JP2017203189A - Method for coating cationic electrodeposition coating composition to coated matter subjected to zirconium chemical conversion treatment - Google Patents

Method for coating cationic electrodeposition coating composition to coated matter subjected to zirconium chemical conversion treatment Download PDF

Info

Publication number
JP2017203189A
JP2017203189A JP2016095545A JP2016095545A JP2017203189A JP 2017203189 A JP2017203189 A JP 2017203189A JP 2016095545 A JP2016095545 A JP 2016095545A JP 2016095545 A JP2016095545 A JP 2016095545A JP 2017203189 A JP2017203189 A JP 2017203189A
Authority
JP
Japan
Prior art keywords
coating
cationic electrodeposition
coating film
resistance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095545A
Other languages
Japanese (ja)
Other versions
JP6718301B2 (en
Inventor
彰一郎 嵐倉
Shiyouichirou Arashikura
彰一郎 嵐倉
昌文 庄野
Akifumi Shono
昌文 庄野
晋一 井上
Shinichi Inoue
晋一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Paint Co Ltd
Axalta Shinto Coating Systems Co Ltd
Original Assignee
Shinto Paint Co Ltd
Axalta Shinto Coating Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60321404&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017203189(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shinto Paint Co Ltd, Axalta Shinto Coating Systems Co Ltd filed Critical Shinto Paint Co Ltd
Priority to JP2016095545A priority Critical patent/JP6718301B2/en
Publication of JP2017203189A publication Critical patent/JP2017203189A/en
Application granted granted Critical
Publication of JP6718301B2 publication Critical patent/JP6718301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for coating a cationic electrodeposition coating composition to a coated matter subjected to a zirconium chemical conversion treatment which can achieve all of throwing power, smoothness of a coating film, film thickness retention, and gas pinhole resistance, at high level.SOLUTION: A method for coating a cationic electrodeposition coating composition to a coated matter subjected to a zirconium chemical conversion treatment coats a cationic electrodeposition coating composition to the coated matter, which contains an amine-modified epoxy resin (A) and a block isocyanate curing agent (B) as components, has a coating film resistance (R3) when the film thickness after the coating film obtained by uniformly coated to the coated matter has been sintered reaches 3 μm of 10-200 kΩ cm, and a coating film resistance (R6) when the film thickness reaches 6 μm of 40-400 kΩ cm.SELECTED DRAWING: None

Description

本発明は、ジルコニウム化成皮膜処理を施した被塗物に対してカチオン電着塗料組成物を塗装する方法において、特定の条件のカチオン電着塗料組成物を使用することによって、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性の全てを高いレベルで維持する方法に関する。   The present invention relates to a method for applying a cationic electrodeposition coating composition to a coated article that has undergone a zirconium conversion coating treatment. The present invention relates to a method for maintaining all of the smoothness of the film, the film thickness retention, and the gas pinhole resistance at a high level.

カチオン電着塗装は、カチオン電着塗料組成物中に自動車の車体等の被塗物を陰極として浸漬させ、電圧を印加することによって行なわれる。この方法は、大型で複雑な形状を有する自動車の車体等の被塗物の下塗りに最も適した方法として広く採用されている。   Cationic electrodeposition coating is performed by immersing an object to be coated such as an automobile body in a cationic electrodeposition coating composition as a cathode and applying a voltage. This method is widely adopted as the most suitable method for the undercoating of an object to be coated such as an automobile body having a large and complicated shape.

金属素材からなる被塗物には、耐食性向上を目的として、例えばリン酸亜鉛による化成皮膜処理が施されたものが使用されている。しかしながら、リン酸亜鉛による化成皮膜処理は、反応性が極めて高い処理剤を使用するため、廃液の処理に多大な工程や労力が必要であり、作業性やコストの点で大きな問題を有している。   For the object to be coated made of a metal material, for example, a material subjected to a chemical conversion film treatment with zinc phosphate is used for the purpose of improving corrosion resistance. However, the chemical conversion film treatment with zinc phosphate uses a processing agent with extremely high reactivity, so that a lot of steps and labor are required for the treatment of the waste liquid, and there are big problems in terms of workability and cost. Yes.

一方、同じ被塗物の耐食性向上を目的として、ジルコニウム化合物による化成皮膜処理が使用されている。ジルコニウム化合物による化成皮膜処理は、上述のリン酸亜鉛による化成皮膜処理のような問題は生じないが、かかる処理を施された被塗物は、電着塗料との密着性が悪く、しかも化成処理皮膜厚が薄いため、つきまわり性能(被塗物の隅々まで塗膜が形成される性能)が低下する問題があった。   On the other hand, chemical conversion film treatment with a zirconium compound is used for the purpose of improving the corrosion resistance of the same substrate. The chemical conversion film treatment with a zirconium compound does not cause a problem like the chemical conversion film treatment with zinc phosphate described above, but the coated material subjected to such treatment has poor adhesion to the electrodeposition paint, and the chemical conversion treatment. Since the film thickness is thin, there has been a problem that throwing power performance (performance of forming a coating film to every corner of the object to be coated) is lowered.

これに対して、ジルコニウム化合物による化成皮膜処理を施された被塗物にカチオン電着塗料組成物を塗装するための方法において、塗装温度30℃における180秒間の電圧印加により形成される厚さ15μmの電着塗膜の膜抵抗を900〜1600kΩ・cmにする方法が提案されている(特許文献1参照)。かかる方法は、つきまわり性の向上には有効であるが、塗膜の平滑性、膜厚保持性、耐ガスピンホール性の点で改善の余地があった。 On the other hand, in a method for applying a cationic electrodeposition coating composition to a coating object that has been subjected to a chemical conversion film treatment with a zirconium compound, a thickness of 15 μm formed by applying a voltage for 180 seconds at a coating temperature of 30 ° C. A method has been proposed in which the film resistance of the electrodeposition coating film is 900 to 1600 kΩ · cm 2 (see Patent Document 1). This method is effective for improving throwing power, but there is room for improvement in terms of coating film smoothness, film thickness retention, and gas pinhole resistance.

特開2010−95678号公報JP 2010-95678 A

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、ジルコニウム化成皮膜処理を施した被塗物に対してカチオン電着塗料組成物を塗装する方法において、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性の全てを高いレベルで達成することができる方法を提供することにある。   The present invention was devised in view of the current state of the prior art, and the object of the present invention is to provide a throwing power in a method of coating a cationic electrodeposition coating composition on a coated article that has undergone a zirconium conversion coating treatment. Another object of the present invention is to provide a method capable of achieving all of the smoothness of the coating film, the film thickness retention, and the gas pinhole resistance at a high level.

本発明者らは、上述の目的を達成するためにジルコニウム化成皮膜処理を施した被塗物に対する塗装に使用するために好適なカチオン電着塗料組成物の条件について鋭意検討した結果、アミン変性エポキシ樹脂及びブロックイソシアネート硬化剤樹脂を必須構成成分としたカチオン電着塗料組成物の中で、電着塗膜の膜厚が薄い電着工程の極めて初期における塗膜抵抗が、従来より比較的低い特定の範囲にあり、かつ電着工程の極めて初期における塗膜抵抗の増加が特定の範囲にあることを満たすカチオン電着塗料組成物を選択して使用することによって、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性の全てを高いレベルで維持することができることを見出し、本発明の完成に至った。   In order to achieve the above-mentioned object, the present inventors have intensively studied the conditions of a cationic electrodeposition coating composition suitable for use in coating a coated article that has undergone a zirconium conversion coating treatment. Among cationic electrodeposition coating compositions containing resin and blocked isocyanate curing agent resin as essential constituents, the coating resistance at the very beginning of the electrodeposition process with a thin electrodeposition coating is relatively low. By selecting and using a cationic electrodeposition coating composition satisfying that the increase in coating resistance at a very early stage of the electrodeposition process is within a specific range, the throwing power and smoothness of the coating are improved. The inventors have found that all of the properties, film thickness retention, and gas pinhole resistance can be maintained at a high level, and the present invention has been completed.

即ち、本発明は、以下の(1)〜(4)の構成を有するものである。
(1)ジルコニウム化成皮膜処理を施した被塗物にカチオン電着塗料組成物を塗装する方法において、アミン変性エポキシ樹脂(A)及びブロックイソシアネート硬化剤樹脂(B)を構成成分として含み、かつ被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)が10〜200kΩ・cmであり、かつ、6μmに達したときの塗膜抵抗(R6)が40〜400kΩ・cmであることを満たすカチオン電着塗料組成物を使用して塗装することを特徴とする方法。
(2)以下の式によって算出される、カチオン電着塗料組成物を被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)から6μmに達したときの塗膜抵抗(R6)の増加率が50〜700%/μmであることを特徴とする(1)に記載の方法。
増加率(%/μm)=((R6)/(R3))×100/3
(3)カチオン電着塗料組成物が、顔料ペーストをさらに含むことを特徴とする、(1)又は(2)に記載の方法。
(4)被塗物が、鉄系金属基材、アルミニウム系金属基材、又は亜鉛系金属基材であることを特徴とする、(1)〜(3)のいずれかに記載の方法。
That is, the present invention has the following configurations (1) to (4).
(1) In a method of applying a cationic electrodeposition coating composition to an article subjected to a zirconium conversion coating treatment, an amine-modified epoxy resin (A) and a blocked isocyanate curing agent resin (B) are included as constituent components, and When the film thickness after baking of the coating film obtained by uniformly coating the coating material reaches 3 μm, the coating film resistance (R3) is 10 to 200 kΩ · cm 2 and reaches 6 μm. A method comprising applying a cationic electrodeposition coating composition satisfying a coating film resistance (R6) of 40 to 400 kΩ · cm 2 .
(2) Coating film resistance (when the film thickness after baking of the coating film obtained by uniformly applying the cationic electrodeposition coating composition on the object to be coated, calculated by the following formula, reaches 3 μm ( (3) The method according to (1), wherein the rate of increase in coating film resistance (R6) when reaching 6 μm from R3) is 50 to 700% / μm.
Increase rate (% / μm) = ((R6) / (R3)) × 100/3
(3) The method according to (1) or (2), wherein the cationic electrodeposition coating composition further comprises a pigment paste.
(4) The method according to any one of (1) to (3), wherein the object to be coated is an iron-based metal substrate, an aluminum-based metal substrate, or a zinc-based metal substrate.

本発明の塗装方法によれば、特定の必須構成成分を有し、かつカチオン電着工程の極めて初期における塗料の塗膜抵抗及びその増加を特定の範囲に制御したカチオン電着塗料組成物を選択して使用しているので、ジルコニウム化成処理を施した被塗物にカチオン電着塗料組成物を塗装した場合につきまわり性だけでなく、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性も高いレベルで維持することができる。   According to the coating method of the present invention, a cationic electrodeposition coating composition having a specific essential component and controlling the coating film resistance and the increase in the coating at a very early stage of the cationic electrodeposition process within a specific range is selected. Therefore, not only the wrapping property but also the smoothness of the coating film, the film thickness retention, and the gas pin resistance when the cationic electrodeposition coating composition is applied to the coated material subjected to the zirconium chemical conversion treatment. Hall property can also be maintained at a high level.

図1は、つきまわり性の評価方法を説明する模式図である。FIG. 1 is a schematic diagram illustrating a method for evaluating throwing power. 図2は、つきまわり性の評価方法を説明する模式図である。FIG. 2 is a schematic diagram for explaining a throwing power evaluation method. 図3は、つきまわり性の評価方法を説明する模式図である。FIG. 3 is a schematic diagram for explaining a throwing power evaluation method. 図4は、つきまわり性の評価方法を説明する模式図である。FIG. 4 is a schematic diagram for explaining a throwing power evaluation method.

本発明の塗装方法は、ジルコニウム化成皮膜処理を施した被塗物にカチオン電着塗料組成物を塗装する際に、特定の構成成分を有するカチオン電着塗料組成物の中で電着工程の極めて初期における塗料の塗膜抵抗及びその増加が特定の範囲にあるカチオン電着塗料組成物を選択して使用することを特徴とするものである。以下、本発明の方法の詳細を説明する。   In the coating method of the present invention, when a cationic electrodeposition coating composition is applied to an article subjected to zirconium conversion coating treatment, the electrodeposition process is extremely difficult among cationic electrodeposition coating compositions having specific components. It is characterized by selecting and using a cationic electrodeposition coating composition in which the coating film resistance and the increase of the coating in the initial stage are in a specific range. Hereinafter, the details of the method of the present invention will be described.

[被塗物の基材]
本発明の塗装方法の塗装対象である被塗物は、カチオン電着可能な金属基材であれば特に限定されないが、例えば鉄系金属基材、アルミニウム系金属基材、又は亜鉛系金属基材を使用することができる。本発明の塗装方法によれば、被塗物が鉄系金属基材及びアルミニウム系金属基材である場合に生じる、つきまわり性、塗膜の平滑性、及び膜厚保持性の問題を解消し、被塗物が亜鉛系金属基材である場合に特有のこれらの問題と、耐ガスピンホール性の問題を解消することができる。
[Substrate of substrate]
The object to be coated by the coating method of the present invention is not particularly limited as long as it is a metal substrate that can be cationically electrodeposited. For example, an iron-based metal substrate, an aluminum-based metal substrate, or a zinc-based metal substrate. Can be used. According to the coating method of the present invention, the problems of throwing power, smoothness of the coating film, and film thickness retention that occur when the object to be coated is an iron-based metal substrate and an aluminum-based metal substrate are solved. These problems peculiar when the object to be coated is a zinc-based metal substrate and the problem of gas pinhole resistance can be solved.

[ジルコニウム化成皮膜処理]
本発明の塗装方法では、被塗物には、ジルコニウム化成皮膜処理を予め施しておき、かかるジルコニウム化成皮膜処理が施された被塗物に対してカチオン電着塗装を行なう。ジルコニウム化成皮膜処理は、ジルコニウム化成処理剤を被塗物と接触させて、被塗物の表面に化成処理皮膜を形成させる処理であり、被塗物の耐食性や塗膜密着性を向上させるために施される。
[Zirconium conversion coating treatment]
In the coating method of the present invention, the article is preliminarily subjected to a zirconium conversion coating treatment, and a cationic electrodeposition coating is performed on the article subjected to the zirconium conversion coating treatment. Zirconium conversion coating treatment is a treatment in which a zirconium conversion treatment agent is brought into contact with the object to be coated to form a chemical conversion film on the surface of the object to be coated. In order to improve the corrosion resistance and film adhesion of the object to be coated. Applied.

ジルコニウム化成皮膜処理は、リン酸亜鉛化成皮膜処理と比べて環境に対する負荷が少ない点で、今日多く採用されている。ジルコニウム化成処理剤としては、従来から様々なものが提案されているが、一般的には、フッ化ジルコン酸などのジルコニウム含有化合物、フッ化水素酸などの、処理液の安定化のためのフッ素化合物、及びその他の任意の添加成分を水に溶解したものである。また、最近、廃水中のフッ素含有量の規制強化の傾向を受けて、フッ素含有化合物を含まないタイプのジルコニウム化成処理剤も提案されている。本発明においては、これらのジルコニウム化成処理剤に限らず、従来公知のいずれのジルコニウム化成処理剤も使用することができる。   Zirconium conversion coating treatment is widely used today because it has less environmental impact than zinc phosphate conversion coating treatment. Various zirconium chemical conversion treatment agents have been proposed in the past, but in general, a fluorine-containing compound such as a zirconium-containing compound such as fluorinated zirconic acid or hydrofluoric acid for stabilizing the treatment liquid. A compound and other optional components are dissolved in water. Recently, a zirconium chemical conversion treatment agent that does not contain a fluorine-containing compound has also been proposed in response to a tendency to tighten regulations on the fluorine content in wastewater. In the present invention, not only these zirconium chemical conversion treatment agents but also any conventionally known zirconium chemical conversion treatment agents can be used.

このようなジルコニウム化成処理剤を被塗物と接触させることによって、被塗物の表面に化成処理皮膜が形成される。ジルコニウム化成処理剤を被塗物に接触させる方法は、特に限定されず、一般的に浸漬法、スプレー法、ロールコート法、流しかけ法等を挙げることができる。処理温度及び処理時間も、特に限定されず、一般的に20〜80℃及び2〜1000秒である。形成された化成処理皮膜中のジルコニウムの含有量は、一般的に10mg/m〜1g/mである。 By bringing such a zirconium chemical conversion treatment agent into contact with the object to be coated, a chemical conversion film is formed on the surface of the object to be coated. The method for bringing the zirconium chemical conversion treatment agent into contact with the article to be coated is not particularly limited, and generally includes an immersion method, a spray method, a roll coating method, a pouring method and the like. The processing temperature and processing time are also not particularly limited, and are generally 20 to 80 ° C. and 2 to 1000 seconds. The content of zirconium in the formed chemical conversion coating is generally 10 mg / m 2 to 1 g / m 2 .

ジルコニウム化成処理は、リン酸亜鉛化成処理に比べて、化成処理膜の膜厚が薄いため、化成処理膜自体の抵抗値が低い。そのため、ジルコニウム化成処理では、電着初期段階における塗膜抵抗値の絶対値及び増加が電着塗膜のつきまわり性と塗膜外観により大きい影響を持つ。本発明は、かかる知見に基づいてジルコニウム化成処理を施した被塗物に対して使用するカチオン電着塗料組成物として好適な電着初期段階における塗膜抵抗値の範囲を提案するものである。   Since the chemical conversion treatment film is thinner than the zinc phosphate chemical conversion treatment, the resistance of the chemical conversion treatment film itself is low. Therefore, in the zirconium chemical conversion treatment, the absolute value and increase of the coating resistance value in the initial stage of electrodeposition have a greater influence on the throwing power of the electrodeposition coating and the appearance of the coating. Based on this finding, the present invention proposes a range of coating resistance values in the initial stage of electrodeposition suitable as a cationic electrodeposition coating composition to be used for an article subjected to zirconium chemical conversion treatment.

本発明の塗装方法で使用されるカチオン電着塗料組成物は、アミン変性エポキシ樹脂(A)及びブロックイソシアネート硬化剤樹脂(B)を必須構成成分として含み、カチオン電着工程の極めて初期における塗料の塗膜抵抗及びその増加が特定の範囲のものから選択されるものである。   The cationic electrodeposition coating composition used in the coating method of the present invention comprises an amine-modified epoxy resin (A) and a blocked isocyanate curing agent resin (B) as essential components, and the coating composition at the very initial stage of the cationic electrodeposition process. The film resistance and its increase are selected from a specific range.

[アミン変性エポキシ樹脂(A)]
アミン変性エポキシ樹脂(A)は、アミンで変性されたエポキシ樹脂であり、そのエポキシ骨格は平均して1分子当り2個のエポキシ基を有し、数平均分子量は400〜2400、特に1000〜1600であることが好ましい。具体的には、1分子中に2個のフェノール性水酸基を有するポリフェノールのグリシジルエーテル、あるいはその重縮合物が挙げられ、好ましいポリフェノールとしては、レゾルシン、ハイドロキノン、2,2−ビス−(4−ヒドロキシフェニル)−プロパン、4,4’−ジヒドロキシベンゾフェノン、1,1−ビス−(4−ヒドロキシフェニル)−メタン、1,1−ビス−(4−ヒドロキシフェニル)−エタン、4,4’−ジヒドロキシビフェニール等が挙げられるが、特に好ましくは2,2−ビス−(4−ヒドロキシフェニル)−プロパン、いわゆるビスフェノールAである。さらに、1分子中に2個のアルコール性水酸基を有するジオールのグリシジルエーテル、あるいはその重縮合物が挙げられ、好ましいジオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、1,4−シクロヘキサンジオール等の低分子ジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオリゴマージオールが挙げられるが、これらに限定されるものではない。
[Amine-modified epoxy resin (A)]
The amine-modified epoxy resin (A) is an epoxy resin modified with an amine, and its epoxy skeleton has an average of two epoxy groups per molecule and has a number average molecular weight of 400 to 2400, particularly 1000 to 1600. It is preferable that Specific examples include glycidyl ethers of polyphenols having two phenolic hydroxyl groups in one molecule, or polycondensates thereof. Preferred polyphenols include resorcin, hydroquinone, 2,2-bis- (4-hydroxy Phenyl) -propane, 4,4′-dihydroxybenzophenone, 1,1-bis- (4-hydroxyphenyl) -methane, 1,1-bis- (4-hydroxyphenyl) -ethane, 4,4′-dihydroxybiphenyl Among them, 2,2-bis- (4-hydroxyphenyl) -propane, so-called bisphenol A is particularly preferable. Furthermore, a glycidyl ether of a diol having two alcoholic hydroxyl groups in one molecule or a polycondensate thereof can be mentioned. Preferred diols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6- Examples include, but are not limited to, low molecular diols such as hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, and 1,4-cyclohexanediol, and oligomer diols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. is not.

また、アミン変性エポキシ樹脂を好適な分子量に調整するためには、上記化合物を連結剤で高分子量化反応させることが必要である。好ましい連結剤としては、上記のポリフェノールや1分子中に2個のカルボキシル基を有するジカルボン酸、例えばコハク酸、アジピン酸、アゼライン酸、セバシン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、イソフタル酸、ダイマー酸、カルボキシル基含有のブタジエン重合体、あるいはブタジエン/アクリロニトリル共重合体等が挙げられる。また、アミノ基を含有する連結剤としては、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、モノエタノールアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、あるいはヘキサメチレンジアミン等のジアミンの各アミノ基をモノエポキシ化合物で2級化したジアミン等が挙げられる。さらに、エポキシ基の開環により生成した水酸基に対して、ジイソシアネートによる連結も可能である。特に好ましくは、上記ポリフェノールのグリシジルエーテルあるいは上記ジオールのグリシジルエーテル、もしくはこれらの混合物を上記ポリフェノールで連結反応する方法により達成することができ、触媒存在下で70〜180℃で反応させるのが好適である。   Further, in order to adjust the amine-modified epoxy resin to a suitable molecular weight, it is necessary to cause the above compound to undergo a high molecular weight reaction with a linking agent. Preferred linking agents include the above polyphenols and dicarboxylic acids having two carboxyl groups in one molecule, such as succinic acid, adipic acid, azelaic acid, sebacic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, isophthalic acid, Examples thereof include dimer acid, carboxyl group-containing butadiene polymer, and butadiene / acrylonitrile copolymer. The linking agent containing an amino group includes diamines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, monoethanolamine, dimethylaminopropylamine, diethylaminopropylamine, or hexamethylenediamine. Examples thereof include diamines obtained by secondaryizing each amino group with a monoepoxy compound. Further, a diisocyanate can be linked to a hydroxyl group generated by ring opening of an epoxy group. Particularly preferably, it can be achieved by a method in which the glycidyl ether of the polyphenol or the glycidyl ether of the diol or a mixture thereof is subjected to a ligation reaction with the polyphenol. is there.

エポキシ末端はアミノ化を基本とするが、エポキシ基の一部を必要に応じて1分子中に1個のカルボキシル基を有する化合物、あるいは1分子中に1個のフェノール性水酸基を有する化合物で付加反応させて樹脂の塩基性を調整することができる。アミノ化剤としては、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジエタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、ジエチレントリアミンの1級アミノ基をケトンと反応させたジケチミン、あるいはこれらの混合物を挙げることができる。特に好ましくは、水酸基を有するアルカノールアミン類を用いた場合であり、反応は無溶剤あるいは溶剤存在下で50〜130℃で行なうのが好適である。   Epoxy ends are based on amination, but part of the epoxy group is added as necessary with a compound having one carboxyl group in one molecule or a compound having one phenolic hydroxyl group in one molecule. The basicity of the resin can be adjusted by reaction. Examples of the aminating agent include dimethylamine, diethylamine, dibutylamine, diethanolamine, N-methylethanolamine, N-ethylethanolamine, diketimine obtained by reacting a primary amino group of diethylenetriamine with a ketone, or a mixture thereof. it can. Particularly preferred is the case where alkanolamines having a hydroxyl group are used, and the reaction is preferably carried out at 50 to 130 ° C. without solvent or in the presence of a solvent.

[ブロックイソシアネート硬化剤樹脂(B)]
ブロックイソシアネート硬化剤樹脂(B)は、ポリイソシアネートと、それをブロックするブロック剤とから構成される。ポリイソシアネートとしては、2,4−あるいは2,6−トルエンジイソシアネートおよびこれらの混合物、p−フェニレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、ポリメチレンポリフェニルジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3−あるいは1,4−ビス−(イソシアネートメチル)−シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビス−(イソシアネートメチル)−ノルボルナン、3−あるいは4−イソシアネートメチル−1−メチルシクロヘキシルイソシアネート、m−あるいはp−キシレンジイソシアネート、m−あるいはp−テトラメチルキシレンジイソシアネート、さらには上記イソシアネートのビュレット変性体あるいはイソシアヌレート変性体が挙げられるが、これらに限定されるものではない。これらは単独でも混合物でも使用可能である。
[Block isocyanate curing agent resin (B)]
The blocked isocyanate curing agent resin (B) is composed of a polyisocyanate and a blocking agent that blocks the polyisocyanate. Polyisocyanates include 2,4- or 2,6-toluene diisocyanate and mixtures thereof, p-phenylene diisocyanate, diphenylmethane-4,4'-diisocyanate, polymethylene polyphenyl diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone. Diisocyanate, 1,3- or 1,4-bis- (isocyanatomethyl) -cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, bis- (isocyanatemethyl) -norbornane, 3- or 4-isocyanatomethyl-1-methyl Cyclohexyl isocyanate, m- or p-xylene diisocyanate, m- or p-tetramethylxylene diisocyanate, and Biuret-modified products or isocyanurate modified product of cyanate, and the like, but not limited thereto. These can be used alone or in a mixture.

ポリイソシアネートは、一部をポリオールと反応させることができる。かかる例としては、エチレングリコール、プロピレングリコール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、1,4−シクロヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリラクトンジオール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、あるいはこれらの混合物が挙げられる。   A part of the polyisocyanate can be reacted with a polyol. Examples thereof include ethylene glycol, propylene glycol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, 1,4-cyclohexanediol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polylactone diol, Examples include trimethylolethane, trimethylolpropane, pentaerythritol, or a mixture thereof.

ブロック剤としては、メタノール、エタノール、n−ブタノール、2−エチルヘキサノール等の脂肪族アルコール化合物、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル等のセロソルブ化合物、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のカルビトール化合物、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム等のオキシム化合物、ε−カプロラクタム等のラクタム化合物、フェノール、クレゾール、キシレノール等のフェノール化合物、アセト酢酸エチルエステル、マロン酸ジエチルエステル等の活性メチレン基含有化合物が挙げられる。   Examples of the blocking agent include aliphatic alcohol compounds such as methanol, ethanol, n-butanol and 2-ethylhexanol, cellosolve compounds such as ethylene glycol monobutyl ether and ethylene glycol monohexyl ether, carbides such as diethylene glycol monoethyl ether and diethylene glycol monobutyl ether. Toll compounds, oxime compounds such as acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime, lactam compounds such as ε-caprolactam, phenol compounds such as phenol, cresol and xylenol, active methylene group-containing compounds such as ethyl acetoacetate and diethyl malonate Is mentioned.

ポリイソシアネートとブロック剤の反応は、無溶剤あるいはイソシアネート基と反応しない溶剤の存在下で、50〜130℃で行なうのが好適である。   The reaction between the polyisocyanate and the blocking agent is preferably performed at 50 to 130 ° C. in the absence of a solvent or in the presence of a solvent that does not react with an isocyanate group.

本発明の塗装方法で使用されるカチオン電着塗料組成物におけるアミン変性エポキシ樹脂(A)/ブロックイソシアネート硬化剤樹脂(B)の重量割合は特に限定されるものではないが、固形分重量比で55〜75/45〜25であることが好ましい。   Although the weight ratio of the amine-modified epoxy resin (A) / block isocyanate curing agent resin (B) in the cationic electrodeposition coating composition used in the coating method of the present invention is not particularly limited, It is preferable that it is 55-75 / 45-25.

[その他の成分]
本発明の塗装方法で使用されるカチオン電着塗料組成物は、上述のアミン変性エポキシ樹脂(A)及びブロックイソシアネート硬化剤樹脂(B)の必須構成成分以外に、所望により顔料ペースト、さらには、可塑剤、界面活性剤、UV吸収剤、酸化防止剤などの任意の公知の添加成分を含むことができる。
[Other ingredients]
The cationic electrodeposition coating composition used in the coating method of the present invention is a pigment paste, if desired, in addition to the essential components of the amine-modified epoxy resin (A) and the blocked isocyanate curing agent resin (B), Any known additive components such as plasticizers, surfactants, UV absorbers and antioxidants can be included.

顔料ペーストは、顔料分散樹脂を水溶化し、必要に応じて消泡剤や界面活性剤、はじき防止剤等の添加剤を配合したビヒクルに体質顔料、着色顔料、防錆顔料、硬化触媒顔料等を混合し、分散機を通して顔料分散したものである。   Pigment paste is a vehicle in which pigment dispersion resin is water-solubilized, and additives such as antifoaming agents, surfactants, and anti-fogging agents are blended as needed, with extender pigments, colored pigments, antirust pigments, curing catalyst pigments, etc. The mixture is mixed and the pigment is dispersed through a disperser.

顔料分散樹脂としては、アミン変性エポキシ樹脂(A)をギ酸や酢酸、乳酸、スルファミン酸、メタンスルホン酸等で中和した3級アミン型やエポキシ末端を4級化した4級アンモニウム塩型が使用できる。体質顔料としては、カオリン、タルク、珪酸アルミニウム、炭酸カルシウム、マイカ、クレー、シリカ等が使用でき、着色顔料としては、カーボンブラック、チタンホワイト、ベンガラ等が使用でき、防錆顔料としては、リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、トリポリリン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸カルシウム、ビスマス化合物等が使用でき、硬化触媒顔料としては、スズ化合物、ビスマス化合物等が使用できる。   As the pigment dispersion resin, a tertiary amine type in which the amine-modified epoxy resin (A) is neutralized with formic acid, acetic acid, lactic acid, sulfamic acid, methanesulfonic acid, or the like, or a quaternary ammonium salt type in which the epoxy terminal is quaternized is used. it can. As extender pigments, kaolin, talc, aluminum silicate, calcium carbonate, mica, clay, silica, etc. can be used. As coloring pigments, carbon black, titanium white, bengara, etc. can be used. As anticorrosive pigments, phosphoric acid can be used. Zinc, iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate, bismuth compounds, etc. can be used, and tin compounds, bismuth compounds, etc. can be used as curing catalyst pigments .

本発明の塗装方法で使用されるカチオン電着塗料組成物における合計樹脂重量(A+B)/顔料ペーストの重量割合は特に限定されないが、70〜80/30〜20であることが好ましい。   Although the weight ratio of the total resin weight (A + B) / pigment paste in the cationic electrodeposition coating composition used in the coating method of the present invention is not particularly limited, it is preferably 70-80 / 30-20.

アミン変性エポキシ樹脂(A)、及びブロックイソシアネート硬化剤樹脂(B)を混合した樹脂をエマルション化する際に必要な中和酸は、ギ酸、酢酸、乳酸、スルファミン酸、メタンスルホン酸等が好適であり、これらの混合物も使用可能である。   Formic acid, acetic acid, lactic acid, sulfamic acid, methanesulfonic acid, etc. are suitable as the neutralizing acid necessary for emulsifying the resin mixed with the amine-modified epoxy resin (A) and the blocked isocyanate curing agent resin (B). A mixture of these can also be used.

本発明の塗装方法で使用されるカチオン電着塗料組成物は、上記エマルションを脱イオン水で希釈し、所望により顔料ペーストを撹拌下で混合することによって得られる。塗料組成物の固形分濃度は、20%前後に調整することが好ましい。   The cationic electrodeposition coating composition used in the coating method of the present invention is obtained by diluting the emulsion with deionized water and optionally mixing the pigment paste with stirring. The solid content concentration of the coating composition is preferably adjusted to around 20%.

[塗膜抵抗]
本発明の塗装方法では、ジルコニウム化成皮膜処理を施した被塗物に対して、上述の構成成分を有するカチオン電着塗料組成物を塗装するが、カチオン電着塗料組成物として、かかる被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)が10〜200kΩ・cmであり、かつ、6μmに達したときの塗膜抵抗(R6)が40〜400kΩ・cmであることを満たすものを選択して使用する。さらに、本発明の塗装方法では、かかる被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)から6μmに達したときの塗膜抵抗(R6)の増加率(即ち、増加率(%/μm)=((R6)/(R3))×100/3)が50〜700%/μmであることを満たすものを選択して使用することが好ましい。膜厚3μm及び6μmでの塗膜抵抗は、カチオン電着工程の極めて初期における塗膜抵抗に相当する。本発明者は、この極めて初期の塗膜抵抗が、比較的低い特定の範囲にあり、さらにこの極めて初期での塗膜抵抗の増加が特定の範囲にあるカチオン電着塗料組成物を使用することによって、ジルコニウム化成皮膜処理を施した被塗物に対する塗装において、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性の全てを高いレベルで達成できることを見出した。
[Film resistance]
In the coating method of the present invention, a cationic electrodeposition coating composition having the above-described constituent components is applied to an article subjected to the zirconium conversion coating treatment. As the cationic electrodeposition coating composition, such an article to be coated is applied. The coating film resistance (R3) when the film thickness after baking of the coating film obtained by uniformly coating with respect to 3 μm reaches 10 to 200 kΩ · cm 2 and the coating when the film thickness reaches 6 μm A film having a film resistance (R6) satisfying 40 to 400 kΩ · cm 2 is selected and used. Furthermore, in the coating method of the present invention, when the film thickness after baking of the coating film obtained by uniformly coating the object to be coated reaches 6 μm from the coating film resistance (R3) when it reaches 3 μm. The coating film resistance (R6) increase rate (that is, the increase rate (% / μm) = ((R6) / (R3)) × 100/3) is selected to satisfy 50 to 700% / μm. And preferably used. The film resistance at film thicknesses of 3 μm and 6 μm corresponds to the film resistance at the very initial stage of the cationic electrodeposition process. The present inventor uses a cationic electrodeposition coating composition in which this very initial coating resistance is in a relatively low specific range, and further, this very early increase in coating resistance is in a specific range. As a result, it has been found that all of the throwing power, the smoothness of the coating film, the film thickness retaining property, and the gas pinhole resistance can be achieved at a high level in the coating on the object subjected to the zirconium conversion coating treatment.

本発明では、使用するカチオン電着塗料組成物が、上述のように塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)が10〜200kΩ・cm、好ましくは15〜190kΩ・cm、より好ましくは15〜180kΩ・cmであることを満たすことが必要である。膜厚が3μmに達したときの塗膜抵抗(R3)が上記下限未満の場合、最終的に形成される塗膜は、一般につきまわり性に劣る傾向を示す。一方、膜厚が3μmに達したときの塗膜抵抗(R3)が上記上限を超える場合、最終的に形成される塗膜は、塗膜の平滑性に劣る。 In the present invention, the cationic electrodeposition coating composition used has a coating film resistance (R3) of 10 to 200 kΩ · cm 2 , preferably 15 when the film thickness after baking of the coating film reaches 3 μm as described above. It is necessary to satisfy that it is ˜190 kΩ · cm 2 , more preferably 15 to 180 kΩ · cm 2 . When the coating film resistance (R3) when the film thickness reaches 3 μm is less than the above lower limit, the finally formed coating film generally tends to have poor circulation properties. On the other hand, when the coating film resistance (R3) when the film thickness reaches 3 μm exceeds the upper limit, the finally formed coating film is inferior in the smoothness of the coating film.

また、本発明では、使用するカチオン電着塗料組成物が、上述のように塗膜の焼付後の膜厚が6μmに達したときの塗膜抵抗(R6)が40〜400kΩ・cm、好ましくは45〜390kΩ・cm、より好ましくは50〜380kΩ・cmであることを満たすことが必要である。膜厚が6μmに達したときの塗膜抵抗(R6)が上記下限未満の場合、最終的に形成される塗膜は、つきまわり性に劣る。一方、膜厚が6μmに達したときの塗膜抵抗(R6)が上記上限を超える場合、最終的に形成される塗膜は、塗膜の平滑性、膜厚保持性、及び(被塗物が亜鉛系金属基材である場合は)耐ガスピンホール性に劣る。 In the present invention, the cationic electrodeposition coating composition used has a coating film resistance (R6) of 40 to 400 kΩ · cm 2 when the film thickness after baking of the coating film reaches 6 μm as described above, preferably Needs to satisfy the condition of 45 to 390 kΩ · cm 2 , more preferably 50 to 380 kΩ · cm 2 . When the coating film resistance (R6) when the film thickness reaches 6 μm is less than the lower limit, the finally formed coating film is inferior in throwing power. On the other hand, when the coating film resistance (R6) when the film thickness reaches 6 μm exceeds the above upper limit, the finally formed coating film has the smoothness of the coating film, the film thickness retention, and the (coating object) When Z is a zinc-based metal substrate, the gas pinhole resistance is poor.

さらに、本発明では、使用するカチオン電着塗料組成物が、上述のように以下の式によって算出される、塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)から6μmに達したときの塗膜抵抗(R6)の増加率が50〜700%/μmであることが好ましく、より好ましくは55〜600%/μm、さらに好ましくは60〜500%/μmであることを満たすことが好ましい。
増加率(%/μm)=((R6)/(R3))×100/3
上記増加率を上記下限未満に制限することは、膜厚が上述のように薄い電着工程の初期段階においては極めて難しく、一方、上記増加率が上記上限を超える場合、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性に劣る傾向を示す。
Furthermore, in the present invention, the cationic electrodeposition coating composition to be used is calculated from the coating film resistance (R3) when the film thickness after baking of the coating film reaches 3 μm, calculated by the following formula as described above. The rate of increase in coating film resistance (R6) when reaching 6 μm is preferably 50 to 700% / μm, more preferably 55 to 600% / μm, and still more preferably 60 to 500% / μm. It is preferable to satisfy.
Increase rate (% / μm) = ((R6) / (R3)) × 100/3
Limiting the increase rate to less than the lower limit is extremely difficult in the initial stage of the electrodeposition process where the film thickness is thin as described above. On the other hand, if the increase rate exceeds the upper limit, the smoothness of the coating film, It tends to be inferior in film thickness retention and gas pinhole resistance.

膜厚が3μm及び6μmに達したときの塗膜抵抗が上述の範囲にあるカチオン電着塗料組成物を実際に使用するためには、析出した未硬化状態の塗膜の物性値を調整することにより塗膜抵抗の条件を満たすことを確認したカチオン電着塗料組成物を予め用意しておき、それを選択して使用することが好ましい。具体的には、析出塗膜の硬さ、析出塗膜の樹脂成分の粘弾性、塩基性度、析出塗膜に含まれる溶剤の種類、量、析出塗膜の顔料濃度などの析出した未硬化状態の塗膜の物性値を調整すると、塗膜抵抗が上下に変動するので、これらを実験的に調整して確認することにより塗膜抵抗の条件を満たしたカチオン電着塗料を得ることができる。   In order to actually use a cationic electrodeposition coating composition whose coating film resistance is in the above-mentioned range when the film thickness reaches 3 μm and 6 μm, adjust the physical property values of the uncured coating film that has been deposited. It is preferable to prepare a cationic electrodeposition coating composition that has been confirmed to satisfy the condition of coating film resistance in advance, and select and use it. Specifically, the hardness of the deposited coating, the viscoelasticity of the resin component of the deposited coating, the basicity, the type and amount of the solvent contained in the deposited coating, the pigment concentration of the deposited coating, etc. When the physical property value of the coating film in the state is adjusted, the coating film resistance fluctuates up and down. Therefore, it is possible to obtain a cationic electrodeposition coating material satisfying the coating film resistance condition by experimentally adjusting and checking these. .

これらの調整では、一般的に、析出塗膜を柔らかい方向に調整すると、析出塗膜中でイオン性物質が移動しやすくなり、塗膜抵抗が低くなり、逆に析出塗膜を硬い方向に調整すると、析出塗膜中でイオン性物質が移動しにくくなり、塗膜抵抗が高くなる傾向を有し、また樹脂の粘弾性を低い方向に、塩基性度を高い方向に、溶剤量を多い方向に、顔料濃度を低い方向に調整すると、塗膜抵抗が低くなり、逆に樹脂の粘弾性を高い方向に、塩基性度を低い方向に、溶剤量を少ない方向に、顔料濃度を高い方向に調整すると、塗膜抵抗が高くなる傾向を示すので、これらの傾向を考慮してカチオン電着塗料組成物の構成成分の種類や量を調整する。析出塗膜の硬さは、一般に、浴液温度(26〜32℃)、樹脂成分のガラス転移点、溶剤量、顔料濃度によって調整することができる。また、樹脂の粘弾性は、一般に浴液温度(26〜32℃)、樹脂成分のガラス転移点、分子量によって調整することができる。さらに、樹脂の塩基性度は、一般にアミン変性樹脂のアミン種・量によって調整することができる。なお、膜厚3μmから6μmへの増加による塗膜抵抗の増加の割合は、一般に析出塗膜の硬さによって調整することができる。ただし、これらの傾向は、全てこのような一般的な傾向通りになるわけではなく、また多元多次関数で変化することがあるので、実際に成分の種類や量の変化に対する塗膜抵抗の変動傾向を個別具体的に把握してから調整することが好ましい。   In these adjustments, generally, when the deposited coating is adjusted in a soft direction, the ionic substance easily moves in the deposited coating, the coating resistance is lowered, and conversely, the deposited coating is adjusted in a hard direction. Then, it becomes difficult for the ionic substance to move in the deposited coating film, and the coating film resistance tends to increase, and the viscoelasticity of the resin is low, the basicity is high, and the amount of the solvent is large. In addition, when the pigment concentration is adjusted in the lower direction, the resistance of the coating film is lowered. Conversely, the viscoelasticity of the resin is higher, the basicity is lower, the solvent amount is lower, and the pigment concentration is higher. When adjusted, the coating film resistance tends to increase. Therefore, the types and amounts of the components of the cationic electrodeposition coating composition are adjusted in consideration of these tendencies. In general, the hardness of the deposited coating film can be adjusted by the bath liquid temperature (26 to 32 ° C.), the glass transition point of the resin component, the amount of solvent, and the pigment concentration. The viscoelasticity of the resin can be generally adjusted by the bath liquid temperature (26 to 32 ° C.), the glass transition point of the resin component, and the molecular weight. Furthermore, the basicity of the resin can be generally adjusted by the amine species and amount of the amine-modified resin. In addition, generally the ratio of the increase in coating-film resistance by the increase in film thickness from 3 micrometers to 6 micrometers can be adjusted with the hardness of a precipitation coating film. However, these tendencies do not all follow this general trend, and may change with a multi-dimensional function, so fluctuations in coating resistance with actual changes in the type and amount of ingredients It is preferable to make adjustments after grasping the trends individually and specifically.

[カチオン電着塗装]
本発明の方法では、カチオン電着塗装は、従来通り、カチオン電着塗料組成物中に被塗物を陰極として浸漬させ、電圧を印加することによって行なえばよい。電着塗装の条件は、特に限定されないが、一般的に、印加電圧は50〜500V程度であり、通電時間は、30秒〜10分程度である。また、使用するカチオン電着塗料組成物の浴液温度は、26〜32℃程度であることが好ましい。電着塗装後、被塗物を水洗して、表面に残留する余分な塗料組成物を洗い落とす。その後、焼付けを行なって、被塗物の表面に形成された塗膜を硬化させる。カチオン電着塗装で得られる最終的な塗膜の焼付後の膜厚は、一般的に5〜100μmである。
[Cation electrodeposition coating]
In the method of the present invention, the cationic electrodeposition coating may be performed by immersing the article to be coated in the cationic electrodeposition coating composition as a cathode and applying a voltage as usual. The conditions for electrodeposition coating are not particularly limited, but generally the applied voltage is about 50 to 500 V, and the energization time is about 30 seconds to 10 minutes. Moreover, it is preferable that the bath liquid temperature of the cationic electrodeposition coating composition to be used is about 26-32 degreeC. After electrodeposition coating, the object to be coated is washed with water to wash off any excess coating composition remaining on the surface. Thereafter, baking is performed to cure the coating film formed on the surface of the object to be coated. The film thickness after baking of the final coating film obtained by cationic electrodeposition coating is generally 5 to 100 μm.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to these Examples.

(アミン変性エポキシ樹脂A1の製造)
表1に記載の原料配合に従ってアミン変性エポキシ樹脂A1を製造した。具体的には、撹拌機、温度計、冷却管を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)を投入し、撹拌を開始し、150℃で3時間保温し、続いて原料(5)を投入し150℃で2時間保温した後、原料(6)を徐々に投入しながら80℃まで冷却した。次いで原料(7)、(8)、(9)を順次投入し、100℃で4時間保温して、固形分85重量%、数平均分子量1600のアミン変性エポキシ樹脂A1を得た。
(Production of amine-modified epoxy resin A1)
An amine-modified epoxy resin A1 was produced according to the raw material composition described in Table 1. Specifically, the raw materials (1), (2), (3), and (4) are put into a 2 liter flask equipped with a stirrer, a thermometer, and a cooling pipe, and stirring is started. The mixture was kept warm for 3 hours, and then the raw material (5) was added and kept at 150 ° C. for 2 hours, and then cooled to 80 ° C. while gradually adding the raw material (6). Next, the raw materials (7), (8) and (9) were sequentially added, and kept at 100 ° C. for 4 hours to obtain an amine-modified epoxy resin A1 having a solid content of 85% by weight and a number average molecular weight of 1600.

(アミン変性エポキシ樹脂A2の製造)
表2に記載の原料配合に従ってアミン変性エポキシ樹脂A2を製造した。具体的には、撹拌機、温度計、冷却管を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)を投入し、撹拌を開始し、150℃で3時間保温し、続いて原料(5)を投入し150℃で2時間保温した後、原料(6)を徐々に投入しながら80℃まで冷却した。次いで原料(7)、(8)、(9)を順次投入し、100℃で4時間保温して、固形分85重量%、数平均分子量2200のアミン変性エポキシ樹脂A2を得た。
(Production of amine-modified epoxy resin A2)
An amine-modified epoxy resin A2 was produced according to the raw material composition described in Table 2. Specifically, the raw materials (1), (2), (3), and (4) are put into a 2 liter flask equipped with a stirrer, a thermometer, and a cooling pipe, and stirring is started. The mixture was kept warm for 3 hours, and then the raw material (5) was added and kept at 150 ° C. for 2 hours, and then cooled to 80 ° C. while gradually adding the raw material (6). Next, the raw materials (7), (8) and (9) were sequentially added, and kept at 100 ° C. for 4 hours to obtain an amine-modified epoxy resin A2 having a solid content of 85% by weight and a number average molecular weight of 2200.

(ブロックイソシアネート硬化剤樹脂B1の製造)
表3に記載の原料配合に従ってブロックイソシアネート硬化剤樹脂B1を製造した。具体的には、撹拌機、温度計、冷却管を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)、(5)を投入し、撹拌を開始し、発熱に注意しながら昇温し、100℃で3時間保温して、固形分85重量%のブロックイソシアネート硬化剤樹脂B1を得た。
(Production of blocked isocyanate curing agent resin B1)
A blocked isocyanate curing agent resin B1 was produced according to the raw material composition described in Table 3. Specifically, the raw materials (1), (2), (3), (4) and (5) are put into a 2 liter flask equipped with a stirrer, a thermometer and a cooling pipe, and stirring is started. The temperature was raised while paying attention to heat generation, and the temperature was kept at 100 ° C. for 3 hours to obtain a blocked isocyanate curing agent resin B1 having a solid content of 85% by weight.

(ブロックイソシアネート硬化剤樹脂B2の製造)
表4に記載の原料配合に従ってブロックイソシアネート硬化剤樹脂B2を製造した。具体的には、撹拌機、温度計、冷却管を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)、(5)、(6)を投入し、撹拌を開始し、発熱に注意しながら昇温し、100℃で3時間保温して、固形分85重量%のブロックイソシアネート硬化剤樹脂B2を得た。
(Production of blocked isocyanate curing agent resin B2)
A blocked isocyanate curing agent resin B2 was produced according to the raw material composition described in Table 4. Specifically, the raw materials (1), (2), (3), (4), (5), (6) are charged into a 2 liter flask equipped with a stirrer, a thermometer, and a cooling pipe, Stirring was started, the temperature was raised while paying attention to heat generation, and the mixture was kept at 100 ° C. for 3 hours to obtain a blocked isocyanate curing agent resin B2 having a solid content of 85% by weight.

(顔料分散樹脂P1の製造)
表5に記載の原料配合に従って顔料分散樹脂P1を製造した。具体的には、撹拌機、温度計、冷却管および減圧装置を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)を投入し、撹拌を開始した。150℃で4時間保温した後、100℃まで冷却し、原料(5)を投入した。更に50℃まで冷却後、発熱に注意しながら原料(6)を、50℃に維持しながら2時間かけて滴下投入し、投入終了後100℃まで昇温した。100℃で4時間保温した後、90℃まで冷却し、減圧して(7)脱溶剤し、原料(8)、(9)、(10)を順次投入した。80℃で2時間保温して、固形分85重量%の顔料分散樹脂P1を得た。
(Production of pigment dispersion resin P1)
Pigment dispersion resin P1 was manufactured according to the raw material composition shown in Table 5. Specifically, the raw materials (1), (2), (3), and (4) were put into a 2 liter flask equipped with a stirrer, a thermometer, a cooling pipe, and a decompression device, and stirring was started. After incubating at 150 ° C. for 4 hours, the mixture was cooled to 100 ° C. and the raw material (5) was charged. Further, after cooling to 50 ° C., the raw material (6) was added dropwise over 2 hours while maintaining the temperature at 50 ° C. while paying attention to heat generation. After keeping the temperature at 100 ° C. for 4 hours, the mixture was cooled to 90 ° C., depressurized (7) to remove the solvent, and the raw materials (8), (9), and (10) were sequentially added. The mixture was kept at 80 ° C. for 2 hours to obtain a pigment dispersion resin P1 having a solid content of 85% by weight.

(顔料分散樹脂P2の製造)
表6に記載の原料配合に従って顔料分散樹脂P2を製造した。具体的には、撹拌機、温度計、冷却管を備えた2リットルのフラスコに、原料(1)、(2)、(3)、(4)、(5)、(6)、(7)を投入し、撹拌を開始した。発熱に注意しながら昇温し、120℃で4時間保温して、固形分85重量%の顔料分散樹脂P2を得た。
(Production of pigment dispersion resin P2)
According to the raw material composition shown in Table 6, pigment dispersion resin P2 was produced. Specifically, in a 2 liter flask equipped with a stirrer, a thermometer, and a cooling pipe, raw materials (1), (2), (3), (4), (5), (6), (7) Was added and stirring was started. The temperature was raised while paying attention to heat generation, and the mixture was kept at 120 ° C. for 4 hours to obtain a pigment dispersion resin P2 having a solid content of 85% by weight.

(エマルションの製造)
表7に記載の原料配合に従ってエマルションE1〜E11を製造した。具体的には、撹拌機、温度計、冷却管および減圧装置を備えた3リットルのフラスコに、原料(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)を投入し、撹拌を開始した。80℃まで昇温し、減圧して(11)脱溶剤した。次いで原料(12)を徐々に投入して、固形分35重量%のエマルションE1〜E11を得た。
(Manufacture of emulsion)
Emulsions E1 to E11 were produced according to the raw material composition described in Table 7. Specifically, in a 3 liter flask equipped with a stirrer, a thermometer, a cooling pipe and a decompression device, the raw materials (1), (2), (3), (4), (5), (6), (7), (8), (9), (10) were added and stirring was started. The temperature was raised to 80 ° C. and the pressure was reduced (11) to remove the solvent. Subsequently, the raw material (12) was gradually added to obtain emulsions E1 to E11 having a solid content of 35% by weight.

(顔料ペーストの製造)
表8に記載の原料配合に従って顔料ペーストD1、D2を製造した。具体的には、容器に原料(1)、(2)、(3)を投入し、撹拌を開始した。原料(4)、(5)をゆっくりと投入して溶解させた。次いで原料(6)、(7)、(8)、(9)、(10)、(11)を投入し、常温で1時間均一混合したものを横型サンドミルで粒度10μm以下になるまで分散し、固形分65重量%の顔料ペーストD1、D2を得た。
(Manufacture of pigment paste)
Pigment pastes D1 and D2 were produced according to the raw material composition described in Table 8. Specifically, the raw materials (1), (2), and (3) were put into a container, and stirring was started. Raw materials (4) and (5) were slowly added and dissolved. Next, the raw materials (6), (7), (8), (9), (10), and (11) are added and dispersed uniformly at room temperature for 1 hour with a horizontal sand mill until the particle size is 10 μm or less. Pigment pastes D1 and D2 having a solid content of 65% by weight were obtained.

(カチオン電着塗料組成物の製造)
表9に記載の配合に従って実施例で使用するカチオン電着塗料組成物a〜g、及び比較例で使用するカチオン電着塗料組成物h〜kを製造した。具体的には、容器に各エマルションをはかりとり、撹拌下で脱イオン水を投入し、次いで各顔料ペーストを投入して、固形分20重量%の各カチオン電着塗料組成物を得た。なお、表9には、各カチオン電着塗料組成物の特徴(固形分、MEQ、トータル溶剤量)も記載した。
(Manufacture of cationic electrodeposition coating composition)
Cationic electrodeposition coating compositions a to g used in Examples and cationic electrodeposition coating compositions h to k used in Comparative Examples were produced according to the formulations shown in Table 9. Specifically, each emulsion was weighed in a container, deionized water was added under stirring, and then each pigment paste was added to obtain each cationic electrodeposition coating composition having a solid content of 20% by weight. Table 9 also shows the characteristics (solid content, MEQ, total solvent amount) of each cationic electrodeposition coating composition.

(被塗物の準備)
被塗物として、冷間圧延鋼板(SPC−SD)、亜鉛系めっき鋼板(GA)、及び6000系アルミニウム(Al)を準備した。これらの被塗物はいずれも、日本テストパネル社製であり、その大きさは、70mm×150mm×0.8mmであった。
(Preparation of the object to be coated)
Cold-rolled steel plates (SPC-SD), galvanized steel plates (GA), and 6000 series aluminum (Al) were prepared as the objects to be coated. All of these objects to be coated were manufactured by Nippon Test Panel Co., Ltd., and the size was 70 mm × 150 mm × 0.8 mm.

(ジルコニウム化成皮膜処理)
次に、これらの被塗物に対して、以下の手順に従って、ジルコニウム化成皮膜処理を施した。
(Zirconium conversion coating treatment)
Next, zirconium conversion coating treatment was performed on these objects to be coated according to the following procedure.

シラン縮合反応物の製造
温度計、撹拌機、冷却管、窒素導入機を具備した1リットルのフラスコに対してエタノール200g、脱イオン水200gを仕込み、攪拌を行なった。気相に窒素を吹き込み、攪拌を続けながら、3−アミノプロピルトリエトキシシラン110g、ビス(トリエトキシシリル)エタン10gを投入し、均一な溶液が得られた後に60℃まで昇温した。60℃で6時間反応させてから、留分を除去し、プロピレングリコールモノメチルエーテルに交換しながら、沸点が120℃になるまで昇温した。次いで60℃まで冷却した後、減圧蒸留で濃縮し、不揮発分40%溶液のシラン縮合反応物を得た。
A thermometer of the silane condensation reaction product, stirrer, were charged ethanol 200g, deionized water 200g with respect to the cooling tube, a 1 liter flask equipped with a nitrogen inlet device was subjected to stirring. While nitrogen was blown into the gas phase and stirring was continued, 110 g of 3-aminopropyltriethoxysilane and 10 g of bis (triethoxysilyl) ethane were added, and the temperature was raised to 60 ° C. after a uniform solution was obtained. After reacting at 60 ° C. for 6 hours, the fraction was removed and heated to 120 ° C. while boiling point was changed to propylene glycol monomethyl ether. Subsequently, after cooling to 60 degreeC, it concentrated by distillation under reduced pressure and the silane condensation reaction product of the 40% of non volatile matter solution was obtained.

金属表面処理用組成物の調製
上記のようにして得られたシラン縮合反応物と、六フッ化ジルコニウム酸アンモニウム及び硝酸マグネシウムを使用して、ジルコニウムの金属元素換算濃度が100ppm、マグネシウムの金属元素換算濃度が1000ppm、シラン縮合反応物の固形分濃度が200ppmであるように金属表面処理用組成物を調製した。
Preparation of metal surface treatment composition Using the silane condensation reaction product obtained as described above, ammonium hexafluorozirconate and magnesium nitrate, the metal element equivalent concentration of zirconium is 100 ppm, the metal element equivalent of magnesium The metal surface treatment composition was prepared so that the concentration was 1000 ppm and the solid content concentration of the silane condensation reaction product was 200 ppm.

40℃の市販脱脂液に各被塗物を2分間浸漬して脱脂処理した後、水道水で30秒間の水洗処理に供した。次いで、水洗処理後の各被塗物を、pH4.0、温度45℃に調整した金属表面処理用組成物に120秒間浸漬処理した。pHは硝酸又はアンモニアで調整した。浸漬処理後の各被塗物を水道水で30秒間水洗し、さらにイオン交換水で30秒間水洗処理に供した。次いで、熱風乾燥炉により80℃で5分間乾燥させ、ジルコニウム化成皮膜処理を施された各被塗物を得た。   Each coated object was immersed in a commercial degreasing solution at 40 ° C. for 2 minutes for degreasing treatment, and then subjected to a 30-second water washing treatment with tap water. Next, each coated object after the water washing treatment was immersed in a metal surface treatment composition adjusted to pH 4.0 and a temperature of 45 ° C. for 120 seconds. The pH was adjusted with nitric acid or ammonia. Each article to be coated after the immersion treatment was washed with tap water for 30 seconds and further subjected to a washing treatment with ion-exchanged water for 30 seconds. Subsequently, it dried at 80 degreeC for 5 minute (s) with the hot-air drying furnace, and obtained each to-be-coated object which performed the zirconium chemical conversion film process.

実施例1〜9及び比較例1〜4
ジルコニウム化成皮膜処理を施された被塗物に、カチオン電着塗料組成物として、表9に示すものを使用し、カチオン電着塗装を行ない、膜厚が3μm及び6μmに達した時の塗膜抵抗を測定し、その結果を表10に示した。なお、塗膜抵抗の具体的な測定手順は、以下の通りである。
Examples 1-9 and Comparative Examples 1-4
The coating film when the film thickness reaches 3 μm and 6 μm by applying the cationic electrodeposition coating composition as shown in Table 9 as the cationic electrodeposition coating composition to the coated article subjected to the zirconium conversion coating treatment. Resistance was measured and the results are shown in Table 10. In addition, the specific measurement procedure of coating-film resistance is as follows.

[塗膜抵抗]
ジルコニウム化成皮膜処理を施した被塗物の裏面をガムテープなどでマスキングする。極板/被塗物比を1/4、極間距離を150mmとして、カチオン電着塗料組成物に被塗物を全没させる。撹拌下に荷電圧30Vで1秒単位の塗装を行ない、式(1)から、塗膜が所定の厚さ(3μm及び6μm)に達した時の塗膜抵抗[kΩ・cm]を求める。
R=V×S×(1/Af−1/Ai)・・・式(1)
式中、R:塗膜抵抗(kΩ・cm
V :極間電圧(V)
Ai:初期電流値(A)
Af:最終電流値(A)
S :被塗面積(cm
[Film resistance]
The back surface of the article to be coated with zirconium conversion coating is masked with gum tape or the like. The electrode plate / coating object ratio is set to 1/4 and the distance between the electrodes is set to 150 mm, and the object to be coated is completely immersed in the cationic electrodeposition coating composition. Coating is performed in units of 1 second with a load voltage of 30 V under stirring, and the coating film resistance [kΩ · cm 2 ] when the coating film reaches a predetermined thickness (3 μm and 6 μm) is obtained from the equation (1).
R = V × S × (1 / Af−1 / Ai) (1)
In the formula, R: coating film resistance (kΩ · cm 2 )
V: Voltage between electrodes (V)
Ai: Initial current value (A)
Af: Final current value (A)
S: Area to be coated (cm 2 )

表10から明らかな通り、実施例1〜9はいずれも、膜厚3μmでの塗膜抵抗が18〜182kΩ・cmの範囲であり、膜厚6μmでの塗膜抵抗が52〜395kΩ・cmの範囲であり、いずれも本発明の範囲内である。これに対して、比較例1〜4はいずれも、膜厚3μm及び6μmでの塗膜抵抗の少なくとも一方が本発明の範囲外である。 As is apparent from Table 10, Examples 1 to 9 all have a coating film resistance in the range of 18 to 182 kΩ · cm 2 at a film thickness of 3 μm, and a coating film resistance at a film thickness of 6 μm from 52 to 395 kΩ · cm. 2 and both are within the scope of the present invention. On the other hand, in any of Comparative Examples 1 to 4, at least one of the coating film resistances at a film thickness of 3 μm and 6 μm is outside the scope of the present invention.

次に、実施例1〜9及び比較例1〜4のカチオン電着塗料組成物を使用して、以下の手順でつきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性(亜鉛系金属基材のみ)を評価し、その結果を表11に示した。   Next, using the cationic electrodeposition coating compositions of Examples 1 to 9 and Comparative Examples 1 to 4, the throwing power, the smoothness of the coating film, the film thickness retention, and the gas pinhole resistance are as follows. The properties (only the zinc-based metal substrate) were evaluated, and the results are shown in Table 11.

[つきまわり性]
つきまわり性は、4枚ボックス法により評価した。即ち、図1に示すように、パネル底部から50mm、両側から35mmの位置に8mm径の貫通穴が設けてあるパネル(a)と、穴のないパネル(b)に、ジルコニウム化成皮膜処理を施した被塗物を用いて、図2、図3に示すように、組み合わせ(対極面側から順に、A面、B面、C面・・・非対極面側をH面と称する)、4枚を立てた状態で間隔20mmの平行に配置し、両側面及び底部を粘着テープ等の絶縁体で密閉したボックスを用いる。このボックスを図4に示すように各実施例または比較例のカチオン電着塗料組成物を入れたカチオン電着塗装容器に浸漬し、各貫通穴からのみカチオン電着塗料組成物がボックス内に侵入するようにする。次に各被塗物を電気的に接続し、最も対極に近い被塗物(A面)と対極との距離が150mmになるように配置する。このボックスを陰極とし、対極を陽極として電圧を印加し、カチオン電着塗装を行なった。通電方法は5〜30秒で所定の電圧まで昇圧する方法(ソフトスタート)でも、通常の通電でも良いが、今回はドカン通電を採用した。塗装後、ボックスを分解して各被塗物を水洗し、170℃で20分間焼付けし、A面からH面までの膜厚を測定する。A面膜厚(単位μm)に対するG面膜厚(単位μm)の割合(G/A)により、つきまわり性を評価し、この値が大きいほどつきまわり性が良いと評価できる。
浸漬深さ:9cm、負荷電圧:200V
評価基準
○:G/Aが55%以上
△:G/Aが35%以上55%未満
×:G/Aが35%未満
[Throwing power]
The throwing power was evaluated by the four-box method. That is, as shown in FIG. 1, zirconium conversion coating treatment was applied to a panel (a) having an 8 mm diameter through hole at a position 50 mm from the bottom of the panel and 35 mm from both sides and a panel (b) having no hole. As shown in FIGS. 2 and 3, a combination (in order from the counter electrode surface side, A surface, B surface, C surface... Non-counter electrode surface side is referred to as H surface), 4 sheets A box is used which is arranged in parallel with an interval of 20 mm with both sides and bottoms sealed with an insulator such as an adhesive tape. As shown in FIG. 4, the box is immersed in a cationic electrodeposition coating container containing the cationic electrodeposition coating composition of each example or comparative example, and the cationic electrodeposition coating composition enters the box only from each through hole. To do. Next, each of the objects to be coated is electrically connected and arranged so that the distance between the object to be coated (surface A) closest to the counter electrode and the counter electrode is 150 mm. Cathode electrodeposition coating was performed by applying a voltage with the box as a cathode and the counter electrode as an anode. The energization method may be a method of boosting to a predetermined voltage in 5 to 30 seconds (soft start) or normal energization, but this time, docan energization was adopted. After painting, the box is disassembled, each article to be coated is washed with water, baked at 170 ° C. for 20 minutes, and the film thickness from the A side to the H side is measured. The throwing power is evaluated based on the ratio (G / A) of the G-face film thickness (unit μm) to the A-face film thickness (unit μm), and the larger the value, the better the throwing power.
Immersion depth: 9 cm, load voltage: 200 V
Evaluation criteria ○: G / A is 55% or more Δ: G / A is 35% or more and less than 55% ×: G / A is less than 35%

[塗膜の平滑性]
焼付後の硬化塗膜の膜厚が20μmとなる塗装電圧で、ジルコニウム化成皮膜処理を施した被塗物をカチオン電着塗装する。水洗した後、170℃で20分間焼付し、硬化塗膜を得る。得られた塗膜について、株式会社ミツトヨ製の表面粗度計SJ−301を用いて、塗膜の平滑性(Ra)を測定する。
測定条件
カットオフ:2.5mm
送り速さ:0.5mm/秒
評価基準
○:Raが0.25以下
△:Raが0.25超0.31未満
×:Raが0.31以上
[Smoothness of coating film]
Cathodic electrodeposition coating is performed on the article subjected to the zirconium conversion coating treatment at a coating voltage at which the film thickness of the cured coating film after baking is 20 μm. After washing with water, baking is performed at 170 ° C. for 20 minutes to obtain a cured coating film. About the obtained coating film, the smoothness (Ra) of a coating film is measured using the surface roughness meter SJ-301 by Mitutoyo Corporation.
Measurement conditions Cut-off: 2.5mm
Feeding speed: 0.5 mm / sec Evaluation criteria ○: Ra is 0.25 or less Δ: Ra is more than 0.25 and less than 0.31 ×: Ra is 0.31 or more

[膜厚保持性]
ジルコニウム化成皮膜処理を施した被塗物を用いて、負荷電圧200V、通電時間3分(30秒スロー昇圧)の条件でカチオン電着塗装させるときに、30℃でエージングさせたカチオン電着塗料組成物について、建浴後1日目の膜厚に対する経時7日目の膜厚保持率を評価する。
評価基準
○:膜厚保持率85%以上
△:膜厚保持率70%超85%未満
×:膜厚保持率70%以下
[Thickness retention]
A cationic electrodeposition coating composition aged at 30 ° C. when a cationic electrodeposition coating is performed on a substrate subjected to a zirconium conversion coating treatment under conditions of a load voltage of 200 V and an energization time of 3 minutes (30 seconds slow pressure increase). About a thing, the film thickness retention on the 7th day with respect to the film thickness on the 1st day after a bathing is evaluated.
Evaluation criteria ○: Film thickness retention 85% or more Δ: Film thickness retention 70% or more and less than 85% ×: Film thickness retention 70% or less

[耐ガスピンホール性]
負荷電圧230V、通電時間3分(30秒スロー昇圧)で、ジルコニウム化成皮膜処理を施した亜鉛系めっき鋼板(GA)をカチオン電着塗装し、水洗した後、170℃で20分間焼付し、硬化塗膜を得る。得られた塗膜について、発生するガスピンホール数を評価する。なお、耐ガスピンホール性は、亜鉛系金属基材に特有の現象であるため、鉄系、アルミ系金属基材に対しては評価を行なわなかった。
評価基準
○:塗膜にガスピンホールが発生しない
△:塗膜のガスピンホール数が1〜20個
×:塗膜のガスピンホール数が21個以上
[Gas pinhole resistance]
Zinc-based plated steel sheet (GA) that has been subjected to zirconium conversion coating treatment with a load voltage of 230V and an energization time of 3 minutes (30 seconds slow pressure increase) is subjected to cationic electrodeposition coating, washed with water, and baked at 170 ° C for 20 minutes to cure. A coating film is obtained. About the obtained coating film, the number of generated gas pinholes is evaluated. In addition, since gas pinhole resistance is a phenomenon peculiar to a zinc-type metal base material, it did not evaluate with respect to an iron-type and aluminum-type metal base material.
Evaluation criteria ○: Gas pinholes do not occur in the coating film Δ: Number of gas pinholes in the coating film is 1 to 20 ×: Number of gas pinholes in the coating film is 21 or more

表11から明らかな通り、膜厚3μm及び6μmでの塗膜抵抗がいずれも本発明の範囲内である実施例1〜9は、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性の全ての性能に優れていた。これに対して、膜厚3μm及び6μmでの塗膜抵抗の少なくとも一方が本発明の範囲外である比較例1〜4は、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性のうちの少なくとも一つの性能に劣っていた。   As is apparent from Table 11, Examples 1 to 9 in which the coating film resistances at the film thicknesses of 3 μm and 6 μm are all within the scope of the present invention include throwing power, smoothness of the coating film, film thickness retention, and Excellent performance in gas pinhole resistance. On the other hand, Comparative Examples 1 to 4 in which at least one of the coating film resistances at the film thicknesses of 3 μm and 6 μm is outside the scope of the present invention, the throwing power, the smoothness of the coating film, the film thickness retention, and the resistance The performance of at least one of the gas pinhole properties was inferior.

本発明の方法は、カチオン電着工程の極めて初期における塗料の塗膜抵抗を特定の範囲に制御したカチオン電着塗料組成物を使用しているので、ジルコニウム化成皮膜処理を施した被塗物に対して、つきまわり性、塗膜の平滑性、膜厚保持性、及び耐ガスピンホール性を高いレベルで維持することができ、極めて有用である。   Since the method of the present invention uses a cationic electrodeposition coating composition in which the coating film resistance of the coating material in the very early stage of the cationic electrodeposition process is controlled within a specific range, On the other hand, the throwing power, the smoothness of the coating film, the film thickness retention and the gas pinhole resistance can be maintained at a high level, which is extremely useful.

Claims (4)

ジルコニウム化成皮膜処理を施した被塗物にカチオン電着塗料組成物を塗装する方法において、アミン変性エポキシ樹脂(A)及びブロックイソシアネート硬化剤樹脂(B)を構成成分として含み、かつ被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)が10〜200kΩ・cmであり、かつ、6μmに達したときの塗膜抵抗(R6)が40〜400kΩ・cmであることを満たすカチオン電着塗料組成物を使用して塗装することを特徴とする方法。 In a method of applying a cationic electrodeposition coating composition to an article subjected to a zirconium conversion coating treatment, an amine-modified epoxy resin (A) and a blocked isocyanate curing agent resin (B) are included as constituents, and the article is coated On the other hand, when the film thickness after baking of the coating film obtained by uniform coating reaches 3 μm, the coating film resistance (R3) is 10 to 200 kΩ · cm 2 and the coating film when it reaches 6 μm. A method comprising applying a cationic electrodeposition coating composition satisfying a resistance (R6) of 40 to 400 kΩ · cm 2 . 以下の式によって算出される、カチオン電着塗料組成物を被塗物に対して均一に塗装して得られる塗膜の焼付後の膜厚が3μmに達したときの塗膜抵抗(R3)から6μmに達したときの塗膜抵抗(R6)の増加率が50〜700%/μmであることを特徴とする請求項1に記載の方法。
増加率(%/μm)=((R6)/(R3))×100/3
From the coating film resistance (R3) when the film thickness after baking of the coating film obtained by uniformly coating the object to be coated with the cationic electrodeposition coating composition calculated by the following formula reaches 3 μm. The method according to claim 1, wherein an increase rate of the coating film resistance (R6) when reaching 6 μm is 50 to 700% / μm.
Increase rate (% / μm) = ((R6) / (R3)) × 100/3
カチオン電着塗料組成物が、顔料ペーストをさらに含むことを特徴とする、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the cationic electrodeposition coating composition further comprises a pigment paste. 被塗物が、鉄系金属基材、アルミニウム系金属基材、又は亜鉛系金属基材であることを特徴とする、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the object to be coated is an iron-based metal substrate, an aluminum-based metal substrate, or a zinc-based metal substrate.
JP2016095545A 2016-05-11 2016-05-11 Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment Active JP6718301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095545A JP6718301B2 (en) 2016-05-11 2016-05-11 Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095545A JP6718301B2 (en) 2016-05-11 2016-05-11 Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment

Publications (2)

Publication Number Publication Date
JP2017203189A true JP2017203189A (en) 2017-11-16
JP6718301B2 JP6718301B2 (en) 2020-07-08

Family

ID=60321404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095545A Active JP6718301B2 (en) 2016-05-11 2016-05-11 Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment

Country Status (1)

Country Link
JP (1) JP6718301B2 (en)

Also Published As

Publication number Publication date
JP6718301B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US8951398B2 (en) Cationic electrodeposition coating composition
US11905610B2 (en) Method of improving the corrosion resistance of a metal substrate
JP6288846B2 (en) How to apply cationic electrodeposition paint
JP2009046628A (en) Cationic electro deposition coating composition
JP5933088B1 (en) Method for applying a cationic electrodeposition coating composition to a substrate
CN107109105B (en) Thermosetting coating compositions
WO2017051901A1 (en) Method for preparing cationic electrodeposition coating composition
JP5558653B2 (en) Cationic electrodeposition coating composition
US6440286B1 (en) Method for forming double-layer coatings, method for forming multilayer coatings, and multilayer coatings
JP6718301B2 (en) Method for applying a cationic electrodeposition coating composition to an article to be coated having a zirconium conversion coating treatment
JP7161335B2 (en) Coating method of cationic electrodeposition paint
JP6288845B2 (en) How to apply cationic electrodeposition paint
JP6615552B2 (en) Cationic electrodeposition coating composition
JP7429332B2 (en) Cationic electrodeposition coating composition, electrodeposition coating, and method for producing electrodeposition coating
JP2009221408A (en) Cationic electrodeposition coating composition
JP2011202047A (en) Cationic electrocoating composition
JP2024016478A (en) Cationic electrodeposition coating composition, cationic electrodeposition coating film and coating method
JP2012057034A (en) Cationic electrodeposition paint composition
JP2000007958A (en) Electrodeposition coating composition
US20220411647A1 (en) Electrodeposition Coating Material Containing Organic Polyhydroxy-Functional Anticorrosion Agents
JP2010248332A (en) Cationic electrocoating composition
JP2002309179A (en) Cationic electrodeposition paint for forming patterned paint film
JP2012057035A (en) Coating method of cationic electrodeposition paint composition
JP2004307773A (en) Cationic electrodeposition coating composition
JP2010247048A (en) Method of coating cationic electrodeposition coating material composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250