JP2017202455A - Drainage system - Google Patents

Drainage system Download PDF

Info

Publication number
JP2017202455A
JP2017202455A JP2016095939A JP2016095939A JP2017202455A JP 2017202455 A JP2017202455 A JP 2017202455A JP 2016095939 A JP2016095939 A JP 2016095939A JP 2016095939 A JP2016095939 A JP 2016095939A JP 2017202455 A JP2017202455 A JP 2017202455A
Authority
JP
Japan
Prior art keywords
pipe
coil
joint
drainage system
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095939A
Other languages
Japanese (ja)
Other versions
JP6725312B2 (en
Inventor
重浩 鈴木
Shigehiro Suzuki
重浩 鈴木
森 豊
Yutaka Mori
豊 森
藤野 俊
Takashi Fujino
俊 藤野
尭 深町
Takashi Fukamachi
尭 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Sayrise Inc
Original Assignee
Metawater Co Ltd
Sayrise Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd, Sayrise Inc filed Critical Metawater Co Ltd
Priority to JP2016095939A priority Critical patent/JP6725312B2/en
Publication of JP2017202455A publication Critical patent/JP2017202455A/en
Application granted granted Critical
Publication of JP6725312B2 publication Critical patent/JP6725312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide means capable of suppressing generation of rust, scale, hydrogen sulfide, or the like by efficiently subjecting drain water flowing in a pipe made of a material having high magnetic permeability to electromagnetic wave treatment.SOLUTION: A drainage system is equipped with a pipe made of a material having magnetic permeability and electric conductivity, a coil composed of a lead wire wound around the pipe, an AC source for supplying AC to the coil, and an agitation unit installed in the pipe or downstream of the coil. The material of the pipe includes, for example, iron, cast iron, and stainless steel.SELECTED DRAWING: Figure 1

Description

本発明は、排水システムに関し、特には、下水道などにおいて好適に使用し得る排水システムに関するものである。   The present invention relates to a drainage system, and more particularly, to a drainage system that can be suitably used in sewers and the like.

従来、周波数が時間的に変化する交流電流をコイルに流し、発生した電磁波で被処理水を処理することにより、錆びやスケールの発生を防止する技術が知られている(例えば、特許文献1,2参照)。   Conventionally, a technique for preventing generation of rust and scale by flowing an alternating current whose frequency changes with time into a coil and treating the water to be treated with the generated electromagnetic wave is known (for example, Patent Document 1, Patent Document 1). 2).

具体的には、特許文献1では、流体流路に巻き付けたコイルに20Hz〜1MHzの帯域で周波数が時間的に変化する方形波の交流電流を流し、コイルに流れる電流により誘起される電磁界により流体流路を流れる流体を処理することで流体流路を構成する壁面を防錆する方法が提案されている。   Specifically, in Patent Document 1, a square-wave alternating current whose frequency changes over time in a band of 20 Hz to 1 MHz is passed through a coil wound around a fluid flow path, and an electromagnetic field induced by the current flowing in the coil is used. There has been proposed a method of rust-proofing the wall surface constituting the fluid flow path by processing the fluid flowing through the fluid flow path.

また、特許文献2では、下水中に浸漬されたコイルまたは下水流路に巻き付けたコイルに対して(−)帯電型変調電磁波発生器から10Hz〜1MHzの帯域で周波数が時間的に変化する交流電流を流して下水を電磁波処理することによりスケールの発生を防止すると共に、電磁波処理と同時に下水に硫化水素抑制剤を供給することにより硫化水素の発生を抑制する技術が提案されている。   Moreover, in patent document 2, the alternating current from which a frequency changes temporally in the band of 10 Hz-1 MHz from a (-) charging type modulation | alteration electromagnetic wave generator with respect to the coil immersed in the sewage, or the coil wound around the sewage flow path. A technique has been proposed in which generation of scale is prevented by supplying a hydrogen sulfide inhibitor to the sewage simultaneously with the electromagnetic wave treatment, while preventing generation of scale by flowing sewage into the electromagnetic wave.

そして、電磁波処理を利用した上記技術は、例えば下水道などの、排水を所望の位置まで流して排出する排水システムにおいて、排水の流路内で錆び、スケール、硫化水素等が発生するのを有効に防止し得る技術として着目されている。   The above-mentioned technology using electromagnetic wave treatment is effective in generating rust, scale, hydrogen sulfide, etc. in the drainage flow path in a drainage system that drains the drainage to a desired position, such as sewerage. It is attracting attention as a technology that can be prevented.

特開2000−212782号公報JP 2000-212782 A 特開2005−296796号公報JP 2005-296696 A

ここで、例えば特許文献2に開示されているように、従来、電磁波処理を利用した排水処理技術においては、排水が流れる流路が鉄などの透磁性が高い材料よりなる配管(即ち、電磁波透過量が少ない配管)である場合には、コイルの電流値を増加させることにより排水の電磁波処理に必要な電磁波量を確保していた。従って、透磁性が高い材料よりなる配管中を流れる排水の電磁波処理には、必要な電流量が増加し、コストが増大するという点において改善の余地があった。   Here, as disclosed in, for example, Patent Document 2, conventionally, in wastewater treatment technology using electromagnetic wave treatment, a flow path through which wastewater flows is a pipe made of a material having high magnetic permeability such as iron (that is, electromagnetic wave transmission). In the case of a pipe having a small amount), the amount of electromagnetic waves necessary for the electromagnetic wave treatment of the wastewater was secured by increasing the current value of the coil. Accordingly, there is room for improvement in the electromagnetic wave treatment of the wastewater flowing through the pipe made of a material having high magnetic permeability in that the amount of necessary current increases and the cost increases.

そのため、透磁性が高い材料よりなる配管中を流れる排水を効率的に電磁波処理し、錆び、スケール、硫化水素等の発生を抑制することが可能な手段を開発することが求められていた。   Therefore, it has been demanded to develop means capable of efficiently treating the waste water flowing in the pipe made of a material having high magnetic permeability with electromagnetic wave treatment and suppressing generation of rust, scale, hydrogen sulfide and the like.

本発明者らは、上記課題を解決することを目的として鋭意検討を行った。その結果、本発明者らは、鉄などの透磁性が高い導電性材料よりなる配管に巻き付けたコイルに交流電流を流して排水を電磁波処理した場合には、コイルを設置した部分を含む幅広い範囲において配管の内表面近傍を流れる排水のみが電磁波処理されることを新たに見出した。そして、本発明者らは、上記新たな知見に基づき、本発明を完成させた。   The present inventors have intensively studied for the purpose of solving the above problems. As a result, the present inventors, when flowing an alternating current through a coil wound around a pipe made of a highly permeable conductive material such as iron, and electromagnetically treating the wastewater, has a wide range including the part where the coil is installed. Newly found that only the waste water flowing near the inner surface of the pipe is subjected to electromagnetic wave treatment. And the present inventors completed this invention based on the said new knowledge.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の排水システムは、透磁性および導電性を有する材料よりなる配管と、前記配管に導線を巻き付けてなるコイルと、前記コイルに交流電流を流す交流電流発生部と、前記配管内または排水の流れ方向で見て前記コイルの設置位置よりも下流側に設けられた撹拌部とを備えることを特徴とする。このように、撹拌部を設ければ、コイルに交流電流を流した結果として配管の延在方向の幅広い範囲において電磁波処理された配管の内表面近傍を流れる排水を配管の中心側を流れる排水と混合し、電磁波処理の影響を配管の中心側まで与えることができる。従って、透磁性が高い材料よりなる配管中を流れる排水を効率的に電磁波処理し、錆び、スケール、硫化水素等の発生を抑制することができる。   That is, this invention aims at solving the said subject advantageously, The drainage system of this invention winds a conducting wire around the piping which consists of material which has magnetic permeability and electroconductivity, and the said piping. A coil, an AC current generation unit that supplies an AC current to the coil, and a stirring unit that is provided on the downstream side of the installation position of the coil when viewed in the piping or in the flow direction of drainage, are provided. . As described above, when the stirring unit is provided, the drainage flowing near the inner surface of the pipe subjected to electromagnetic wave treatment in a wide range in the extending direction of the pipe as a result of flowing an alternating current through the coil is separated from the drainage flowing in the center side of the pipe. It can mix and can give the influence of electromagnetic wave processing to the center side of piping. Accordingly, the wastewater flowing through the pipe made of a material having high magnetic permeability can be efficiently subjected to electromagnetic wave treatment, and generation of rust, scale, hydrogen sulfide and the like can be suppressed.

ここで、本発明の排水システムにおいて、前記透磁性および導電性を有する材料としては、例えば、鉄、鋳鉄またはステンレス鋼が挙げられる。   Here, in the drainage system of the present invention, examples of the material having magnetic permeability and conductivity include iron, cast iron, and stainless steel.

そして、本発明の排水システムでは、前記撹拌部は、前記コイルの設置位置よりも下流側に設けられていることが好ましい。コイルの設置位置よりも下流側に撹拌部を設ければ、配管の延在方向の幅広い範囲に亘って電磁波処理された排水を撹拌することができるので、錆び、スケール、硫化水素等の発生を更に抑制することができるからである。   And in the drainage system of this invention, it is preferable that the said stirring part is provided in the downstream rather than the installation position of the said coil. If a stirrer is provided on the downstream side of the coil installation position, wastewater that has been subjected to electromagnetic wave treatment can be stirred over a wide range in the direction in which the pipe extends, so rust, scale, hydrogen sulfide, etc. can be generated. This is because it can be further suppressed.

また、本発明の排水システムは、前記撹拌部が、前記配管と他の配管とを接続し、且つ、所定の条件下における流動解析の結果が下記の条件(1)および(2):
(1)継手内の最高流速位置での継手断面における、継手の入口の流速よりも高速化した部分の流速の平均値が、継手の入口における流速の1.5倍以上である
(2)継手内の最高流速位置での継手断面内において、継手の入口の流速よりも高速化した部分の流速の平均値が残部の流速の平均値の5.0倍以上である
の少なくとも一方を満たす継手であることが好ましい。上記条件(1)および(2)の少なくとも一方を満たす継手を撹拌部として使用すれば、配管の内表面近傍を流れる排水と配管の中心側を流れる排水とを良好に混合し、電磁波処理の影響を配管の中心側まで効率的に与えることができるからである。
なお、本発明において、「所定の条件下における流動解析」とは、以下の条件での排水の流動解析を指す。
・モデル:1/2対称モデル
・計算法:非圧縮性定常解析
・計算格子数:20〜75万点
・水の物性値(密度):998.2kg/m3
・水の物性値(粘性係数):0.001002kg/m/s
・汚泥粒子の物性値(密度):1020kg/m3
・境界条件(入口流速):1.0m/s
・乱流モデル:Reynolds Stress Model 方程式モデル
・使用コード:流体解析 FLUENT V16.1
また、本発明において、「継手内の最高流速位置での継手断面」とは、継手内において流速が最高になる位置を含み、継手の中心軸線に直交する断面を指す。
Further, in the drainage system of the present invention, the stirring unit connects the pipe and another pipe, and the result of the flow analysis under a predetermined condition is the following conditions (1) and (2):
(1) In the joint cross section at the highest flow velocity position in the joint, the average value of the flow velocity at the portion higher than the flow velocity at the joint inlet is 1.5 times or more the flow velocity at the joint inlet. (2) Joint A joint satisfying at least one of the average value of the flow velocity of the portion at a higher speed than the flow velocity at the inlet of the joint in the joint cross section at the highest flow velocity position in the inner portion is 5.0 times or more of the average value of the remaining flow velocity. Preferably there is. If a joint satisfying at least one of the above conditions (1) and (2) is used as a stirring part, the waste water flowing in the vicinity of the inner surface of the pipe and the waste water flowing in the center of the pipe are mixed well, and the influence of electromagnetic wave treatment This is because it can be efficiently applied to the center side of the pipe.
In the present invention, “flow analysis under predetermined conditions” refers to flow analysis of waste water under the following conditions.
・ Model: 1/2 symmetry model ・ Calculation method: Incompressible stationary analysis ・ Number of calculation grids: 200 to 750,000 points ・ Physical property value (density) of water: 998.2 kg / m 3
-Physical property value of water (viscosity coefficient): 0.001002 kg / m / s
-Physical property value (density) of sludge particles: 1020 kg / m 3
・ Boundary condition (inlet flow velocity): 1.0 m / s
-Turbulence model: Reynolds Stress Model equation model-Code used: Fluid analysis FULL V16.1
In the present invention, the “joint cross section at the highest flow velocity position in the joint” refers to a cross section including the position where the flow velocity is highest in the joint and perpendicular to the central axis of the joint.

更に、本発明の排水システムは、前記撹拌部が、前記配管と他の配管とをL字型に接続し、且つ、前記配管および他の配管が挿入されていない開口が塞がれた片閉じT字継手であることが好ましい。片閉じT字継手を撹拌部として使用すれば、配管の内表面近傍を流れる排水と配管の中心側を流れる排水とを良好に混合し、電磁波処理の影響を配管の中心側まで効率的に与えることができるからである。   Further, in the drainage system according to the present invention, the stirring unit connects the pipe and the other pipe in an L shape, and the opening where the pipe and the other pipe are not inserted is closed. A T-joint is preferable. If a single-closed T-shaped joint is used as a stirring part, the waste water flowing near the inner surface of the pipe and the waste water flowing near the center of the pipe are mixed well, and the influence of electromagnetic wave treatment is efficiently applied to the center of the pipe. Because it can.

また、本発明の排水システムは、前記撹拌部が、スタティックミキサー、ベンチュリ、邪魔板およびバルブからなる群から選択される少なくとも一つであることが好ましい。スタティックミキサー、ベンチュリ、邪魔板およびバルブからなる群から選択される少なくとも一つを撹拌部として使用すれば、配管の内表面近傍を流れる排水と配管の中心側を流れる排水とを良好に混合し、電磁波処理の影響を配管の中心側まで効率的に与えることができるからである。   In the drainage system of the present invention, it is preferable that the stirring unit is at least one selected from the group consisting of a static mixer, a venturi, a baffle plate, and a valve. If at least one selected from the group consisting of a static mixer, a venturi, a baffle plate and a valve is used as the stirring unit, the waste water flowing near the inner surface of the pipe and the waste water flowing near the center of the pipe are mixed well, This is because the influence of the electromagnetic wave treatment can be efficiently given to the center side of the pipe.

そして、本発明の排水システムでは、前記撹拌部は、前記コイルの設置位置よりも上流側において前記配管内に設けられており、且つ、スタティックミキサー、ベンチュリおよび邪魔板からなる群から選択される少なくとも一つであることが好ましい。透磁性および導電性を有する材料よりなる配管ではコイルに交流電流を流した結果としてコイルの設置位置よりも上流側においても配管の内表面近傍を流れる排水が電磁波処理されるところ、スタティックミキサー、ベンチュリおよび邪魔板からなる群から選択される少なくとも一つよりなる撹拌部をコイルの設置位置よりも上流側の配管内に設置すれば、電磁波処理の影響を早期に配管の中心側まで与えることができるからである。また、撹拌後の排水のうち、配管の内表面近傍を流れる排水を更に電磁波処理することができるからである。   In the drainage system of the present invention, the agitation unit is provided in the pipe on the upstream side of the installation position of the coil, and at least selected from the group consisting of a static mixer, a venturi, and a baffle plate One is preferable. In a pipe made of a material having magnetic permeability and conductivity, as a result of passing an alternating current through the coil, the waste water flowing near the inner surface of the pipe is subjected to electromagnetic wave treatment even upstream of the coil installation position. If the stirrer made of at least one selected from the group consisting of baffle plates is installed in the pipe upstream of the coil installation position, the effect of electromagnetic wave treatment can be given to the center of the pipe at an early stage. Because. Moreover, it is because the waste_water | drain which flows near the inner surface of piping among the waste_water | drain after stirring can be further electromagnetically processed.

本発明の排水システムによれば、透磁性が高い材料よりなる配管中を流れる排水を効率的に電磁波処理し、錆び、スケール、硫化水素等の発生を抑制することができる。   According to the drainage system of the present invention, wastewater flowing through a pipe made of a material having high magnetic permeability can be efficiently subjected to electromagnetic wave treatment, and generation of rust, scale, hydrogen sulfide, and the like can be suppressed.

本発明に従う排水システムの一例の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of an example of the drainage system according to this invention. 配管に導線を巻き付けてなるコイルに交流電流を流した際に電磁波が印加される領域を示す断面図であり、(a)は配管が透磁性を有する材料よりなる場合を示し、(b)は配管が非透磁性の材料よりなる場合を示す。It is sectional drawing which shows the area | region where electromagnetic waves are applied when an alternating current is sent through the coil formed by winding conducting wire around piping, (a) shows the case where piping consists of material which has magnetic permeability, (b) The case where piping is made of a non-permeable material is shown. 各種継手について所定の条件下における流動解析を行った結果を示す図であり、(a)は片閉じT字継手の流動解析結果を示し、(b)は90°エルボ継手の流動解析結果を示す。It is a figure which shows the result of having performed the flow analysis on predetermined conditions about various joints, (a) shows the flow analysis result of a single-closed T-shaped joint, (b) shows the flow analysis result of a 90 degree elbow joint. .

以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol shall show the same component.

本発明の排水システムは、特に限定されることなく、産業排水や下水などの排水を所望の場所(例えば、排水処理施設、公共用水域など)へと排出する際に用いられる。中でも、本発明の排水システムは、下水道などにおいて好適に用いることができる。   The drainage system of the present invention is not particularly limited, and is used when discharging wastewater such as industrial wastewater and sewage to a desired place (for example, wastewater treatment facility, public water area, etc.). Among these, the drainage system of the present invention can be suitably used in sewers and the like.

ここで、本発明の排水システムは、透磁性が高い導電性材料よりなる配管に巻き付けたコイルに交流電流を流した場合には、コイルを設置した部分と、コイルを設置した部分の上流側および下流側の双方とを含む幅広い範囲において配管の内表面近傍を流れる排水のみが電磁波処理されるという新たな知見に基づいてなされたものである。
即ち、例えば図2(b)に配管の中心軸線に直交する断面を示すように、一般に、非透磁性の材料からなる配管10Aに導線を巻き付けて形成したコイル21に交流電流を流すと、電磁波が印加される領域50は、配管10Aの外周部と配管10Aの内周部との双方になる。一方、図2(a)に配管の中心軸線に直交する断面を示すように、透磁性を有する材料からなる配管10に導線を巻き付けて形成したコイル21に交流電流を流すと、コイル21からの電磁波は配管10によって遮蔽されるため、非常に大きな電流を流さない限り、電磁波が印加される領域50は、主として配管10の外周部になる。しかし、本発明者らが検討したところ、配管10が透磁性および導電性を有する材料よりなる場合には、表皮効果に起因すると推察されるが、大きな電流を流さなくても、コイルを設置した部分と、コイルを設置した部分の上流側および下流側の双方とを含む幅広い範囲において配管の内表面近傍にも電磁波が印加され、幅広い範囲において配管の内表面近傍を流れる排水のみが電磁波処理されることが明らかとなった。また、配管の内表面近傍を流れる電磁波処理された排水と、配管の中心側を流れる排水とを混合すれば、電磁波処理の影響を配管内を流れる排水全体へと及ぼし、錆び、スケール、硫化水素等の発生を抑制し得ることも明らかとなった。そこで、本発明者らは、上記知見に基づいて、本発明の排水システムを完成させた。
Here, in the drainage system according to the present invention, when an alternating current is passed through a coil wound around a pipe made of a highly permeable conductive material, the portion where the coil is installed, the upstream side of the portion where the coil is installed, and This is based on the new knowledge that only the waste water flowing near the inner surface of the pipe is subjected to electromagnetic wave treatment in a wide range including both of the downstream side.
That is, as shown in FIG. 2B, for example, as shown in a cross section perpendicular to the central axis of the pipe, generally, when an alternating current is passed through a coil 21 formed by winding a conductive wire around the pipe 10A made of a non-permeable material, Is applied to both the outer periphery of the pipe 10A and the inner periphery of the pipe 10A. On the other hand, when an alternating current is passed through a coil 21 formed by winding a conducting wire around a pipe 10 made of a magnetically permeable material, as shown in FIG. 2A, a cross section perpendicular to the central axis of the pipe, Since the electromagnetic waves are shielded by the pipe 10, the region 50 to which the electromagnetic waves are applied is mainly the outer peripheral portion of the pipe 10 unless a very large current flows. However, as a result of investigations by the present inventors, when the pipe 10 is made of a material having magnetic permeability and conductivity, it is presumed to be caused by the skin effect, but the coil was installed without flowing a large current. Electromagnetic waves are also applied to the vicinity of the inner surface of the pipe in a wide range including both the upstream side and the downstream side of the part where the coil is installed, and only the waste water flowing near the inner surface of the pipe is subjected to the electromagnetic wave treatment in a wide range. It became clear. In addition, if electromagnetic wave treated wastewater flowing near the inner surface of the pipe and wastewater flowing near the center of the pipe are mixed, the influence of electromagnetic wave treatment is exerted on the entire wastewater flowing in the pipe, resulting in rust, scale, hydrogen sulfide. It has also become clear that the occurrence of the above can be suppressed. Then, the present inventors completed the drainage system of this invention based on the said knowledge.

そして、本発明の排水システムは、排水を電磁波処理することにより錆び、スケール、硫化水素等の発生を十分に抑制するものであり、透磁性および導電性を有する材料よりなる配管と、配管に導線を巻き付けてなるコイルと、コイルに交流電流を流す交流電流発生部と、配管内または排水の流れ方向で見てコイルの設置位置よりも下流側に設けられた撹拌部とを備えることを特徴とする。上述したように、透磁性および導電性を有する材料よりなる配管に巻き付けたコイルに交流電流を流した場合には幅広い範囲において配管の内表面近傍にも電磁波が印加されるところ、このように、配管内または排水の流れ方向で見てコイルの設置位置よりも下流側に撹拌部を設ければ、電磁波処理の影響を配管内の排水全体へと及ぼし、錆び、スケール、硫化水素等の発生を抑制することができる。   The drainage system of the present invention sufficiently suppresses the generation of rust, scale, hydrogen sulfide, etc. by subjecting the wastewater to electromagnetic waves, and pipes made of a material having magnetic permeability and conductivity, and lead wires to the pipes A coil formed by winding a coil, an alternating current generating part for supplying an alternating current to the coil, and a stirring part provided on the downstream side of the installation position of the coil when viewed in the flow direction of the pipe or drainage, To do. As described above, when an alternating current is applied to a coil wound around a pipe made of a material having magnetic permeability and conductivity, electromagnetic waves are also applied to the vicinity of the inner surface of the pipe in a wide range. If a stirrer is provided downstream of the coil installation position in the piping or the direction of drainage, the effect of electromagnetic wave treatment will be exerted on the entire drainage in the piping, causing rust, scale, hydrogen sulfide, etc. Can be suppressed.

そこで、以下に、一例を用いて本発明の排水システムについてより詳細に説明するが、本発明は下記の一例に限定されるものではない。   Therefore, the drainage system of the present invention will be described below in more detail using an example, but the present invention is not limited to the following example.

図1に示す排水システム100は、透磁性および導電性を有する材料よりなる配管10と、配管10に導線を巻き付けてなるコイル21およびコイル21に交流電流を流す交流電流発生部22を有する電磁波発生装置20と、排水の流れ方向で見てコイル21の設置位置よりも下流側(図1では右側)に設けられた撹拌部30と、撹拌部30を介して配管10と接続された他の配管40とを備えている。   The drainage system 100 shown in FIG. 1 generates electromagnetic waves having a pipe 10 made of a material having magnetic permeability and conductivity, a coil 21 in which a conducting wire is wound around the pipe 10, and an alternating current generating unit 22 that sends an alternating current to the coil 21. The apparatus 20, a stirring unit 30 provided on the downstream side (right side in FIG. 1) from the installation position of the coil 21 when viewed in the flow direction of the drainage, and other piping connected to the pipe 10 via the stirring unit 30 40.

ここで、配管10を構成する、透磁性および導電性を有する材料としては、特に限定されることなく、鉄、ダクタイル鋳鉄等の鋳鉄およびステンレス鋼などが挙げられる。   Here, the material having magnetic permeability and conductivity constituting the pipe 10 is not particularly limited, and examples thereof include cast iron such as iron and ductile cast iron, and stainless steel.

また、配管10に巻き付けられてコイル21を形成する導線としては、特に限定されることなく、絶縁電線やケーブルが挙げられる。   Moreover, as a conducting wire wound around the pipe 10 to form the coil 21, an insulated wire or a cable can be cited without any particular limitation.

更に、コイル21に交流電流を流す交流電流発生部22としては、排水の電磁波処理に使用し得る既知の交流電流発生器を用いることができ、通常は、排水中に含まれている成分の表面電位(より詳細にはゼータ電位)を配管10の内表面の電位と同じ側に帯電させ得る電磁波を発生させる交流電流発生器が使用される。排水中に含まれている成分を配管10の内表面と同じ側に帯電させれば、静電反発によりスケールの発生や硫化水素の発生などを抑制することができるからである。
中でも、交流電流発生部22としては、排水中に含まれている成分の表面電位(より詳細にはゼータ電位)をマイナスにし得る(−)帯電型の電磁波を発生させる交流電流発生器を用いることが好ましい。
Furthermore, as the alternating current generator 22 for passing an alternating current through the coil 21, a known alternating current generator that can be used for electromagnetic wave treatment of waste water can be used. Usually, the surface of the component contained in the waste water is used. An alternating current generator that generates an electromagnetic wave that can charge a potential (more specifically, a zeta potential) to the same side as the potential of the inner surface of the pipe 10 is used. This is because if the components contained in the waste water are charged on the same side as the inner surface of the pipe 10, the generation of scale and the generation of hydrogen sulfide can be suppressed by electrostatic repulsion.
Among them, as the alternating current generator 22, an alternating current generator that generates (−) charged electromagnetic waves that can make the surface potential (more specifically, zeta potential) of components contained in the waste water negative can be used. Is preferred.

なお、交流電流発生部22は、周波数が連続的または間欠的に変化する変調交流電流を発生させるものであってもよいし、単一周波数の(即ち、周波数が時間的に変化しない)交流電流を発生させるものであってもよい。上述したような交流電流発生器としては、特に限定されることなく、例えば、特開2005−296796号公報に記載の(−)帯電型変調電磁波発生器(10Hz〜1MHzの帯域で連続的に周波数が時間的に変化する方形波の変調交流電流を発生する装置)や、株式会社サイライズ製の「ウォーター・ウォッチャー」などが挙げられる。   The alternating current generator 22 may generate a modulated alternating current whose frequency changes continuously or intermittently, or a single frequency alternating current (that is, the frequency does not change with time). May be generated. The AC current generator as described above is not particularly limited. For example, the (−) charged modulation electromagnetic wave generator described in Japanese Patent Application Laid-Open No. 2005-296996 (frequency is continuously in a band of 10 Hz to 1 MHz). And a “water watcher” manufactured by Silize Co., Ltd., and the like.

そして、コイル21の設置位置よりも下流側において配管10と他の配管40とを接続し得る撹拌部30としては、配管10の内表面近傍を流れる排水と配管10の中心側を流れる排水と混合し得る任意の撹拌機構を使用することができる。具体的には、排水システム100の撹拌部30としては、特に限定されることなく、例えば、ラインミキサー、バタフライ弁、流量調整弁、仕切弁等のバルブ、内表面近傍を流れる排水と中心側を流れる排水とが混合される構成の継手などが挙げられる。   And as the stirring part 30 which can connect the piping 10 and the other piping 40 in the downstream rather than the installation position of the coil 21, the waste_water | drain which flows through the inner surface vicinity of the piping 10, and the waste_water | drain which flows through the center side of the piping 10 are mixed. Any stirrer mechanism that can be used can be used. Specifically, the agitation unit 30 of the drainage system 100 is not particularly limited. For example, a line mixer, a butterfly valve, a flow rate adjustment valve, a valve such as a gate valve, drainage flowing in the vicinity of the inner surface, and a central side. Examples include a joint having a configuration in which flowing drainage is mixed.

ここで、上述した継手としては、例えば、配管10と他の配管40とをL字型に接続し、且つ、配管10および他の配管40が挿入されていない開口が塞がれた片閉じT字継手や、所定の条件下における流動解析の結果が下記の条件(1)および(2)の少なくとも一方、好ましくは両方を満たす継手が挙げられる。
(1)継手内の最高流速位置での継手断面における、継手の入口の流速よりも高速化した部分の流速の平均値が、継手の入口における流速の1.5倍以上である
(2)継手内の最高流速位置での継手断面内において、継手の入口の流速よりも高速化した部分の流速の平均値が残部の流速の平均値の5.0倍以上である
なお、図3(b)に示す流動解析の結果からも明らかなように、通常、90°エルボ継手は上記条件(1)および(2)を満たさない。
Here, as the joint described above, for example, the pipe 10 and the other pipe 40 are connected in an L shape, and the opening where the pipe 10 and the other pipe 40 are not inserted is closed T Examples of character joints and joints in which the flow analysis result under a predetermined condition satisfies at least one of the following conditions (1) and (2), preferably both.
(1) In the joint cross section at the highest flow velocity position in the joint, the average value of the flow velocity at the portion higher than the flow velocity at the joint inlet is 1.5 times or more the flow velocity at the joint inlet. (2) Joint In the joint cross section at the highest flow velocity position, the average value of the flow velocity at the portion higher than the flow velocity at the inlet of the joint is 5.0 times or more than the average value of the remaining flow velocity. As is clear from the results of the flow analysis shown in (1), the 90 ° elbow joint does not normally satisfy the above conditions (1) and (2).

上述した中でも、配管10の内表面近傍を流れていた排水と配管10の中心側を流れていた排水とを簡素な構成で混合する観点からは、撹拌部30としては、上述した所定の構成の継手を用いることが好ましく、片閉じT字継手を用いることがより好ましい。   Among the above-mentioned, from the viewpoint of mixing the drainage flowing near the inner surface of the pipe 10 and the drainage flowing in the center side of the pipe 10 with a simple configuration, the stirring unit 30 has the predetermined configuration described above. It is preferable to use a joint, and it is more preferable to use a single-closed T-shaped joint.

また、他の配管40としては、任意の材料よりなる配管を用いることができる。なお、他の配管40は、配管10と平行な方向に接続されている必要はなく、撹拌部30を介して任意の方向に接続することができる。   Further, as the other pipe 40, a pipe made of an arbitrary material can be used. The other piping 40 does not need to be connected in a direction parallel to the piping 10, and can be connected in any direction via the stirring unit 30.

そして、上述した排水システム100では、透磁性および導電性を有する材料よりなる配管10を用いているので、コイル21に交流電流を流した際に、配管10の幅広い領域(具体的には、コイル21を設置した部分、コイル21よりも上流側の部分11およびコイル21よりも下流側の部分12)において、配管10の内周面近傍を流れる排水に電磁波処理を施すことができる。また、上述した排水システム100では、撹拌部30を設けているので、電磁波処理された、配管10の内表面近傍を流れる排水と、電磁波処理されていない中心側を流れる排水とを混合して、排水全体に電磁波処理の効果を効率的に及ぼすことができる。特に、排水システム100では、撹拌部30をコイル21よりも下流側に設けているので、コイル21よりも上流側の部分11を含む幅広い範囲に亘って電磁波処理が施された、配管10の内表面近傍を流れる排水を混合して、排水全体に電磁波処理の効果を十分に与えることができる。   Since the drainage system 100 described above uses the pipe 10 made of a material having magnetic permeability and conductivity, when an alternating current is passed through the coil 21, a wide area of the pipe 10 (specifically, the coil 10 In the portion where 21 is installed, the portion 11 upstream of the coil 21 and the portion 12 downstream of the coil 21, the wastewater flowing in the vicinity of the inner peripheral surface of the pipe 10 can be subjected to electromagnetic wave treatment. Moreover, in the drainage system 100 described above, since the stirring unit 30 is provided, the wastewater flowing in the vicinity of the inner surface of the pipe 10 subjected to electromagnetic wave treatment and the wastewater flowing in the center side not subjected to electromagnetic wave treatment are mixed, The effect of electromagnetic wave treatment can be efficiently exerted on the entire waste water. In particular, in the drainage system 100, since the stirring unit 30 is provided on the downstream side of the coil 21, the inside of the pipe 10 subjected to the electromagnetic wave treatment over a wide range including the portion 11 on the upstream side of the coil 21. The waste water flowing in the vicinity of the surface can be mixed, and the effect of the electromagnetic wave treatment can be sufficiently given to the whole waste water.

以上、一例を用いて本発明の排水システムについて説明したが、本発明の排水システムは、上記一例に限定されることはなく、本発明の排水システムには、適宜変更を加えることができる。
具体的には、例えば、上記一例の排水システム100では、配管10と他の配管40とを接続し得る撹拌部30を使用したが、撹拌部30は配管10内に設けられていてもよい。そして、配管内に設ける撹拌部としては、特に限定されることなく、例えば、スタティックミキサー、ベンチュリ、邪魔板およびこれらの組み合わせ等が挙げられる。また、上記一例の排水システム100では、撹拌部30を一箇所のみ設けたが、撹拌部は複数個所に設けられていてもよい。更に、上記一例の排水システム100では、撹拌部30をコイル21よりも下流側に設けたが、撹拌部30はコイル21よりも上流側の配管10内に設けられていてもよい。撹拌部30をコイル21よりも上流側の配管10内に設けた場合には、電磁波処理の影響を早期に配管10の中心側まで与えることができると共に、撹拌後の排水のうち、配管10の内表面近傍を流れる排水を更に電磁波処理することができる。
As mentioned above, although the drainage system of this invention was demonstrated using an example, the drainage system of this invention is not limited to the said example, A change can be suitably added to the drainage system of this invention.
Specifically, for example, in the drainage system 100 of the above example, the stirring unit 30 that can connect the pipe 10 and another pipe 40 is used, but the stirring unit 30 may be provided in the pipe 10. And as a stirring part provided in piping, it is not specifically limited, For example, a static mixer, a venturi, a baffle plate, these combinations, etc. are mentioned. In the drainage system 100 of the above example, only one stirring unit 30 is provided, but the stirring unit may be provided at a plurality of locations. Further, in the drainage system 100 of the above example, the stirring unit 30 is provided on the downstream side of the coil 21, but the stirring unit 30 may be provided in the pipe 10 on the upstream side of the coil 21. When the stirring unit 30 is provided in the pipe 10 on the upstream side of the coil 21, the influence of electromagnetic wave treatment can be given to the center side of the pipe 10 at an early stage, and among the drained water after stirring, the pipe 10 The waste water flowing in the vicinity of the inner surface can be further subjected to electromagnetic wave treatment.

以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these Examples.

(実施例1)
ダクタイル鋳鉄製の配管Aと、ダクタイル鋳鉄製の配管Bとを片閉じT字継手でL字型に接続して排水流路を形成した。また、配管Aの一部にケーブルを巻き付けてコイルを形成し、当該コイルと交流電流発生器(株式会社サイライズ製、EWDO−Ox)とを接続した。
そして、交流電流発生器から10Hz〜1MHzの帯域で連続的に周波数が時間的に変化する方形波の変調交流電流を流しつつ、配管A側から配管B側に向かって排水流路内に排水(下水)を流速1.2m/秒で流通させた。そして、配管Bの末端において硫化水素の濃度を硫化水素測定器(リケン計器社製、GX−2000)で調べると共に、片閉じT字継手部分の流動解析(計算格子数:39万点)を行った。硫化水素の濃度の調査結果を表1に示し、流動解析の結果を図3(a)および表1に示す。
Example 1
A duct A made of ductile iron and a duct B made of ductile cast iron were connected in an L shape with a single-closed T-shaped joint to form a drainage flow path. Further, a cable was wound around a part of the pipe A to form a coil, and the coil and an alternating current generator (produced by Silize Co., Ltd., EWDO-Ox) were connected.
Then, draining into the drainage channel from the pipe A side to the pipe B side while flowing a square-wave modulated alternating current whose frequency continuously changes in the time band from 10 Hz to 1 MHz from the AC current generator ( Sewage) was circulated at a flow rate of 1.2 m / sec. Then, the concentration of hydrogen sulfide at the end of the pipe B is examined with a hydrogen sulfide measuring instrument (manufactured by Riken Keiki Co., Ltd., GX-2000), and the flow analysis (number of calculation grids: 390,000 points) of the one-sided T-shaped joint portion It was. The investigation results of the concentration of hydrogen sulfide are shown in Table 1, and the results of flow analysis are shown in FIG.

(比較例1)
ダクタイル鋳鉄製の配管Aと、ダクタイル鋳鉄製の配管Bとを90°エルボ継手でL字型に接続して排水流路を形成した。また、配管Aの一部にケーブルを巻き付けてコイルを形成し、当該コイルと交流電流発生器(株式会社サイライズ製、EWDO−Ox)とを接続した。
そして、交流電流発生器から10Hz〜1MHzの帯域で連続的に周波数が時間的に変化する方形波の変調交流電流を流しつつ、配管A側から配管B側に向かって排水流路内に排水(下水)を流速1.2m/秒で流通させた。そして、配管Bの末端において硫化水素の濃度を硫化水素測定器(リケン計器社製、GX−2000)で調べると共に、90°エルボ継手部分の流動解析(計算格子数:70万点)を行った。硫化水素の濃度の調査結果を表1に示し、流動解析の結果を図3(b)および表1に示す。
(Comparative Example 1)
A duct A made of ductile iron and a duct B made of ductile cast iron were connected in an L shape with a 90 ° elbow joint to form a drainage flow path. Further, a cable was wound around a part of the pipe A to form a coil, and the coil and an alternating current generator (produced by Silize Co., Ltd., EWDO-Ox) were connected.
Then, draining into the drainage channel from the pipe A side to the pipe B side while flowing a square-wave modulated alternating current whose frequency continuously changes in the time band from 10 Hz to 1 MHz from the AC current generator ( Sewage) was circulated at a flow rate of 1.2 m / sec. Then, the hydrogen sulfide concentration at the end of the pipe B was examined with a hydrogen sulfide measuring instrument (manufactured by Riken Keiki Co., Ltd., GX-2000), and the flow analysis of the 90 ° elbow joint part (calculation grid number: 700,000 points) was performed. . The investigation results of the concentration of hydrogen sulfide are shown in Table 1, and the results of flow analysis are shown in FIG.

表1および図3より、配管内を流れる排水が撹拌された実施例1では、排水を良好に電磁波処理し、硫化水素の発生を抑制し得ることが分かる。一方、図3(b)からも明らかなように配管内を流れる排水が撹拌されない比較例1では、硫化水素の発生を十分には抑制できないことが分かる。   From Table 1 and FIG. 3, it can be seen that in Example 1 in which the waste water flowing in the pipe was stirred, the waste water was satisfactorily treated with electromagnetic waves, and generation of hydrogen sulfide could be suppressed. On the other hand, as is clear from FIG. 3B, it can be seen that in Comparative Example 1 in which the waste water flowing in the pipe is not stirred, the generation of hydrogen sulfide cannot be sufficiently suppressed.

本発明の排水システムによれば、透磁性が高い材料よりなる配管中を流れる排水を効率的に電磁波処理し、錆び、スケール、硫化水素等の発生を抑制することができる。   According to the drainage system of the present invention, wastewater flowing through a pipe made of a material having high magnetic permeability can be efficiently subjected to electromagnetic wave treatment, and generation of rust, scale, hydrogen sulfide, and the like can be suppressed.

10,10A 配管
20 電磁波発生装置
21 コイル
22 交流電流発生部
30 撹拌部
40 他の配管
50 電磁波が印加される領域
100 排水システム
10, 10A Pipe 20 Electromagnetic wave generator 21 Coil 22 AC current generator 30 Stirrer 40 Other pipe 50 Area 100 where electromagnetic waves are applied Drainage system

Claims (7)

透磁性および導電性を有する材料よりなる配管と、
前記配管に導線を巻き付けてなるコイルと、
前記コイルに交流電流を流す交流電流発生部と、
前記配管内または排水の流れ方向で見て前記コイルの設置位置よりも下流側に設けられた撹拌部と、
を備える、排水システム。
A pipe made of a material having magnetic permeability and conductivity;
A coil formed by winding a conductive wire around the pipe;
An alternating current generator for passing an alternating current through the coil;
A stirring portion provided on the downstream side of the installation position of the coil as seen in the pipe or in the flow direction of drainage;
Equipped with a drainage system.
前記材料が、鉄、鋳鉄またはステンレス鋼である、請求項1に記載の排水システム。   The drainage system according to claim 1, wherein the material is iron, cast iron, or stainless steel. 前記撹拌部は、前記コイルの設置位置よりも下流側に設けられている、請求項1または2に記載の排水システム。   The drainage system according to claim 1 or 2, wherein the stirring unit is provided on a downstream side of the installation position of the coil. 前記撹拌部が、前記配管と他の配管とを接続し、且つ、所定の条件下における流動解析の結果が下記の条件(1)および(2)の少なくとも一方を満たす継手である、請求項3に記載の排水システム。
(1)継手内の最高流速位置での継手断面における、継手の入口の流速よりも高速化した部分の流速の平均値が、継手の入口における流速の1.5倍以上である
(2)継手内の最高流速位置での継手断面内において、継手の入口の流速よりも高速化した部分の流速の平均値が残部の流速の平均値の5.0倍以上である
The said stirring part is a joint which connects the said piping and other piping, and the result of the flow analysis under predetermined conditions satisfies at least one of the following conditions (1) and (2). Drainage system as described in.
(1) In the joint cross section at the highest flow velocity position in the joint, the average value of the flow velocity at the portion higher than the flow velocity at the joint inlet is 1.5 times or more the flow velocity at the joint inlet. (2) Joint In the joint cross section at the highest flow velocity position in the inside, the average value of the flow velocity at a portion higher than the flow velocity at the inlet of the joint is 5.0 times or more than the average value of the remaining flow velocity.
前記撹拌部が、前記配管と他の配管とをL字型に接続し、且つ、前記配管および他の配管が挿入されていない開口が塞がれた片閉じT字継手である、請求項3または4に記載の排水システム。   The said stirring part connects the said piping and other piping to L shape, and is a single-closed T-shaped joint with which the opening in which the said piping and other piping are not inserted was blocked. Or the drainage system of 4. 前記撹拌部が、スタティックミキサー、ベンチュリ、邪魔板およびバルブからなる群から選択される少なくとも一つである、請求項3に記載の排水システム。   The drainage system according to claim 3, wherein the stirring unit is at least one selected from the group consisting of a static mixer, a venturi, a baffle plate, and a valve. 前記撹拌部は、前記コイルの設置位置よりも上流側において前記配管内に設けられており、且つ、スタティックミキサー、ベンチュリおよび邪魔板からなる群から選択される少なくとも一つである、請求項1または2に記載の排水システム。   The stirrer is provided in the pipe on the upstream side of the installation position of the coil, and is at least one selected from the group consisting of a static mixer, a venturi, and a baffle plate. 2. The drainage system according to 2.
JP2016095939A 2016-05-12 2016-05-12 Drainage system Active JP6725312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095939A JP6725312B2 (en) 2016-05-12 2016-05-12 Drainage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095939A JP6725312B2 (en) 2016-05-12 2016-05-12 Drainage system

Publications (2)

Publication Number Publication Date
JP2017202455A true JP2017202455A (en) 2017-11-16
JP6725312B2 JP6725312B2 (en) 2020-07-15

Family

ID=60321743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095939A Active JP6725312B2 (en) 2016-05-12 2016-05-12 Drainage system

Country Status (1)

Country Link
JP (1) JP6725312B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368818A (en) * 2018-12-03 2019-02-22 中国科学院理化技术研究所 Electromagnetism anti-scale descaling device and vapo(u)rization system
CN110809658A (en) * 2018-06-01 2020-02-18 Sf株式会社 Device for preventing corrosion inside steel pipe by using electromagnetic field

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145870A (en) * 1976-05-29 1977-12-05 Sakai Chemical Industry Co Pressure floatation separator
JPH03249988A (en) * 1990-02-28 1991-11-07 Matsufuji Kikaku:Kk In-pipe fluid magnetizing device
JPH11505467A (en) * 1995-01-25 1999-05-21 アクア・イオン システムズ,インコーポレーテッド Electrocoagulation system for removing contaminants from water streams
JP2000176458A (en) * 1998-12-18 2000-06-27 Sanee Industrial Co Ltd Water quality improving device for city water
JP2000212782A (en) * 1999-01-25 2000-08-02 Ska Kk Method and device for preventing rusting of fluid passage and so on
JP2003112189A (en) * 2001-10-02 2003-04-15 Mitsubishi Corp Contact apparatus and liquid treatment system
JP2007167830A (en) * 2005-02-21 2007-07-05 Eiji Matsumura Ozone water producing method and apparatus, and ozone water
JP2008029926A (en) * 2006-07-27 2008-02-14 Yamada Tetsuzo Separation purification system
JP2011255345A (en) * 2010-06-11 2011-12-22 Ska Ltd Device and method for electromagnetic wave treatment of fluid to be treated
JP2012115752A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Magnetic field generator, water treatment system using the same, and water treatment method
JP2014044085A (en) * 2012-08-24 2014-03-13 Teisan Konan Kotsu Co Ltd Method and apparatus for treating aqueous solution containing radioactive materials
JP2017164678A (en) * 2016-03-16 2017-09-21 大成建設株式会社 Turbid water treatment equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145870A (en) * 1976-05-29 1977-12-05 Sakai Chemical Industry Co Pressure floatation separator
JPH03249988A (en) * 1990-02-28 1991-11-07 Matsufuji Kikaku:Kk In-pipe fluid magnetizing device
JPH11505467A (en) * 1995-01-25 1999-05-21 アクア・イオン システムズ,インコーポレーテッド Electrocoagulation system for removing contaminants from water streams
JP2000176458A (en) * 1998-12-18 2000-06-27 Sanee Industrial Co Ltd Water quality improving device for city water
JP2000212782A (en) * 1999-01-25 2000-08-02 Ska Kk Method and device for preventing rusting of fluid passage and so on
JP2003112189A (en) * 2001-10-02 2003-04-15 Mitsubishi Corp Contact apparatus and liquid treatment system
JP2007167830A (en) * 2005-02-21 2007-07-05 Eiji Matsumura Ozone water producing method and apparatus, and ozone water
JP2008029926A (en) * 2006-07-27 2008-02-14 Yamada Tetsuzo Separation purification system
JP2011255345A (en) * 2010-06-11 2011-12-22 Ska Ltd Device and method for electromagnetic wave treatment of fluid to be treated
JP2012115752A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Magnetic field generator, water treatment system using the same, and water treatment method
JP2014044085A (en) * 2012-08-24 2014-03-13 Teisan Konan Kotsu Co Ltd Method and apparatus for treating aqueous solution containing radioactive materials
JP2017164678A (en) * 2016-03-16 2017-09-21 大成建設株式会社 Turbid water treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809658A (en) * 2018-06-01 2020-02-18 Sf株式会社 Device for preventing corrosion inside steel pipe by using electromagnetic field
CN109368818A (en) * 2018-12-03 2019-02-22 中国科学院理化技术研究所 Electromagnetism anti-scale descaling device and vapo(u)rization system

Also Published As

Publication number Publication date
JP6725312B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
KR101268031B1 (en) Fluid treatment method and apparatus
FI116618B (en) Method and apparatus for treating liquid with radio frequency waves
JP6725312B2 (en) Drainage system
DE602005012542D1 (en) SYSTEM AND METHOD FOR GENERATING A MAGNETIC RING PULSE FOR THE TREATMENT OF FLOWING FLUIDS
ATE342124T1 (en) DEVICE AND METHOD FOR ULTRASONIC TREATMENT OF A LIQUID
DE102008059655B4 (en) Magnetizing device for gases and liquids
Penn et al. Impacts of onsite greywater reuse on wastewater systems
NO309625B1 (en) Method for reducing current resistance in pipe and duct current
JP2006289227A (en) Magnetic treatment apparatus
JP4988684B2 (en) Electromagnetic processing apparatus and method
JP6745506B2 (en) Water treatment equipment
JP2005199274A (en) Method and apparatus for desk test, and method for preventing deposition of and/or removing rust, scale and other components on wall surface constituting fluid flow passage
JP7291336B2 (en) Electromagnetic wave processing device and electromagnetic wave processing method
WO2017038002A1 (en) Water discharge system
JP7291338B2 (en) piping structure
JP2009028665A (en) Method of improving sludge settleability of precipitator, precipitator and straightening member
KR0139475Y1 (en) Apparatus for the treatment of water by magnet
KR20140057884A (en) Pipe management apparatus and pipe management method using zeta potential induction of micro particle
JP3074753U (en) Magnetic water treatment manufacturing equipment that can be installed in a small place and has little magnetic leakage.
JPH10118658A (en) Magnetic treatment of liquid flowing through conduit
JP2018161640A (en) Water treatment equipment and water treatment method
JP3087252B2 (en) Apparatus for preventing scale adhesion and corrosion of fluid lines
JP2023052448A (en) Electromagnetic wave oscillating mechanism, electromagnetic wave generator and piping structure
SU891121A1 (en) Apparatus for magnetic treatment of liquid
Runov et al. Efficiency improvement of heat exchangers by the rational choice of the range of frequencies of electromagnetic water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6725312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250