JP2017202463A - Method for producing oxygen reduction catalyst - Google Patents

Method for producing oxygen reduction catalyst Download PDF

Info

Publication number
JP2017202463A
JP2017202463A JP2016096213A JP2016096213A JP2017202463A JP 2017202463 A JP2017202463 A JP 2017202463A JP 2016096213 A JP2016096213 A JP 2016096213A JP 2016096213 A JP2016096213 A JP 2016096213A JP 2017202463 A JP2017202463 A JP 2017202463A
Authority
JP
Japan
Prior art keywords
oxygen reduction
reduction catalyst
titanium oxide
producing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016096213A
Other languages
Japanese (ja)
Other versions
JP6634340B2 (en
Inventor
建燦 李
Kensan Ri
建燦 李
禎則 大和
Sadanori Yamato
禎則 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016096213A priority Critical patent/JP6634340B2/en
Publication of JP2017202463A publication Critical patent/JP2017202463A/en
Application granted granted Critical
Publication of JP6634340B2 publication Critical patent/JP6634340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide method for producing an oxygen reduction catalyst containing titanium oxide which is industrially advantageous and inexpensive.SOLUTION: The present invention provides a method for producing an oxygen reduction catalyst containing titanium oxide, the method including a mixture step (a) for dry-mixing titanium oxide and phthalocyanine, and a step (b) for burning a mixture obtained by the mixture step (a) in a gas atmosphere 700-1100°C.SELECTED DRAWING: None

Description

本発明は、チタン酸化物を含む酸素還元触媒の製造方法に関する。   The present invention relates to a method for producing an oxygen reduction catalyst containing titanium oxide.

チタン酸化物は、光触媒や酸化還元反応にかかわる触媒として用いられている。中でも、チタン酸化物触媒の酸素還元触媒能を利用して、燃料電池の電極触媒とすることもできることが知られている。   Titanium oxide is used as a catalyst for photocatalysts and oxidation-reduction reactions. Among them, it is known that the oxygen reduction catalytic ability of a titanium oxide catalyst can be used as a fuel cell electrode catalyst.

特許文献1では、窒素含有有機物とチタン化合物を溶媒に混合し、高い酸素還元触媒能を有するチタン酸化物触媒の製造方法が報告されている。また、非特許文献1には、前駆体としてオキシチタニウムフタロシアニンとカーボンブラック及びサリチル酸を溶媒に混合して、高い酸素還元触媒能を持つチタン酸化物触媒を製造する方法が報告されている。   Patent Document 1 reports a method for producing a titanium oxide catalyst having a high oxygen reduction catalytic ability by mixing a nitrogen-containing organic substance and a titanium compound in a solvent. Non-Patent Document 1 reports a method for producing a titanium oxide catalyst having high oxygen reduction catalytic ability by mixing oxytitanium phthalocyanine, carbon black and salicylic acid as a precursor in a solvent.

しかし、これらの製造方法は、溶媒を使用することで、得られた混合物を乾燥し、焼成など製造工程が複雑である。また、高価なフタロシアニン錯体原料を使うことで触媒の製造コストも高くなり、工業的な触媒製造方法としては好ましくない。   However, these production methods use a solvent, and thus the obtained mixture is dried and the production process such as firing is complicated. Further, the use of an expensive phthalocyanine complex raw material increases the production cost of the catalyst, which is not preferable as an industrial catalyst production method.

特許第5819280号公報Japanese Patent No. 5819280

燃料電池 Vol.12 No.4 (2013)130Fuel cell Vol. 12 No. 4 (2013) 130

本発明は、工業的に有利で安価なチタン酸化物を含む酸素還元触媒の製造方法を提供する。   The present invention provides an industrially advantageous and inexpensive method for producing an oxygen reduction catalyst containing titanium oxide.

本発明は以下の[1]〜[9]を含む。
[1] チタン酸化物を含む酸素還元触媒の製造方法であって、
原料チタン酸化物とフタロシアニンとを乾式混合する混合工程(a)と、
前記混合工程(a)で得られた混合物をガス雰囲気下で700〜1100℃で焼成する工程(b)とを含むことを特徴とする酸素還元触媒の製造方法。
[2] 前記原料チタン酸化物は、二酸化チタン、還元型酸化チタン、ドープ型二酸化チタン及びチタン水酸化物からなる群から選ばれる少なくとも1種である前項[1]に記載の酸素還元触媒の製造方法。
[3] 前記原料チタン酸化物が、前記混合工程(a)の前に、カーボン及び/またはチタン酸化物以外の金属酸化物と混合されている前項[1]または[2]に記載の酸素還元触媒の製造方法。以下、「チタン酸化物以外の金属酸化物」を単に「金属酸化物」という。
[4] 前記カーボンが、カーボンブラック、活性炭、グラファイト化カーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー及びグラフェンからなる群から選ばれる少なくとも1種である前項[3]に記載の酸素還元触媒の製造方法。
[5] 前記金属酸化物が、ドープ型二酸化スズである前項[3]または[4]に記載の酸素還元触媒の製造方法。
[6] 前記ガス雰囲気が、窒素ガス及び/またはアルゴンガス雰囲気である前項[1]〜[5]のいずれかに記載の酸素還元触媒の製造方法。
[7] 前記ガス雰囲気は、酸素ガス濃度が0.5体積%以下である前項[6]に記載の酸素還元触媒の製造方法。
[8] 前記ガス雰囲気は、水素ガス濃度が10体積%以下のである前項[6]または[7]に記載の酸素還元触媒の製造方法。
[9] 電極触媒として酸素還元触媒を備える燃料電池の製造方法であって、
前記酸素還元触媒を前項[1]〜[8]のいずれかの方法で得ることを特徴とする燃料電池の製造方法。
The present invention includes the following [1] to [9].
[1] A method for producing an oxygen reduction catalyst containing titanium oxide,
A mixing step (a) of dry mixing raw material titanium oxide and phthalocyanine;
And (b) calcining the mixture obtained in the mixing step (a) at 700 to 1100 ° C. in a gas atmosphere.
[2] The production of the oxygen reduction catalyst according to [1], wherein the raw material titanium oxide is at least one selected from the group consisting of titanium dioxide, reduced titanium oxide, doped titanium dioxide, and titanium hydroxide. Method.
[3] The oxygen reduction according to item [1] or [2], wherein the raw material titanium oxide is mixed with carbon and / or a metal oxide other than titanium oxide before the mixing step (a). A method for producing a catalyst. Hereinafter, “metal oxide other than titanium oxide” is simply referred to as “metal oxide”.
[4] The production of the oxygen reduction catalyst according to [3], wherein the carbon is at least one selected from the group consisting of carbon black, activated carbon, graphitized carbon black, graphite, carbon nanotube, carbon nanofiber, and graphene. Method.
[5] The method for producing an oxygen reduction catalyst according to [3] or [4] above, wherein the metal oxide is doped tin dioxide.
[6] The method for producing an oxygen reduction catalyst according to any one of [1] to [5], wherein the gas atmosphere is a nitrogen gas and / or argon gas atmosphere.
[7] The method for producing an oxygen reduction catalyst according to [6], wherein the gas atmosphere has an oxygen gas concentration of 0.5% by volume or less.
[8] The method for producing an oxygen reduction catalyst according to [6] or [7] above, wherein the gas atmosphere has a hydrogen gas concentration of 10% by volume or less.
[9] A method for producing a fuel cell comprising an oxygen reduction catalyst as an electrode catalyst,
A method for producing a fuel cell, wherein the oxygen reduction catalyst is obtained by any one of the methods [1] to [8].

本発明により、溶媒を使わずに安価なフタロシアニンとチタン酸化物を混合することで、チタン酸化物を含む酸素還元触媒を製造することができる。   According to the present invention, an oxygen reduction catalyst containing titanium oxide can be produced by mixing inexpensive phthalocyanine and titanium oxide without using a solvent.

図1は、実施例1で得られた電流―電位曲線(1)を示す。FIG. 1 shows a current-potential curve (1) obtained in Example 1. 図2は、実施例2で得られた電流―電位曲線(2)を示す。FIG. 2 shows a current-potential curve (2) obtained in Example 2. 図3は、実施例3で得られた電流―電位曲線(3)を示す。FIG. 3 shows the current-potential curve (3) obtained in Example 3. 図4は、実施例4で得られた電流―電位曲線(4)を示す。FIG. 4 shows a current-potential curve (4) obtained in Example 4. 図5は、実施例5で得られた電流―電位曲線(5)を示す。FIG. 5 shows a current-potential curve (5) obtained in Example 5. 図6は、比較例1で得られた電流―電位曲線(6)を示す。FIG. 6 shows a current-potential curve (6) obtained in Comparative Example 1. 図7は、比較例2で得られた電流―電位曲線(7)を示す。FIG. 7 shows a current-potential curve (7) obtained in Comparative Example 2. 図8は、比較例3で得られた電流―電位曲線(8)を示す。FIG. 8 shows a current-potential curve (8) obtained in Comparative Example 3.

本発明の酸素還元触媒の製造方法は、原料チタン酸化物とフタロシアニンとを乾式混合する混合工程(a)と、前記混合工程(a)で得られた混合物をガス雰囲気下で700〜1100℃で焼成する工程(b)とを含むことを特徴とする。   The method for producing an oxygen reduction catalyst of the present invention comprises a mixing step (a) in which raw material titanium oxide and phthalocyanine are dry-mixed, and a mixture obtained in the mixing step (a) at 700 to 1100 ° C. in a gas atmosphere. And a step (b) of firing.

(原料:チタン酸化物)
本発明の工程(a)で用いる原料チタン酸化物は、二酸化チタン、還元型酸化チタン、ドープ型二酸化チタン及びチタン水酸化物からなる群から選ばれる少なくとも1種であることが好ましく、特に反応性と安定性の観点から、二酸化チタンまたは水酸化チタンがより好ましい。なお、これらのチタン酸化物は1種単独でもよく、2種以上併用してもよい。
(Raw material: Titanium oxide)
The raw material titanium oxide used in the step (a) of the present invention is preferably at least one selected from the group consisting of titanium dioxide, reduced titanium oxide, doped titanium dioxide and titanium hydroxide, and is particularly reactive. From the viewpoint of stability, titanium dioxide or titanium hydroxide is more preferable. These titanium oxides may be used alone or in combination of two or more.

前記二酸化チタンとしては、ルチル型二酸化チタン、アナターゼ型二酸化チタン、ブルッカイト型二酸化チタンが好ましい。反応性と安定性の観点からは、アナターゼ型二酸化チタンまたはブルッカイト型二酸化チタンがより好ましい。なお、これらの二酸化チタンは1種単独でもよく、2種以上併用してもよい。   As the titanium dioxide, rutile type titanium dioxide, anatase type titanium dioxide and brookite type titanium dioxide are preferable. From the viewpoint of reactivity and stability, anatase type titanium dioxide or brookite type titanium dioxide is more preferable. These titanium dioxides may be used alone or in combination of two or more.

前記還元型酸化チタンとしては、Ti、Ti,Ti、Tiなどが挙げられる。触媒の活性と耐久性の観点からはTi、Ti、Tiが好ましく、Tiがより好ましい。なお、これらの還元型酸化チタンは1種単独でもよく、2種以上併用してもよい。 Examples of the reduced titanium oxide include Ti 2 O 3 , Ti 3 O 5 , Ti 4 O 7 , and Ti 5 O 9 . From the viewpoint of the activity and durability of the catalyst, Ti 2 O 3 , Ti 3 O 5 and Ti 4 O 7 are preferable, and Ti 4 O 7 is more preferable. These reduced titanium oxides may be used alone or in combination of two or more.

前記ドープ型二酸化チタンとしては、特に限定はないが、触媒の導電性向上の観点からニオブドープ二酸化チタン(Nb−TiO)またはタンタルドープ二酸化チタン(Ta−TiO)が好ましく、ニオブドープ二酸化チタンがより好ましい。なお、これらのドープ型チタン酸化物は1種単独でもよく、2種以上併用してもよい。 The doped titanium dioxide is not particularly limited, but niobium doped titanium dioxide (Nb—TiO 2 ) or tantalum doped titanium dioxide (Ta—TiO 2 ) is preferable from the viewpoint of improving the conductivity of the catalyst, and niobium doped titanium dioxide is more preferable. preferable. These doped titanium oxides may be used alone or in combination of two or more.

前記原料チタン酸化物は、焼成反応性や触媒活性の観点から前記混合工程(a)の前に、カーボン及び/または金属酸化物と混合されていることが好ましく、カーボン及び/または金属酸化物に担持されていることがより好ましいく、チタン酸化物担持カーボンであることがさらにより好ましい。   The raw material titanium oxide is preferably mixed with carbon and / or metal oxide before the mixing step (a) from the viewpoint of firing reactivity and catalytic activity. It is more preferable that it is supported, and even more preferable is titanium oxide-supported carbon.

前記チタン酸化物とカーボン及び/またはチタン酸化物以外の金属酸化物との混合は、混合方法や混合状態に特に制限はなく、例えば、両者の粒子同士を混合することなどの物理的混合でもよく、カーボン及び/または金属酸化物に担持させるなどの化学的混合でも良い。   The mixing of the titanium oxide and the metal oxide other than carbon and / or titanium oxide is not particularly limited in the mixing method and the mixed state, and may be physical mixing such as mixing both particles. Further, chemical mixing such as loading on carbon and / or metal oxide may be used.

前記チタン酸化物は、反応性と触媒活性を高める観点から、体積換算基準の累計50%粒子径(以下単に「平均粒子径」と言うことがある。)が、1〜100nmを有することが好ましく、1〜50nmであることがより好ましく、1〜10nmであることが特に好ましい。   From the viewpoint of enhancing reactivity and catalytic activity, the titanium oxide preferably has a cumulative 50% particle size on a volume conversion basis (hereinafter sometimes simply referred to as “average particle size”) of 1 to 100 nm. 1 to 50 nm is more preferable, and 1 to 10 nm is particularly preferable.

前記カーボンは、例えば、カーボンブラック、活性炭、グラファイト化カーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー及びグラフェンからなる群から選ばれる少なくとも1種が挙げられ、活性を高める観点から、カーボンブラック、グラファイト化カーボンブラック及びカーボンナノチューブが好ましく、カーボンブラックがさらに好ましい。なお、これらのカーボンは1種単独でもよく、2種以上併用してもよい。   Examples of the carbon include at least one selected from the group consisting of carbon black, activated carbon, graphitized carbon black, graphite, carbon nanotube, carbon nanofiber, and graphene. From the viewpoint of increasing activity, carbon black, graphitized Carbon black and carbon nanotubes are preferred, and carbon black is more preferred. These carbons may be used alone or in combination of two or more.

前記カーボンブラックは、触媒活性の観点からはBET比表面積が100〜2500m/gが好ましく、200〜1500m/gがより好ましく、500〜1500m/gが特に好ましい。 The carbon black, BET specific surface area from the viewpoint of catalytic activity preferably 100~2500m 2 / g, more preferably 200~1500m 2 / g, 500~1500m 2 / g is particularly preferred.

前記金属酸化物は、特に限定はないが、触媒の導電性向上の観点からドープ型二酸化スズが好ましい。前記ドープ型二酸化スズとしては、特に限定はないが、触媒の導電性向上の観点からニオブドープ二酸化スズ(Nb−SnO)、タンタルドープ二酸化スズ(Ta−SnO)、アンチモンドープ二酸化スズ(Sb−SnO)が好ましく、ニオブドープ二酸化スズ、アンチモンドープ二酸化スズがより好ましい。 The metal oxide is not particularly limited, but doped tin dioxide is preferable from the viewpoint of improving the conductivity of the catalyst. The doped tin dioxide is not particularly limited, but niobium doped tin dioxide (Nb—SnO 2 ), tantalum doped tin dioxide (Ta—SnO 2 ), antimony doped tin dioxide (Sb—) from the viewpoint of improving the conductivity of the catalyst. SnO 2 ) is preferable, and niobium-doped tin dioxide and antimony-doped tin dioxide are more preferable.

(原料:フタロシアニン)
本発明の工程(a)で用いるフタロシアニンは、混合工程のコスト削減や工程の簡素化のためには、粉末状であることが好ましい。
(Raw material: phthalocyanine)
The phthalocyanine used in the step (a) of the present invention is preferably in the form of a powder for cost reduction of the mixing step and simplification of the step.

(混合工程(a))
混合工程(a)でのチタン酸化物とフタロシアニンとの混合方法は、乾式、即ち溶媒を用いない方式であれば特に制限はなく、例えば、ボールミル、ロール転動ミル、ビーズミル、媒体攪拌ミル、気流粉砕機、乳鉢、自動混練乳鉢あるいはジェットミルを用いて混合することができ、混合の均一性とコスト的な観点からはボールミル、ビーズミル、自動混練乳鉢が好ましく、ボールミルまたは自動混練乳鉢がより好ましい。また、混合時間としては、通常1分〜10時間程度で十分である。
(Mixing step (a))
The mixing method of the titanium oxide and phthalocyanine in the mixing step (a) is not particularly limited as long as it is dry, that is, a method that does not use a solvent. For example, a ball mill, a roll rolling mill, a bead mill, a medium stirring mill, an air flow They can be mixed using a pulverizer, a mortar, an automatic kneading mortar or a jet mill. From the viewpoint of uniformity of mixing and cost, a ball mill, a bead mill and an automatic kneading mortar are preferable, and a ball mill or an automatic kneading mortar is more preferable. In addition, the mixing time is usually about 1 minute to 10 hours.

(焼成工程(b))
焼成工程(b)では、前記混合工程(a)で得られた混合物をガス雰囲気下で焼成を行い、チタン酸化物を含む酸素還元触媒を得る。
(Firing step (b))
In the firing step (b), the mixture obtained in the mixing step (a) is fired in a gas atmosphere to obtain an oxygen reduction catalyst containing titanium oxide.

前記ガス雰囲気としては、窒素ガス及び/またはアルゴンガス雰囲気であることが好ましく、さらに、水素ガス及び/または酸素ガスを含むことがより好ましい。前記水素ガスの濃度は10体積%以下であることがより好ましく、コストと焼成反応性の観点からは4体積%以下がより好ましく、1〜3体積%がさらに好ましい。また、前記酸素ガスの濃度は0.5体積%以下であることが好ましく、焼成反応性と触媒活性向上の観点から0.1体積%以下がより好ましい。前記ガス雰囲気に水素ガス及び/または酸素ガスを含ませることで、チタン酸化物の触媒活性点形成がより容易になり、反応面積を大きくすることができる。   The gas atmosphere is preferably nitrogen gas and / or argon gas atmosphere, and more preferably includes hydrogen gas and / or oxygen gas. The concentration of the hydrogen gas is more preferably 10% by volume or less, more preferably 4% by volume or less, and further preferably 1 to 3% by volume from the viewpoint of cost and firing reactivity. Further, the concentration of the oxygen gas is preferably 0.5% by volume or less, and more preferably 0.1% by volume or less from the viewpoint of improving the firing reactivity and catalytic activity. By containing hydrogen gas and / or oxygen gas in the gas atmosphere, formation of catalytic active sites of titanium oxide becomes easier and the reaction area can be increased.

前記焼成の温度は、700〜1100℃であり、好ましくは800〜1000℃であり、より好ましくは800〜1000℃である。焼成処理温度が前記温度範囲よりも高いと、得られる酸素還元触媒の粒子相互間においての焼結、粒子成長が起こり、結晶構造の変化や触媒の比表面積が小さくなるために、触媒性能が劣る場合がある。一方、焼成温度が上記温度範囲よりも低いと、高い触媒活性を有する酸素還元触媒を得ることが困難になる。   The calcination temperature is 700 to 1100 ° C, preferably 800 to 1000 ° C, and more preferably 800 to 1000 ° C. When the calcination temperature is higher than the above temperature range, sintering and particle growth occur between the particles of the obtained oxygen reduction catalyst, and the crystal structure changes and the specific surface area of the catalyst becomes small, resulting in poor catalyst performance. There is a case. On the other hand, when the calcination temperature is lower than the above temperature range, it is difficult to obtain an oxygen reduction catalyst having high catalytic activity.

前記焼成の時間は、好ましくは10分〜5時間であり、より好ましくは1時間〜3時間である。焼成時間が前記範囲内であれば、得られる酸素還元触媒の粒子相互間においての焼結、粒子成長が起こりにくく、また、結晶構造の変化や触媒の比表面積が小さくなりにくく、触媒性能を高く保てる。   The firing time is preferably 10 minutes to 5 hours, more preferably 1 hour to 3 hours. If the firing time is within the above range, sintering and particle growth between the particles of the resulting oxygen reduction catalyst are difficult to occur, and the change in crystal structure and the specific surface area of the catalyst are unlikely to be reduced, resulting in high catalyst performance. I can keep it.

(用途)
本発明の方法で得られた酸素還元触媒は、燃料電池等の電極触媒として用いることができる。前記電極触媒を有する電極(アノード及び/又はカソード)の作製は、例えば、前記酸素還元触媒をインクに加工し、前記インクを電極基体に塗布するなどし、前記電極基体表面に酸素還元触媒を含む触媒層を形成することにより、前記電極触媒を備える電極を得ることができる。
(Use)
The oxygen reduction catalyst obtained by the method of the present invention can be used as an electrode catalyst for a fuel cell or the like. The production of the electrode (anode and / or cathode) having the electrode catalyst includes, for example, processing the oxygen reduction catalyst into ink, applying the ink to the electrode substrate, and the like, and including the oxygen reduction catalyst on the surface of the electrode substrate. By forming the catalyst layer, an electrode including the electrode catalyst can be obtained.

前記電極を、カソード及び/又はアノードとして用い、前記カソードとアノードとの間に高分子電解質膜を配置し膜電極接合体を形成することができる。さらに、前記膜電極接合体を備える燃料電池を得ることができる。   The electrode can be used as a cathode and / or an anode, and a polymer electrolyte membrane can be disposed between the cathode and the anode to form a membrane electrode assembly. Furthermore, a fuel cell provided with the said membrane electrode assembly can be obtained.

[実施例1]
(1)原料チタン酸化物
ケッチェンブラック(EC600、ライオン社製)1gを2−プロパノール150mL及びイオン交換水150mLの混合溶液に入れ、ホモジナイザー(UP400S、ヒールッシャ−社製)で20分間分散させた。得られた分散液に、ブルッカイト型二酸化チタン10質量%含有スラリー(NTB(登録商標)−200、昭和電工社製)を10g入れ、溶液のpHが3になるように0.5M硫酸水溶液で調整し、ホモジナイザーで20分間分散させた。得られ分散液を吸引ろ過し、乾燥機で乾燥することで、原料チタン酸化物として二酸化チタン担持カーボン(以下、「チタン酸化物(1)」という。)を2.0gを得た。
[Example 1]
(1) Raw material titanium oxide 1 g of ketjen black (EC600, manufactured by Lion Corporation) was put into a mixed solution of 150 mL of 2-propanol and 150 mL of ion-exchanged water, and was dispersed for 20 minutes with a homogenizer (UP400S, manufactured by Healerscher). 10 g of a slurry containing 10% by mass of brookite type titanium dioxide (NTB (registered trademark) -200, manufactured by Showa Denko KK) is added to the obtained dispersion, and adjusted with a 0.5 M sulfuric acid aqueous solution so that the pH of the solution is 3. And dispersed with a homogenizer for 20 minutes. The obtained dispersion was subjected to suction filtration and dried with a drier to obtain 2.0 g of titanium dioxide-supporting carbon (hereinafter referred to as “titanium oxide (1)”) as a raw material titanium oxide.

(2)混合工程
チタン酸化物(1)2.0g(Ti:12.5mmol)とフタロシアニン(和光純薬工業社製)1.328g(12.5mmol)を乳鉢で均一に混合し、混合物(1)を得た。
(2) Mixing step Titanium oxide (1) 2.0 g (Ti: 12.5 mmol) and phthalocyanine (Wako Pure Chemical Industries, Ltd.) 1.328 g (12.5 mmol) are uniformly mixed in a mortar to obtain a mixture (1 )

(3)焼成工程
石英管状炉を用いて、混合物(1)を酸素ガス0.05体積%及び水素ガス2体積%含有窒素ガス(ガス流量300mL/分)の雰囲気下で昇温温度10℃/分で900℃まで昇温し、3時間焼成を行うことで、酸素還元触媒(以下、「触媒(1)」という。)を得た。
(3) Firing step Using a quartz tube furnace, the mixture (1) is heated at a temperature of 10 ° C./temperature in an atmosphere of nitrogen gas (gas flow rate 300 mL / min) containing 0.05 vol% oxygen gas and 2 vol% hydrogen gas. The temperature was raised to 900 ° C. in minutes and calcination was performed for 3 hours to obtain an oxygen reduction catalyst (hereinafter referred to as “catalyst (1)”).

(4)電気化学測定
(触媒電極作製)
得られた触媒の酸素還元活性測定は次のように行った。触媒(1)15mg、2−プロパノール1.0mL、イオン交換水1.0mL、及び、5%ナフィオン水溶液(NAFION(登録商標)、和光純薬社製)62μLを混合した溶液に超音波を照射して攪拌し、懸濁した。この混合物20μLをグラッシ―カーボン電極(東海カーボン社製、直径:5.2mm)に塗布し、70℃で1時間乾燥し、触媒活性測定の触媒電極を得た。
(4) Electrochemical measurement (catalyst electrode production)
The oxygen reduction activity of the obtained catalyst was measured as follows. Ultrasonic was applied to a solution in which 15 mg of catalyst (1), 1.0 mL of 2-propanol, 1.0 mL of ion-exchanged water, and 62 μL of 5% Nafion aqueous solution (NAFION (registered trademark), manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. Stirred and suspended. 20 μL of this mixture was applied to a glassy carbon electrode (manufactured by Tokai Carbon Co., Ltd., diameter: 5.2 mm) and dried at 70 ° C. for 1 hour to obtain a catalyst electrode for measuring catalytic activity.

(触媒活性測定)
触媒(1)の酸素還元活性触媒能の電気化学評価は、次のように行った。作製した触媒電極を、酸素雰囲気及び窒素雰囲気で、0.5M硫酸水溶液中、30℃、5mV/秒で電位走査速度を分極し、電流―電位曲線を測定した。また、酸素雰囲気で分極してない状態の自然電位(開回路電位)を得た。その際、同濃度の硫酸水溶液中での可逆水素電極を参照電極とした。
(Catalyst activity measurement)
The electrochemical evaluation of the oxygen reduction activity catalytic ability of the catalyst (1) was performed as follows. The produced catalyst electrode was polarized in a 0.5 M sulfuric acid aqueous solution at 30 ° C. and 5 mV / sec in an oxygen atmosphere and a nitrogen atmosphere, and a current-potential curve was measured. In addition, a natural potential (open circuit potential) that was not polarized in an oxygen atmosphere was obtained. At that time, a reversible hydrogen electrode in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode.

前記酸素ガス雰囲気での電流―電位曲線から窒素ガス雰囲気での電流―電位曲線を引いた電流―電位曲線(1)を図1に示した。また、電流―電位曲線(1)から求めた10μAでの電極電位と酸素ガス雰囲気での自然電位を用いて、触媒(1)の酸素還元触媒能を評価し、表1に示した。なお、触媒(1)だけでなく、後述する実施例及び比較例で得られた触媒(2)〜(8)についても、同様に触媒活性測定を行い、結果を図2〜図8及び表1に示した。   FIG. 1 shows a current-potential curve (1) obtained by subtracting a current-potential curve in a nitrogen gas atmosphere from the current-potential curve in the oxygen gas atmosphere. Further, using the electrode potential at 10 μA obtained from the current-potential curve (1) and the natural potential in an oxygen gas atmosphere, the oxygen reduction catalytic ability of the catalyst (1) was evaluated and shown in Table 1. In addition, not only the catalyst (1) but also the catalysts (2) to (8) obtained in Examples and Comparative Examples described later, the catalytic activity was measured in the same manner, and the results are shown in FIGS. It was shown to.

[実施例2〜3]
実施例1と同様に行い酸素還元触媒(以下、実施例2で得たものを「触媒(2)」、実施例3で得たものを「触媒(3)」という。)を得た。ただし、焼成条件を表1の通りとした。
[Examples 2-3]
An oxygen reduction catalyst (hereinafter referred to as “catalyst (2)” obtained in Example 2 and “catalyst (3)” obtained in Example 3) was obtained in the same manner as in Example 1. However, the firing conditions were as shown in Table 1.

[実施例4]
ブルッカイト型二酸化チタン10質量%含有スラリー(NTB−200、昭和電工製)10gから溶媒を除去し、二酸化チタンのチタン酸化物(2)1.0gを得た。得られたチタン酸化物(2)1.0g(Ti:12.5mmol)とフタロシアニン(和光純薬工業製)1.328g(12.5mmol)とを乳鉢で均一に混合し、混合物(2)を得た。混合物(2)を実施例1と同様に焼成して焼成物を得、得られた焼成物1.0gとケッチェングラック1.0gを乳鉢で混合して、酸素還元触媒(以下、「触媒(4)」という。)を得た。
[Example 4]
The solvent was removed from 10 g of brookite-type titanium dioxide-containing slurry (NTB-200, manufactured by Showa Denko) to obtain 1.0 g of titanium dioxide titanium oxide (2). 1.0 g (Ti: 12.5 mmol) of the obtained titanium oxide (2) and 1.328 g (12.5 mmol) of phthalocyanine (manufactured by Wako Pure Chemical Industries, Ltd.) were uniformly mixed in a mortar, and the mixture (2) was Obtained. The mixture (2) was calcined in the same manner as in Example 1 to obtain a calcined product, and 1.0 g of the obtained calcined product and 1.0 g of ketchung rack were mixed in a mortar to prepare an oxygen reduction catalyst (hereinafter referred to as “catalyst ( 4) ".

[実施例5]
ケッチェンブラック(EC600、ライオン社製)1gを2−プロパノール150mL及びイオン交換水150mLの混合溶液に入れ、ホモジナイザー(UP400S、ヒールッシャ−社製)で20分間分散させた。得られた分散液にチタンテトライソプロポキシド([(CHCHO])Ti、和光純薬社製)3.7mL(Ti:12.5mmol)を滴下し、30分間攪拌後、イオン交換水30mL滴下し、さらに60分間攪拌した。得られた溶液を吸引ろ過し、乾燥機で乾燥することでチタン酸化物担持カーボン(以下、「チタン酸化物(3)」という。)2.0gを得た。
[Example 5]
1 g of ketjen black (EC600, manufactured by Lion Corporation) was placed in a mixed solution of 150 mL of 2-propanol and 150 mL of ion-exchanged water, and was dispersed for 20 minutes with a homogenizer (UP400S, manufactured by Healerscher). 3.7 mL (Ti: 12.5 mmol) of titanium tetraisopropoxide ([(CH 3 ) 2 CHO]) 4 Ti, manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the resulting dispersion, and the mixture was stirred for 30 minutes. 30 mL of exchange water was added dropwise, and the mixture was further stirred for 60 minutes. The obtained solution was subjected to suction filtration and dried with a drier to obtain 2.0 g of titanium oxide-supporting carbon (hereinafter referred to as “titanium oxide (3)”).

実施例1と同様に、チタン酸化物(3)1.0g(Ti:12.5mmol)とフタロシアニン(和光純薬社製)1.328g(12.5mmol)とを乳鉢で均一に混合し、混合物(3)を得た。得られた混合物(3)を実施例1と同様に焼成し、触媒(5)を得た。   As in Example 1, 1.0 g (Ti: 12.5 mmol) of titanium oxide (3) and 1.328 g (12.5 mmol) of phthalocyanine (manufactured by Wako Pure Chemical Industries, Ltd.) were uniformly mixed in a mortar, and the mixture (3) was obtained. The obtained mixture (3) was calcined in the same manner as in Example 1 to obtain a catalyst (5).

[比較例1]
フタロシアニンを添加しなかったことを除き、実施例1と同様に行い、酸素還元触媒(以下、「触媒(6)」という。)を得た。
[Comparative Example 1]
An oxygen reduction catalyst (hereinafter referred to as “catalyst (6)”) was obtained in the same manner as in Example 1 except that phthalocyanine was not added.

[比較例2]
実施例4に記載のチタン酸化物(2)1.0gとケッチェンブラック1.0gとを乳鉢で混合して、チタン酸化物を含む組成物(以下、「触媒(7)」という。)を得た。
[Comparative Example 2]
1.0 g of titanium oxide (2) described in Example 4 and 1.0 g of ketjen black were mixed in a mortar to prepare a composition containing titanium oxide (hereinafter referred to as “catalyst (7)”). Obtained.

[比較例3]
フタロシアニンを添加しなかったことを除き、実施例5と同様に行い、酸素還元触媒(以下、「触媒(8)」という。)を得た。
[Comparative Example 3]
An oxygen reduction catalyst (hereinafter referred to as “catalyst (8)”) was obtained in the same manner as in Example 5 except that phthalocyanine was not added.

Figure 2017202463
Figure 2017202463

表1に示すように、実施例1〜5で得られた触媒(1)〜(5)は酸素還元能を有し、比較例で得られた触媒に比べ高い電極電位と自然電位を示した。   As shown in Table 1, the catalysts (1) to (5) obtained in Examples 1 to 5 had oxygen reducing ability, and showed higher electrode potential and natural potential than the catalysts obtained in Comparative Examples. .

<産業上の利用可能性>
本発明の製造方法により工業的に有利で安価なチタン酸化物を含む酸素還元触媒を提供できるので、例えば、燃料電池自動車用電源、家庭用コージェネレーション電源など多用途に利用できる。

<Industrial applicability>
Since the production method of the present invention can provide an industrially advantageous and inexpensive oxygen reduction catalyst containing titanium oxide, it can be used for various purposes such as a power source for fuel cell automobiles and a household cogeneration power source.

Claims (9)

チタン酸化物を含む酸素還元触媒の製造方法であって、
原料チタン酸化物とフタロシアニンとを乾式混合する混合工程(a)と、
前記混合工程(a)で得られた混合物をガス雰囲気下で700〜1100℃で焼成する工程(b)とを含むことを特徴とする酸素還元触媒の製造方法。
A method for producing an oxygen reduction catalyst containing titanium oxide,
A mixing step (a) of dry mixing raw material titanium oxide and phthalocyanine;
And (b) calcining the mixture obtained in the mixing step (a) at 700 to 1100 ° C. in a gas atmosphere.
前記原料チタン酸化物は、二酸化チタン、還元型酸化チタン、ドープ型二酸化チタン及びチタン水酸化物からなる群から選ばれる少なくとも1種である請求項1に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 1, wherein the raw material titanium oxide is at least one selected from the group consisting of titanium dioxide, reduced titanium oxide, doped titanium dioxide, and titanium hydroxide. 前記原料チタン酸化物が、前記混合工程(a)の前に、カーボン及び/またはチタン酸化物以外の金属酸化物と混合されている請求項1または2に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 1 or 2, wherein the raw material titanium oxide is mixed with a metal oxide other than carbon and / or titanium oxide before the mixing step (a). 前記カーボンが、カーボンブラック、活性炭、グラファイト化カーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー及びグラフェンからなる群から選ばれる少なくとも1種である請求項3に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 3, wherein the carbon is at least one selected from the group consisting of carbon black, activated carbon, graphitized carbon black, graphite, carbon nanotube, carbon nanofiber, and graphene. 前記チタン酸化物以外の金属酸化物が、ドープ型二酸化スズである請求項3または4に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 3 or 4, wherein the metal oxide other than the titanium oxide is doped tin dioxide. 前記ガス雰囲気が、窒素ガス及び/またはアルゴンガス雰囲気である請求項1〜5のいずれかに記載の酸素還元触媒の製造方法。   The said gas atmosphere is nitrogen gas and / or argon gas atmosphere, The manufacturing method of the oxygen reduction catalyst in any one of Claims 1-5. 前記ガス雰囲気は、酸素ガス濃度が0.5体積%以下である請求項6に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 6, wherein the gas atmosphere has an oxygen gas concentration of 0.5% by volume or less. 前記ガス雰囲気は、水素ガス濃度が10体積%以下のである請求項6または7に記載の酸素還元触媒の製造方法。   The method for producing an oxygen reduction catalyst according to claim 6 or 7, wherein the gas atmosphere has a hydrogen gas concentration of 10% by volume or less. 電極触媒として酸素還元触媒を備える燃料電池の製造方法であって、
前記酸素還元触媒を請求項1〜8のいずれかの方法で得ることを特徴とする燃料電池の製造方法。

A method for producing a fuel cell comprising an oxygen reduction catalyst as an electrode catalyst,
A method for producing a fuel cell, wherein the oxygen reduction catalyst is obtained by the method according to claim 1.

JP2016096213A 2016-05-12 2016-05-12 Method for producing oxygen reduction catalyst Expired - Fee Related JP6634340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096213A JP6634340B2 (en) 2016-05-12 2016-05-12 Method for producing oxygen reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096213A JP6634340B2 (en) 2016-05-12 2016-05-12 Method for producing oxygen reduction catalyst

Publications (2)

Publication Number Publication Date
JP2017202463A true JP2017202463A (en) 2017-11-16
JP6634340B2 JP6634340B2 (en) 2020-01-22

Family

ID=60321773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096213A Expired - Fee Related JP6634340B2 (en) 2016-05-12 2016-05-12 Method for producing oxygen reduction catalyst

Country Status (1)

Country Link
JP (1) JP6634340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817992A (en) * 2019-01-12 2019-05-28 袁玲燕 A kind of preparation method of the dedicated redox elctro-catalyst of magnesium air fuel cell
JP2021072263A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP2021072276A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP2021141041A (en) * 2020-03-05 2021-09-16 大日精化工業株式会社 Oxide-based electrode catalyst and polymer electrolyte fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817992A (en) * 2019-01-12 2019-05-28 袁玲燕 A kind of preparation method of the dedicated redox elctro-catalyst of magnesium air fuel cell
JP2021072263A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP2021072276A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP7360129B2 (en) 2019-11-01 2023-10-18 Toppanホールディングス株式会社 Fuel cell catalyst, electrode catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell, method for manufacturing fuel cell catalyst, and method for manufacturing electrode catalyst layer
JP2021141041A (en) * 2020-03-05 2021-09-16 大日精化工業株式会社 Oxide-based electrode catalyst and polymer electrolyte fuel cell
JP7418753B2 (en) 2020-03-05 2024-01-22 大日精化工業株式会社 Oxide-based electrode catalyst and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP6634340B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
Du et al. Pt@ Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition
JP5254975B2 (en) Metal oxide electrode catalyst and use thereof, and method for producing metal oxide electrode catalyst
Li et al. Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions
Fan et al. Pt/TiO2− C with hetero interfaces as enhanced catalyst for methanol electrooxidation
Savych et al. On the effect of non-carbon nanostructured supports on the stability of Pt nanoparticles during voltage cycling: a study of TiO2 nanofibres
Bauer et al. Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2
JP5474250B2 (en) Electrode catalyst layer, membrane electrode assembly, and fuel cell
JP6634340B2 (en) Method for producing oxygen reduction catalyst
CA2715150A1 (en) High surface area graphitized carbon and processes for making same
JP5144244B2 (en) Electrocatalyst and use thereof, and method for producing electrode catalyst
CN112458495B (en) Electrocatalyst of ruthenium-based transition metal oxide solid solution and preparation method and application thereof
WO2015083383A1 (en) Electrode catalyst for water electrolysis, and water electrolysis device using the same
JP6634339B2 (en) Oxygen reduction catalyst and method for producing the same
Zheng et al. Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction
Huynh et al. High conductivity of novel Ti0. 9Ir0. 1O2 support for Pt as a promising catalyst for low-temperature fuel cell applications
Sun et al. Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum
JP6387213B1 (en) Oxygen reduction catalyst
Jung et al. Induced changes of Pt/C in activity and durability through heat-treatment for oxygen reduction reaction in acidic medium
JP2019169289A (en) Air electrode catalyst for fuel cell, manufacturing method of the same, and fuel cell using fuel cell air electrode catalyst
Kumar et al. Electro-oxidation of formic acid on composites from polycarbazole and WO3
JP6331580B2 (en) Electrode catalyst, catalyst layer precursor, catalyst layer, and fuel cell
JP6659916B2 (en) Oxygen reduction catalyst
JP5650254B2 (en) Oxygen reduction catalyst
Mohamed et al. A template-assisted method for synthesizing TiO2 nanoparticles and Ni/TiO2 nanocomposites for urea electrooxidation
JP5417618B2 (en) Method for producing metal oxide-supported carbon material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6634340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees