals in the Y direction as viewed in the X direction, and the triangular concave portions 102 are provided on the lower surface thereof in the Y direction when viewed in the X direction. Are arranged at regular intervals. The concave portions 102 provided on each of the upper surface and the lower surface are provided at the same position in the Y direction so that the apexes face each other in the Z direction, and the region sandwiched between the two apexes is the thin portion 101. is there.

薄肉部101は、導電性鋼板100の全幅に亘ってX方向に延びている。また、薄肉部101は、導電性鋼板100の全長に亘ってY方向に等間隔に連続して繰り返し設けられている。   The thin portion 101 extends in the X direction over the entire width of the conductive steel plate 100. Further, the thin portion 101 is repeatedly provided continuously at equal intervals in the Y direction over the entire length of the conductive steel plate 100.

また、Y方向に隣り合う2つの凹部102の間は、X方向視において三角状に突出した凸部103が形成されている。かかる凸部103の形状は、凹部102の形状に適合している。つまり、図2に示すように、凹部102の深さD1は、凸部103の高さでもある。また、凹部102の三角形の頂点の角度と、凸部103の三角形の頂点の角度は同一である。   In addition, a convex portion 103 protruding in a triangular shape when viewed in the X direction is formed between two concave portions 102 adjacent in the Y direction. The shape of the convex portion 103 is adapted to the shape of the concave portion 102. That is, as shown in FIG. 2, the depth D <b> 1 of the concave portion 102 is also the height of the convex portion 103. The angle of the vertex of the triangle of the concave portion 102 is the same as the angle of the vertex of the triangle of the convex portion 103.

隣り合う2つの薄肉部101の間の菱形の部分は、薄肉部101より厚さが大きい厚肉部104である。つまり、薄肉部101において凹部102が形成され、厚肉部104において凸部103が形成されている。厚肉部104は、導電性鋼板100の全幅に亘ってX方向に延びている。また、厚肉部104は、導電性鋼板100の全長に亘ってY方向に等間隔に連続して繰り返し設けられている。   A diamond-shaped portion between two adjacent thin portions 101 is a thick portion 104 that is thicker than the thin portion 101. That is, the concave portion 102 is formed in the thin portion 101 and the convex portion 103 is formed in the thick portion 104. The thick portion 104 extends in the X direction over the entire width of the conductive steel plate 100. Further, the thick portion 104 is repeatedly provided continuously at equal intervals in the Y direction over the entire length of the conductive steel plate 100.

上記のような導電性鋼板100において、凹部102が並ぶ間隔と、凸部103が並ぶ間隔とは同一である。このため、導電性鋼板100は、複数枚重ねて使用できる。図3は、2つの導電性鋼板100a,100bを重ねたときの状態を示す正面図である。図3に示すように、一方の導電性鋼板100aの凹部102aには、他方の導電性鋼板100bの凸部103bが収容される。また、導電性鋼板100bの凹部102bには、導電性鋼板100aの凸部103aが収容される。凹部102a,102bの形状と凸部103a,103bの形状とは合致しており、概ね隙間なく重ねることができる。これにより、複数の導電性鋼板100a,100bを重ねても大きく隙間が空く箇所がなく、各導電性鋼板100a,100bを互いに密着させることができる。   In the conductive steel plate 100 as described above, the interval at which the concave portions 102 are arranged is the same as the interval at which the convex portions 103 are arranged. For this reason, a plurality of conductive steel plates 100 can be used in an overlapping manner. FIG. 3 is a front view showing a state when two conductive steel plates 100a and 100b are stacked. As shown in FIG. 3, the convex part 103b of the other electroconductive steel plate 100b is accommodated in the recessed part 102a of one electroconductive steel plate 100a. Moreover, the convex part 103a of the electroconductive steel plate 100a is accommodated in the recessed part 102b of the electroconductive steel plate 100b. The shape of the concave portions 102a and 102b and the shape of the convex portions 103a and 103b are matched, and can be overlapped with almost no gap. Thereby, even if it piles up several electroconductive steel plates 100a and 100b, there is no location which has a large gap and each electroconductive steel plates 100a and 100b can be stuck mutually.

また、導電性鋼板100は、薄肉部101において容易に曲げることができる。図4は、導電性鋼板100を変形させたときの状態を示す斜視図である。図4に示すように、各薄肉部101において屈曲させることで、導電性鋼板100を変形させることが可能である。このため、導電性鋼板100を様々な形状に容易に変形できる。   Further, the conductive steel plate 100 can be easily bent at the thin portion 101. FIG. 4 is a perspective view showing a state when the conductive steel plate 100 is deformed. As shown in FIG. 4, the conductive steel plate 100 can be deformed by bending at each thin portion 101. For this reason, the conductive steel plate 100 can be easily deformed into various shapes.

次に、導電性鋼板100における渦電流損について説明する。図5は、従来の一般的な導電性鋼板を示す斜視図であり、図6は、当該導電性鋼板に生じる渦電流の一例を示す正面図断面である。図5に示すように、Y方向の磁束が一般的な導電性鋼板150に入射される場合を考える。この場合、磁束の変化によって電磁誘導が生じ、導電性鋼板150の内部に図6に矢印で示すような渦電流が誘起される。このとき、磁束は導電性鋼板150の正面に一様に入射し、板中を通過するものとすると、生じる損失の時間平均値Paveは、次式で表される。
Next, eddy current loss in the conductive steel plate 100 will be described. FIG. 5 is a perspective view showing a conventional general conductive steel sheet, and FIG. 6 is a front sectional view showing an example of eddy current generated in the conductive steel sheet. As shown in FIG. 5, consider a case where a magnetic flux in the Y direction is incident on a general conductive steel sheet 150. In this case, electromagnetic induction occurs due to the change in magnetic flux, and an eddy current as shown by an arrow in FIG. At this time, assuming that the magnetic flux uniformly enters the front surface of the conductive steel plate 150 and passes through the plate, the time average value P ave of the generated loss is expressed by the following equation.

ここで、板厚aが板幅bに比べて十分に小さい場合、次式が成り立つ。
(2)式より、体積Vあたりの渦電流損は、板厚aの二乗に比例する。
Here, when the plate thickness a is sufficiently smaller than the plate width b, the following equation holds.
From equation (2), the eddy current loss per volume V is proportional to the square of the plate thickness a.

次に、板幅が小さい導電性鋼板を複数並べた場合について考える。図7は、板幅が小さい導電性鋼板を複数並べた場合を示す斜視図である。図7に示す例では、1つの導電性鋼板の板幅b’を、板厚aと概ね同一にしている。このときの損失の時間平均値Paveは、次式で表される。
Next, consider a case where a plurality of conductive steel plates having a small plate width are arranged. FIG. 7 is a perspective view showing a case where a plurality of conductive steel plates having a small plate width are arranged. In the example shown in FIG. 7, the plate width b ′ of one conductive steel plate is substantially the same as the plate thickness a. The time average value P ave of loss at this time is expressed by the following equation.

(3)式に示すように、この場合、体積あたりの損失は半減する。これは、電磁誘導により誘起される電圧は変化しないが、電流の経路が分割されることで抵抗値が変化するためである。   As shown in the equation (3), in this case, the loss per volume is halved. This is because the voltage induced by electromagnetic induction does not change, but the resistance value changes by dividing the current path.

図8は、図7に示す例で生じる渦電流の経路を説明するための正面断面図である。図8に示すように、各導電性鋼板160において渦電流が生じる。このときの電流経路lは次式に示すように4aに近似する。
これに対して、図6に示す例では、電流経路lは次式に示すように2bに近似する。
FIG. 8 is a front sectional view for explaining a path of eddy current generated in the example shown in FIG. As shown in FIG. 8, an eddy current is generated in each conductive steel plate 160. The current path l at this time approximates to 4a as shown in the following equation.
In contrast, in the example shown in FIG. 6, the current path l approximates to 2b as shown in the following equation.

上記のように、断面積が小さい導電性鋼板160を並べることで、電流経路lが倍となり、抵抗値が増大する。このため、誘起される電流が減少し、ジュール損(RI)が半減する。 As described above, by arranging the conductive steel plates 160 having a small cross-sectional area, the current path l is doubled and the resistance value is increased. For this reason, the induced current is reduced and the Joule loss (RI 2 ) is halved.

ここで、本実施の形態に係る導電性鋼板100について考える。図9は、本実施の形態に係る導電性鋼板に生じる渦電流の経路を説明するための正面断面図である。導電性鋼板100は、複数の箇所において薄肉部101が設けられている。この薄肉部101は、体積が小さいため抵抗値が高く、電流の通過を阻害する。このため、各薄肉部101で区切られた厚肉部104が、上記のような断面積が小さい導電性鋼板に相当すると考えることができる。したがって、導電性鋼板100には、図9に示すように、各厚肉部104において渦電流が生じる。よって、従来に比して渦電流損(古典的渦電流損)を低減することができる。   Here, consider the conductive steel sheet 100 according to the present embodiment. FIG. 9 is a front cross-sectional view for explaining a path of eddy current generated in the conductive steel plate according to the present embodiment. The conductive steel plate 100 is provided with thin portions 101 at a plurality of locations. Since the thin portion 101 has a small volume, it has a high resistance value and obstructs the passage of current. For this reason, it can be considered that the thick part 104 divided by each thin part 101 corresponds to a conductive steel sheet having a small cross-sectional area as described above. Therefore, in the conductive steel plate 100, an eddy current is generated in each thick portion 104 as shown in FIG. Therefore, eddy current loss (classical eddy current loss) can be reduced as compared with the prior art.

(評価試験)
従来の一般的な導電性鋼板150と、本実施の形態に係る導電性鋼板100とを対象としてFEM解析を実施し、渦電流の経路を分析した。図10Aは、従来の導電性鋼板における渦電流の解析結果を示す図であり、図10Bは、本実施の形態にかかる導電性鋼板における渦電流の解析結果を示す図である。図10Aに示すように、従来の導電性鋼板150では、断面の内部を一様に渦電流が生じている。これに対して、本実施の形態に係る導電性鋼板100では、図10Bに示すように、各厚肉部104で環流する渦電流が生じるのがわかる。
(Evaluation test)
FEM analysis was performed on the conventional general conductive steel plate 150 and the conductive steel plate 100 according to the present embodiment, and the path of eddy current was analyzed. FIG. 10A is a diagram showing an analysis result of eddy current in a conventional conductive steel plate, and FIG. 10B is a diagram showing an analysis result of eddy current in the conductive steel plate according to the present embodiment. As shown in FIG. 10A, in the conventional conductive steel sheet 150, eddy currents are uniformly generated inside the cross section. In contrast, in the conductive steel plate 100 according to the present embodiment, as shown in FIG. 10B, it can be seen that eddy currents circulate in each thick portion 104.

図11は、本評価試験の結果を示すグラフである。図11において、縦軸は渦電流損の大きさを示し、横軸は渦電流の周波数を示す。また、図11において、破線のグラフは従来の導電性鋼板150の結果を示し、実線のグラフは本実施の形態にかかる導電性鋼板100の結果を示している。本試験では、従来の導電性鋼板150と、本実施の形態に係る導電性鋼板100との両方について、渦電流の周波数を変化させてその損失を調べた。図11に示すように、従来の導電性鋼板150では、周波数が大きくなるにしたがって損失が大きく増加している。これに対して、本実施の形態に係る導電性鋼板100では、周波数が大きくなるにしたがって損失が増加するものの、その増加率は従来の導電性鋼板150に比べて非常に低く抑えられていることが分かる。   FIG. 11 is a graph showing the results of this evaluation test. In FIG. 11, the vertical axis represents the magnitude of eddy current loss, and the horizontal axis represents the frequency of eddy current. Moreover, in FIG. 11, the broken line graph shows the result of the conventional conductive steel plate 150, and the solid line graph shows the result of the conductive steel plate 100 according to the present embodiment. In this test, the loss of the conventional conductive steel plate 150 and the conductive steel plate 100 according to the present embodiment was examined by changing the frequency of the eddy current. As shown in FIG. 11, in the conventional conductive steel sheet 150, the loss greatly increases as the frequency increases. On the other hand, in the conductive steel plate 100 according to the present embodiment, the loss increases as the frequency increases, but the increase rate is suppressed to be very low compared to the conventional conductive steel plate 150. I understand.

(実施の形態2)
本実施の形態では、平面視において四角形の薄肉部及び厚肉部が圧延方向及び板幅方向のそれぞれに連続して繰り返し設けられた導電性鋼板について説明する。
(Embodiment 2)
In the present embodiment, a description will be given of a conductive steel plate in which a rectangular thin portion and a thick portion are repeatedly provided in the rolling direction and the plate width direction in plan view.

図12は、本実施の形態に係る導電性鋼板の構成を示す斜視図である。図12に示すように、導電性鋼板200は、Z方向視(平面視)において複数の四角形の部分がX及びY方向のそれぞれに並んだ構成となっている。一部の四角形部分は凹部202であり、他の四角形部分は凸部203である。   FIG. 12 is a perspective view showing the configuration of the conductive steel plate according to the present embodiment. As shown in FIG. 12, the conductive steel plate 200 has a configuration in which a plurality of square portions are arranged in the X and Y directions as viewed in the Z direction (plan view). Some of the quadrangular portions are concave portions 202, and the other quadrangular portions are convex portions 203.

凹部202及び凸部203は、市松模様状に配置されている。つまり、凹部202の4方向それぞれには凸部203が隣接しており、凸部203の4方向それぞれには凹部202が隣接している。凸部203は、隣り合う4つの凹部202に取り囲まれることで形成されており、凹部202は、隣り合う4つの凸部203に取り囲まれることで形成されている。   The concave portions 202 and the convex portions 203 are arranged in a checkered pattern. That is, the convex portion 203 is adjacent to each of the four directions of the concave portion 202, and the concave portion 202 is adjacent to each of the four directions of the convex portion 203. The convex portion 203 is formed by being surrounded by four adjacent concave portions 202, and the concave portion 202 is formed by being surrounded by four adjacent convex portions 203.

凹部202は、平面視において正方形をなしている。また、凸部203は凹部202と対応する形状であり、平面視において同様に正方形をなしている。かかる凸部203の正方形の一辺の長さは、凹部202の正方形の一辺の長さと実質的に同一である。より正確には、凸部203の正方形の一辺の長さは、凹部202の正方形の一辺の長さよりも若干小さい。これにより、凹部202に凸部203が収容可能となっている。   The recess 202 has a square shape in plan view. Further, the convex portion 203 has a shape corresponding to the concave portion 202, and similarly has a square shape in a plan view. The length of one side of the square of the convex portion 203 is substantially the same as the length of one side of the square of the concave portion 202. More precisely, the length of one side of the square of the convex portion 203 is slightly smaller than the length of one side of the square of the concave portion 202. Thereby, the convex part 203 can be accommodated in the concave part 202.

図13は、本実施の形態に係る導電性鋼板の構成を示す側面断面図である。図13に示すように、凹部202の深さD2は、凸部203の高さでもある。このように、凹部202の形状は、凸部203の形状に適合している。   FIG. 13 is a side sectional view showing the configuration of the conductive steel plate according to the present embodiment. As shown in FIG. 13, the depth D <b> 2 of the concave portion 202 is also the height of the convex portion 203. As described above, the shape of the concave portion 202 matches the shape of the convex portion 203.

また、図13に示すように、導電性鋼板200の両面それぞれには、X方向視において正方形又は長方形の凹部202がY方向に等間隔に並んで設けられている。同様にして、かかる複数の凹部202がX方向にも等間隔に並んで設けられている(図12参照)。上面及び下面のそれぞれに設けられた凹部202は、X及びY方向の同一位置に設けられており、Z方向に対向する2つの凹部202に挟まれた領域が薄肉部201である。   Moreover, as shown in FIG. 13, the both sides of the conductive steel plate 200 are provided with square or rectangular recesses 202 arranged at equal intervals in the Y direction when viewed in the X direction. Similarly, a plurality of such recesses 202 are provided side by side in the X direction (see FIG. 12). The concave portions 202 provided on the upper surface and the lower surface are provided at the same position in the X and Y directions, and a region sandwiched between the two concave portions 202 facing in the Z direction is the thin portion 201.

また、導電性鋼板200の両面それぞれにおいて、凸部203がX及びY方向に等間隔に並んでいる。上面及び下面のそれぞれに設けられた凸部203は、X及びY方向の同一位置に設けられており、Z方向に対向する2つの凸部203が重なった部分は厚肉部204である。つまり、薄肉部201において凹部202が形成され、厚肉部204において凸部203が形成されている。厚肉部204の厚さt2は薄肉部201の厚さT2に比べて十分に大きい。   Further, the convex portions 203 are arranged at equal intervals in the X and Y directions on both surfaces of the conductive steel plate 200. The convex portions 203 provided on the upper surface and the lower surface are provided at the same position in the X and Y directions, and a portion where the two convex portions 203 facing each other in the Z direction overlap is a thick portion 204. That is, the concave portion 202 is formed in the thin portion 201 and the convex portion 203 is formed in the thick portion 204. The thickness t2 of the thick portion 204 is sufficiently larger than the thickness T2 of the thin portion 201.

上記のような導電性鋼板200において、凹部202が並ぶ方向及び間隔と、凸部203が並ぶ方向及び間隔とは同一である。このため、導電性200は、複数枚重ねて使用できる。図14は、2つの導電性鋼板200a,200bを重ねたときの状態を示す側面断面図である。図14に示すように、一方の導電性鋼板200aの凹部202aには、他方の導電性鋼板200bの凸部203bが収容される。また、導電性鋼板200bの凹部202bには、導電性鋼板200aの凸部203aが収容される。凹部202a,202bの形状と凸部203a,203bの形状とは合致しており、概ね隙間なく重ねることができる。これにより、複数の導電性鋼板200a,200bを重ねても大きく隙間が空く箇所がなく、各導電性鋼板200a,200bを互いに密着させることができる。   In the conductive steel plate 200 as described above, the direction and interval in which the concave portions 202 are arranged are the same as the direction and interval in which the convex portions 203 are arranged. For this reason, a plurality of the conductive materials 200 can be used in an overlapping manner. FIG. 14 is a side cross-sectional view showing a state when two conductive steel plates 200a and 200b are overlapped. As shown in FIG. 14, the convex part 203b of the other conductive steel plate 200b is accommodated in the concave part 202a of one conductive steel sheet 200a. Moreover, the convex part 203a of the electroconductive steel plate 200a is accommodated in the recessed part 202b of the electroconductive steel plate 200b. The shape of the recesses 202a and 202b and the shape of the projections 203a and 203b match, and can be overlapped with almost no gap. Thereby, even if it piles up several electroconductive steel plates 200a and 200b, there is no location where a big gap is opened, and each electroconductive steel plates 200a and 200b can be stuck mutually.

図15は、本実施の形態に係る導電性鋼板に生じる渦電流の経路を説明するための正面断面図である。導電性鋼板200は、複数の箇所において薄肉部201が設けられている。この薄肉部201は、体積が小さいため抵抗値が高く、電流の通過を阻害する。このため、導電性鋼板200には、図15に示すように、周囲を薄肉部201で囲まれた厚肉部204において渦電流が生じる。よって、従来に比して渦電流損(古典的渦電流損)を低減することができる。   FIG. 15 is a front sectional view for explaining a path of eddy current generated in the conductive steel sheet according to the present embodiment. The conductive steel plate 200 is provided with thin portions 201 at a plurality of locations. Since the thin portion 201 has a small volume, it has a high resistance value and obstructs the passage of current. For this reason, as shown in FIG. 15, an eddy current is generated in the conductive steel plate 200 in the thick portion 204 surrounded by the thin portion 201. Therefore, eddy current loss (classical eddy current loss) can be reduced as compared with the prior art.

(実施の形態3)
本実施の形態では、平面視において三角形の薄肉部が互いに交差する3つの方向のそれぞれに連続して繰り返し設けられた導電性鋼板について説明する。
(Embodiment 3)
In the present embodiment, a description will be given of a conductive steel plate that is continuously and repeatedly provided in each of three directions in which triangular thin portions intersect each other in plan view.

図16は、本実施の形態に係る導電性鋼板の構成を示す平面図である。図16において、破線で示しているのは基準面である。また、斜線を付した部分は基準面より窪んだ凹部302であり、斜線を付していない部分は基準面より突出した凸部303である。図16に示すように、導電性鋼板300は、Z方向視(平面視)において複数の凹部302及び凸部303のそれぞれが、図中第1方向(X方向)、第2方向、及び第3方向のそれぞれに交互に並んだ構成となっている。   FIG. 16 is a plan view showing the configuration of the conductive steel plate according to the present embodiment. In FIG. 16, what is indicated by a broken line is a reference plane. Further, the hatched portion is a concave portion 302 that is recessed from the reference surface, and the non-hatched portion is a convex portion 303 that protrudes from the reference surface. As shown in FIG. 16, the conductive steel sheet 300 has a plurality of concave portions 302 and convex portions 303 in a first direction (X direction), a second direction, and a third direction in the figure when viewed in the Z direction (plan view). It has a configuration in which each direction is arranged alternately.

凹部302及び凸部303は、平面視において三角格子状に配置されている。凹部302の第1乃至第3方向のそれぞれには凸部303が隣接しており、凸部303の第1乃至第3方向のそれぞれには凹部302が隣接している。凸部303は、隣り合う3つの凹部302に取り囲まれることで形成されており、凹部302は、隣り合う3つの凸部303に取り囲まれることで形成されている。   The concave portions 302 and the convex portions 303 are arranged in a triangular lattice shape in plan view. The convex portion 303 is adjacent to each of the first to third directions of the concave portion 302, and the concave portion 302 is adjacent to each of the first to third directions of the convex portion 303. The convex portion 303 is formed by being surrounded by three adjacent concave portions 302, and the concave portion 302 is formed by being surrounded by three adjacent convex portions 303.

凹部302は、平面視において正三角形をなしている。また、凸部303は凹部302と対応する形状であり、平面視において倒立正三角形をなしている。隣り合う凹部302と凸部303とは、それぞれの三角形の一辺を共有しており、凸部303の倒立正三角形の一辺の長さと、凹部302の正三角形の一辺の長さとは同一である。   The recess 302 has an equilateral triangle in plan view. Moreover, the convex part 303 is a shape corresponding to the concave part 302, and has formed the inverted equilateral triangle in planar view. The adjacent concave portion 302 and the convex portion 303 share one side of each triangle, and the length of one side of the inverted regular triangle of the convex portion 303 is the same as the length of one side of the regular triangle of the concave portion 302.

図17Aは、図16におけるA−A線による断面図であり、図17Bは、B−B線による断面図であり、図17Cは、C−C線による断面図であり、図17Dは、D−D線による断面図である。凹部302の形状は正三角錐であり、凸部303の形状もまた正三角錐である。凹部302の各辺の長さと凸部303の各辺の長さは同一であり、両正三角錐は合同である。このため、凹部302の基準面からの深さD3は、凸部303の基準面からの高さH3と実質的に同一である。このように、凹部302の形状は、凸部303の形状に適合しており、凹部302に凸部303が収容可能となっている。   17A is a cross-sectional view taken along line AA in FIG. 16, FIG. 17B is a cross-sectional view taken along line BB, FIG. 17C is a cross-sectional view taken along line CC, and FIG. It is sectional drawing by -D line. The shape of the concave portion 302 is a regular triangular pyramid, and the shape of the convex portion 303 is also a regular triangular pyramid. The length of each side of the concave portion 302 and the length of each side of the convex portion 303 are the same, and both equilateral triangular pyramids are congruent. For this reason, the depth D3 of the concave portion 302 from the reference surface is substantially the same as the height H3 of the convex portion 303 from the reference surface. Thus, the shape of the concave portion 302 matches the shape of the convex portion 303, and the convex portion 303 can be accommodated in the concave portion 302.

また、導電性鋼板300の両面それぞれの同じ位置に、対向するように凹部302が設けられている。つまり、導電性鋼板300の両面それぞれにおいて、凹部302は第1乃至第3方向の3つの方向それぞれに等間隔に並んで設けられている(図16参照)。上面及び下面のそれぞれに設けられた凹部302は、その頂点をZ方向に向かい合わせるようにして、X及びY方向の同一位置に設けられている(図17A参照)。Z方向に向かい合う2つの凹部302に挟まれる領域のうち、Z方向に対向する2辺で挟まれる部分は特に厚さが小さい。このため、この部分が薄肉部301とされる(図16、図17A乃至図17C参照)。   Moreover, the recessed part 302 is provided in the same position of each both surfaces of the conductive steel plate 300 so that it may oppose. That is, on each of both surfaces of the conductive steel sheet 300, the recesses 302 are provided at equal intervals in each of the first to third directions (see FIG. 16). The recesses 302 provided on each of the upper surface and the lower surface are provided at the same position in the X and Y directions with their apexes facing the Z direction (see FIG. 17A). Of the region sandwiched between the two concave portions 302 facing in the Z direction, the portion sandwiched between two sides facing in the Z direction has a particularly small thickness. For this reason, this part is made into the thin part 301 (refer FIG. 16, FIG. 17A thru | or FIG. 17C).

同様に、導電性鋼板300の両面それぞれの同じ位置に、対向するように凸部303が設けられている。つまり、導電性鋼板300の両面それぞれにおいて、凸部303も第1乃至第3方向の3つの方向それぞれに等間隔に並んで設けられている(図16参照)。Z方向に対向する2つの凸部303が重なった部分は厚肉部304である。つまり、薄肉部301において凹部302が形成され、厚肉部304において凸部303が形成されている。厚肉部304の厚さは薄肉部301の厚さに比べて十分に大きい。   Similarly, the convex part 303 is provided in the same position of both surfaces of the electrically conductive steel plate 300 so that it may oppose. That is, on each of both surfaces of the conductive steel sheet 300, the convex portions 303 are also provided at equal intervals in each of the three directions of the first to third directions (see FIG. 16). A portion where two convex portions 303 facing each other in the Z direction overlap is a thick portion 304. That is, the concave portion 302 is formed in the thin portion 301 and the convex portion 303 is formed in the thick portion 304. The thickness of the thick part 304 is sufficiently larger than the thickness of the thin part 301.

上記のような導電性鋼板300において、凹部302はZ方向視において正三角形をなす三角錐であり、凸部303はZ方向視において倒立正三角形をなす三角錐である。したがって、2枚の導電性鋼板300において、一方の導電性鋼板300の向きを変えず、他方の導電性鋼板300の向きをX方向に反転させると、一方の導電性鋼板300の凹部302の形状と、他方の導電性鋼板300の凸部303の形状が合致する。また、一方の導電性鋼板300において凹部302が並ぶ方向及び間隔と、他方の導電性鋼板300において凸部303が並ぶ方向及び間隔とは同一である。同様に、一方の導電性鋼板300における凸部303の形状、並び方向、及び間隔は、他方の導電性鋼板300における凹部302の形状、並び方向、及び間隔と合致する。このため、2枚の導電性300は、一方の導電性鋼板300の向きを変えず、他方の導電性鋼板300の向きをX方向に反転させることで重ねることができる。図18は、2つの導電性鋼板300a,300bを重ねたときの状態を示す断面図である。図18では、図16におけるA−A線による断面を示している。図18に示すように、一方の導電性鋼板300aの凹部302aには、他方の導電性鋼板300bの凸部303bが収容される。また、導電性鋼板300bの凹部302bには、導電性鋼板300aの凸部303aが収容される。凹部302a,302bの形状と凸部303a,303bの形状とは合致しており、概ね隙間なく重ねることができる。これにより、複数の導電性鋼板300a,300bを重ねても大きく隙間が空く箇所がなく、各導電性鋼板300a,300bを互いに密着させることができる。   In the conductive steel sheet 300 as described above, the concave portion 302 is a triangular pyramid that forms an equilateral triangle when viewed in the Z direction, and the convex portion 303 is a triangular pyramid that forms an inverted regular triangle when viewed in the Z direction. Therefore, in the two conductive steel plates 300, when the direction of one conductive steel plate 300 is not changed and the direction of the other conductive steel plate 300 is reversed in the X direction, the shape of the concave portion 302 of the one conductive steel plate 300 is obtained. And the shape of the convex part 303 of the other electroconductive steel plate 300 corresponds. Further, the direction and interval in which the concave portions 302 are arranged in one conductive steel plate 300 is the same as the direction and interval in which the convex portions 303 are arranged in the other conductive steel plate 300. Similarly, the shape, arrangement direction, and interval of the convex portions 303 in one conductive steel sheet 300 match the shape, arrangement direction, and interval of the concave portions 302 in the other conductive steel sheet 300. For this reason, two electroconductive 300 can be piled up by inverting the direction of the other electroconductive steel plate 300 to a X direction, without changing the direction of one electroconductive steel plate 300. FIG. FIG. 18 is a cross-sectional view showing a state when two conductive steel plates 300a and 300b are stacked. In FIG. 18, the cross section by the AA line in FIG. 16 is shown. As shown in FIG. 18, the convex part 303b of the other electroconductive steel plate 300b is accommodated in the recessed part 302a of one electroconductive steel plate 300a. Further, the convex portion 303a of the conductive steel plate 300a is accommodated in the concave portion 302b of the conductive steel plate 300b. The shape of the concave portions 302a and 302b and the shape of the convex portions 303a and 303b are coincident with each other and can be overlapped with almost no gap. Thereby, even if it piles up several electroconductive steel plates 300a and 300b, there is no place which has a large clearance gap, and each electroconductive steel plates 300a and 300b can be stuck mutually.

図19は、本実施の形態に係る導電性鋼板に生じる渦電流の経路を説明するための断面図である。図19では、図16におけるA−A線による断面を示している。導電性鋼板300は、複数の箇所において薄肉部301が設けられている。この薄肉部301は、体積が小さいため抵抗値が高く、電流の通過を阻害する。このため、導電性鋼板300には、図19に示すように、周囲を薄肉部301で囲まれた厚肉部304において渦電流が生じる。よって、従来に比して渦電流損(古典的渦電流損)を低減することができる。   FIG. 19 is a cross-sectional view for explaining a path of eddy current generated in the conductive steel sheet according to the present embodiment. In FIG. 19, the cross section by the AA line in FIG. 16 is shown. The conductive steel plate 300 is provided with thin portions 301 at a plurality of locations. Since the thin portion 301 has a small volume, it has a high resistance value and obstructs the passage of current. For this reason, as shown in FIG. 19, an eddy current is generated in the conductive steel sheet 300 in the thick part 304 surrounded by the thin part 301. Therefore, eddy current loss (classical eddy current loss) can be reduced as compared with the prior art.

本発明の導電性鋼板は、渦電流損を低減しうる導電性鋼板として有用である。   The conductive steel sheet of the present invention is useful as a conductive steel sheet that can reduce eddy current loss.

100,200,300 導電性鋼板
101,201,301 薄肉部
102,202,302 凹部
103,203,303 凸部
104,204,304 厚肉部
100, 200, 300 Conductive steel plate 101, 201, 301 Thin part 102, 202, 302 Concave part 103, 203, 303 Convex part 104, 204, 304 Thick part

Claims (9)

それぞれが凹状に形成された複数の薄肉部と、
隣り合う前記薄肉部の間に形成された厚肉部と、
を備え、
磁界の中に置かれた場合に、前記薄肉部が電磁誘導によって生じる電流の通過を阻害することにより、前記厚肉部において渦電流を生じさせるように構成されている、
導電性鋼板。
A plurality of thin portions each formed in a concave shape;
A thick portion formed between the adjacent thin portions;
With
When placed in a magnetic field, the thin-walled portion is configured to generate an eddy current in the thick-walled portion by inhibiting the passage of current generated by electromagnetic induction.
Conductive steel plate.
前記厚肉部において凸部が、前記薄肉部において凹部が形成されており、
2つの前記導電性鋼板が重ねられたときに、一方の前記導電性鋼板の前記凹部に、他方の前記導電性鋼板の前記凸部が収容されるように構成されている、
請求項1に記載の導電性鋼板。
A convex portion is formed in the thick portion, and a concave portion is formed in the thin portion,
When the two conductive steel plates are stacked, the concave portion of one of the conductive steel plates is configured to accommodate the convex portion of the other conductive steel plate,
The conductive steel sheet according to claim 1.
前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の幅方向及び長さ方向の何れか一方に連続して繰り返し設けられている、
請求項1又は2に記載の導電性鋼板。
Each of the thin-walled portion and the thick-walled portion is repeatedly provided continuously in either one of the width direction and the length direction of the conductive steel plate,
The conductive steel sheet according to claim 1 or 2.
前記薄肉部は、屈曲可能に構成されている、
請求項3に記載の導電性鋼板。
The thin portion is configured to be bendable,
The conductive steel sheet according to claim 3.
前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の平面に向かい合う方向から見たときに、前記連続して繰り返す方向と直交する方向に延びるように構成されている、
請求項3又は4に記載の導電性鋼板。
Each of the thin part and the thick part is configured to extend in a direction orthogonal to the continuously repeating direction when viewed from a direction facing the plane of the conductive steel plate.
The conductive steel sheet according to claim 3 or 4.
前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の幅方向及び長さ方向の両方に連続して繰り返し設けられている、
請求項1又は2に記載の導電性鋼板。
Each of the thin-walled portion and the thick-walled portion is repeatedly provided continuously in both the width direction and the length direction of the conductive steel plate,
The conductive steel sheet according to claim 1 or 2.
前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の平面に向かい合う方向から見たときに四角形をなすように構成されている、
請求項6に記載の導電性鋼板。
Each of the thin part and the thick part is configured to form a quadrangle when viewed from the direction facing the plane of the conductive steel plate,
The conductive steel sheet according to claim 6.
前記薄肉部及び前記厚肉部のそれぞれは、前記導電性鋼板の表面に平行な、互いに交差する3つの方向のそれぞれに連続して繰り返し設けられている、
請求項1又は2に記載の導電性鋼板。
Each of the thin-walled portion and the thick-walled portion is provided repeatedly in succession in each of three directions parallel to the surface of the conductive steel sheet and intersecting each other.
The conductive steel sheet according to claim 1 or 2.
前記薄肉部は、前記導電性鋼板の平面に向かい合う方向から見たときに三角形をなすように構成されており、
前記厚肉部は、前記平面に向かい合う方向から見たときに倒立三角形をなすように構成されている、
請求項8に記載の導電性鋼板。
The thin-walled portion is configured to form a triangle when viewed from the direction facing the plane of the conductive steel plate,
The thick portion is configured to form an inverted triangle when viewed from the direction facing the plane.
The conductive steel sheet according to claim 8.
JP2016097115A 2016-05-13 2016-05-13 Conductive steel plate Active JP6739995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097115A JP6739995B2 (en) 2016-05-13 2016-05-13 Conductive steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097115A JP6739995B2 (en) 2016-05-13 2016-05-13 Conductive steel plate

Publications (2)

Publication Number Publication Date
JP2017204613A true JP2017204613A (en) 2017-11-16
JP6739995B2 JP6739995B2 (en) 2020-08-12

Family

ID=60322914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097115A Active JP6739995B2 (en) 2016-05-13 2016-05-13 Conductive steel plate

Country Status (1)

Country Link
JP (1) JP6739995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090231A (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Laminated iron core of electric machine and electric machine
WO2021111645A1 (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Laminated core of electric machine, electric machine, method for manufacturing laminated core of electric machine, and method for manufacturing electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617486A (en) * 1992-07-03 1994-01-25 Ohbayashi Corp Joint structure for steel plate and its jointing method
JPH10271726A (en) * 1997-03-25 1998-10-09 Aichi Emerson Electric Co Ltd Rotor
JP2015233362A (en) * 2014-06-09 2015-12-24 本田技研工業株式会社 Stator for rotary electric machine
JP2016048991A (en) * 2014-08-27 2016-04-07 日本電産株式会社 Motor armature, and motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617486A (en) * 1992-07-03 1994-01-25 Ohbayashi Corp Joint structure for steel plate and its jointing method
JPH10271726A (en) * 1997-03-25 1998-10-09 Aichi Emerson Electric Co Ltd Rotor
JP2015233362A (en) * 2014-06-09 2015-12-24 本田技研工業株式会社 Stator for rotary electric machine
JP2016048991A (en) * 2014-08-27 2016-04-07 日本電産株式会社 Motor armature, and motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090231A (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Laminated iron core of electric machine and electric machine
WO2021111645A1 (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Laminated core of electric machine, electric machine, method for manufacturing laminated core of electric machine, and method for manufacturing electric machine
JPWO2021111645A1 (en) * 2019-12-02 2021-06-10

Also Published As

Publication number Publication date
JP6739995B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6905587B2 (en) A device that manipulates ions of the same or different polarities
Holmberg et al. Charge distribution and Fermi level in bimetallic nanoparticles
US9075241B2 (en) Liquid crystal lens and stereo display using the same
Chatterjee et al. Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices
JP2015505375A5 (en)
JP2017204613A (en) Conductive steel sheet
TWI479199B (en) 2d and 3d switchable display device and liquid crystal lenticular lens thereof
JP6692455B2 (en) Differential connector, differential pair arrangement structure thereof, and differential connector plug
CN104819682B (en) Induction type position measurement apparatus
JP7295262B2 (en) current detector
Maharimi et al. Impact of spacing and number of elements on array factor
Ligarò et al. Large displacement analysis of elastic pyramidal trusses
Li et al. Observation of a single pair of type-III Weyl points in sonic crystals
JP5951647B2 (en) Magnetic circuit
Bhandari et al. Imaging electron flow from collimating contacts in graphene
JP5386080B2 (en) Thick film resistor
US10816364B2 (en) Inductive position sensor with secondary turns extending through a printed circuit board
JP2018511182A (en) Device for guiding charge carriers and method of use thereof
WO2018190201A1 (en) Electric current sensor
JP6476700B2 (en) Permanent magnet, position sensor, permanent magnet manufacturing method and magnetizing apparatus
Zou et al. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides
JP2013117706A (en) Hydrogen atomic model
Khomitsky et al. Formation of bound states from the edge states of 2D topological insulator by macroscopic magnetic barriers
US9312092B2 (en) Deflection plate and deflection device for deflecting charged particles
Iskakova et al. About the energy levels of GaAs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6739995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150