JP2017201849A - Embedded permanent magnet type synchronous motor - Google Patents

Embedded permanent magnet type synchronous motor Download PDF

Info

Publication number
JP2017201849A
JP2017201849A JP2016092640A JP2016092640A JP2017201849A JP 2017201849 A JP2017201849 A JP 2017201849A JP 2016092640 A JP2016092640 A JP 2016092640A JP 2016092640 A JP2016092640 A JP 2016092640A JP 2017201849 A JP2017201849 A JP 2017201849A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
synchronous motor
stator
embedded permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016092640A
Other languages
Japanese (ja)
Inventor
友美 平澤
Tomomi Hirasawa
友美 平澤
山川 岳彦
Takehiko Yamakawa
岳彦 山川
加藤 彰
Akira Kato
彰 加藤
裕喜 上田
Hiroyoshi Ueda
裕喜 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016092640A priority Critical patent/JP2017201849A/en
Publication of JP2017201849A publication Critical patent/JP2017201849A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve a problem that further miniaturization and increase in torque and efficiency are desired in the conventional art.SOLUTION: An embedded permanent magnet type synchronous motor comprises: a stator that has a plurality of teeth formed at an inner peripheral side of the stator and around which an induction coil is wound; and a rotor provided inside the stator, and that has a plurality of magnets juxtaposed in an outer circumferential direction so as to be respectively opposed to the plurality of outer peripheral magnetic body parts at the inside of the plurality of outer peripheral magnetic body parts. At least one of front end parts of the plurality of teeth and the plurality of outer peripheral magnetic body parts have a circular arc shape asymmetrical in a rotation direction so that a distance between an inner periphery of the stator and an outer periphery of the rotor at a front side in the rotation direction is shorter than a distance at a rear side in the rotation direction.SELECTED DRAWING: Figure 1

Description

本開示は、三相界磁巻線を有する固定子と永久磁石と回転子からなる埋め込み永久磁石式同期電動機(IPM(Interior Permanent Magnet Motor))に関する。   The present disclosure relates to an embedded permanent magnet synchronous motor (IPM (Interior Permanent Magnet Motor)) including a stator having a three-phase field winding, a permanent magnet, and a rotor.

近年、車の電動化が加速する中、車載機器の小型高効率化がこれまでに増して強く求められている。そのなかで、埋め込み永久磁石式同期電動機は小型高効率で高速回転に優れるという特徴から車載用の電動機として広く使われている。   In recent years, as the electrification of cars accelerates, there is a strong demand for ever smaller and more efficient onboard equipment. Among them, embedded permanent magnet synchronous motors are widely used as in-vehicle motors because of their small size, high efficiency, and excellent high-speed rotation.

例えば、従来技術に係る埋め込み永久磁石式同期電動機が例えば特許文献1において開示されている。当該埋め込み永久磁石式同期電動機においては、固定子の歯先端の形状は、ギャップの距離を一様にするために左右に広がりを持つ突出形状とし、コイルスロットの開口部を狭くすることで、ギャップ間の磁気抵抗を下げ、有効磁束を増やしている。また、回転子は、磁石と磁石の間の突極部に切り欠きを設けることでコギングを抑制していることが多い。さらに、一般的には固定子及び回転子の構造は振動や騒音対策のため、対称性をもつ。   For example, Patent Document 1 discloses an embedded permanent magnet type synchronous motor according to the prior art. In the embedded permanent magnet type synchronous motor, the shape of the tooth tip of the stator is a protruding shape that expands to the left and right in order to make the gap distance uniform, and the opening of the coil slot is narrowed so that the gap The effective magnetic flux is increased by lowering the magnetic resistance. Further, the rotor often suppresses cogging by providing a notch in the salient pole portion between the magnets. Furthermore, in general, the structure of the stator and the rotor has symmetry for measures against vibration and noise.

特開2003−088019号公報JP 2003-088019 A

従来技術においては、さらなる小型高トルク高効率化が望まれる。   In the prior art, further miniaturization and high torque efficiency is desired.

本開示の一態様に係る埋め込み永久磁石式同期電動機は、
固定子の内周側に形成されかつ誘導コイルが巻回された複数の歯を有する固定子と、
前記固定子の内側に設けられた回転子であって、複数の外周磁性体部よりも内側においてそれぞれ前記各外周磁性体部に対向するように外周方向で並置された複数の磁石を有する回転子とを備えた埋め込み永久磁石式同期電動機であって、
前記複数の歯の先端部と前記複数の外周磁性体部との少なくとも一方は、上記固定子の内周と上記回転子の外周との間の、回転方向の前方側における距離が、回転方向の後方側の距離よりも短くなるように、回転方向で非対称な円弧形状を有する。
An embedded permanent magnet synchronous motor according to an aspect of the present disclosure is provided.
A stator having a plurality of teeth formed on the inner peripheral side of the stator and wound with an induction coil;
A rotor provided on the inner side of the stator, the rotor having a plurality of magnets juxtaposed in the outer circumferential direction so as to face the outer peripheral magnetic body portions inside the plurality of outer peripheral magnetic body portions, respectively. Embedded permanent magnet type synchronous motor with
At least one of the tip portions of the plurality of teeth and the plurality of outer peripheral magnetic body portions is such that the distance on the front side in the rotational direction between the inner periphery of the stator and the outer periphery of the rotor is the rotational direction. It has a circular arc shape that is asymmetric in the rotational direction so as to be shorter than the distance on the rear side.

本開示によれば、固定子の歯の先端部及び回転子の外周磁性体部の少なくとも一方を、回転方向で非対称な円弧形状とすることで、ギャップ内の磁束密度分布の差が大きくなるため、トルクを増やすことができる。また、非対称の円弧形状により固定子及び回転子の磁束が一部に集中することを緩和し、駆動時の鉄損を減らすことができる。結果として、従来技術に比較して高トルク化及び小型化を図ることができ、従来技術に比較して効率が大幅に改善される。   According to the present disclosure, at least one of the tip of the stator teeth and the outer peripheral magnetic body portion of the rotor has an arc shape that is asymmetric in the rotation direction, thereby increasing the difference in magnetic flux density distribution in the gap. The torque can be increased. In addition, the asymmetrical arc shape can alleviate the concentration of the magnetic flux of the stator and the rotor to a part, and the iron loss during driving can be reduced. As a result, higher torque and smaller size can be achieved as compared with the prior art, and the efficiency is greatly improved as compared with the prior art.

実施形態1に係る埋め込み永久磁石式同期電動機100の概略構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of an embedded permanent magnet synchronous motor 100 according to a first embodiment. 図1の埋め込み永久磁石式同期電動機100の固定子120の歯121の先端形状の構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example of a tip shape of a tooth 121 of a stator 120 of the embedded permanent magnet type synchronous motor 100 of FIG. 1. 図1の埋め込み永久磁石式同期電動機100の回転子110の外形形状の構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example of an outer shape of a rotor 110 of the embedded permanent magnet synchronous motor 100 of FIG. 1. 図1の埋め込み永久磁石式同期電動機100における固定子120と回転子110との第1の位置関係を示す断面図である。2 is a cross-sectional view showing a first positional relationship between a stator 120 and a rotor 110 in the embedded permanent magnet synchronous motor 100 of FIG. 1. FIG. 図1の埋め込み永久磁石式同期電動機100における固定子120と回転子110との第2の位置関係を示す断面図である。FIG. 3 is a cross-sectional view showing a second positional relationship between a stator 120 and a rotor 110 in the embedded permanent magnet synchronous motor 100 of FIG. 1. 図6の比較例に係る埋め込み永久磁石式同期電動機200及び図1の実施形態1に係る埋め込み永久磁石式同期電動機100のシミュレーション結果である。It is a simulation result of the embedded permanent magnet type | mold synchronous motor 200 which concerns on the comparative example of FIG. 6, and the embedded permanent magnet type | mold synchronous motor 100 which concerns on Embodiment 1 of FIG. 比較例に係る埋め込み永久磁石式同期電動機200の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the embedded permanent magnet type | mold synchronous motor 200 which concerns on a comparative example.

以下、本開示に係る比較例及び実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。   Hereinafter, comparative examples and embodiments according to the present disclosure will be described with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.

(比較例及び本発明者の着眼点)
図6は比較例に係る埋め込み永久磁石式同期電動機200の概略構成を示す断面図である。なお、図示の便宜上、誘導コイル122及び永久磁石111a,111bのみをハッチングし、回転子110及び固定子120のハッチングを省略した。
(Comparison example and point of view of the present inventor)
FIG. 6 is a cross-sectional view showing a schematic configuration of an embedded permanent magnet synchronous motor 200 according to a comparative example. For convenience of illustration, only the induction coil 122 and the permanent magnets 111a and 111b are hatched, and the rotor 110 and the stator 120 are not hatched.

図6において、埋め込み永久磁石式同期電動機200は、固定子(電機子ステータ)120の内側にIPM型の回転子(界磁ロータ)110を配置して構成される。固定子120の内周から突出する例えば12個である3m個(mは正の整数である)の歯121が所定角度間隔で形成され、各歯121には誘導コイル122が集中巻きで巻回されている。回転軸中心C1を中心として回転方向10で回転する回転子110には、一対の永久磁石(例えばフェライト磁石)111a,111bが当該円周方向に等間隔に埋め込まれ、合計で例えば10極である2n極(nはmとは異なる正の整数である)の永久磁石111a,111bが形成されている。ここで、各一対の永久磁石111a,111bは長方形の断面を有し、その長方形の長手方向が回転子110の外周の接線方向と平行となりかつ互いに隣接する永久磁石111a,111bが異なる極を有するように形成されている。   In FIG. 6, the embedded permanent magnet type synchronous motor 200 is configured by arranging an IPM type rotor (field rotor) 110 inside a stator (armature stator) 120. For example, twelve 3m (m is a positive integer) teeth 121 projecting from the inner periphery of the stator 120 are formed at predetermined angular intervals, and the induction coil 122 is wound around each tooth 121 by concentrated winding. Has been. A pair of permanent magnets (for example, ferrite magnets) 111a and 111b are embedded at equal intervals in the circumferential direction in the rotor 110 that rotates in the rotation direction 10 about the rotation axis center C1, and the total is, for example, 10 poles. Permanent magnets 111a and 111b having 2n poles (n is a positive integer different from m) are formed. Here, each pair of permanent magnets 111a and 111b has a rectangular cross section, the longitudinal direction of the rectangle is parallel to the tangential direction of the outer periphery of the rotor 110, and the adjacent permanent magnets 111a and 111b have different poles. It is formed as follows.

なお、永久磁石111a,111bと回転子110の外周との間に位置する回転子110の外周縁端部は各永久磁石111a,111bにそれぞれ対向するように外側に突出する円弧形状(永久磁石111a,111bの長手方向の中心を通過する径方向線を対称軸として対称)の突出部115を有する。突出部115は磁性体にてなり、その円弧形状は、回転子110の外周の半径よりも小さい半径を有する。また、互いに隣接する永久磁石111a,111bの間には、磁束の漏洩及び短絡を防止するための磁束バリア112,113がそれぞれ、回転子110を厚さ方向に切り欠けすることで形成されている。   Note that the outer peripheral edge of the rotor 110 located between the permanent magnets 111a and 111b and the outer periphery of the rotor 110 has an arc shape (permanent magnet 111a) that protrudes outward so as to face the permanent magnets 111a and 111b. , 111b (symmetrical with respect to a radial line passing through the center in the longitudinal direction). The protrusion 115 is made of a magnetic material, and its arc shape has a radius smaller than the radius of the outer periphery of the rotor 110. Further, between the permanent magnets 111a and 111b adjacent to each other, magnetic flux barriers 112 and 113 for preventing leakage of magnetic flux and short circuit are formed by notching the rotor 110 in the thickness direction. .

比較例では、固定子120の歯121における先端部の片側の内側を切り欠き、非対称構造にすることで、トルク変動を抑え、トルクの増加と効率の向上を図る構成例が開示されている。しかし、図6の構造のように、歯121の先端を切り欠くと、磁束の経路が狭まるため、磁気抵抗が上がり、固定子120の鉄損を増やす恐れがある。また、最近では特性向上のために様々な構造上の工夫がなされている。しかし、例えば、高トルク化のために歯121の先端の広がりが小さく、互いに隣接する歯121,121の各縁端部間のスロット開口部123を大きくした構造の場合は、特許文献1を適用すると返ってトルクが低下するという問題点があった。   In the comparative example, a configuration example is disclosed in which the torque fluctuation is suppressed and the torque is increased and the efficiency is improved by notching the inner side of one end of the tip portion of the tooth 121 of the stator 120 to have an asymmetric structure. However, if the tip of the tooth 121 is notched as in the structure of FIG. 6, the magnetic flux path is narrowed, which increases the magnetic resistance and may increase the iron loss of the stator 120. Recently, various structural devices have been devised to improve the characteristics. However, for example, in the case of a structure in which the extension of the tip of the tooth 121 is small for high torque and the slot opening 123 between the edge portions of the adjacent teeth 121 and 121 is large, Patent Document 1 is applied. Then, there was a problem that it returned and the torque decreased.

以上の課題認識に基づいて、本発明者は、下記の実施形態に示される構成を創作するに至った。   Based on the above problem recognition, the inventor has created a configuration shown in the following embodiment.

(実施形態1)
図1は実施形態1に係る埋め込み永久磁石式同期電動機100の概略構成を示す断面図である。また、図2は図1の埋め込み永久磁石式同期電動機100の固定子120の歯121の先端形状の構成例を示す断面図である。さらに、図3は図1の埋め込み永久磁石式同期電動機100の回転子110の外形形状の構成例を示す断面図である。図1〜図3において,図6と同様の構成要素については同様の符号を付す。また、図示の便宜上、誘導コイル122及び永久磁石111a,111bのみをハッチングし、回転子110及び固定子120のハッチングを省略した。
(Embodiment 1)
FIG. 1 is a cross-sectional view illustrating a schematic configuration of an embedded permanent magnet synchronous motor 100 according to the first embodiment. 2 is a cross-sectional view showing a configuration example of the tip shape of the tooth 121 of the stator 120 of the embedded permanent magnet synchronous motor 100 of FIG. 3 is a cross-sectional view showing an example of the configuration of the outer shape of the rotor 110 of the embedded permanent magnet synchronous motor 100 of FIG. 1-3, the same code | symbol is attached | subjected about the component similar to FIG. For convenience of illustration, only the induction coil 122 and the permanent magnets 111 a and 111 b are hatched, and the rotor 110 and the stator 120 are not hatched.

図1において、埋め込み永久磁石式同期電動機100は、固定子(電機子ステータ)120の内側にIPM型の回転子(界磁ロータ)110を配置して構成される。固定子120の内周から突出する例えば12個である3m個(mは正の整数である)の歯121a,121b(総称して、符号121を付す)が所定角度間隔で形成され、各歯121には誘導コイル122が集中巻きで巻回されている。回転軸中心C1を中心として回転方向10で回転する回転子110には、一対の永久磁石(例えばフェライト磁石)111a,111b(総称して,符号111を付す)が当該円周方向に等間隔に埋め込まれ、合計で例えば10極である2n極(nはmとは異なる正の整数である)の永久磁石111が形成されている。ここで、各一対の永久磁石111は長方形の断面を有し、その長方形の長手方向が回転子110の外周の接線方向と平行となりかつ互いに隣接する永久磁石111が異なる極を有するように形成されている。   In FIG. 1, an embedded permanent magnet type synchronous motor 100 is configured by arranging an IPM type rotor (field rotor) 110 inside a stator (armature stator) 120. For example, twelve 3m (m is a positive integer) teeth 121a and 121b (generally denoted by reference numeral 121) projecting from the inner periphery of the stator 120 are formed at predetermined angular intervals, and each tooth An induction coil 122 is wound around 121 by concentrated winding. A pair of permanent magnets 111a and 111b (generically, denoted by reference numeral 111) are equally spaced in the circumferential direction of the rotor 110 that rotates in the rotation direction 10 about the rotation axis center C1. An embedded permanent magnet 111 having 2n poles (n is a positive integer different from m), for example, 10 poles in total is formed. Here, each pair of permanent magnets 111 has a rectangular cross section, the longitudinal direction of the rectangle is parallel to the tangential direction of the outer periphery of the rotor 110, and the adjacent permanent magnets 111 have different poles. ing.

なお、永久磁石111と回転子110の外周との間に位置する回転子110の外周縁端部は各永久磁石111にそれぞれ対向する外周磁性体部115Aを有する。また、互いに隣接する永久磁石111の間には、磁束の漏洩及び短絡を防止するための磁束バリア112A,113がそれぞれ、回転子110を厚さ方向に切り欠けすることで形成されている。さらに、互いに隣接する歯121,121の各縁端部間においてスロット開口部123Aが形成される。   Note that the outer peripheral edge of the rotor 110 located between the permanent magnet 111 and the outer periphery of the rotor 110 has an outer peripheral magnetic body portion 115 </ b> A that faces each permanent magnet 111. Further, between the permanent magnets 111 adjacent to each other, magnetic flux barriers 112A and 113 for preventing leakage of magnetic flux and short circuit are formed by cutting the rotor 110 in the thickness direction. Further, a slot opening 123A is formed between the edge portions of the teeth 121 and 121 adjacent to each other.

図1の実施形態1に係る埋め込み永久磁石式同期電動機100は、図6の比較例に係る埋め込み永久磁石式同期電動機200に比較して以下の点が異なる。   1 is different from the embedded permanent magnet synchronous motor 200 according to the comparative example of FIG. 6 in the following points.

(特徴構成1)図6の固定子の120の内周に沿った先端円周を有しかつ各歯121の幅方向の中心線L1(図2)を対称軸として線対称である図6の先端部121に比較して、図1の固定子120の歯121の先端部121Aは、固定子の120の内周に沿った先端円周を有するが各歯121の幅方向の幾何学的中心線(以下、中心線という)L1(図2)を対称軸として非対称である先端部121Aを有する。具体的には、実施形態1に係る先端部121Aを、図2の中心線L1、歯121の径方向外形線(歯121の側面に対応する断面上の線をいう)L2,L3を境界線として用いて、図2に示すように部分121Aa,121Ab,121Acに3分割したときに、径方向外形線L2の側面の先端部121Aには周方向に突出する部分121Aaを有するが、径方向外形線L2の側面の先端部121Aには周方向に突出する部分がないように、すなわち先端部121Aは周方向で非対称となるように先端部121Aが形成されている。この詳細は図2を参照して後述する。 (Characteristic configuration 1) FIG. 6 has a tip circumference along the inner circumference of the stator 120 of FIG. 6 and is symmetrical with respect to the center line L1 (FIG. 2) in the width direction of each tooth 121 as a symmetry axis. Compared to the tip 121, the tip 121 A of the tooth 121 of the stator 120 of FIG. 1 has a tip circumference along the inner circumference of the stator 120, but the geometric center in the width direction of each tooth 121. It has a tip 121A that is asymmetric with a line (hereinafter referred to as a center line) L1 (FIG. 2) as an axis of symmetry. Specifically, the front end portion 121A according to the first embodiment is defined by using the center line L1 in FIG. 2, when divided into three parts 121Aa, 121Ab, 121Ac as shown in FIG. 2, the tip 121A on the side surface of the radial outline L2 has a part 121Aa projecting in the circumferential direction. The tip 121A is formed so that the tip 121A on the side surface of the line L2 does not have a portion protruding in the circumferential direction, that is, the tip 121A is asymmetric in the circumferential direction. Details of this will be described later with reference to FIG.

(特徴構成2)先端部121Aの歯121の径方向外形線L3に沿った長さL13は、先端部121Aの歯121の径方向外形線L2に沿った長さL12よりも短くなるように、すなわち、歯121の先端部121Aが回転方向10の前方部で歯121と回転子110との距離が小さくなり近接するように先端部121Aが形成される。この詳細は図2を参照して後述する。 (Characteristic configuration 2) The length L13 along the radial outline L3 of the tooth 121 of the tip 121A is shorter than the length L12 along the radial outline L2 of the tooth 121 of the tip 121A. That is, the tip 121 </ b> A is formed so that the tip 121 </ b> A of the tooth 121 is closer to the front portion in the rotation direction 10 and the distance between the tooth 121 and the rotor 110 becomes smaller. Details of this will be described later with reference to FIG.

(特徴構成3)図6の回転子110の各突出部115は周方向で対称となる円弧形状を有する。図1では、突出部115に代えて、周方向で非対称となる円弧形状の切り欠き部116を有する外周磁性体部115Aを備える。この詳細は図3を参照して後述する。 (Characteristic Configuration 3) Each protrusion 115 of the rotor 110 in FIG. 6 has an arc shape that is symmetrical in the circumferential direction. In FIG. 1, instead of the protruding portion 115, an outer peripheral magnetic body portion 115A having an arc-shaped cutout portion 116 that is asymmetric in the circumferential direction is provided. Details of this will be described later with reference to FIG.

まず、歯121の先端部121Aの構成例について図2を参照して以下詳述する。   First, a configuration example of the tip 121A of the tooth 121 will be described in detail below with reference to FIG.

図2において、歯121の先端部121Aを、中心線L1、歯121の径方向外形線L2,L3を境界線として用いて、図2に示すように部分121Aa,121Ab,121Acに3分割して考える。すなわち、先端部121Aは部分121Aa,121Ab,121Acから構成される。部分121Acはその先端において径方向外形線L3に沿って延在する外形側面を有する。これに対して、部分121Abはその先端において周方向に延在する部分121Aaと連結されている。すなわち、歯121の先端部121Aは中心線L1を対称軸として非対称の形状を有する。   In FIG. 2, the tip 121A of the tooth 121 is divided into three parts 121Aa, 121Ab, and 121Ac as shown in FIG. 2, using the center line L1 and the radial outlines L2 and L3 of the tooth 121 as boundaries. Think. That is, the tip 121A is composed of portions 121Aa, 121Ab, and 121Ac. The portion 121Ac has an outer shape side surface extending along the radial outer shape line L3 at the tip thereof. On the other hand, the portion 121Ab is connected to a portion 121Aa extending in the circumferential direction at the tip. That is, the tip 121A of the tooth 121 has an asymmetric shape with the center line L1 as the axis of symmetry.

図2の実施形態では、先端部121Aの部分121Aaは周方向の前方側に位置するが、本開示はこれに限らず、周方向の後方側において部分121Acに連結するように形成してもよい。   In the embodiment of FIG. 2, the portion 121Aa of the tip 121A is located on the front side in the circumferential direction, but the present disclosure is not limited thereto, and may be formed so as to be connected to the portion 121Ac on the rear side in the circumferential direction. .

また、先端部121Aの歯121の径方向外形線L3に沿った長さL13は、先端部121Aの歯121の径方向外形線L2に沿った長さL12よりも短くなるように先端部121Aが形成されている。すなわち、歯121の先端部121Aが回転方向10の前方部で歯121と回転子110との距離が小さくなるように先端部121Aが形成される。言い換えれば、歯121の先端部121Aが回転方向10の前方部で歯121と回転子110とがより近接するように先端部121Aが形成される。   In addition, the length L13 of the tip 121A along the radial outline L3 of the tooth 121 is shorter than the length L12 of the tip 121A of the tooth 121 along the radial outline L2 of the tip 121A. Is formed. That is, the tip 121 </ b> A is formed such that the distance between the tooth 121 and the rotor 110 is small at the tip 121 </ b> A of the tooth 121 in the front portion in the rotation direction 10. In other words, the tip 121 </ b> A is formed such that the tip 121 </ b> A of the tooth 121 is closer to the front of the rotation direction 10 and the tooth 121 and the rotor 110 are closer to each other.

以上において、特徴構成1とその変形例及び特徴構成2について説明したが、本開示は特徴構成1とその変形例と、特徴構成2とのうちいずれか1つのみを構成してもよい。   In the above, the feature configuration 1, its modification example, and the feature configuration 2 have been described. However, the present disclosure may constitute only one of the feature configuration 1, its modification example, and the feature configuration 2.

次いで、回転子110の外周磁性体部115Aの構成例について図3を参照して以下詳述する。   Next, a configuration example of the outer peripheral magnetic body portion 115A of the rotor 110 will be described in detail with reference to FIG.

図3において、回転子110の外周磁性体部115Aは各永久磁石111に対応させて回転子110の外周縁端部に形成される。ここで、各外周磁性体部115Aは周方向で非対称となる円弧形状を有する切り欠き部116を有し、当該円弧形状は、回転軸中心C1よりも回転子110内の外周側に位置する中心C2を中心として、回転子110の半径R1よりも小さい半径R2を有する。図3において、回転軸中心C1から永久磁石111の長手方向の中心を通過する軸をd軸とし、回転軸中心C1から、互いに隣接する永久磁石111a,111b間に中間点を通過する軸をq軸とする。各外周磁性体部115Aの切り欠き部116は、回転子110の外周と、中心C2を中心として半径R2の円弧と、q軸とを囲む回転子110の部分を除去することで形成される。以上のように構成された外周磁性体部115Aは、各永久磁石111の周方向の前方側は、切り欠き部がなく磁束経路が広くなるため、周方向前方側の磁束バリア112Aを周方向後方側の磁束バリア113よりも大きくすることが好ましい。具体的には、磁束バリア112Aは磁束バリア113に比較して径方向の長さを長くする。   In FIG. 3, the outer peripheral magnetic body portion 115 </ b> A of the rotor 110 is formed at the outer peripheral edge portion of the rotor 110 corresponding to each permanent magnet 111. Here, each outer peripheral magnetic body portion 115A has a notch 116 having an arc shape that is asymmetric in the circumferential direction, and the arc shape is a center located on the outer peripheral side in the rotor 110 with respect to the rotation axis center C1. Centering on C2, it has a radius R2 that is smaller than the radius R1 of the rotor 110. In FIG. 3, the axis passing through the longitudinal center of the permanent magnet 111 from the rotation axis center C1 is d-axis, and the axis passing through the intermediate point between the rotation magnet center C1 and the adjacent permanent magnets 111a and 111b is q. Axis. The cutout portion 116 of each outer peripheral magnetic body portion 115A is formed by removing a portion of the rotor 110 surrounding the outer periphery of the rotor 110, an arc having a radius R2 around the center C2, and the q axis. The outer peripheral magnetic body portion 115A configured as described above has a notch portion on the front side in the circumferential direction of each permanent magnet 111 and the magnetic flux path is widened. It is preferable to make it larger than the magnetic flux barrier 113 on the side. Specifically, the magnetic flux barrier 112 </ b> A is longer in the radial direction than the magnetic flux barrier 113.

以上のように構成された実施形態1に係る埋め込み永久磁石式同期電動機100によれば、以下に示す作用効果が得られる。   According to the embedded permanent magnet synchronous motor 100 according to the first embodiment configured as described above, the following effects can be obtained.

図4Aは図1の埋め込み永久磁石式同期電動機100における固定子120と回転子110との第1の位置関係を示す断面図である。また、図4Bは図1の埋め込み永久磁石式同期電動機100における固定子120と回転子110との第2の位置関係を示す断面図である。ここで、図4Aは回転子110の永久磁石111aが固定子120の歯121aに近接する場合を表し、図4Bは回転子110の永久磁石111aが固定子120の歯121aから遠ざかる場合を表す。   4A is a cross-sectional view showing a first positional relationship between the stator 120 and the rotor 110 in the embedded permanent magnet synchronous motor 100 of FIG. 4B is a cross-sectional view showing a second positional relationship between the stator 120 and the rotor 110 in the embedded permanent magnet synchronous motor 100 of FIG. 4A shows a case where the permanent magnet 111a of the rotor 110 is close to the teeth 121a of the stator 120, and FIG. 4B shows a case where the permanent magnet 111a of the rotor 110 moves away from the teeth 121a of the stator 120.

図4Aに示すように、永久磁石111aが歯121aへ近づく場合は、永久磁石111aから出た磁束は、固定子120と回転子110との間のギャップ内を回転方向10に進み、回転方向10の前方側に位置する歯121aへ到達するため、回転方向10の応力が発生する。従って、歯121aの先端部121Aは、回転方向10の後方側に突出部はなく(なお、前方側には図2の部分121Aaがある)、固定子120と回転子110との間のギャップ内の磁束密度の差が大きくなるため、回転方向10の応力は強くなり、結果としてトルクが大きくなる。同時に永久磁石111aの回転方向10の前方側には切り欠きがなくギャップは狭いので、永久磁石111aから出た磁束線は歯121aへ到達しやすい。すると、有効磁束が増えるため、トルクはさらに増化する。   As shown in FIG. 4A, when the permanent magnet 111a approaches the tooth 121a, the magnetic flux emitted from the permanent magnet 111a advances in the rotation direction 10 in the gap between the stator 120 and the rotor 110, and the rotation direction 10 In order to reach the tooth 121a located on the front side, a stress in the rotational direction 10 is generated. Therefore, the tip 121A of the tooth 121a has no protrusion on the rear side in the rotation direction 10 (note that the front side has the portion 121Aa in FIG. 2), and is within the gap between the stator 120 and the rotor 110. Since the difference in magnetic flux density increases, the stress in the rotational direction 10 increases, resulting in an increase in torque. At the same time, since there is no notch on the front side in the rotational direction 10 of the permanent magnet 111a and the gap is narrow, the magnetic flux lines coming out of the permanent magnet 111a easily reach the teeth 121a. Then, since the effective magnetic flux increases, the torque further increases.

一方、図4Bに示すように、回転子110の永久磁石111aが歯121aから遠ざかる場合は、永久磁石111aから発生する磁束は、回転方向10の前方側と後方側とで、進む方向が2つに分かれる。前方側の磁束は、固定子120と回転子110との間のギャップ内を回転方向10に進み、回転方向10の前方側に位置する歯121bへ向かうため、回転方向10の応力を生む。しかし、回転方向10の後方側の磁束は、固定子120と回転子110との間のギャップ内を回転方向10とは逆方向に進み、回転方向10の後方側に位置する歯121aに向かうため、回転方向10と逆方向の応力を発生することになる。従って、歯121aの先端部121Aは、回転方向10の後方側に突出部はなく、磁束が逆方向に進む範囲が狭くなるため、回転方向10とは逆方向の応力は小さくなり、結果としてトルクの低減が抑えられる。同時に永久磁石111a上の回転方向10の後方側には切り欠き部116aがありギャップが広いので、磁石から出た磁束線は固定子120へは到達しにくい。すると有効磁束は少ないため、トルクの低減はさらに抑えられる。   On the other hand, as shown in FIG. 4B, when the permanent magnet 111 a of the rotor 110 moves away from the teeth 121 a, the magnetic flux generated from the permanent magnet 111 a has two traveling directions on the front side and the rear side in the rotation direction 10. Divided into The magnetic flux on the front side travels in the rotation direction 10 through the gap between the stator 120 and the rotor 110 and travels toward the teeth 121b located on the front side in the rotation direction 10, and thus generates stress in the rotation direction 10. However, the magnetic flux on the rear side in the rotational direction 10 travels in the direction opposite to the rotational direction 10 in the gap between the stator 120 and the rotor 110 and travels toward the teeth 121a located on the rear side in the rotational direction 10. Therefore, stress in the direction opposite to the rotation direction 10 is generated. Therefore, the tip 121A of the tooth 121a has no protrusion on the rear side in the rotational direction 10, and the range in which the magnetic flux travels in the reverse direction is narrowed. Therefore, the stress in the direction opposite to the rotational direction 10 is reduced, resulting in torque. Reduction is suppressed. At the same time, since there is a notch 116a on the rear side in the rotation direction 10 on the permanent magnet 111a and the gap is wide, the magnetic flux lines coming out of the magnet do not easily reach the stator 120. Then, since the effective magnetic flux is small, torque reduction is further suppressed.

図5は、図6の比較例に係る埋め込み永久磁石式同期電動機200及び図1の実施形態1に係る埋め込み永久磁石式同期電動機100のシミュレーション結果である。図5において、横軸は回転角(deg)、縦軸は回転角に対する、比較例のトルク平均値を1として正規化したトルクを示す。   FIG. 5 is a simulation result of the embedded permanent magnet synchronous motor 200 according to the comparative example of FIG. 6 and the embedded permanent magnet synchronous motor 100 according to the first embodiment of FIG. In FIG. 5, the horizontal axis represents the rotation angle (deg), and the vertical axis represents the torque normalized with the torque average value of the comparative example as 1 with respect to the rotation angle.

図5から明らかなように、回転子110の回転位置に応じて増減を繰り返すトルクにおいて、比較例と比べて最大点が高くなり、最小点が持ち上げられることがわかる。このように、最小点での持ち上げ分は最大点での増加分よりも大きいため、コギングが抑制されることが分かる。   As can be seen from FIG. 5, in the torque that repeatedly increases and decreases according to the rotational position of the rotor 110, the maximum point is higher than the comparative example, and the minimum point is raised. Thus, it can be seen that the amount of lift at the minimum point is larger than the increase at the maximum point, so that cogging is suppressed.

また、実施形態1で示す構成によれば、駆動時に磁束が集中する歯121aの先端部121Aの回転方向10の後方側において、磁気抵抗が高い部分がないため、鉄損を低減できる。また、駆動時に磁束が集中する永久磁石111の外周磁性体部115Aにおいて、切り欠き部116がない側の面積は広いため、磁束集中が緩和され、鉄損を低減できる。同一の磁束入力に対して、駆動時の鉄損が減るため、電動機100の効率は上がる。同じ鉄損量が許容できる電動機100を想定すれば、同体積における鉄損量が低減するため、小型化が図れる。   Moreover, according to the structure shown in Embodiment 1, since there is no part with high magnetic resistance in the rear side of the rotation direction 10 of the front-end | tip part 121A of the tooth | gear 121a where magnetic flux concentrates at the time of a drive, an iron loss can be reduced. Further, in the outer peripheral magnetic body portion 115A of the permanent magnet 111 where the magnetic flux concentrates during driving, the area on the side where the notched portion 116 is not present is wide, so that the magnetic flux concentration is alleviated and iron loss can be reduced. Since the iron loss during driving is reduced with respect to the same magnetic flux input, the efficiency of the electric motor 100 is increased. Assuming the electric motor 100 that can tolerate the same iron loss amount, the iron loss amount in the same volume is reduced, so that the size can be reduced.

以上説明したように、本実施形態によれば、回転方向10の前方側における回転子110と固定子120との間の距離が、回転方向10の後方側における回転子110と固定子120との間の距離よりも短くなるように、固定子120及び/又は回転子110を非対称な形状とすることで、ギャップ内の磁束密度分布の差が大きくなるため、トルクを増やすことができる。また、非対称形状により固定子120及び回転子110の磁束が一部に集中することを緩和し、駆動時の鉄損を減らすことができる。結果として、高トルク化及び小型化を図ることができ、効率が改善される。   As described above, according to the present embodiment, the distance between the rotor 110 and the stator 120 on the front side in the rotational direction 10 is such that the distance between the rotor 110 and the stator 120 on the rear side in the rotational direction 10 is By making the stator 120 and / or the rotor 110 asymmetric so as to be shorter than the distance between them, the difference in the magnetic flux density distribution in the gap increases, so that the torque can be increased. In addition, the asymmetrical shape can alleviate the concentration of the magnetic fluxes of the stator 120 and the rotor 110 to a part, thereby reducing iron loss during driving. As a result, the torque can be increased and the size can be reduced, and the efficiency is improved.

以上の実施形態においては、永久磁石111,111a,111bを用いているが、本開示はこれに限らず、磁石をもちいてもよい。   In the above embodiment, the permanent magnets 111, 111a, and 111b are used. However, the present disclosure is not limited to this, and a magnet may be used.

実施形態のまとめ.
本開示の第1の態様に係る埋め込み永久磁石式同期電動機は、
固定子の内周側に形成されかつ誘導コイルが巻回された複数の歯を有する固定子と、
前記固定子の内側に設けられた回転子であって、複数の外周磁性体部よりも内側においてそれぞれ前記各外周磁性体部に対向するように外周方向で並置された複数の磁石を有する回転子とを備えた埋め込み永久磁石式同期電動機であって、
前記複数の歯の先端部と前記複数の外周磁性体部との少なくとも一方は、上記固定子の内周と上記回転子の外周との間の、回転方向の前方側における距離が、回転方向の後方側の距離よりも短くなるように、回転方向で非対称な円弧形状を有する。
Summary of embodiments.
The embedded permanent magnet synchronous motor according to the first aspect of the present disclosure is:
A stator having a plurality of teeth formed on the inner peripheral side of the stator and wound with an induction coil;
A rotor provided on the inner side of the stator, the rotor having a plurality of magnets juxtaposed in the outer circumferential direction so as to face the outer peripheral magnetic body portions inside the plurality of outer peripheral magnetic body portions, respectively. Embedded permanent magnet type synchronous motor with
At least one of the tip portions of the plurality of teeth and the plurality of outer peripheral magnetic body portions is such that the distance on the front side in the rotational direction between the inner periphery of the stator and the outer periphery of the rotor is the rotational direction. It has an arc shape that is asymmetric in the rotational direction so as to be shorter than the distance on the rear side.

本開示の第2の態様に係る埋め込み永久磁石式同期電動機は、第1の態様に係る埋め込み永久磁石式同期電動機において、前記複数の歯の先端部は、回転方向の後方側の径方向外形側面に沿って配置される一方、回転方向の前方側の径方向外形側面から回転方向で突出する部分を有するように構成される。   The embedded permanent magnet synchronous motor according to the second aspect of the present disclosure is the embedded permanent magnet synchronous motor according to the first aspect, wherein the tip ends of the plurality of teeth are radially outer side surfaces on the rear side in the rotational direction. And a portion protruding in the rotational direction from the radially outer side surface on the front side in the rotational direction.

本開示の第3の態様に係る埋め込み永久磁石式同期電動機は、第1又は第2の態様に係る埋め込み永久磁石式同期電動機において、前記複数の歯の先端部は、当該歯の回転方向の前方側の径方向外形側面の長さが、当該歯の回転方向の後方側の径方向外形側面の長さよりも長い。   The embedded permanent magnet type synchronous motor according to a third aspect of the present disclosure is the embedded permanent magnet type synchronous motor according to the first or second aspect, wherein tip ends of the plurality of teeth are forward in the rotation direction of the teeth. The length of the radial outer side surface on the side is longer than the length of the radial outer side surface on the rear side in the rotational direction of the tooth.

本開示の第4の態様に係る埋め込み永久磁石式同期電動機は、第1〜第3の態様のうちのいずれか1つに係る埋め込み永久磁石式同期電動機において、前記複数の外周磁性体部はそれぞれ、前記回転子の半径よりも短い半径を有する円弧形状を有する切り欠き部を備える。   The embedded permanent magnet synchronous motor according to a fourth aspect of the present disclosure is the embedded permanent magnet synchronous motor according to any one of the first to third aspects, wherein the plurality of outer peripheral magnetic body portions are respectively And a notch having an arc shape having a radius shorter than the radius of the rotor.

本開示の第5の態様に係る埋め込み永久磁石式同期電動機は、第4の態様に係る埋め込み永久磁石式同期電動機において、前記切り欠き部は、前記回転子の外周と、互いに隣接する前記各磁石の間の径方向中心線であるq軸と、上記各外周磁性体部の円弧とで囲まれる外周磁性体部の領域を除去することにより構成される。   The embedded permanent magnet type synchronous motor according to a fifth aspect of the present disclosure is the embedded permanent magnet type synchronous motor according to the fourth aspect, wherein the notch portion includes an outer periphery of the rotor and the magnets adjacent to each other. It is comprised by removing the area | region of the outer periphery magnetic body part enclosed by q axis | shaft which is a radial direction centerline between these, and the circular arc of each said outer periphery magnetic body part.

本開示の第6の態様に係る埋め込み永久磁石式同期電動機は、第4又は第5の態様に係る埋め込み永久磁石式同期電動機において、前記回転子は、互いに隣接する前記各磁石の間であって前記各磁石の両端部に配置された複数の磁束バリアを備え、
前記複数の磁束バリアは、前記各磁石において、回転方向の前方側の磁束バリアの周方向の長さは、回転方向の後方側の磁束バリアの周方向の長さよりも長い。
An embedded permanent magnet synchronous motor according to a sixth aspect of the present disclosure is the embedded permanent magnet synchronous motor according to the fourth or fifth aspect, wherein the rotor is between the magnets adjacent to each other. A plurality of magnetic flux barriers disposed at both ends of each magnet;
In the plurality of magnetic flux barriers, in each of the magnets, the circumferential length of the magnetic flux barrier on the front side in the rotational direction is longer than the circumferential length of the magnetic flux barrier on the rear side in the rotational direction.

本開示の電動機は、例えば、車両用電動機に利用されうる。   The electric motor of the present disclosure can be used for, for example, a vehicle electric motor.

100…電動機、
110…回転子、
111,111a,111b…磁石、
112A,113…磁束バリア、
115A…外周磁性体部、
116a,116b…切り欠き部、
120…固定子、
121,121a,121b…歯、
121A…歯の先端部、
121Aa,121Ab,121Ac…歯の先端部の部分、
122…誘導コイル。
100 ... electric motor,
110 ... rotor,
111, 111a, 111b ... magnets,
112A, 113 ... Magnetic flux barrier,
115A ... outer peripheral magnetic body part,
116a, 116b ... notch,
120 ... Stator,
121, 121a, 121b ... teeth,
121A ... the tip of the tooth,
121Aa, 121Ab, 121Ac ... the tip of the tooth,
122: Induction coil.

Claims (6)

固定子の内周側に形成されかつ誘導コイルが巻回された複数の歯を有する固定子と、
前記固定子の内側に設けられた回転子であって、複数の外周磁性体部よりも内側においてそれぞれ前記各外周磁性体部に対向するように外周方向で並置された複数の磁石を有する回転子とを備えた埋め込み永久磁石式同期電動機であって、
前記複数の歯の先端部と前記複数の外周磁性体部との少なくとも一方は、上記固定子の内周と上記回転子の外周との間の、回転方向の前方側における距離が、回転方向の後方側の距離よりも短くなるように、回転方向で非対称な円弧形状を有する、
埋め込み永久磁石式同期電動機。
A stator having a plurality of teeth formed on the inner peripheral side of the stator and wound with an induction coil;
A rotor provided on the inner side of the stator, the rotor having a plurality of magnets juxtaposed in the outer circumferential direction so as to face the outer peripheral magnetic body portions inside the plurality of outer peripheral magnetic body portions, respectively. Embedded permanent magnet type synchronous motor with
At least one of the tip portions of the plurality of teeth and the plurality of outer peripheral magnetic body portions is such that the distance on the front side in the rotational direction between the inner periphery of the stator and the outer periphery of the rotor is the rotational direction. It has a circular arc shape that is asymmetric in the rotational direction so as to be shorter than the distance on the rear side,
Embedded permanent magnet synchronous motor.
前記複数の歯の先端部は、回転方向の後方側の径方向外形側面に沿って配置される一方、回転方向の前方側の径方向外形側面から回転方向で突出する部分を有するように構成された
請求項1記載の埋め込み永久磁石式同期電動機。
The tip portions of the plurality of teeth are arranged along the radially outer side surface on the rear side in the rotational direction, and have a portion protruding in the rotational direction from the radially outer side surface on the front side in the rotational direction. The embedded permanent magnet type synchronous motor according to claim 1.
前記複数の歯の先端部は、当該歯の回転方向の前方側の径方向外形側面の長さが、当該歯の回転方向の後方側の径方向外形側面の長さよりも長い、
請求項1又は2記載の埋め込み永久磁石式同期電動機。
The front ends of the plurality of teeth have a length of a radial outer side surface on the front side in the rotation direction of the teeth longer than a length of a radial outer side surface on the rear side in the rotation direction of the teeth,
The embedded permanent magnet synchronous motor according to claim 1 or 2.
前記複数の外周磁性体部はそれぞれ、前記回転子の半径よりも短い半径を有する円弧形状を有する切り欠き部を備えた、
請求項1〜3のうちのいずれか1つに記載の埋め込み永久磁石式同期電動機。
Each of the plurality of outer peripheral magnetic body portions includes a notch portion having an arc shape having a radius shorter than the radius of the rotor.
The embedded permanent magnet synchronous motor according to any one of claims 1 to 3.
前記切り欠き部は、前記回転子の外周と、互いに隣接する前記各磁石の間の径方向中心線であるq軸と、上記各外周磁性体部の円弧とで囲まれる外周磁性体部の領域を除去することにより構成された、
請求項4記載の埋め込み永久磁石式同期電動機。
The notch portion is a region of the outer peripheral magnetic body portion surrounded by the outer periphery of the rotor, the q axis that is a radial center line between the adjacent magnets, and the arc of each outer peripheral magnetic body portion. Configured by removing the
The embedded permanent magnet type synchronous motor according to claim 4.
前記回転子は、互いに隣接する前記各磁石の間であって前記各磁石の両端部に配置された複数の磁束バリアを備え、
前記複数の磁束バリアは、前記各磁石において、回転方向の前方側の磁束バリアの周方向の長さは、回転方向の後方側の磁束バリアの周方向の長さよりも長い、
請求項4又は5記載の埋め込み永久磁石式同期電動機。
The rotor includes a plurality of magnetic flux barriers disposed between the magnets adjacent to each other and at both ends of the magnets,
In each of the magnets, the circumferential length of the magnetic flux barrier on the front side in the rotational direction is longer than the circumferential length of the magnetic flux barrier on the rear side in the rotational direction.
The embedded permanent magnet synchronous motor according to claim 4 or 5.
JP2016092640A 2016-05-02 2016-05-02 Embedded permanent magnet type synchronous motor Pending JP2017201849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092640A JP2017201849A (en) 2016-05-02 2016-05-02 Embedded permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092640A JP2017201849A (en) 2016-05-02 2016-05-02 Embedded permanent magnet type synchronous motor

Publications (1)

Publication Number Publication Date
JP2017201849A true JP2017201849A (en) 2017-11-09

Family

ID=60264761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092640A Pending JP2017201849A (en) 2016-05-02 2016-05-02 Embedded permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP2017201849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161624A1 (en) * 2018-02-26 2019-08-29 东南大学 Asymmetric dual three-phase arc permanent magnet synchronous motor
CN111193341A (en) * 2018-11-14 2020-05-22 沈阳中航机电三洋制冷设备有限公司 DC motor and rotary compressor using the same
CN112470364A (en) * 2018-08-03 2021-03-09 三菱电机株式会社 Stator, motor, compressor, and refrigeration and air-conditioning apparatus
WO2023054173A1 (en) * 2021-09-29 2023-04-06 ダイキン工業株式会社 Rotor, motor, compressor, and refrigeration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161624A1 (en) * 2018-02-26 2019-08-29 东南大学 Asymmetric dual three-phase arc permanent magnet synchronous motor
CN112470364A (en) * 2018-08-03 2021-03-09 三菱电机株式会社 Stator, motor, compressor, and refrigeration and air-conditioning apparatus
CN111193341A (en) * 2018-11-14 2020-05-22 沈阳中航机电三洋制冷设备有限公司 DC motor and rotary compressor using the same
CN111193341B (en) * 2018-11-14 2021-09-28 沈阳中航机电三洋制冷设备有限公司 DC motor and rotary compressor using the same
WO2023054173A1 (en) * 2021-09-29 2023-04-06 ダイキン工業株式会社 Rotor, motor, compressor, and refrigeration device

Similar Documents

Publication Publication Date Title
CN106953440B (en) Rotating electric machine and method for manufacturing rotor core
US11171525B2 (en) Rotor and permanent magnet electric motor
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP5696820B2 (en) Permanent magnet motor rotor
US8487495B2 (en) Rotor for motor
JP5762569B2 (en) Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
JP5443778B2 (en) Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof
JP4900132B2 (en) Rotor and rotating electric machine
US20150372578A1 (en) Motor
US10680475B2 (en) Rotor for rotary electric machine
WO2018190103A1 (en) Rotor for dynamo-electric machine
JP2017201849A (en) Embedded permanent magnet type synchronous motor
CN107453571B (en) Switched reluctance motor
JP2010178471A (en) Rotating electrical machine
KR101473086B1 (en) Rotary electric machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP6760014B2 (en) Rotating electric machine
JP2010207021A (en) End plate for rotor and rotary electric machine using the same
JP6357870B2 (en) Permanent magnet motor
JP6012046B2 (en) Brushless motor
JP6382085B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2011083114A (en) Motor
JP2021136754A (en) Magnet position setting method of rotor of rotary electric machine
JP2022174956A (en) Rotary electric machine
JP2021106474A (en) Rotator of rotary electric machine and rotary electric machine