JP2017199743A - Control method of spin orbit interaction - Google Patents

Control method of spin orbit interaction Download PDF

Info

Publication number
JP2017199743A
JP2017199743A JP2016087730A JP2016087730A JP2017199743A JP 2017199743 A JP2017199743 A JP 2017199743A JP 2016087730 A JP2016087730 A JP 2016087730A JP 2016087730 A JP2016087730 A JP 2016087730A JP 2017199743 A JP2017199743 A JP 2017199743A
Authority
JP
Japan
Prior art keywords
spin
thin film
orbit interaction
polycrystalline
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016087730A
Other languages
Japanese (ja)
Other versions
JP6667827B2 (en
Inventor
要司 国橋
Yoji Kunihashi
要司 国橋
治樹 眞田
Haruki Sanada
治樹 眞田
後藤 秀樹
Hideki Goto
秀樹 後藤
哲臣 寒川
Tetsuomi Sagawa
哲臣 寒川
誠 好田
Makoto Yoshida
誠 好田
淳作 新田
Junsaku Nitta
淳作 新田
淀春 柳
Jeongchun Ryu
淀春 柳
ミンシック ゴン
Minsik Kong
ミンシック ゴン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2016087730A priority Critical patent/JP6667827B2/en
Publication of JP2017199743A publication Critical patent/JP2017199743A/en
Application granted granted Critical
Publication of JP6667827B2 publication Critical patent/JP6667827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of spin orbit interaction capable of controlling state of spin current with a high degree of freedom.SOLUTION: The magnitude of a spin orbit interaction is controlled according to the thickness of a metal thin film constituted of a metal. The magnitude of the spin orbit interaction is controlled by setting the crystalline state of the metal thin film to a crystalline state or polycrystalline state. In addition to the crystalline state, the magnitude of the spin orbit interaction is controlled according to the thickness of the metal thin film.SELECTED DRAWING: None

Description

本発明は、金属におけるスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法に関する。   The present invention relates to a spin orbit interaction control method for controlling the strength of spin orbit interaction in a metal.

これまで、スピン軌道相互作用の強い材料系におけるスピン流の生成には、スピンホール効果が用いられてきた。金属におけるスピン流の生成では、スピン軌道相互作用に起因する外因性スピンホール効果が用いられる。これは、スピン軌道相互作用の強いPtやTaなどの金属に電流を流すと、金属中の不純物や結晶粒界で散乱された電子スピンが、スピンの向きに依存して逆方向に散乱され、電流方向に対して垂直方向逆向きに上向きスピンと下向きスピンとが分離する効果である。   Until now, the spin Hall effect has been used to generate spin currents in material systems with strong spin-orbit interaction. The generation of spin currents in metals uses the extrinsic spin Hall effect due to spin-orbit interaction. This is because when an electric current is passed through a metal such as Pt or Ta having a strong spin orbit interaction, impurities in the metal and electron spin scattered at the grain boundary are scattered in the opposite direction depending on the direction of the spin, This is an effect of separating the upward spin and the downward spin in the direction opposite to the current direction.

上述したスピンホール効果は、GaAs半導体においてはじめて観測されている(非特許文献1,非特許文献2参照)。電流を流すと、流した電流と垂直方向にスピン流が流れ、スピン上向きと下向きの電子がチャネルエッジに蓄積される。また、金属においてもスピンホール効果を用いたスピン流の検出が可能となっている(非特許文献3参照)。このスピンホール効果によれば、非磁性体だけでスピン流を生み出すことが可能であるため、スピン偏極を利用するスピントロニクスにおいて重要なスピン生成・検出の技術となる。この技術を用いることで、近年、金属中のスピン偏極の検出や磁化反転などが実現できるようになってきた。   The above-described spin Hall effect has been observed for the first time in GaAs semiconductors (see Non-Patent Document 1 and Non-Patent Document 2). When a current is applied, a spin current flows in a direction perpendicular to the applied current, and spin upward and downward electrons are accumulated at the channel edge. In addition, it is possible to detect a spin current using a spin Hall effect even in a metal (see Non-Patent Document 3). According to the spin Hall effect, it is possible to generate a spin current only with a non-magnetic material, which is an important spin generation / detection technique in spintronics using spin polarization. In recent years, it has become possible to realize detection of spin polarization in metals, magnetization reversal, and the like by using this technique.

ところで、金属を用いたスピンホール効果では、PtやTaそしてWなどの原子番号の大きな材料が用いられてきた。この理由は、金属におけるスピン軌道相互作用は材料の原子番号の大きさに比例するため、結晶構造よりも材料そのものに依存すると考えられたためである。   By the way, in the spin Hall effect using a metal, a material having a large atomic number such as Pt, Ta and W has been used. This is because the spin-orbit interaction in a metal is proportional to the size of the atomic number of the material, and is considered to depend on the material itself rather than the crystal structure.

Y. K. Kato et al., "Observation of the Spin Hall Effect in Semiconductors", Science, vol.306, pp.1910-1913, 2004.Y. K. Kato et al., "Observation of the Spin Hall Effect in Semiconductors", Science, vol. 306, pp. 1910-1913, 2004. J. Wunderlich et al., "Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System", Physical Review Letters, vol.94, no.4, 047204(4), 2005.J. Wunderlich et al., "Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System", Physical Review Letters, vol.94, no.4, 047204 (4), 2005. S. O. Valenzuela and M. Tinkham, "Direct electronic measurement of the spin Hall effect", Nature, vol.442, pp.176-179, 2009.S. O. Valenzuela and M. Tinkham, "Direct electronic measurement of the spin Hall effect", Nature, vol.442, pp.176-179, 2009.

上述したように、従来では、スピン流の状態は、材料固有として考えられており、材料を変えることでスピン流の向きや量を制御していた。しかし、このことは、スピン軌道相互作用を大きくするためには、材料の選択が必要になる。また、従来用いられている上述した金属材料は、必ずしも強磁性体材料との組み合わせが良いとは限らないことから、強磁性体/非磁性金属構造などを用いたメモリ素子開発においては、材料選択の幅を狭めてしまうことになる。このように、従来では、スピン流の状態制御の自由度が低いという問題があった。   As described above, conventionally, the state of the spin current is considered to be unique to the material, and the direction and amount of the spin current are controlled by changing the material. However, this requires selection of materials in order to increase the spin-orbit interaction. In addition, the above-described metal materials used in the past do not always have a good combination with a ferromagnetic material. Therefore, in the development of memory elements using a ferromagnetic / nonmagnetic metal structure, material selection Will be narrowed. Thus, conventionally, there is a problem that the degree of freedom in controlling the state of the spin current is low.

本発明は、以上のような問題点を解消するためになされたものであり、より高い自由度でスピン流の状態が制御できるようにすることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to control the state of the spin current with a higher degree of freedom.

本発明に係るスピン軌道相互作用の制御方法は、金属から構成された金属薄膜のスピン軌道相互作用の強さを制御する方法であり、金属薄膜の厚さによりスピン軌道相互作用の強さを制御する。   The spin orbit interaction control method according to the present invention is a method for controlling the strength of a spin orbit interaction of a metal thin film made of metal, and the strength of the spin orbit interaction is controlled by the thickness of the metal thin film. To do.

また、本発明に係るスピン軌道相互作用の制御方法は、金属から構成された金属薄膜のスピン軌道相互作用の強さを制御する方法であり、金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する。   In addition, the spin orbit interaction control method according to the present invention is a method for controlling the strength of the spin orbit interaction of a metal thin film composed of metal, and the crystal state of the metal thin film is changed to a crystalline state or a polycrystalline state. The strength of the spin orbit interaction is controlled by either.

上記スピン軌道相互作用の制御方法において、結晶状態に加えて金属薄膜の厚さによりスピン軌道相互作用の強さを制御するようにしてもよい。   In the spin orbit interaction control method, the strength of the spin orbit interaction may be controlled by the thickness of the metal thin film in addition to the crystal state.

以上説明したことにより、本発明によれば、より高い自由度でスピン流の状態が制御できるという優れた効果が得られる。   As described above, according to the present invention, an excellent effect that the state of the spin current can be controlled with a higher degree of freedom can be obtained.

図1は、GaAs基板の上に形成した多結晶Pt薄膜のX線回折パターンを示す特性図である。FIG. 1 is a characteristic diagram showing an X-ray diffraction pattern of a polycrystalline Pt thin film formed on a GaAs substrate. 図2は、MgO基板の上に形成した単結晶Pt薄膜のX線回折パターン(a)を示す特性図およびRHEEDパターンを示す写真(b),(c)である。FIG. 2 is a characteristic diagram showing an X-ray diffraction pattern (a) of a single crystal Pt thin film formed on an MgO substrate, and photographs (b) and (c) showing RHEED patterns. 図3は、多結晶Pt薄膜(a)および単結晶Pt薄膜(b)の各々について、異なる膜厚における磁気伝導測定をした結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of magnetic conduction measurements at different film thicknesses for each of the polycrystalline Pt thin film (a) and the single crystal Pt thin film (b). 図4は、多結晶Pt薄膜のスピン緩和時間(a)、および単結晶Pt薄膜のスピン緩和時間(b)を示す特性図である。FIG. 4 is a characteristic diagram showing the spin relaxation time (a) of the polycrystalline Pt thin film and the spin relaxation time (b) of the single crystal Pt thin film. 図5は、多結晶Pt薄膜(a)および単結晶薄膜(b)の各試料について、Co薄膜に作用する有効磁場の電流密度依存性を測定した結果を示す特性図である。FIG. 5 is a characteristic diagram showing the results of measuring the current density dependence of the effective magnetic field acting on the Co thin film for each sample of the polycrystalline Pt thin film (a) and the single crystal thin film (b).

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は、金属から構成された金属薄膜の厚さにより、スピン軌道相互作用の強さを制御する。   In the present invention, the strength of the spin orbit interaction is controlled by the thickness of the metal thin film made of metal.

まず、金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する。   First, the strength of the spin orbit interaction is controlled by changing the crystal state of the metal thin film to either a crystalline state or a polycrystalline state.

また、結晶状態に加えて金属薄膜の厚さによりスピン軌道相互作用の強さを制御する。   In addition to the crystal state, the strength of the spin orbit interaction is controlled by the thickness of the metal thin film.

以下、より詳細に説明する。はじめに、金属薄膜の結晶状態によりスピン軌道相互作用を制御することについて示す。スピン軌道相互作用の強い材料としてPtが知られており、Ptを用いて単一材料におけるスピン軌道相互作用の制御について実験を実施した。まず、多結晶Pt薄膜と単結晶Pt薄膜とを作製した。   This will be described in more detail below. First, the spin-orbit interaction is controlled by the crystalline state of the metal thin film. Pt is known as a material having a strong spin orbit interaction, and an experiment was conducted on the control of the spin orbit interaction in a single material using Pt. First, a polycrystalline Pt thin film and a single crystal Pt thin film were prepared.

多結晶Pt薄膜は、主表面の面方位が(001)とされているGaAs基板の上に、公知のスパッタ法により、基板加熱をせずにPtを堆積して多結晶Pt薄膜を形成した。Pt薄膜の上には、厚さ0.6nmのAlO膜を形成した。多結晶Pt薄膜は、厚さ2nm、4nm、6nm、8nm、10nm、15nmの6種類を作製した。   The polycrystalline Pt thin film was formed by depositing Pt on a GaAs substrate whose main surface had a plane orientation of (001) by a known sputtering method without heating the substrate. An AlO film having a thickness of 0.6 nm was formed on the Pt thin film. Six types of polycrystalline Pt thin films with thicknesses of 2 nm, 4 nm, 6 nm, 8 nm, 10 nm, and 15 nm were prepared.

単結晶Pt薄膜は、主表面の面方位が(111)とされているMgO基板の上に、公知のスパッタ法により、基板温度条件を500℃としてPtを堆積して単結晶Pt薄膜を形成した。単結晶Pt薄膜は、厚さ3nm、4nm、5nm、6nm,10nmの4種類を作製した。   The single crystal Pt thin film was formed by depositing Pt on a MgO substrate having a main surface of (111) with a substrate temperature condition of 500 ° C. by a known sputtering method. . Four types of single crystal Pt thin films having thicknesses of 3 nm, 4 nm, 5 nm, 6 nm, and 10 nm were prepared.

図1に示すX線回折パターンより、GaAs基板の上に形成した多結晶Pt薄膜は、多結晶であることが分かる。一方、図2(a)に示すX線回折パターンより、MgO基板の上に形成した単結晶Pt薄膜は、単一相のみが成長できていることが分かる。また、図2の(b),(c)に示すRHEEDパターンより、MgO基板の上に形成した単結晶Pt薄膜は、Pt(111)が成長して単結晶となっていることがわかる。   From the X-ray diffraction pattern shown in FIG. 1, it can be seen that the polycrystalline Pt thin film formed on the GaAs substrate is polycrystalline. On the other hand, it can be seen from the X-ray diffraction pattern shown in FIG. 2A that only a single phase can be grown on the single crystal Pt thin film formed on the MgO substrate. Further, from the RHEED patterns shown in FIGS. 2B and 2C, it can be seen that the single crystal Pt thin film formed on the MgO substrate is grown as Pt (111) to be a single crystal.

膜厚を薄くすることで、電子の散乱寄与を薄膜内部の不純物や粒界に起因する状態から、薄膜表面や界面における散乱に系統的に変化させた。これら膜厚の異なるPt薄膜のスピン緩和時間を調べることで、どのようなスピン軌道相互作用が支配的かを明らかにする。電子の散乱頻度によってスピン軌道相互作用の起源が変化することから、電子の散乱頻度も同時に測定を行っている。   By reducing the film thickness, the electron scattering contribution was systematically changed from the state caused by impurities and grain boundaries inside the thin film to scattering at the thin film surface and interface. By examining the spin relaxation times of these thin Pt thin films, it is clarified what kind of spin orbit interaction is dominant. Since the origin of the spin-orbit interaction changes depending on the electron scattering frequency, the electron scattering frequency is also measured at the same time.

図3は、多結晶Pt薄膜(a)および単結晶Pt薄膜(b)の各々について、異なる膜厚における磁気伝導測定をした結果を示す特性図である。多結晶Pt薄膜および単結晶Pt薄膜のいずれにおいても、弱反局在を示している。なお、図3(b)において、厚さ10nmについては、明確な評価ができなかったために記載していない。これらのデータ解析から、多結晶Pt薄膜および単結晶Pt薄膜におけるスピン緩和時間を求めた。求めたスピン緩和時間について、図4に示す。図4において、(a)は、多結晶Pt薄膜のスピン緩和時間を示し、(b)は、単結晶Pt薄膜のスピン緩和時間を示している。   FIG. 3 is a characteristic diagram showing the results of magnetic conduction measurements at different film thicknesses for each of the polycrystalline Pt thin film (a) and the single crystal Pt thin film (b). Both the polycrystalline Pt thin film and the single crystal Pt thin film show weak antilocalization. In FIG. 3B, the thickness of 10 nm is not described because a clear evaluation could not be performed. From these data analyses, the spin relaxation times in the polycrystalline Pt thin film and the single crystal Pt thin film were obtained. The calculated spin relaxation time is shown in FIG. 4A shows the spin relaxation time of the polycrystalline Pt thin film, and FIG. 4B shows the spin relaxation time of the single crystal Pt thin film.

多結晶Pt薄膜では、図4の(a)に示すように、運動量緩和時間の増大に対し、スピン緩和時間が減少し、このあと線形的に増大した。一方、単結晶Pt薄膜においては、図4の(b)に示すように、運動量緩和時間の増大にともない単調に減少する傾向を示した。   In the polycrystalline Pt thin film, as shown in FIG. 4A, the spin relaxation time decreased with respect to the increase in momentum relaxation time, and then increased linearly. On the other hand, as shown in FIG. 4B, the monocrystalline Pt thin film tended to monotonously decrease as the momentum relaxation time increased.

不純物散乱およびバンド構造に起因するスピン軌道相互作用は、異なるスピン緩和の機構を与えることが知られている。EY(Elliot-Yafet)スピン緩和機構は、不純物や粒界におけるスピン依存散乱に起因し、スピン緩和時間は運動量緩和時間に比例する。DP(Dyakonov-Perel)スピン緩和機構は、バンド構造に起因したスピン軌道相互作用が生み出すスピン緩和であり、運動量緩和時間に反比例する。よって、運動量緩和時間に対するスピン緩和時間の変化を調べることでスピン緩和の起源を切り分けることが可能となる。   It is known that spin-orbit interaction resulting from impurity scattering and band structure provides different spin relaxation mechanisms. The EY (Elliot-Yafet) spin relaxation mechanism is caused by spin-dependent scattering at impurities and grain boundaries, and the spin relaxation time is proportional to the momentum relaxation time. The DP (Dyakonov-Perel) spin relaxation mechanism is spin relaxation generated by the spin-orbit interaction caused by the band structure, and is inversely proportional to the momentum relaxation time. Therefore, the origin of spin relaxation can be determined by examining changes in spin relaxation time with respect to momentum relaxation time.

図4の(a)に示すように、多結晶Pt薄膜の場合、膜厚の薄い領域ではDPスピン緩和機構が支配的であるが膜厚の厚い領域ではEYスピン緩和機構が支配的であることが分かる。   As shown in FIG. 4A, in the case of a polycrystalline Pt thin film, the DP spin relaxation mechanism is dominant in the thin region, but the EY spin relaxation mechanism is dominant in the thick region. I understand.

一方、図4の(b)に示すように、単結晶Pt薄膜の場合は、全ての領域でスピン緩和時間は運動量緩和時間の逆数に比例して変化していることから、DPスピン緩和時間が支配的であること明らかとなった。   On the other hand, as shown in FIG. 4B, in the case of a single crystal Pt thin film, the spin relaxation time changes in proportion to the reciprocal of the momentum relaxation time in all regions. It became clear that it was dominant.

以上のことより、結晶構造が多結晶もしくは単結晶かつ膜厚の厚い領域では、スピン軌道相互作用が不純物に起因する場合(多結晶)とバンド構造に起因する場合(単結晶)があることがわかった。また、多結晶Pt薄膜では膜厚が厚い領域と薄い領域では、同様にスピン軌道相互作用の起源が異なることが明らかとなった。   From the above, in regions where the crystal structure is polycrystalline or single crystal and thick, the spin orbit interaction may be attributed to impurities (polycrystal) or the band structure (single crystal). all right. In addition, it has been clarified that the origin of the spin orbit interaction is different between the thick and thin regions of the polycrystalline Pt thin film.

以上に示したように、同じ金属であっても、結晶状態によってスピン軌道相互作用の起源が異なるので、結晶状態を制御することで、スピン軌道相互作用の起源が制御できることは明らかである。単一材料においてスピン軌道相互作用の起源を変えることで、生成できるスピン流が制御可能となる。   As described above, even if the same metal is used, the origin of the spin orbit interaction can be controlled by controlling the crystal state because the origin of the spin orbit interaction differs depending on the crystal state. By changing the origin of the spin-orbit interaction in a single material, the spin current that can be generated can be controlled.

次に、実際に作製した試料によって、多結晶状態と単結晶状態とで、スピン流の生成量を比較した。多結晶Pt薄膜の試料は、AlO/Co/多結晶Pt/SiOx/Si構造とした。また、単結晶Pt薄膜試料は、AlO/Co/単結晶Pt/MgO構造とした。Pt薄膜はいずれも厚さ6nmとした。また、いずれの試料にも、Pt薄膜の上に接してCo薄膜を形成している。Pt薄膜で生成されるスピン流は、Co磁気モーメントにトルクを与える。Co磁気モーメントに加わるトルクは、Co薄膜に作用する有効磁場として検出することができる。 Next, the production amount of the spin current was compared between the polycrystalline state and the single crystal state according to the actually produced sample. The sample of the polycrystalline Pt thin film had an AlO / Co / polycrystalline Pt / SiO x / Si structure. The single crystal Pt thin film sample had an AlO / Co / single crystal Pt / MgO structure. Each Pt thin film had a thickness of 6 nm. In each sample, a Co thin film is formed on and in contact with the Pt thin film. The spin current generated in the Pt thin film imparts torque to the Co magnetic moment. Torque applied to the Co magnetic moment can be detected as an effective magnetic field acting on the Co thin film.

図5は、多結晶Pt薄膜(a)および単結晶薄膜(b)の各試料について、Co薄膜に作用する有効磁場の電流密度依存性を測定した結果を示す特性図である。多結晶Pt薄膜(a)および単結晶薄膜(b)のいずれも、電流密度の増大に伴い有効磁場は増大している。   FIG. 5 is a characteristic diagram showing the results of measuring the current density dependence of the effective magnetic field acting on the Co thin film for each sample of the polycrystalline Pt thin film (a) and the single crystal thin film (b). In both the polycrystalline Pt thin film (a) and the single crystal thin film (b), the effective magnetic field increases as the current density increases.

また、図5に示すように、多結晶Pt薄膜の方が単結晶Pt薄膜よりも同じ電流密度で比較すると大きな有効磁場を生み出していることが分かる。従って、多結晶Ptの方が、単結晶Pt薄膜よりも大きなスピン軌道相互作用を有していることが明らかである。この結果より、単一材料Ptを同じ膜厚にしても、Co磁気モーメントに与えるトルクを大きく変化させることが可能であることが示された。   Also, as shown in FIG. 5, it can be seen that the polycrystalline Pt thin film produces a larger effective magnetic field when compared at the same current density than the single crystal Pt thin film. Therefore, it is clear that the polycrystalline Pt has a larger spin orbit interaction than the single crystalline Pt thin film. From this result, it was shown that the torque applied to the Co magnetic moment can be greatly changed even if the single material Pt has the same film thickness.

以上に説明したように、本発明によれば、金属薄膜の厚さ制御や、金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御するようにしたので、より高い自由度でスピン流の状態が制御できるようになる。上述した効果は、金属であれば得られる。また、よく知られているように、スピン軌道相互作用やスピンホール効果などは大きな原子番号の金属ほど大きく、Pd,Ta,W,Ir,Pt,Biなどの金属において、より顕著な効果が得られる。   As described above, according to the present invention, the strength of the spin orbit interaction is controlled by controlling the thickness of the metal thin film or changing the crystal state of the metal thin film to a crystalline state or a polycrystalline state. As a result, the state of the spin current can be controlled with a higher degree of freedom. The above-described effects can be obtained with a metal. As is well known, the spin orbit interaction, the spin Hall effect, etc. are larger for metals with larger atomic numbers, and a more remarkable effect is obtained with metals such as Pd, Ta, W, Ir, Pt, Bi. It is done.

例えば、磁化反転には近年、垂直磁化材料が用いられており、例えばCo/Pt垂直磁化材料ではCoとPt界面の界面磁気異方性により面直磁化を有する。これまでは、スピン軌道相互作用の強さを変えるには材料系を変える必要があり、この場合Pt界面における界面磁気異方性が利用できず、面内磁化を取ってしまうという問題があった。これに対し、本発明によれば、垂直磁化を維持しながらPtの結晶構造や膜厚を変えることで、スピン流の大きさも変えられる。このように、本発明によれば、スピン流生成効率と垂直磁化の両立が可能となり、将来の不揮発メモリの効率的な磁化反転が可能となる。   For example, a perpendicular magnetization material has recently been used for magnetization reversal. For example, a Co / Pt perpendicular magnetization material has a perpendicular magnetization due to interfacial magnetic anisotropy at the Co-Pt interface. Until now, it was necessary to change the material system in order to change the strength of the spin-orbit interaction. In this case, the interface magnetic anisotropy at the Pt interface could not be used, and the in-plane magnetization was taken. . On the other hand, according to the present invention, the magnitude of the spin current can be changed by changing the crystal structure and film thickness of Pt while maintaining the perpendicular magnetization. As described above, according to the present invention, it is possible to achieve both the spin current generation efficiency and the perpendicular magnetization, thereby enabling efficient magnetization reversal of the future nonvolatile memory.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

Claims (3)

金属から構成された金属薄膜のスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法であって、
前記金属薄膜の厚さによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
A method for controlling spin-orbit interaction that controls the strength of spin-orbit interaction of a metal thin film composed of metal,
The spin orbit interaction strength is controlled by the thickness of the metal thin film.
金属から構成された金属薄膜のスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法であって、
前記金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
A method for controlling spin-orbit interaction that controls the strength of spin-orbit interaction of a metal thin film composed of metal,
The spin orbit interaction control method, wherein the strength of the spin orbit interaction is controlled by changing the crystal state of the metal thin film to a crystalline state or a polycrystalline state.
請求項2記載のスピン軌道相互作用の制御方法において、
前記結晶状態に加えて前記金属薄膜の厚さによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
The method of controlling spin-orbit interaction according to claim 2,
The spin orbit interaction control method, wherein the strength of the spin orbit interaction is controlled by the thickness of the metal thin film in addition to the crystal state.
JP2016087730A 2016-04-26 2016-04-26 Control method of spin-orbit interaction Active JP6667827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016087730A JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087730A JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Publications (2)

Publication Number Publication Date
JP2017199743A true JP2017199743A (en) 2017-11-02
JP6667827B2 JP6667827B2 (en) 2020-03-18

Family

ID=60239475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087730A Active JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Country Status (1)

Country Link
JP (1) JP6667827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161814A1 (en) * 2019-02-06 2020-08-13 Tdk株式会社 Spin-orbit torque-type magnetization rotating element, spin-orbit torque-type magnetoresistive effect element, and magnetic memory
JPWO2019203132A1 (en) * 2018-04-18 2021-07-15 国立大学法人東北大学 Magnetoresistive sensor, magnetic memory device, and writing and reading method of magnetic memory device
JP2022510249A (en) * 2018-11-30 2022-01-26 世宗大学校産学協力団 Manufacturing method of magnetic sensor, Hall sensor and Hall sensor using the abnormal Hall effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049403A (en) * 2010-08-27 2012-03-08 Institute Of Physical & Chemical Research Current-spin current conversion element
WO2013151088A1 (en) * 2012-04-04 2013-10-10 日本電気株式会社 Thermoelectric conversion element, thermoelectric conversion system, and thermoelectric conversion element fabrication method
WO2014115518A1 (en) * 2013-01-24 2014-07-31 日本電気株式会社 Thermoelectric transducer and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049403A (en) * 2010-08-27 2012-03-08 Institute Of Physical & Chemical Research Current-spin current conversion element
WO2013151088A1 (en) * 2012-04-04 2013-10-10 日本電気株式会社 Thermoelectric conversion element, thermoelectric conversion system, and thermoelectric conversion element fabrication method
WO2014115518A1 (en) * 2013-01-24 2014-07-31 日本電気株式会社 Thermoelectric transducer and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG, TIM ET AL.: "Layer thickness dependence of spin orbit torques and fields in Pt/Co/AlO trilayer structures", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 54, JPN6019013896, 5 March 2015 (2015-03-05), pages 04 - 05, ISSN: 0004019033 *
YANG, TIM ET AL.: "Platinum layer thickness dependence of spin-Hall induced effective magnetic field in Pt/Co/Pt struct", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 53, JPN6019013897, 17 March 2014 (2014-03-17), pages 04 - 06, ISSN: 0004019034 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019203132A1 (en) * 2018-04-18 2021-07-15 国立大学法人東北大学 Magnetoresistive sensor, magnetic memory device, and writing and reading method of magnetic memory device
JP7251811B2 (en) 2018-04-18 2023-04-04 国立大学法人東北大学 Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
JP2022510249A (en) * 2018-11-30 2022-01-26 世宗大学校産学協力団 Manufacturing method of magnetic sensor, Hall sensor and Hall sensor using the abnormal Hall effect
JP7207671B2 (en) 2018-11-30 2023-01-18 世宗大学校産学協力団 Magnetic sensor utilizing anomalous Hall effect, Hall sensor, and method for manufacturing Hall sensor
WO2020161814A1 (en) * 2019-02-06 2020-08-13 Tdk株式会社 Spin-orbit torque-type magnetization rotating element, spin-orbit torque-type magnetoresistive effect element, and magnetic memory
JPWO2020161814A1 (en) * 2019-02-06 2021-04-08 Tdk株式会社 Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistive element and magnetic memory
CN113169233A (en) * 2019-02-06 2021-07-23 Tdk株式会社 Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
US11756600B2 (en) 2019-02-06 2023-09-12 Tdk Corporation Spin-orbit torque magnetization rotational element, spin-orbit torque magnetoresistive effect element, and magnetic memory

Also Published As

Publication number Publication date
JP6667827B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP5586028B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronic device using the same
US10205091B2 (en) Monocrystalline magneto resistance element, method for producing the same and method for using same
Jiang et al. A comparative transport study of Bi2Se3 and Bi2Se3/yttrium iron garnet
Kim et al. Investigations on the nature of observed ferromagnetism and possible spin polarization in Co-doped anatase TiO 2 thin films
Wang et al. Structural controlled magnetic anisotropy in Heusler L1− MnGa epitaxial thin films
JP5527669B2 (en) Ferromagnetic tunnel junction and magnetoresistive effect element using the same
Lin et al. Induced magneto-transport properties at palladium/yttrium iron garnet interface
Kim et al. Reentrant insulating state in ultrathin manganite films
JPWO2016158849A1 (en) Magnetoresistive effect element
WO2016158926A1 (en) Magnetoresistive effect element
US11276728B2 (en) Multiferroic heterostructures
Li et al. High spin polarization in epitaxial Fe4N thin films using Cr and Ag as buffer layers
Hoffman et al. Tunable noncollinear antiferromagnetic resistive memory through oxide superlattice design
JP6667827B2 (en) Control method of spin-orbit interaction
Tong et al. Low-temperature resistivity anomaly and weak spin disorder in C o 2 MnGa epitaxial thin films
Choo et al. Crossover between weak anti-localization and weak localization by Co doping and annealing in gapless PbPdO2 and spin gapless Co-doped PbPdO2
Narita et al. Effect of sample size on anomalous Nernst effect in chiral antiferromagnetic Mn3Sn devices
Kyun Lee et al. Epitaxial growth of multiferroic BiFeO3 thin films with (101) and (111) orientations on (100) Si substrates
JPWO2016158910A1 (en) Magnetoresistive effect element
Zhang et al. Origin of the anomalous Hall effect in SrCoO 3 thin films
Binda et al. Spin–Orbit Torques and Spin Hall Magnetoresistance Generated by Twin‐Free and Amorphous Bi0. 9Sb0. 1 Topological Insulator Films
Kilanski et al. Negative magnetoresistance and anomalous Hall effect in GeMnTe-SnMnTe spin-glass-like system
Wu et al. Epitaxial-strain effects on electronic structure and magnetic properties of hexagonal YMnO 3 thin films studied by femtosecond spectroscopy
KR20230118765A (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
Neggache et al. Testing epitaxial Co1. 5Fe1. 5Ge (001) electrodes in MgO-based magnetic tunnel junctions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200213

R150 Certificate of patent or registration of utility model

Ref document number: 6667827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250