JP2017200252A - Interconnection operation controller and distributed power supply operation system using the same, and interconnection operation control method - Google Patents

Interconnection operation controller and distributed power supply operation system using the same, and interconnection operation control method Download PDF

Info

Publication number
JP2017200252A
JP2017200252A JP2016086739A JP2016086739A JP2017200252A JP 2017200252 A JP2017200252 A JP 2017200252A JP 2016086739 A JP2016086739 A JP 2016086739A JP 2016086739 A JP2016086739 A JP 2016086739A JP 2017200252 A JP2017200252 A JP 2017200252A
Authority
JP
Japan
Prior art keywords
power generation
generation facility
load
power
emergency generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016086739A
Other languages
Japanese (ja)
Other versions
JP6692205B2 (en
Inventor
智 浅沼
Satoshi Asanuma
智 浅沼
佳 後藤田
Kei Gotoda
佳 後藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016086739A priority Critical patent/JP6692205B2/en
Publication of JP2017200252A publication Critical patent/JP2017200252A/en
Application granted granted Critical
Publication of JP6692205B2 publication Critical patent/JP6692205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Abstract

PROBLEM TO BE SOLVED: To provide an interconnection operation controller that makes it possible to use a power generator of a photovoltaic power generation facility or the like used for system interconnection as it is to operate the power generator in parallel with an emergency power generator, at the time of outage.SOLUTION: An interconnection operation controller 20 for controlling interconnection operation of an emergency power generator 5 for supplying power to a user's load and photovoltaic power generation 14 at the time of outage includes: interconnection operation determination means 21 for determining the propriety of interconnection operation from a situation of output of the emergency power generator 5 and output of the photovoltaic power generation 14; variation load amount calculation means 22 for calculating, when starting the interconnection operation of the emergency power generator 5 and the photovoltaic power generation 14 on the basis of a result of the determination, a variation load amount in the case of inputting or stopping a load on the basis of the total capacity of loads and generated power of the photovoltaic power generation 14; and load input/stop determination means 23 for determining whether or not to input or stop a load on the basis of the variation load amount.SELECTED DRAWING: Figure 1

Description

この発明は、系統電源喪失時に、非常用発電機、太陽光発電、風力発電、蓄電池等の分散型電源を組合せて、需要家の負荷に電源を供給する連系運転制御装置およびこれを用いた分散型電源の運転システム並びに連系運転制御方法に関するものである。   The present invention uses an interconnected operation control apparatus that supplies power to a consumer's load by combining a distributed power source such as an emergency generator, solar power generation, wind power generation, and storage battery when a system power supply is lost, and the same The present invention relates to a distributed power supply operation system and a linked operation control method.

大部分の太陽光発電設備は、系統電源に接続した系統連系での運用を前提にしている。太陽光発電を系統連系して使用するには、電力会社の系統連系要件を満足する必要があり、太陽光発電は、電圧、周波数が上下限値から乖離した場合、系統電源から解列するように保護装置を設けている。
系統電源は、非常用発電に比べて電源変動が少なく安定しており、電圧、周波数の解列条件は、非常用発電機の電圧変動、周波数変動に比べて小さい範囲で設定されている。非常用発電機は、大きな負荷変動があると、電圧、周波数が系統連系の範囲を逸脱し、太陽光発電の保護機能が動作して、太陽光発電が停止することになる。
そのため、従来の非常用発電機と太陽光発電を連系して電源を供給するシステムにおいては、太陽光発電設備に設ける電圧、周波数による保護装置を系統連系用と停電時用に各々設けて、運用状態により、使用する保護装置を切替えることで、非常用発電機と太陽光発電を連系して電源を供給できるようにしている。
また、上記のように構成しても、太陽光発電の出力変動と負荷変動が同時に発生すると、非常用発電機の負荷変動許容量を超過して、非常用発電機が停止するという問題があった。
(例えば、特許文献1参照)
Most photovoltaic power generation facilities are premised on grid-connected operation connected to the grid power supply. In order to use photovoltaic power generation with grid connection, it is necessary to satisfy the grid connection requirements of the power company. When voltage and frequency deviate from the upper and lower limit values, solar power generation is disconnected from the grid power supply. A protective device is provided.
The system power supply is stable with less power fluctuation compared to emergency power generation, and the voltage and frequency disconnection conditions are set in a range smaller than the voltage fluctuation and frequency fluctuation of the emergency generator. When the emergency generator has a large load fluctuation, the voltage and frequency deviate from the grid connection range, the protection function of the photovoltaic power generation operates, and the photovoltaic power generation stops.
Therefore, in the conventional system that supplies power by linking the emergency power generator and photovoltaic power generation, the voltage and frequency protection devices provided in the photovoltaic power generation facilities are provided for grid connection and power failure respectively. By switching the protection device to be used according to the operating state, the emergency generator and solar power generation can be linked to supply power.
Even with the configuration described above, if output fluctuation and load fluctuation of photovoltaic power generation occur simultaneously, there is a problem that the emergency generator stops because it exceeds the load fluctuation tolerance of the emergency generator. It was.
(For example, see Patent Document 1)

特開2004−104851号公報(第4〜5頁、第2図)Japanese Unexamined Patent Publication No. 2004-104851 (pages 4-5, FIG. 2)

従来の非常用発電機と太陽光発電の連系システムは、以上のように構成されているので、太陽光発電システムに電圧、周波数の保護装置を系統連系用と単独運転用に各々設ける必要があった。
また、太陽光発電の出力変動と大きい負荷設備の変動が同時に起こると、非常用発電機から見ると、太陽光発電の変化量と負荷変動の合計が実質の負荷変動となり、これらの合計が非常用発電機の負荷変動許容量を超過すると、非常用発電機が停止する場合があるなどの問題があった。
Since the conventional emergency generator-solar power generation interconnection system is configured as described above, it is necessary to provide voltage and frequency protection devices for the grid connection and independent operation, respectively. was there.
In addition, if the output fluctuation of photovoltaic power generation and the fluctuation of large load facilities occur simultaneously, from the viewpoint of the emergency generator, the total amount of change in photovoltaic power generation and the load fluctuation becomes the actual load fluctuation, and these total There was a problem that the emergency generator might stop when the load fluctuation tolerance of the generator was exceeded.

この発明は、上述のような課題を解決するためになされたものであり、系統連系で使用する発電設備をそのまま利用して、停電時にも非常用発電機と並列運転できるようにする連系運転制御装置およびこれを用いた分散型電源の運転システム並びに連系運転制御方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and uses the power generation equipment used in the grid connection as it is so that it can be operated in parallel with the emergency generator even in the event of a power failure. It is an object of the present invention to obtain an operation control device, an operation system for a distributed power source using the operation control device, and an interconnected operation control method.

この発明に係わる連系運転制御装置においては、停電時に、需要家の負荷に電源を供給する非常用発電機と、これとは別の発電設備との連系運転を制御する連系運転制御装置であって、非常用発電機の出力および発電設備の出力の状況から、発電設備の連系運転の可否を判断する連系運転判断手段、負荷の合計容量および発電設備の出力に基づき、負荷を投入または停止した場合の変動負荷量を算出する変動負荷量算出手段、および連系運転判断手段の判断結果により、発電設備の連系運転を開始した場合に、変動負荷量に基づき、負荷の投入または停止の可否を判断する負荷投入停止判断手段を備え、負荷投入停止判断手段の判断結果に基づき、負荷の投入または停止を制御するものである。   In the interconnected operation control apparatus according to the present invention, in the event of a power failure, an interconnected operation control apparatus that controls the interconnected operation between an emergency generator that supplies power to a consumer's load and another power generation facility Therefore, based on the output of the emergency generator and the output of the power generation facility, the load is determined based on the connected operation determination means for determining whether or not the power generation facility can be connected, the total capacity of the load and the output of the power generation facility. The load input based on the variable load amount when the linked operation of the power generation facility is started based on the determination result of the variable load amount calculation means that calculates the variable load amount when it is turned on or stopped, and the connected operation determination means Alternatively, load application stop determination means for determining whether or not to stop can be provided, and load application or stop is controlled based on the determination result of the load application stop determination means.

この発明によれば、停電時に、需要家の負荷に電源を供給する非常用発電機と、これとは別の発電設備との連系運転を制御する連系運転制御装置であって、非常用発電機の出力および発電設備の出力の状況から、発電設備の連系運転の可否を判断する連系運転判断手段、負荷の合計容量および発電設備の出力に基づき、負荷を投入または停止した場合の変動負荷量を算出する変動負荷量算出手段、および連系運転判断手段の判断結果により、発電設備の連系運転を開始した場合に、変動負荷量に基づき、負荷の投入または停止の可否を判断する負荷投入停止判断手段を備え、負荷投入停止判断手段の判断結果に基づき、負荷の投入または停止を制御するので、停電時に非常用発電機と別の発電設備を連系運転して、適切に負荷に電源を供給することができる。   According to the present invention, an emergency operation generator for supplying power to a customer's load at the time of a power failure and an interconnection operation control device for controlling interconnection operation with another power generation facility, Based on the output of the generator and the output of the power generation facility, the connected operation determination means for determining whether the power generation facility can be connected or not, the total capacity of the load, and the output of the power generation facility. Based on the result of the determination by the variable load amount calculation means that calculates the variable load amount and the interconnected operation determination means, it is determined whether the load can be turned on or off based on the variable load amount when the linked operation of the power generation facility is started. Load on / off judging means to control the load on / off based on the judgment result of the load on / off judging means. Supply power to the load It is possible.

この発明の実施の形態1による分散型電源の運転システムを示す構成図である。It is a block diagram which shows the operating system of the distributed power supply by Embodiment 1 of this invention. この発明の実施の形態1による分散型電源の運転システムの連系運転制御装置を示すブロック図である。It is a block diagram which shows the interconnection operation control apparatus of the operation system of the distributed power supply by Embodiment 1 of this invention. この発明の実施の形態1による分散型電源の運転システムの連系運転制御装置を示すハードウェア構成図である。It is a hardware block diagram which shows the interconnection operation control apparatus of the operation system of the distributed power supply by Embodiment 1 of this invention. この発明の実施の形態1による分散型電源の運転システムの非常用発電機の周波数変動特性を示す図である。It is a figure which shows the frequency variation characteristic of the emergency generator of the operating system of the distributed power supply by Embodiment 1 of this invention. この発明の実施の形態1による分散型電源の運転システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the operating system of the distributed power supply by Embodiment 1 of this invention. この発明の実施の形態2による分散型電源の運転システムを示す構成図である。It is a block diagram which shows the operating system of the distributed power supply by Embodiment 2 of this invention. この発明の実施の形態3による分散型電源の運転システムを示す構成図である。It is a block diagram which shows the operating system of the distributed power supply by Embodiment 3 of this invention. この発明の実施の形態3による分散型電源の運転システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the operating system of the distributed power supply by Embodiment 3 of this invention. この発明の実施の形態3による分散型電源の運転システムの蓄電池の残量を適切に保つ処理を示すフローチャートである。It is a flowchart which shows the process which keeps the residual amount of the storage battery of the operating system of the distributed power supply by Embodiment 3 of this invention appropriately. この発明の実施の形態4による分散型電源の運転システムを示す構成図である。It is a block diagram which shows the operating system of the distributed power supply by Embodiment 4 of this invention.

実施の形態1.
以下、実施の形態1を図に基づいて説明する。
図1は、この発明の実施の形態1による分散型電源の運転システムを示す構成図である。
図1において、系統電源1の喪失時に、非常用発電機5と太陽光発電14を連系運転して負荷11に電源を供給する。系統電源1は、受電遮断器2と変圧器3と変圧器二次遮断器4を介して、電源を供給する。非常用発電機5は、遮断器6を介して電源を供給する。太陽光発電14は、パワーコンディショナー13と遮断器12を介して電源を供給する。
負荷11は、配線用遮断器10を介して電源が供給される。
連系運転制御装置20は、非常用発電機5の発電電力、太陽光発電14の発電電力の計測値を取込み、負荷変動で太陽光発電14が停止しないように、負荷の順序制御、および太陽光発電14の運転・停止を制御する。
Embodiment 1 FIG.
The first embodiment will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an operation system for a distributed power source according to Embodiment 1 of the present invention.
In FIG. 1, when the system power supply 1 is lost, the emergency generator 5 and the solar power generation 14 are connected to each other to supply power to the load 11. The system power supply 1 supplies power via the power receiving circuit breaker 2, the transformer 3, and the transformer secondary circuit breaker 4. The emergency generator 5 supplies power via the circuit breaker 6. The photovoltaic power generation 14 supplies power via the power conditioner 13 and the circuit breaker 12.
The load 11 is supplied with power via the circuit breaker 10 for wiring.
The interconnection operation control device 20 takes in the measured value of the power generated by the emergency generator 5 and the power generated by the solar power generation 14, and controls the load sequence so that the solar power generation 14 does not stop due to load fluctuations. The operation / stop of the photovoltaic power generation 14 is controlled.

図2は、この発明の実施の形態1による分散型電源の運転システムの連系運転制御装置を示すブロック図である。
図2において、連系運転判断手段21(第一のステップ)は、非常用発電機5と太陽光発電14のそれぞれの発電電力状況に基づき、非常用発電機5と太陽光発電14(太陽光発電設備、別の発電設備)との連系運転の可否を判断する。変動負荷量算出手段22(第二のステップ)は、投入または停止する負荷の合計容量と太陽光発電14の発電電力を考慮した値を変動負荷量として算出する。負荷投入停止判断手段23(第三のステップ)は、変動負荷量に応じて、負荷の投入または停止を判断する。
FIG. 2 is a block diagram showing an interconnection operation control apparatus of the distributed power supply operation system according to Embodiment 1 of the present invention.
In FIG. 2, the interconnected operation determination means 21 (first step) is based on the power generation status of the emergency generator 5 and the solar power generation 14, and the emergency generator 5 and the solar power generation 14 (solar Judgment is made on whether or not interconnection operation with a power generation facility or another power generation facility is possible. The variable load amount calculation means 22 (second step) calculates a value considering the total capacity of the loads to be turned on or stopped and the generated power of the solar power generation 14 as the variable load amount. The load application stop determining means 23 (third step) determines whether to apply or stop the load according to the variable load amount.

図3は、この発明の実施の形態1による分散型電源の運転システムの連系運転制御装置を示すハードウェア構成図である。
図3において、CPU(Central Processing Unit)31は、不揮発性のROM(Read Only Memory)32に予め記憶されたプログラムにより、演算データを一時的に記憶させるRAM(Random Access Memory)33を用いて、連系運転制御を行う。
なお、図2の各手段は、一つ以上のプログラムとして、ROM32に記憶されている。
FIG. 3 is a hardware configuration diagram showing the interconnection operation control apparatus of the distributed power supply operation system according to Embodiment 1 of the present invention.
In FIG. 3, a CPU (Central Processing Unit) 31 uses a RAM (Random Access Memory) 33 that temporarily stores operation data by a program stored in advance in a nonvolatile ROM (Read Only Memory) 32. Performs interconnected operation control.
2 is stored in the ROM 32 as one or more programs.

図4は、この発明の実施の形態1による分散型電源の運転システムの非常用発電機の周波数変動特性を示す図である。
図4において、通常の非常用発電機5の周波数変動は、系統電源1との連系を行う太陽光発電14のパワーコンディショナー13の動作範囲より大きい。大きな負荷変動△P2があると、非常用発電機5の周波数は、パワーコンディショナー13の動作範囲を逸脱し、パワーコンディショナー13が停止する。
そのため、パワーコンディショナー13が停止しないようにするには、非常用発電機5の周波数変動をパワーコンディショナー13の動作範囲になるように負荷変動を調整する必要がある。
FIG. 4 is a diagram showing frequency variation characteristics of the emergency generator in the distributed power supply operating system according to Embodiment 1 of the present invention.
In FIG. 4, the frequency fluctuation of the normal emergency generator 5 is larger than the operating range of the power conditioner 13 of the solar power generation 14 that is connected to the grid power supply 1. When there is a large load fluctuation ΔP2, the frequency of the emergency generator 5 deviates from the operating range of the power conditioner 13, and the power conditioner 13 stops.
Therefore, in order to prevent the power conditioner 13 from stopping, it is necessary to adjust the load fluctuation so that the frequency fluctuation of the emergency generator 5 falls within the operating range of the power conditioner 13.

次に、動作について説明する。
連系運転制御装置20のプログラムによる動作について、図5を用いて説明する。
系統電源1の喪失時(停電時)、非常用発電機5から負荷11に電源を供給するため、変圧器二次遮断器4を切り、非常用発電機5の運転後、遮断器6が投入される。
この時、すぐに太陽光発電14を非常用発電機5に連系すると、負荷量によっては、太陽光発電14の発電量が多く、太陽光発電14から非常用発電機5へ逆潮流が発生する場合がある。そのため、発電電力の余剰が発生しないように、負荷11の電力量が太陽光発電14の出力をある程度超過した時点で、太陽光発電14を投入する必要がある。
Next, the operation will be described.
The operation of the interconnection operation control device 20 according to the program will be described with reference to FIG.
When the system power supply 1 is lost (at the time of a power failure), the transformer secondary circuit breaker 4 is turned off to supply power to the load 11 from the emergency generator 5, and the circuit breaker 6 is turned on after the emergency generator 5 is operated. Is done.
At this time, if the solar power generation 14 is immediately connected to the emergency generator 5, depending on the load, the amount of power generated by the solar power generation 14 is large, and a reverse power flow from the solar power generation 14 to the emergency generator 5 occurs. There is a case. Therefore, it is necessary to turn on the solar power generation 14 when the amount of power of the load 11 exceeds the output of the solar power generation 14 to some extent so that surplus generated power does not occur.

図5で、停電中であれば(ステップS31)、太陽光発電連系運転判断(ステップS32)は、非常用発電機5の電力と太陽光発電14の電力を比較して、非常用発電機5に逆潮流が発生しない状態であれば、太陽光発電14の連系運転を開始する(ステップS34)。
連系運転開始後においても、太陽光発電14の出力に比べ、負荷11の負荷量が少なければ、非常用発電機5へ逆潮流が発生しないように、太陽光発電14を停止する(ステップS33)。
In FIG. 5, if a power failure occurs (step S31), the photovoltaic power generation linked operation determination (step S32) compares the power of the emergency power generator 5 with the power of the solar power generation 14, and the emergency power generator If the reverse power flow is not generated in FIG. 5, the grid power operation of the photovoltaic power generation 14 is started (step S34).
Even after the start of the grid operation, if the load of the load 11 is small compared to the output of the photovoltaic power generation 14, the photovoltaic power generation 14 is stopped so that a reverse power flow does not occur in the emergency generator 5 (step S33). ).

太陽光発電14運転後、負荷を投入または停止する場合(ステップS35)、変動負荷量算出(ステップS36)を行い、負荷の投入または停止の判断を行う。変動負荷量算出(ステップS36)では、負荷を投入する場合は、投入する負荷の合計容量と太陽光発電14の発電電力の加算値を負荷変動量とし、負荷を停止する場合は、停止する負荷の合計容量と太陽光発電14の設備容量相当を変動負荷量とする。変動負荷量に使用する太陽光発電の発電電力は瞬時値ではなく、余裕を考慮した値とする。
算出した変動負荷量が一定値X以上の場合(ステップS37)、そのまま負荷を投入または停止すると、周波数変動がパワーコンディショナー13の動作範囲を超過し、太陽光発電14が停止するため、負荷を順序投入または順序停止(ステップS39)する。
1台の負荷容量が大きく、順序投入または順序停止ができない場合(ステップS38)は、太陽光発電を停止(ステップS40)し、負荷の投入または停止(ステップS41)を行う。
算出した変動負荷量が一定値X未満の場合(ステップS37)は、負荷の投入または停止(ステップS41)を行う。
When the load is applied or stopped after the solar power generation 14 operation (step S35), the variable load amount calculation (step S36) is performed to determine whether the load is applied or stopped. In the variable load calculation (step S36), when the load is applied, the total value of the load to be added and the added value of the generated power of the photovoltaic power generation 14 is set as the load fluctuation amount. When the load is stopped, the load to be stopped is stopped. The total capacity and the facility capacity equivalent to the photovoltaic power generation 14 are defined as the variable load. The generated power of photovoltaic power generation used for the variable load is not an instantaneous value, but a value that takes into account a margin.
If the calculated fluctuating load amount is equal to or greater than the predetermined value X (step S37), if the load is turned on or stopped as it is, the frequency fluctuation exceeds the operating range of the power conditioner 13, and the photovoltaic power generation 14 stops, so the load is ordered. Input or stop the sequence (step S39).
When the load capacity of one unit is large and the order cannot be turned on or stopped (step S38), the photovoltaic power generation is stopped (step S40), and the load is turned on or stopped (step S41).
When the calculated variable load amount is less than the predetermined value X (step S37), the load is turned on or stopped (step S41).

実施の形態1によれば、変動負荷量を算出して、負荷の順序投入・停止または太陽光発電14の停止などの判断を連系運転制御装置20で実現するように構成したので、停電時に非常用発電機5と太陽光発電14を安定して連系運転することができ、適切に負荷に電源を供給することができる。
また、非常用発電機5と太陽光発電14の出力状況を常時把握しているため、太陽光発電14による非常用発電機5への逆潮流を防止することもできる。
According to the first embodiment, the variable load amount is calculated, and the determination is made by the interconnection operation control device 20 such as the order loading / stopping of the load or the stoppage of the photovoltaic power generation 14. The emergency generator 5 and the solar power generation 14 can be stably connected and power can be appropriately supplied to the load.
Moreover, since the output conditions of the emergency generator 5 and the solar power generation 14 are always grasped, the reverse power flow to the emergency generator 5 by the solar power generation 14 can be prevented.

実施の形態2.
図6は、この発明の実施の形態2による分散型電源の運転システムを示す構成図である。
図6において、符号1〜6、10〜12、20は図1におけるものと同一のものである。図6では、風力発電15(風力発電設備、別の発電設備)が遮断器12を介して電源を供給するようになっている。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing an operation system for a distributed power supply according to Embodiment 2 of the present invention.
In FIG. 6, reference numerals 1-6, 10-12, and 20 are the same as those in FIG. In FIG. 6, the wind power generation 15 (wind power generation facility, another power generation facility) supplies power via the circuit breaker 12.

実施の形態1では、非常用発電機5と太陽光発電14が連系運転する場合について述べたが、実施の形態2は、図6に示すように、太陽光発電14の代わりに風力発電15を設け、非常用発電機5と風力発電15が連系運転するようにしたものである。
実施の形態2の動作については、実施の形態1と同様で、実施の形態1の太陽光発電14の代わりに風力発電15が制御対象となる。
In the first embodiment, the case where the emergency generator 5 and the solar power generation 14 are connected to each other is described. However, in the second embodiment, as shown in FIG. The emergency generator 5 and the wind power generation 15 are connected to each other.
About operation | movement of Embodiment 2, it is the same as that of Embodiment 1, and it replaces with the solar power generation 14 of Embodiment 1, and the wind power generation 15 becomes a control object.

実施の形態2によれば、風力発電と非常用発電機との連系運転を安定して行うことができる。   According to the second embodiment, it is possible to stably perform the interconnection operation between the wind power generation and the emergency generator.

実施の形態3.
図7は、この発明の実施の形態3による分散型電源の運転システムを示す構成図である。
図7において、符号1〜6、10〜14、20は図1におけるものと同一のものである。図7では、蓄電池16(別の発電設備)がパワーコンディショナー13と遮断器12を介して電源を供給するように配置されている。
Embodiment 3 FIG.
FIG. 7 is a configuration diagram showing a distributed power supply operating system according to Embodiment 3 of the present invention.
In FIG. 7, reference numerals 1 to 6, 10 to 14, and 20 are the same as those in FIG. In FIG. 7, the storage battery 16 (another power generation facility) is arranged to supply power via the power conditioner 13 and the circuit breaker 12.

実施の形態1では、非常用発電機5と太陽光発電14による連系運転する場合について述べたが、実施の形態3では、図7に示すように、太陽光発電14に加えて蓄電池16を設け、非常用発電機5と蓄電池16でも連系運転するようにしたものである。
負荷電力に比べて太陽光発電14の発電電力が大きい場合、実施の形態1では、太陽光発電14を連系することができなかったが、実施の形態3では、太陽光発電14の発電電力を蓄電池16に充電することで、非常用発電機5へ逆潮流を防止するこができ、太陽光発電14を連系運転することができる。
このように、太陽光発電14の出力が大きい場合に蓄電池16への充電を行うことができる。これにより、太陽光発電14の出力が小さいときに、太陽光発電14に代わって、非常用発電機5と蓄電池16で連系運転することができるようになる。
In Embodiment 1, although the case where the grid generator operation by the emergency generator 5 and the solar power generation 14 was described was described, in Embodiment 3, the storage battery 16 is added to the solar power generation 14 as shown in FIG. The emergency generator 5 and the storage battery 16 are also connected and operated.
When the generated power of the photovoltaic power generation 14 is larger than the load power, the photovoltaic power generation 14 cannot be interconnected in the first embodiment. However, in the third embodiment, the generated power of the photovoltaic power generation 14 is By charging the storage battery 16, reverse power flow to the emergency generator 5 can be prevented, and the photovoltaic power generation 14 can be interconnected.
Thus, when the output of the photovoltaic power generation 14 is large, the storage battery 16 can be charged. As a result, when the output of the solar power generation 14 is small, the emergency generator 5 and the storage battery 16 can be interconnected in place of the solar power generation 14.

次に、動作について説明する。
連系運転制御装置20のプログラムの動作について、図8を用いて説明する。
系統電源1の停電時、非常用発電機5の運転後、すぐに太陽光発電14を非常用発電機5に連系すると、負荷量によっては、太陽光発電14の発電量が多く、太陽光発電14から非常用発電機5へ逆潮流が発生する場合がある。
そのため、発電電力の余剰が発生しないように、負荷11の電力量が、太陽光発電14の出力をある程度超過した時点で、太陽光発電14を投入する必要がある。
図8は、太陽光発電14を連系させる場合の処理フローを示したものである。
Next, the operation will be described.
The operation of the program of the interconnection operation control device 20 will be described with reference to FIG.
If the power generator 1 is connected to the emergency power generator 5 immediately after the emergency power generator 5 is operated at the time of a power failure of the system power source 1, depending on the load, the amount of power generated by the solar power generator 14 is large. A reverse power flow may occur from the power generation 14 to the emergency generator 5.
Therefore, it is necessary to turn on the solar power generation 14 when the amount of power of the load 11 exceeds the output of the solar power generation 14 to some extent so that surplus generated power does not occur.
FIG. 8 shows a processing flow when the photovoltaic power generation 14 is connected.

図8で、系統電源1の停電中であれば(ステップS51)、太陽光発電連系運転判断(ステップS52)で、非常用発電機5の電力と太陽光発電14の電力を比較して、非常用発電機5に逆潮流が発生しないかどうかを判断する。太陽光発電連系運転判断(ステップS52)で、連系運転をできない場合、蓄電池16が充電可能な状態であれば(ステップS53)、蓄電池16の充電量を算出(ステップS54)したのち、蓄電池16の充電を開始(ステップS55)し、太陽光発電14の発電電力の全部または一部を蓄電池16に充電する処理を行った(ステップS53〜ステップS55)後、太陽光発電14を連系運転(ステップS57)する。
ステップS53で、蓄電池16の充電が可能であれば、蓄電池16の充電量を算出(ステップS54)して、蓄電池16の充電を開始(ステップS55)し、ステップS52に戻る。
ステップS53で、蓄電池16の充電が不可であれば、太陽光発電14を停止(ステップS56)し、ステップS52に戻る。
In FIG. 8, if the power supply of the system power supply 1 is under power (step S51), the power of the emergency generator 5 and the power of the solar power generation 14 are compared in the solar power generation interconnection operation determination (step S52). It is determined whether or not reverse power flow occurs in the emergency generator 5. If it is determined in the photovoltaic power generation interconnection operation determination (step S52) that the interconnection operation cannot be performed and the storage battery 16 is in a chargeable state (step S53), the storage battery 16 is calculated (step S54) and then the storage battery. 16 is started (step S55), and the storage battery 16 is charged with all or part of the generated power of the solar power generation 14 (step S53 to step S55). (Step S57).
If the storage battery 16 can be charged in step S53, the charge amount of the storage battery 16 is calculated (step S54), charging of the storage battery 16 is started (step S55), and the process returns to step S52.
If the storage battery 16 cannot be charged in step S53, the photovoltaic power generation 14 is stopped (step S56), and the process returns to step S52.

このように蓄電池16は太陽光発電を連系運転可能にするために使用するもので、太陽光発電の発電状況に応じて、いつでも充電できる状態にするため、蓄電池の残量を適切に保つ必要がある。
図9は、蓄電池の残量を適切に保つ処理フローを示したものである。
図9で、太陽光発電14の発電電力が、負荷11の使用電力より、ある程度小さければ(ステップS81)、蓄電池16の充電を停止する(ステップS82、S83)。
蓄電池16の充電を停止した状態で、太陽光発電14の発電電力が、負荷11の使用電力より、ある程度小さく(ステップS84)、蓄電池16の残量が一定量以上であれば(ステップS85)、蓄電池16を放電し(ステップS86)、蓄電池16の残量が一定量以下になれば(ステップS87)、蓄電池16の放電を停止する。
As described above, the storage battery 16 is used to enable the photovoltaic power generation to be operated in an interconnected manner, and in order to be able to be charged at any time according to the power generation status of the solar power generation, it is necessary to appropriately maintain the remaining amount of the storage battery. There is.
FIG. 9 shows a processing flow for appropriately maintaining the remaining amount of the storage battery.
In FIG. 9, if the generated power of the solar power generation 14 is somewhat smaller than the power used by the load 11 (step S81), the charging of the storage battery 16 is stopped (steps S82 and S83).
In a state where charging of the storage battery 16 is stopped, if the generated power of the solar power generation 14 is somewhat smaller than the power used by the load 11 (step S84) and the remaining amount of the storage battery 16 is equal to or greater than a certain amount (step S85), The storage battery 16 is discharged (step S86), and when the remaining amount of the storage battery 16 becomes a certain amount or less (step S87), the discharge of the storage battery 16 is stopped.

図8に戻り、ステップS57で、太陽光発電14を連系運転後、負荷11を投入または停止する場合(ステップS58)、変動負荷量を算出(ステップS59)し、投入または停止の判断を行う。この変動負荷量算出(ステップS59)では、投入または停止する負荷11の合計容量と太陽光発電14の発電電力を加算した値を変動負荷量とする。
算出した変動負荷量が一定値X以上の場合(ステップS60)、そのまま負荷を投入または停止すると、周波数変動がパワーコンディショナー13の動作範囲を超過し、太陽光発電14が停止するため、負荷11を順序投入または順序停止(ステップS64)する。
1台の負荷容量が大きく、順序投入または順序停止ができない場合(ステップS61)は、太陽光発電14を停止(ステップS62)し、負荷11の投入または停止(ステップS63)を行う。
算出した変動負荷量が一定値X未満の場合(ステップS60)は、負荷の投入または停止(ステップS63)を行う。
Returning to FIG. 8, when the load 11 is turned on or stopped after the grid power operation of the photovoltaic power generation 14 in step S57 (step S58), the variable load amount is calculated (step S59), and the determination of turning on or off is performed. . In this variable load calculation (step S59), a value obtained by adding the total capacity of the load 11 to be turned on or stopped and the generated power of the solar power generation 14 is set as the variable load.
If the calculated fluctuating load amount is equal to or greater than a certain value X (step S60), when the load is turned on or stopped as it is, the frequency fluctuation exceeds the operating range of the power conditioner 13, and the photovoltaic power generation 14 stops. The order is entered or the order is stopped (step S64).
When the load capacity of one unit is large and the order cannot be turned on or stopped (step S61), the photovoltaic power generation 14 is stopped (step S62), and the load 11 is turned on or stopped (step S63).
When the calculated variable load amount is less than the predetermined value X (step S60), the load is turned on or stopped (step S63).

実施の形態3によれば、非常用発電機5の電力と太陽光発電14の電力を比較して、非常用発電機5に逆潮流が発生するような場合でも、太陽光発電14の出力で、蓄電池16を充電するようにしたので、停電時に非常用発電機5と太陽光発電14を安定して連系運転することができる。   According to the third embodiment, the power of the emergency generator 5 and the power of the solar power generation 14 are compared, and even if a reverse power flow occurs in the emergency power generator 5, the output of the solar power generation 14 Since the storage battery 16 is charged, the emergency generator 5 and the solar power generation 14 can be stably connected during a power failure.

実施の形態4.
図10は、この発明の実施の形態4による分散型電源の運転システムを示す構成図である。
図10において、符号1〜6、10〜14、16、20は図7におけるものと、符号15は図6におけるものとそれぞれ同一のものである。図10では、太陽光発電14がパワーコンディショナー13と遮断器12を介し、風力発電15が遮断器12を介し、蓄電池16がパワーコンディショナー13と遮断器12を介して、それぞれ電源を供給するようになっている。
Embodiment 4 FIG.
FIG. 10 is a block diagram showing an operation system for a distributed power supply according to Embodiment 4 of the present invention.
10, reference numerals 1 to 6, 10 to 14, 16, and 20 are the same as those in FIG. 7, and reference numeral 15 is the same as that in FIG. In FIG. 10, the solar power generation 14 supplies power via the power conditioner 13 and the circuit breaker 12, the wind power generation 15 via the circuit breaker 12, and the storage battery 16 supplies the power via the power conditioner 13 and the circuit breaker 12. It has become.

実施の形態3では、非常用発電機5と太陽光発電14と蓄電池16による連系運転する場合について述べたが、実施の形態4は、図10に示すように、太陽光発電14、風力発電15および蓄電池16を組み合わせて、非常用発電機5と連系運転するようにしたものである。
実施の形態4は、実施の形態3の構成に、風力発電15を加えたものであり、実施の形態3において、太陽光発電14の代わりに、太陽光発電14と風力発電15の合計値を用いたものと同様である。
すなわち、蓄電池16の充電・放電も、太陽光発電14と風力発電15を合わせて行い、非常用発電機5との連系運転も合計したもので行う。
実施の形態4の動作については、実施の形態3と同様で、連系運転制御装置20の制御の対象が、太陽光発電14と風力発電15の合計したものである。
In the third embodiment, the case where the emergency generator 5, the solar power generation 14, and the storage battery 16 are connected to each other has been described. However, the fourth embodiment is a solar power generation 14, wind power generation as shown in FIG. 15 and the storage battery 16 are combined and operated in an interconnected manner with the emergency generator 5.
In the fourth embodiment, the wind power generation 15 is added to the configuration of the third embodiment. In the third embodiment, instead of the solar power generation 14, the total value of the solar power generation 14 and the wind power generation 15 is calculated. It is the same as that used.
That is, charging / discharging of the storage battery 16 is also performed by combining the solar power generation 14 and the wind power generation 15, and the interconnection operation with the emergency generator 5 is also performed in total.
About operation | movement of Embodiment 4, it is the same as that of Embodiment 3, and the object of control of the interconnection operation control apparatus 20 is what totaled the solar power generation 14 and the wind power generation 15. FIG.

実施の形態4によれば、太陽光発電14、風力発電15、蓄電池16などの複数の分散型電源を有効に使用することができ、災害時対策として有効になる。   According to the fourth embodiment, a plurality of distributed power sources such as the solar power generation 14, the wind power generation 15, and the storage battery 16 can be used effectively, which is effective as a disaster countermeasure.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 系統電源、2 受電遮断器、3 変圧器、4 変圧器二次遮断器、5 非常用発電機、
6 遮断器、10 配線用遮断器、11 負荷、12 遮断器、
13 パワーコンディショナー、14 太陽光発電、15 風力発電、16 蓄電池、
20 連系運転制御装置、21 連系運転判断手段、22 変動負荷量算出手段、
23 負荷投入停止判断手段、31 CPU、32 ROM、33 RAM
1 system power supply, 2 receiving circuit breaker, 3 transformer, 4 transformer secondary circuit breaker, 5 emergency generator,
6 circuit breakers, 10 circuit breakers, 11 loads, 12 circuit breakers,
13 power conditioners, 14 solar power generation, 15 wind power generation, 16 storage batteries,
20 interconnected operation control device, 21 interconnected operation determining means, 22 fluctuating load amount calculating means,
23 Load input stop determination means, 31 CPU, 32 ROM, 33 RAM

Claims (10)

停電時に、需要家の負荷に電源を供給する非常用発電機と、これとは別の発電設備との連系運転を制御する連系運転制御装置であって、
上記非常用発電機の出力および上記発電設備の出力の状況から、上記発電設備の連系運転の可否を判断する連系運転判断手段、
上記負荷の合計容量および上記発電設備の出力に基づき、上記負荷を投入または停止した場合の変動負荷量を算出する変動負荷量算出手段、
および上記連系運転判断手段の判断結果により、上記発電設備の連系運転を開始した場合に、上記変動負荷量に基づき、上記負荷の投入または停止の可否を判断する負荷投入停止判断手段を備え、
上記負荷投入停止判断手段の判断結果に基づき、上記負荷の投入または停止を制御することを特徴とする連系運転制御装置。
In the event of a power outage, an emergency generator that supplies power to the customer's load, and an interconnection operation control device that controls the interconnection operation with another power generation facility,
From the status of the output of the emergency generator and the output of the power generation facility, a connected operation determination means for determining whether or not the power generation facility can be connected.
Based on the total capacity of the load and the output of the power generation equipment, a variable load amount calculating means for calculating a variable load amount when the load is turned on or stopped,
And load input stop determination means for determining whether the load can be applied or stopped based on the variable load amount when the grid operation of the power generation facility is started based on the determination result of the interconnection operation determination means. ,
An interconnection operation control apparatus for controlling the application or stop of the load based on the determination result of the load application stop determination means.
上記負荷投入停止判断手段は、上記変動負荷量が所定値以上の場合に、上記負荷を順序投入または順序停止させることを特徴とする請求項1に記載の連系運転制御装置。   The interconnected operation control apparatus according to claim 1, wherein the load application stop determination unit sequentially inputs or stops the load when the variable load amount is a predetermined value or more. 請求項1または請求項2に記載の連系運転制御装置、
停電時に、需要家の負荷に電源を供給する非常用発電機、
およびこの非常用発電機とは別に設けられた発電設備を備えたことを特徴とする分散型電源の運転システム。
The interconnection operation control device according to claim 1 or 2,
An emergency generator that supplies power to the customer's load during a power outage,
And a distributed power supply operating system comprising a power generation facility provided separately from the emergency generator.
上記発電設備は、太陽光発電設備を有することを特徴とする請求項3に記載の分散型電源の運転システム。   4. The distributed power supply operating system according to claim 3, wherein the power generation facility includes a solar power generation facility. 上記発電設備は、風力発電設備を有することを特徴とする請求項3に記載の分散型電源の運転システム。   4. The distributed power supply operating system according to claim 3, wherein the power generation facility includes a wind power generation facility. 上記発電設備は、太陽光発電設備および風力発電設備を有し、
上記連系運転判断手段は、上記太陽光発電設備および上記風力発電設備をまとめて連系運転の可否を判断することを特徴とする請求項3に記載の分散型電源の運転システム。
The power generation facility has a solar power generation facility and a wind power generation facility,
4. The distributed power supply operating system according to claim 3, wherein the interconnected operation determination means collectively determines whether the interconnected operation is possible for the solar power generation facility and the wind power generation facility.
上記発電設備は、蓄電池を有することを特徴とする請求項3に記載の分散型電源の運転システム。   The distributed power supply operating system according to claim 3, wherein the power generation facility includes a storage battery. 上記発電設備は、太陽光発電設備を有し、
上記蓄電池には、上記連系運転判断手段により、連系運転不可と判断された上記太陽光発電設備から充電されることを特徴とする請求項7に記載の分散型電源の運転システム。
The power generation facility has a solar power generation facility,
8. The distributed power supply operating system according to claim 7, wherein the storage battery is charged from the photovoltaic power generation facility that is determined to be inoperable by the connected operation determination means.
上記発電設備は、太陽光発電設備および風力発電設備を有し、
上記太陽光発電設備および上記風力発電設備は、上記連系運転判断手段により、まとめて連系運転の可否が判断され、
上記蓄電池には、連系運転不可と判断された上記太陽光発電設備および上記風力発電設備から充電されることを特徴とする請求項7に記載の分散型電源の運転システム。
The power generation facility has a solar power generation facility and a wind power generation facility,
The solar power generation facility and the wind power generation facility are collectively determined by the interconnected operation determining means whether or not interconnected operation is possible,
8. The distributed power supply operating system according to claim 7, wherein the storage battery is charged from the solar power generation facility and the wind power generation facility that are determined to be inoperable.
連系運転判断手段が、停電時に需要家の負荷に電源を供給する非常用発電機の出力およびこれとは別の発電設備の出力の状況から、上記非常用発電機と上記発電設備の連系運転の可否を判断する第一のステップ、
変動負荷量算出手段が、負荷の合計容量および上記発電設備の出力に基づき、上記負荷を投入または停止した場合の変動負荷量を算出する第二のステップ、
および上記第一のステップの判断結果により、上記非常用発電機と上記発電設備の連系運転を開始した場合に、負荷投入停止判断手段が、上記第二のステップにより算出された変動負荷量に基づき、上記負荷の投入または停止の可否を判断する第三のステップを含むことを特徴とする連系運転制御方法。
Based on the status of the output of the emergency generator that supplies power to the customer's load in the event of a power failure and the output of another power generation facility, the connection between the emergency generator and the power generation facility The first step to determine whether driving is possible,
A second step in which the variable load amount calculating means calculates the variable load amount when the load is turned on or off based on the total capacity of the load and the output of the power generation facility;
And when the linked operation of the emergency generator and the power generation facility is started based on the determination result of the first step, the load input stop determination means determines the fluctuation load amount calculated by the second step. An interconnected operation control method comprising a third step of determining whether or not to apply or stop the load based on the above.
JP2016086739A 2016-04-25 2016-04-25 Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method Active JP6692205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086739A JP6692205B2 (en) 2016-04-25 2016-04-25 Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086739A JP6692205B2 (en) 2016-04-25 2016-04-25 Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method

Publications (2)

Publication Number Publication Date
JP2017200252A true JP2017200252A (en) 2017-11-02
JP6692205B2 JP6692205B2 (en) 2020-05-13

Family

ID=60238374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086739A Active JP6692205B2 (en) 2016-04-25 2016-04-25 Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method

Country Status (1)

Country Link
JP (1) JP6692205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005757A (en) * 2020-07-07 2022-01-14 한국지역난방공사 Apparatus, method and computer program for diagnosing electric power distribution
JP7473898B2 (en) 2021-05-27 2024-04-24 株式会社Tmeic Power supply device and power supply system including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065548A (en) * 2010-07-23 2012-03-29 Sharp Corp Power control network system, power control method, and power control controller
JP2014060839A (en) * 2012-09-14 2014-04-03 Shimizu Corp Autonomous operation system and method for distributed power supply
JP2014082867A (en) * 2012-10-16 2014-05-08 Toshiba Corp Power supply control system, control apparatus, and control method
US20140200722A1 (en) * 2013-01-17 2014-07-17 Eaton Corporation Method and system of anti-islanding of a microgrid in a grid-connected microgrid system
JP2015156785A (en) * 2014-01-14 2015-08-27 三菱電機株式会社 energy management system
JP2016054638A (en) * 2012-04-26 2016-04-14 ソニー株式会社 Power controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065548A (en) * 2010-07-23 2012-03-29 Sharp Corp Power control network system, power control method, and power control controller
JP2016054638A (en) * 2012-04-26 2016-04-14 ソニー株式会社 Power controller
JP2014060839A (en) * 2012-09-14 2014-04-03 Shimizu Corp Autonomous operation system and method for distributed power supply
JP2014082867A (en) * 2012-10-16 2014-05-08 Toshiba Corp Power supply control system, control apparatus, and control method
US20140200722A1 (en) * 2013-01-17 2014-07-17 Eaton Corporation Method and system of anti-islanding of a microgrid in a grid-connected microgrid system
JP2015156785A (en) * 2014-01-14 2015-08-27 三菱電機株式会社 energy management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005757A (en) * 2020-07-07 2022-01-14 한국지역난방공사 Apparatus, method and computer program for diagnosing electric power distribution
KR102455647B1 (en) * 2020-07-07 2022-10-19 한국지역난방공사 Apparatus, method and computer program for diagnosing electric power distribution
JP7473898B2 (en) 2021-05-27 2024-04-24 株式会社Tmeic Power supply device and power supply system including the same

Also Published As

Publication number Publication date
JP6692205B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
EP2490313B1 (en) Energy storage system and controlling method thereof
US11063444B2 (en) Enhanced battery management system for battery pack
KR101661704B1 (en) Microgrid energy management system and power storage method of energy storage system
EP2351189B1 (en) Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid
KR102572526B1 (en) Temperature control method for energy storage battery compartment and discharging control method for energy storage system, and energy storage application system
JP2017189005A (en) Power storage device
TW201541805A (en) Voltage regulation for battery strings
JP2017205007A (en) Electric energy storage device
US20240047769A1 (en) Enhanced switched balancing network for battery pack
CN110581553B (en) Off-grid autonomous operation method and device for micro-grid system and micro-grid system
JP6692205B2 (en) Interconnected operation control device, distributed power supply operating system using the same, and interconnected operation control method
JPWO2020021925A1 (en) Power system
JP7456509B2 (en) Connection DC power distribution system, power adjustment method, and program
KR20190130415A (en) Power Management System
KR101977165B1 (en) System and method for controlling ess for emergency power source, and a recording medium having computer readable program for executing the method
WO2019163008A1 (en) Dc feeding system
JP2006109618A (en) Charge control circuit
KR102489088B1 (en) Frequincy regulation operating method and grid system frequincy regulation system
US20220209539A1 (en) Power management system
KR101418181B1 (en) Energy storage system and controlling method of the same
KR20130077934A (en) Battery energy storage system
US20230275437A1 (en) Power distribution device and method using droop control
JP6993300B2 (en) Power storage system
JP2022178941A (en) Charge/discharge control method and charge/discharge control device for power storage system
JP2022021371A (en) Storage battery control device, storage battery system, power generating system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R151 Written notification of patent or utility model registration

Ref document number: 6692205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250