JP2017199625A - Energizing heating apparatus - Google Patents

Energizing heating apparatus Download PDF

Info

Publication number
JP2017199625A
JP2017199625A JP2016091337A JP2016091337A JP2017199625A JP 2017199625 A JP2017199625 A JP 2017199625A JP 2016091337 A JP2016091337 A JP 2016091337A JP 2016091337 A JP2016091337 A JP 2016091337A JP 2017199625 A JP2017199625 A JP 2017199625A
Authority
JP
Japan
Prior art keywords
crucible
peripheral wall
electrode
heating
top electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016091337A
Other languages
Japanese (ja)
Other versions
JP6775868B2 (en
Inventor
章浩 竹内
Akihiro Takeuchi
章浩 竹内
達雄 三摩
Tatsuo Mima
達雄 三摩
直樹 野中
Naoki Nonaka
直樹 野中
貴之 小池
Takayuki Koike
貴之 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINO KOGYO KK
Chubu Electric Power Co Inc
Original Assignee
MINO KOGYO KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINO KOGYO KK, Chubu Electric Power Co Inc filed Critical MINO KOGYO KK
Priority to JP2016091337A priority Critical patent/JP6775868B2/en
Publication of JP2017199625A publication Critical patent/JP2017199625A/en
Application granted granted Critical
Publication of JP6775868B2 publication Critical patent/JP6775868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energizing heating apparatus that can efficiently continue energizing and heating in a stable state by a simple structure.SOLUTION: A top electrode 16 is arranged at a top part of a crucible 11 having conductivity, and a bottom electrode 19 is arranged at a bottom part of the crucible 11. The crucible 11 is heated by flowing DC currents to a space between the top electrode 16 and the bottom electrode 19, so that objects 12 to be heated such as aluminum stored in the crucible 11 are heated. With respect to a cross section orthogonal to a center shaft line 22 of the crucible 11, a cross sectional area of a peripheral wall 14 at the bottom part side of the crucible 11 is set smaller than a cross sectional area of the peripheral wall 14 at the top part side of the crucible. Further, the top electrode 16 is placed on a top surface 14a of the peripheral wall 14 of the crucible 11 and thereby the top electrode 16 is connected to the crucible 11. Rates of thermal expansion of the top electrode 16 and the crucible 11 are set to 1×10-10×10/K at a temperature of 500°C.SELECTED DRAWING: Figure 1

Description

本発明は、導電性を有する材料により形成された加熱容器に通電して自己発熱させ、加熱容器内に収容されたアルミニウム等の被加熱物を加熱するに際し、通電加熱を効率良く、安定した状態で継続できる通電加熱装置に関する。   In the present invention, when a heating container formed of a conductive material is energized and self-heats to heat an object to be heated such as aluminum accommodated in the heating container, the current heating is efficiently and stably performed. It is related with the electric heating apparatus which can be continued by.

一般に通電加熱装置においては、導電性を有する容器の上部及び下部に一対の電極を備え、両電極間に通電することにより容器を加熱し、容器内に収容された金属、セラミックス等の被加熱物を加熱するように構成されている。この場合、容器内に収容される被加熱物は容器内の下部側に存在し、上部側には存在しないことから容器の下部側を加熱して温度上昇させ、上部側の加熱を抑制することが望ましい。   In general, in an electric heating device, a pair of electrodes is provided at the upper and lower parts of a conductive container, and the container is heated by energizing between both electrodes, and the object to be heated, such as metal or ceramics, contained in the container It is comprised so that it may heat. In this case, the object to be heated contained in the container is present on the lower side in the container and not on the upper side, so the lower side of the container is heated to raise the temperature and suppress the heating on the upper side. Is desirable.

この種の通電加熱装置が例えば特許文献1に開示されている。この通電加熱装置は、導電性を有する容器、その容器の上部に接続される上部電極及び容器の下部に接続される下部電極を備え、上部電極と下部電極との間に通電して容器を発熱させて容器内の材料を加熱するように構成されている。   This type of electric heating apparatus is disclosed in, for example, Patent Document 1. This energization heating apparatus includes a conductive container, an upper electrode connected to the upper part of the container, and a lower electrode connected to the lower part of the container, and energizes between the upper electrode and the lower electrode to heat the container. And configured to heat the material in the container.

前記容器の上部開口端には上方に向けて開口する凹部が設けられ、上部電極は前記凹部に挿入される凸部を備えるとともに、前記凹部には容器の熱により溶解可能な導電性の金属部材が収容されている。この通電加熱装置によれば、上部電極と容器との間で発生する局部発熱を防止して、通電加熱装置の耐久性を向上させるようになっている。   The upper opening end of the container is provided with a concave portion that opens upward, and the upper electrode includes a convex portion that is inserted into the concave portion, and the conductive metal member that can be dissolved by the heat of the container in the concave portion. Is housed. According to this energization heating device, local heat generated between the upper electrode and the container is prevented, and the durability of the energization heating device is improved.

特開2010−38376号公報JP 2010-38376 A

前述した特許文献1に記載されている従来構成の通電加熱装置においては、容器の上部開口端に凹部を設けるとともに、上部電極には前記凹部に挿入される凸部を設け、さらに前記凹部には導電性の金属部材を収容しなければならない。このため、上部電極と容器との接続構成が複雑であるとともに、通電加熱装置の製作が面倒であった。従って、簡易な構成で、発熱効率の良好な通電加熱を安定して継続できる通電加熱装置が求められる。   In the energization heating device having the conventional configuration described in Patent Document 1 described above, a concave portion is provided at the upper opening end of the container, a convex portion to be inserted into the concave portion is provided in the upper electrode, and the concave portion is further provided in the concave portion. A conductive metal member must be accommodated. For this reason, the connection configuration between the upper electrode and the container is complicated, and the manufacture of the electric heating device is troublesome. Therefore, there is a need for an energization heating device that can stably continue energization heating with good heat generation efficiency with a simple configuration.

そこで、本発明の目的とするところは、簡易な構成で、通電加熱を効率良く、安定した状態で継続することができる通電加熱装置を提供することにある。   Accordingly, an object of the present invention is to provide an energization heating apparatus that can continue energization heating efficiently and stably with a simple configuration.

上記の目的を達成するために、本発明の通電加熱装置は、導電性を有する加熱容器の頂部には頂部電極を配置するとともに、加熱容器の底部には底部電極を配置し、頂部電極と底部電極との間に直流電流を通電することにより加熱容器を発熱させて加熱容器内に収容された被加熱物を加熱するように構成された通電加熱装置であって、前記加熱容器の中心軸線に直交する断面について、加熱容器の底部側における周壁の断面積を頂部側における周壁の断面積よりも小さく形成するとともに、加熱容器の頂部に頂部電極を載置して頂部電極を加熱容器に接続し、かつ頂部電極及び加熱容器の熱膨張率を500℃において1×10−6〜10×10−6/Kに設定したものである。 In order to achieve the above object, the energization heating apparatus of the present invention has a top electrode disposed on the top of a conductive heating container, a bottom electrode disposed on the bottom of the heating container, and the top electrode and the bottom. An energization heating apparatus configured to heat a heating object contained in a heating container by heating a heating container by passing a direct current between the electrode and a center axis of the heating container For the cross section orthogonal, the cross-sectional area of the peripheral wall on the bottom side of the heating vessel is formed smaller than the cross-sectional area of the peripheral wall on the top side, and the top electrode is placed on the top of the heating vessel and the top electrode is connected to the heating vessel. and it is obtained by setting the thermal expansion coefficient of the top electrode and the heating vessel to 1 × 10 -6 ~10 × 10 -6 / K at 500 ° C..

前記加熱容器の周壁は、その断面積が底部に到るほど次第に小さくなるようにテーパ状に形成されていることが好ましい。
前記テーパ状に形成された周壁の傾斜角度は、加熱容器の中心軸線に対して5〜20°に設定されていることが好ましい。
The peripheral wall of the heating container is preferably formed in a tapered shape so that its cross-sectional area gradually decreases as it reaches the bottom.
The inclination angle of the tapered peripheral wall is preferably set to 5 to 20 ° with respect to the central axis of the heating vessel.

前記加熱容器の頂部における周壁の断面積を1.0としたとき、底部における周壁の断面積は0.3〜0.7であることが好ましい。
前記頂部電極は黒鉛により形成され、加熱容器は導電性セラミックスにより形成されていることが好ましい。
When the sectional area of the peripheral wall at the top of the heating container is 1.0, the sectional area of the peripheral wall at the bottom is preferably 0.3 to 0.7.
The top electrode is preferably made of graphite, and the heating vessel is preferably made of conductive ceramics.

前記加熱容器の周壁は均一の厚さに形成されていることが好ましい。
前記加熱容器の電気抵抗率は、50×10−3〜250×10−3Ω・cmであることが好ましい。
The peripheral wall of the heating container is preferably formed to have a uniform thickness.
The electrical resistivity of the heating container is preferably 50 × 10 −3 to 250 × 10 −3 Ω · cm.

本発明の通電加熱装置によれば、簡易な構成で、通電加熱を効率良く、安定した状態で継続することができるという効果を奏する。   According to the electric heating apparatus of the present invention, there is an effect that the electric heating can be continued efficiently and stably with a simple configuration.

実施形態における通電加熱装置の全体構成を示す断面図。Sectional drawing which shows the whole structure of the electric heating apparatus in embodiment. 加熱容器としてのルツボを示す平面図。The top view which shows the crucible as a heating container. 図1の3−3線における断面図。Sectional drawing in the 3-3 line of FIG. 図1の4−4線における断面図。Sectional drawing in the 4-4 line | wire of FIG. 頂部電極を示す平面図。The top view which shows a top electrode. 底部電極を示す平面図。The top view which shows a bottom part electrode. 頂部電極及びルツボの材質について、温度と熱膨張率との関係を示すグラフ。The graph which shows the relationship between temperature and a coefficient of thermal expansion about the material of a top electrode and a crucible. 頂部電極とルツボの周壁の頂面との接触状態を示す部分拡大断面図。The partial expanded sectional view which shows a contact state with a top electrode and the top surface of the surrounding wall of a crucible. 本発明の別例のルツボを示す断面図。Sectional drawing which shows the crucible of another example of this invention. 本発明のさらなる別例のルツボを示す断面図。Sectional drawing which shows the crucible of the further another example of this invention.

以下、本発明の実施形態を図1〜図8に基づいて詳細に説明する。
図1及び図2に示すように、通電加熱装置10を構成する加熱容器としてのルツボ(坩堝)11は、断面逆円錐台状をなし、内部にアルミニウム、亜鉛等の溶融金属よりなる被加熱物12が収容されるとともに、上端部には加熱溶融後の被加熱物12を取り出す注ぎ口13が突出形成されている。このルツボ11は、導電性を有する単一材料により形成されている。ルツボ11の周壁14は全体が一定の厚さに形成されるとともに、ルツボ11の底壁15は周壁14よりも厚く形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
As shown in FIGS. 1 and 2, a crucible (crucible) 11 as a heating container constituting the energization heating device 10 has an inverted frustoconical cross section, and an object to be heated made of a molten metal such as aluminum or zinc. 12 is accommodated, and a spout 13 is formed at the upper end so as to project the heated article 12 after being melted by heating. The crucible 11 is formed of a single material having conductivity. The entire peripheral wall 14 of the crucible 11 is formed with a constant thickness, and the bottom wall 15 of the crucible 11 is formed thicker than the peripheral wall 14.

図1及び図5に示すように、前記ルツボ11の周壁14の頂面14a上には、周壁14の頂面14aと略同一の平面形状を有する平面円環状の頂部電極16が載置されて周壁14の頂面14aに接触し、頂部電極16と周壁14との間で電気的導通が図られている。この頂部電極16の一部には、導線17の一端を接続するための接続部18が突出形成されている。   As shown in FIGS. 1 and 5, on the top surface 14 a of the peripheral wall 14 of the crucible 11, a planar annular top electrode 16 having the same planar shape as the top surface 14 a of the peripheral wall 14 is placed. Contact is made with the top surface 14 a of the peripheral wall 14, and electrical conduction is achieved between the top electrode 16 and the peripheral wall 14. A connection portion 18 for connecting one end of the conductive wire 17 is formed protruding from a part of the top electrode 16.

図1及び図6に示すように、ルツボ11の底壁15の下面15aには、底壁15と略同一の平面形状を有する円板状の底部電極19が配置され、その上面19aが底壁15の下面15aに接触し、底部電極19と底壁15との間で電気的導通が図られている。この底部電極19には導線17の一端が接続される。   As shown in FIGS. 1 and 6, a disc-shaped bottom electrode 19 having a plane shape substantially the same as the bottom wall 15 is disposed on the lower surface 15a of the bottom wall 15 of the crucible 11, and the upper surface 19a is the bottom wall. 15 is in contact with the lower surface 15 a of the electrode 15, and electrical conduction is achieved between the bottom electrode 19 and the bottom wall 15. One end of a conducting wire 17 is connected to the bottom electrode 19.

図1に示すように、前記頂部電極16に一端が接続された導線17の他端は直流電源20に接続されるとともに、底部電極19に一端が接続された導線17の他端も直流電源20に接続されている。そして、頂部電極16と底部電極19との間に直流電源20から導線17を介して直流電流を通電することにより、ルツボ11の周壁14及び底壁15を自己発熱させてルツボ11内の被加熱物12を加熱溶融又は高温に保持するようになっている。   As shown in FIG. 1, the other end of the conducting wire 17 having one end connected to the top electrode 16 is connected to a DC power source 20, and the other end of the conducting wire 17 having one end connected to the bottom electrode 19 is also connected to the DC power source 20. It is connected to the. Then, a DC current is passed from the DC power source 20 through the lead wire 17 between the top electrode 16 and the bottom electrode 19 to cause the peripheral wall 14 and the bottom wall 15 of the crucible 11 to self-heat and to be heated in the crucible 11. The object 12 is heated and melted or kept at a high temperature.

図1の二点鎖線に示すように、前記周壁14の内周面及び外周面、並びに底壁15の内面には、周壁14及び底壁15の表面を保護するための酸化膜21が形成されている。この酸化膜21は、頂部電極16が接触する周壁14の頂面14a及び底部電極19が接触する底壁15の下面15aには形成されておらず、頂部電極16と周壁14の頂面14aとの間及び底部電極19と底壁15の下面15aとの間の導通性に支障を来さないようになっている。   As shown by a two-dot chain line in FIG. 1, an oxide film 21 for protecting the peripheral wall 14 and the surface of the bottom wall 15 is formed on the inner peripheral surface and the outer peripheral surface of the peripheral wall 14 and the inner surface of the bottom wall 15. ing. The oxide film 21 is not formed on the top surface 14a of the peripheral wall 14 with which the top electrode 16 contacts and the bottom surface 15a of the bottom wall 15 with which the bottom electrode 19 contacts, and the top electrode 16 and the top surface 14a of the peripheral wall 14 And the conductivity between the bottom electrode 19 and the bottom surface 15a of the bottom wall 15 is not hindered.

前記ルツボ11の周壁14は、その断面積が底部に到るほど次第に小さくなるようにテーパ状に形成されている。ここで、周壁14の断面積は、ルツボ11の中心軸線(鉛直線)22に直交する方向すなわち水平方向の断面における面積を表す。周壁14の断面積が小さくなるほど電気抵抗値が大きくなり、周壁14に通電されたときの発熱量が増大することから、周壁14の頂部側の温度より底部側の温度が次第に上昇する一定の温度勾配が形成される。   The peripheral wall 14 of the crucible 11 is formed in a tapered shape so that its cross-sectional area gradually decreases as it reaches the bottom. Here, the cross-sectional area of the peripheral wall 14 represents an area in a cross section in the direction orthogonal to the central axis (vertical line) 22 of the crucible 11, that is, in the horizontal direction. Since the electrical resistance value increases as the cross-sectional area of the peripheral wall 14 decreases and the amount of heat generated when the peripheral wall 14 is energized increases, the temperature on the bottom side gradually increases from the temperature on the top side of the peripheral wall 14. A gradient is formed.

図3に示すように、具体的にはルツボ11の周壁14の頂部における断面は一定幅の大きな直径を有する略円環状をなしている。なお、図3の二点鎖線に示すように、この断面においては、注ぎ口13の分だけ切欠かれている。一方、図4に示すように、ルツボ11の周壁14の底部における断面は頂部と同じ一定幅の小さな直径を有する円環状をなしている。このため、ルツボ11の底部側における周壁14の断面積は、頂部側における周壁14の断面積の例えば1/2程度に小さくなり、底部側における周壁14の発熱量が頂部側における周壁14の発熱量に比べて2倍程度増大する。   As shown in FIG. 3, specifically, the cross section at the top of the peripheral wall 14 of the crucible 11 has a substantially annular shape having a large diameter with a constant width. As shown by a two-dot chain line in FIG. 3, the cross section is cut out by the amount corresponding to the spout 13. On the other hand, as shown in FIG. 4, the cross section at the bottom of the peripheral wall 14 of the crucible 11 has an annular shape having a small diameter of the same constant width as the top. For this reason, the cross-sectional area of the peripheral wall 14 on the bottom side of the crucible 11 is reduced to, for example, about ½ of the cross-sectional area of the peripheral wall 14 on the top side, and the heat generation amount of the peripheral wall 14 on the bottom side is the heat generation of the peripheral wall 14 on the top side. It increases about twice as much as the amount.

前記ルツボ11の頂部と底部における周壁14の断面積の比率は、ルツボ11の頂部における周壁14の断面積を1.0としたとき、底部における周壁14の断面積を0.3〜0.7に設定することが好ましい。底部における周壁14の断面積が0.3を下回る場合には、ルツボ11の底部側における内容積が極端に少なくなるとともに、ルツボ11の底部側における周壁14の温度が急激に上昇し、被加熱物12を安定した状態で加熱溶融することが難しくなる。一方、底部における周壁14の断面積が0.7を上回る場合には、底部側における周壁14の発熱が少なく、被加熱物12の加熱効率を高めることができず好ましくない。   The ratio of the cross-sectional area of the peripheral wall 14 at the top and bottom of the crucible 11 is 0.3 to 0.7 when the cross-sectional area of the peripheral wall 14 at the top of the crucible 11 is 1.0. It is preferable to set to. When the cross-sectional area of the peripheral wall 14 at the bottom is less than 0.3, the internal volume on the bottom side of the crucible 11 is extremely reduced, and the temperature of the peripheral wall 14 on the bottom side of the crucible 11 rises rapidly, and the object is heated. It becomes difficult to heat and melt the object 12 in a stable state. On the other hand, when the cross-sectional area of the peripheral wall 14 at the bottom exceeds 0.7, the heat generation of the peripheral wall 14 on the bottom side is small, and the heating efficiency of the article to be heated 12 cannot be increased.

前記ルツボ11に収容される被加熱物12の加熱効率、被加熱物12の収容量等を考慮し、テーパ状に形成された周壁14の傾斜角度α、すなわち周壁14とルツボ11の中心軸線22とのなす角度は好ましくは5〜20°、さらに好ましくは7〜15°である。この周壁14の傾斜角度αが5°より小さい場合には、周壁14をテーパ状に賦形する意義が薄れ、被加熱物12の加熱効率が低下する。その一方、周壁14の傾斜角度αが20°よりも大きい場合には、周壁14の底部側の温度上昇は大きくなるが、底部側と頂部側の温度勾配が大きくなり過ぎ、被加熱物12の加熱速度の制御が難しくなるため好ましくない。   Considering the heating efficiency of the object to be heated 12 accommodated in the crucible 11, the amount of the object to be heated 12, etc., the inclination angle α of the peripheral wall 14 formed in a tapered shape, that is, the central axis 22 of the peripheral wall 14 and the crucible 11. Is preferably 5 to 20 °, more preferably 7 to 15 °. When the inclination angle α of the peripheral wall 14 is smaller than 5 °, the significance of shaping the peripheral wall 14 in a tapered shape is reduced, and the heating efficiency of the article to be heated 12 is lowered. On the other hand, when the inclination angle α of the peripheral wall 14 is larger than 20 °, the temperature rise on the bottom side of the peripheral wall 14 increases, but the temperature gradient on the bottom side and the top side becomes too large, Since control of a heating rate becomes difficult, it is not preferable.

図8に示すように頂部電極16の下面16aはルツボ11の周壁14の頂面14aに面接触しているが、図8の二点鎖線に示すように、前記頂部電極16は円環状に形成され、熱膨張により変形(反り)が生じやすい。このため、前記頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの間の面接触を良好に維持すべく、頂部電極16及びルツボ11の熱膨張率(線膨張率)は500℃において1×10−6〜10×10−6/Kの範囲に設定される。この熱膨張率の範囲内において、頂部電極16の熱膨張率とルツボ11の熱膨張率はできるだけ近い値に設定することが望ましい。 As shown in FIG. 8, the lower surface 16a of the top electrode 16 is in surface contact with the top surface 14a of the peripheral wall 14 of the crucible 11, but the top electrode 16 is formed in an annular shape as shown by a two-dot chain line in FIG. Therefore, deformation (warping) is likely to occur due to thermal expansion. Therefore, in order to maintain good surface contact between the lower surface 16a of the top electrode 16 and the top surface 14a of the peripheral wall 14 of the crucible 11, the thermal expansion coefficient (linear expansion coefficient) of the top electrode 16 and the crucible 11 is 500. It is set in the range of 1 × 10 −6 to 10 × 10 −6 / K at ° C. Within the range of the thermal expansion coefficient, it is desirable to set the thermal expansion coefficient of the top electrode 16 and the thermal expansion coefficient of the crucible 11 as close as possible.

前記熱膨張率が1×10−6/Kより小さい場合、頂部電極16又はルツボ11の材質として、良好な導電性と低い熱膨張率とを兼ね備えた材料の選定が難しくなって好ましくない。その一方、熱膨張率が10×10−6/Kより大きい場合、頂部電極16及びルツボ11の熱膨張が大きくなり、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの接触不良が生じやすくなって接触部での局部発熱や導通不良が起きて好ましくない。 When the coefficient of thermal expansion is smaller than 1 × 10 −6 / K, it is not preferable because it is difficult to select a material having both good conductivity and a low coefficient of thermal expansion as the material of the top electrode 16 or the crucible 11. On the other hand, when the coefficient of thermal expansion is greater than 10 × 10 −6 / K, the thermal expansion of the top electrode 16 and the crucible 11 increases, and the contact between the lower surface 16 a of the top electrode 16 and the top surface 14 a of the peripheral wall 14 of the crucible 11. Defects are likely to occur, and local heat generation at the contact portion and poor conduction occur, which is not preferable.

前記頂部電極16は、熱膨張率の小さい黒鉛(グラファイト)等により形成されることが好ましい。下記表1及び図7に示すように、前記黒鉛の熱膨張率(熱膨張係数)は、500℃において3.3×10−6/Kである。この黒鉛の熱膨張率は、30℃〜530℃の温度範囲において略同じ値を示す。電極材料としての銅の熱膨張率は、500℃において約20×10−6/Kであり、黒鉛に比べて大きな値を示す。 The top electrode 16 is preferably formed of graphite having a low coefficient of thermal expansion. As shown in the following Table 1 and FIG. 7, the coefficient of thermal expansion (coefficient of thermal expansion) of the graphite is 3.3 × 10 −6 / K at 500 ° C. The coefficient of thermal expansion of this graphite shows substantially the same value in the temperature range of 30 ° C to 530 ° C. The coefficient of thermal expansion of copper as an electrode material is about 20 × 10 −6 / K at 500 ° C., which is larger than that of graphite.

なお、底部電極19とルツボ11の底壁15との間の導通については、底部電極19の形状が円板状であり、熱膨張による変形が少ないことから、底部電極19とルツボ11の底壁15との接触は高温時にも維持され、底部電極19の上面19aとルツボ11の底壁15の下面15aとの間の導通は経時的に良好に保持される。このため、底部電極19は、通常銅等により形成される。   As for the conduction between the bottom electrode 19 and the bottom wall 15 of the crucible 11, the bottom electrode 19 has a disk shape and is less deformed by thermal expansion. 15 is maintained even at a high temperature, and conduction between the upper surface 19a of the bottom electrode 19 and the lower surface 15a of the bottom wall 15 of the crucible 11 is maintained well over time. For this reason, the bottom electrode 19 is usually formed of copper or the like.

一方、前記ルツボ11を形成する導電性を有する材料としては、例えばカーボン(C)、炭化ケイ素(SiC)及びムライト(Al、SiO)の混合物より形成される導電性セラミックスが好適に用いられる。 On the other hand, as the conductive material forming the crucible 11, for example, conductive ceramics formed from a mixture of carbon (C), silicon carbide (SiC), and mullite (Al 2 O 3 , SiO 2 ) is preferable. Used.

前記導電性セラミックスとして、例えば次の表1に示すような組成、500℃における熱膨張率及び電気抵抗率を有する導電性セラミックス1から導電性セラミックス4が用いられる。なお、ムライトは、アルミナとシリカの化合物よりなるアルミノケイ酸塩である。   As the conductive ceramics, for example, conductive ceramics 1 to 4 having a composition as shown in Table 1 below, a thermal expansion coefficient at 500 ° C., and an electrical resistivity are used. Note that mullite is an aluminosilicate composed of a compound of alumina and silica.

表1に示したように、導電性セラミックス1から導電性セラミックス4の500℃における熱膨張率は3.49×10−6〜3.60×10−6/Kであり、いずれも黒鉛の熱膨張率に近似する値を示す。このため、頂部電極16とルツボ11の周壁14の熱膨張は同等であり、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの接触状態が保持される。 As shown in Table 1, the thermal expansion coefficient at 500 ° C. of the conductive ceramics 1 to 4 is 3.49 × 10 −6 to 3.60 × 10 −6 / K, both of which are the heat of graphite. A value approximating the expansion coefficient is shown. For this reason, the thermal expansion of the top electrode 16 and the peripheral wall 14 of the crucible 11 is equivalent, and the contact state of the lower surface 16a of the top electrode 16 and the top surface 14a of the peripheral wall 14 of the crucible 11 is maintained.

一方、図8の二点鎖線に示すように、頂部電極16を銅で形成した場合には、頂部電極16の熱膨張が大きいために頂部電極16の反りが生じ、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの間が点接触又は線接触となり、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの間で局部加熱が生ずる。   On the other hand, as shown by a two-dot chain line in FIG. 8, when the top electrode 16 is formed of copper, the top electrode 16 is warped because the thermal expansion of the top electrode 16 is large, and the lower surface 16 a of the top electrode 16 is Point contact or line contact occurs between the top surface 14 a of the peripheral wall 14 of the crucible 11 and local heating occurs between the lower surface 16 a of the top electrode 16 and the top surface 14 a of the peripheral wall 14 of the crucible 11.

前記ルツボ11の電気抵抗率(電気比抵抗)は、ルツボ11の導電性と発熱性を考慮して、50×10−3〜250×10−3Ω・cmであることが好ましい。ルツボ11の電気抵抗率が50×10−3Ω・cmより小さい場合、ルツボ11の導電性を高めることはできるが、ルツボ11の発熱性が低くなり、ルツボ11の周壁14下部における温度上昇が不足する傾向を示して好ましくない。その一方、ルツボ11の電気抵抗率が250×10−3Ω・cmより大きい場合、ルツボ11の発熱性を高めることはできるが、発熱量が過剰になったり、ルツボ11の導電性が低くなってルツボ11に十分通電することが難しくなったりして好ましくない。 The electric resistivity (electric specific resistance) of the crucible 11 is preferably 50 × 10 −3 to 250 × 10 −3 Ω · cm in consideration of the conductivity and heat generation of the crucible 11. When the electrical resistivity of the crucible 11 is smaller than 50 × 10 −3 Ω · cm, the conductivity of the crucible 11 can be increased, but the heat generation of the crucible 11 is lowered, and the temperature rise at the lower part of the peripheral wall 14 of the crucible 11 is reduced. This is not preferable because it tends to be insufficient. On the other hand, when the electrical resistivity of the crucible 11 is larger than 250 × 10 −3 Ω · cm, the heat generation of the crucible 11 can be increased, but the amount of heat generation becomes excessive or the conductivity of the crucible 11 decreases. This is not preferable because it is difficult to sufficiently energize the crucible 11.

次に、前記のように構成された実施形態の通電加熱装置10について作用を説明する。
さて、図1に示すように、通電加熱装置10によりルツボ11内に収容される被加熱物12としてのアルミニウムを加熱溶融する場合には、底部電極19をルツボ11の底壁15の下に配置して接触させるとともに、頂部電極16をルツボ11の周壁14の頂面14a上に載せて接触させる。底部電極19と頂部電極16は、それぞれ導線17を介して直流電源20に接続する。続いて、ルツボ11内の下部にアルミニウムを収容する。
Next, an effect | action is demonstrated about the electrical heating apparatus 10 of embodiment comprised as mentioned above.
As shown in FIG. 1, when aluminum as the object to be heated 12 accommodated in the crucible 11 is heated and melted by the electric heating device 10, the bottom electrode 19 is disposed below the bottom wall 15 of the crucible 11. The top electrode 16 is placed on the top surface 14a of the peripheral wall 14 of the crucible 11 and brought into contact. The bottom electrode 19 and the top electrode 16 are each connected to a DC power source 20 via a conducting wire 17. Subsequently, aluminum is accommodated in the lower part of the crucible 11.

その状態で、頂部電極16と底部電極19との間に直流電流を通電すると、直流電流は頂部電極16からルツボ11の周壁14及び底壁15を通って底部電極19へと流れ、ルツボ11の周壁14及び底壁15が自己発熱する。このとき、ルツボ11は下部ほど縮径するテーパ状に形成され、ルツボ11の周壁14の断面積は頂部側から底部側へ向かうに従って次第に減少するようになっている。ルツボ11の周壁14を流れる直流電流についての電気抵抗は周壁14の断面積に反比例することから、ルツボ11の周壁14の頂部側から底部側に向かうほどジュール熱による発熱量が漸増する。   In this state, when a direct current is passed between the top electrode 16 and the bottom electrode 19, the direct current flows from the top electrode 16 through the peripheral wall 14 and the bottom wall 15 of the crucible 11 to the bottom electrode 19, and The peripheral wall 14 and the bottom wall 15 self-heat. At this time, the crucible 11 is formed in a tapered shape with a diameter decreasing toward the lower portion, and the cross-sectional area of the peripheral wall 14 of the crucible 11 gradually decreases from the top side toward the bottom side. Since the electrical resistance of the direct current flowing through the peripheral wall 14 of the crucible 11 is inversely proportional to the cross-sectional area of the peripheral wall 14, the amount of heat generated by Joule heat gradually increases from the top side to the bottom side of the peripheral wall 14 of the crucible 11.

すなわち、ルツボ11の底部側で温度上昇が大きく、頂部側で温度上昇が抑えられる。言い換えれば、ルツボ11内の下部に収容されたアルミニウムは速やかに加熱される一方、アルミニウムが収容されていないルツボ11内の上部における加熱が抑えられる。   That is, the temperature rise is large on the bottom side of the crucible 11, and the temperature rise is suppressed on the top side. In other words, the aluminum accommodated in the lower part in the crucible 11 is heated quickly, while heating in the upper part in the crucible 11 in which no aluminum is accommodated is suppressed.

前記通電加熱を継続すると、ルツボ11の周壁14の頂面14aに接触する頂部電極16の温度も上昇し、ルツボ11の周壁14と頂部電極16とが高温に達する。このため、ルツボ11の周壁14と頂部電極16とがともに熱膨張する。   When the energization heating is continued, the temperature of the top electrode 16 in contact with the top surface 14a of the peripheral wall 14 of the crucible 11 also rises, and the peripheral wall 14 and the top electrode 16 of the crucible 11 reach a high temperature. For this reason, both the peripheral wall 14 and the top electrode 16 of the crucible 11 are thermally expanded.

このとき、ルツボ11の周壁14と頂部電極16の熱膨張率は共に1×10−6〜10×10−6/Kの範囲内に設定されている。例えば、前記導電性セラミックスで形成される周壁14の熱膨張率は約3.5×10−6/Kであり、黒鉛で形成される頂部電極16の熱膨張率は約5.0×10−6/Kであって、略同等に設定されている。このため、周壁14の熱膨張と頂部電極16の熱膨張との熱膨張差は許容範囲内に収められ、頂部電極16の下面16aと周壁14の頂面14aとの面接触が良好に維持され、点接触や線接触による局所発熱(異常発熱)を抑えて両者間の電気的な導通が経時的に良好に保持される。その結果、ルツボ11の周壁14の加熱を安定した状態で継続することができる。 At this time, the thermal expansion coefficients of the peripheral wall 14 of the crucible 11 and the top electrode 16 are both set within a range of 1 × 10 −6 to 10 × 10 −6 / K. For example, the thermal expansion coefficient of the peripheral wall 14 formed by the conductive ceramic is about 3.5 × 10 -6 / K, the thermal expansion coefficient of the top electrode 16 formed of graphite about 5.0 × 10 - 6 / K, which is set to be approximately the same. Therefore, the thermal expansion difference between the thermal expansion of the peripheral wall 14 and the thermal expansion of the top electrode 16 is within an allowable range, and the surface contact between the lower surface 16a of the top electrode 16 and the top surface 14a of the peripheral wall 14 is maintained well. In addition, local heat generation (abnormal heat generation) due to point contact or line contact is suppressed, and electrical continuity between the two is well maintained over time. As a result, the heating of the peripheral wall 14 of the crucible 11 can be continued in a stable state.

以上の実施形態により発揮される効果を以下にまとめて記載する。
(1)この実施形態の通電加熱装置10においては、ルツボ11の底部側における周壁14の断面積を頂部側における周壁14の断面積よりも小さくなるようにルツボ11を形成した。このため、ルツボ11の底部側を縮径する形状により、底部側における周壁14の断面積を簡単に小さくすることができ、被加熱物12を加熱するために必要な底部側の周壁14の温度を容易に高めることができる。
The effect exhibited by the above embodiment is described collectively below.
(1) In the electric heating apparatus 10 of this embodiment, the crucible 11 is formed so that the cross-sectional area of the peripheral wall 14 on the bottom side of the crucible 11 is smaller than the cross-sectional area of the peripheral wall 14 on the top side. For this reason, the cross-sectional area of the peripheral wall 14 on the bottom side can be easily reduced by the shape of the diameter of the bottom side of the crucible 11, and the temperature of the peripheral wall 14 on the bottom side necessary for heating the article to be heated 12. Can be easily increased.

さらに、頂部電極16及びルツボ11の熱膨張率を1×10−6〜10×10−6/Kの範囲に設定した。そのため、頂部電極16及びルツボ11の頂部の熱膨張を同等にすることができ、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの間の導通性を長期に亘って良好に保持することができる。 Furthermore, the thermal expansion coefficients of the top electrode 16 and the crucible 11 were set in a range of 1 × 10 −6 to 10 × 10 −6 / K. Therefore, the thermal expansion of the top electrode 16 and the top of the crucible 11 can be made equal, and the electrical conductivity between the lower surface 16a of the top electrode 16 and the top surface 14a of the peripheral wall 14 of the crucible 11 is improved over a long period of time. Can be held.

従って、この実施形態の通電加熱装置10によれば、簡易な構成で、通電加熱を効率良く、安定した状態で継続することができる。
(2)前記ルツボ11の周壁14は、その断面積が底部に到るほど次第に小さくなるようにテーパ状に形成されている。このため、ルツボ11の製作を容易に行うことができるとともに、ルツボ11の周壁14の底部側ほど次第に温度上昇するように構成でき、温度制御を明瞭に行うことができる。
Therefore, according to the electric heating apparatus 10 of this embodiment, electric heating can be continued efficiently and stably with a simple configuration.
(2) The peripheral wall 14 of the crucible 11 is formed in a tapered shape so that its cross-sectional area gradually decreases as it reaches the bottom. For this reason, the crucible 11 can be easily manufactured, and the temperature can be gradually increased toward the bottom side of the peripheral wall 14 of the crucible 11, so that temperature control can be clearly performed.

(3)前記テーパ状に形成された周壁14の傾斜角度αは5〜20°に設定される。そのため、ルツボ11の周壁14の底部側から頂部側への温度勾配を適切なものにでき、被加熱物12の加熱を円滑に行うことができる。   (3) The inclination angle α of the peripheral wall 14 formed in the tapered shape is set to 5 to 20 °. Therefore, the temperature gradient from the bottom side to the top side of the peripheral wall 14 of the crucible 11 can be made appropriate, and the object to be heated 12 can be heated smoothly.

(4)前記ルツボ11の頂部における周壁14の断面積を1.0としたとき、底部における周壁14の断面積は0.3〜0.7である。この場合には、ルツボ11の底部における周壁14の温度上昇を適切に設定でき、被加熱物12の加熱を速やかに行うことができる。   (4) When the cross-sectional area of the peripheral wall 14 at the top of the crucible 11 is 1.0, the cross-sectional area of the peripheral wall 14 at the bottom is 0.3 to 0.7. In this case, the temperature rise of the peripheral wall 14 at the bottom of the crucible 11 can be set appropriately, and the object to be heated 12 can be heated quickly.

(5)前記頂部電極16は黒鉛により形成され、ルツボ11は前記導電性セラミックスにより形成されている。このとき、頂部電極16とルツボ11の周壁14との熱膨張差を極力抑えることができ、頂部電極16の下面16aとルツボ11の周壁14の頂面14aとの接触を良好に維持でき、両者間の導通を長期間保持することができる。   (5) The top electrode 16 is made of graphite, and the crucible 11 is made of the conductive ceramic. At this time, the difference in thermal expansion between the top electrode 16 and the peripheral wall 14 of the crucible 11 can be suppressed as much as possible, and the contact between the lower surface 16a of the top electrode 16 and the top surface 14a of the peripheral wall 14 of the crucible 11 can be satisfactorily maintained. The conduction between them can be maintained for a long time.

(6)前記ルツボ11の周壁14は均一の厚さに形成されている。この場合には、ルツボ11の周壁14の厚さによらず、ルツボ11のテーパ形状によりルツボ11の発熱量を制御することができる。   (6) The peripheral wall 14 of the crucible 11 is formed with a uniform thickness. In this case, the amount of heat generated by the crucible 11 can be controlled by the tapered shape of the crucible 11 regardless of the thickness of the peripheral wall 14 of the crucible 11.

(7)前記ルツボ11の電気抵抗率は、50×10−3〜250×10−3Ω・cmである。このため、ルツボ11の周壁14及び底壁15における良好な導通を図ることができると同時に、周壁14の適切な発熱を図ることができる。 (7) The electric resistivity of the crucible 11 is 50 × 10 −3 to 250 × 10 −3 Ω · cm. For this reason, it is possible to achieve good conduction in the peripheral wall 14 and the bottom wall 15 of the crucible 11 and at the same time, appropriate heat generation of the peripheral wall 14 can be achieved.

なお、前記実施形態を次のように変更して具体化することも可能である。
・図9に示すように、ルツボ11の下部を有底円筒部23で構成し、上部を頂部側ほど拡径するテーパ部24で構成してもよい。この場合、被加熱物12はルツボ11の下部側の有底円筒部23内に収容される。そして、ルツボ11の下部側の周壁14の断面積は上部側の周壁14の断面積より小さく設定されているので、被加熱物12を効率良く加熱することができる。
It should be noted that the embodiment described above can be modified and embodied as follows.
As shown in FIG. 9, you may comprise the lower part of the crucible 11 with the bottomed cylindrical part 23, and may comprise the taper part 24 which diameter-expands an upper part as the top part side. In this case, the article to be heated 12 is accommodated in the bottomed cylindrical portion 23 on the lower side of the crucible 11. And since the cross-sectional area of the lower peripheral wall 14 of the crucible 11 is set smaller than the cross-sectional area of the upper peripheral wall 14, the to-be-heated object 12 can be heated efficiently.

・図10に示すように、ルツボ11の下部を有底円筒部23で構成するとともに、上部を下部側の有底円筒部23より直径の大きい大径円筒部25で構成してもよい。この場合にも、被加熱物12はルツボ11の下部側の有底円筒部23内に収容される。そして、ルツボ11の下部側の周壁14の断面積は上部側の周壁14の断面積より小さく設定されているので、被加熱物12の加熱効率を向上させることができる。   As shown in FIG. 10, the lower part of the crucible 11 may be constituted by a bottomed cylindrical part 23, and the upper part may be constituted by a large-diameter cylindrical part 25 having a larger diameter than the bottomed cylindrical part 23 on the lower side. Also in this case, the article to be heated 12 is accommodated in the bottomed cylindrical portion 23 on the lower side of the crucible 11. And since the cross-sectional area of the lower peripheral wall 14 of the crucible 11 is set smaller than the cross-sectional area of the upper peripheral wall 14, the heating efficiency of the to-be-heated object 12 can be improved.

・前記加熱容器を、四角筒状等の角筒状に形成し、底部側における周壁14の断面積が頂部側における周壁14の断面積より小さくなるように構成してもよい。
・前記底部電極19と直流電源20との間や頂部電極16と直流電源20との間に遮熱板を配置してもよい。
The heating container may be formed in a square tube shape such as a square tube shape so that the cross-sectional area of the peripheral wall 14 on the bottom side is smaller than the cross-sectional area of the peripheral wall 14 on the top side.
A heat shield plate may be disposed between the bottom electrode 19 and the DC power source 20 or between the top electrode 16 and the DC power source 20.

10…通電加熱装置、11…加熱容器としてのルツボ、12…被加熱物、14…周壁、16…頂部電極、19…底部電極、22…中心軸線、α…傾斜角度。   DESCRIPTION OF SYMBOLS 10 ... Current heating apparatus, 11 ... Crucible as a heating container, 12 ... To-be-heated object, 14 ... Perimeter wall, 16 ... Top electrode, 19 ... Bottom electrode, 22 ... Center axis, (alpha) ... Inclination angle.

Claims (7)

導電性を有する加熱容器の頂部には頂部電極を配置するとともに、加熱容器の底部には底部電極を配置し、頂部電極と底部電極との間に直流電流を通電することにより加熱容器を発熱させて加熱容器内に収容された被加熱物を加熱するように構成された通電加熱装置であって、
前記加熱容器の中心軸線に直交する断面について、加熱容器の底部側における周壁の断面積を頂部側における周壁の断面積よりも小さく形成するとともに、加熱容器の頂部に頂部電極を載置して頂部電極を加熱容器に接続し、かつ頂部電極及び加熱容器の熱膨張率を500℃において1×10−6〜10×10−6/Kに設定した通電加熱装置。
A top electrode is disposed at the top of the conductive heating container, a bottom electrode is disposed at the bottom of the heating container, and a direct current is passed between the top electrode and the bottom electrode to cause the heating container to generate heat. An energization heating device configured to heat an object to be heated contained in a heating container,
The cross section perpendicular to the central axis of the heating container is formed such that the cross sectional area of the peripheral wall on the bottom side of the heating container is smaller than the cross sectional area of the peripheral wall on the top side, and the top electrode is placed on the top of the heating container. An electric heating apparatus in which an electrode is connected to a heating container, and a coefficient of thermal expansion of the top electrode and the heating container is set to 1 × 10 −6 to 10 × 10 −6 / K at 500 ° C.
前記加熱容器の周壁は、その断面積が底部に到るほど次第に小さくなるようにテーパ状に形成されている請求項1に記載の通電加熱装置。   The energization heating apparatus according to claim 1, wherein the peripheral wall of the heating container is formed in a tapered shape so that the cross-sectional area gradually decreases toward the bottom. 前記テーパ状に形成された周壁の傾斜角度は、加熱容器の中心軸線に対して5〜20°に設定されている請求項2に記載の通電加熱装置。   The electric heating apparatus according to claim 2, wherein an inclination angle of the tapered peripheral wall is set to 5 to 20 degrees with respect to a central axis of the heating container. 前記加熱容器の頂部における周壁の断面積を1.0としたとき、底部における周壁の断面積は0.3〜0.7である請求項2又は請求項3に記載の通電加熱装置。   The energization heating apparatus according to claim 2 or 3, wherein the cross-sectional area of the peripheral wall at the bottom is 0.3 to 0.7 when the cross-sectional area of the peripheral wall at the top of the heating container is 1.0. 前記頂部電極は黒鉛により形成され、加熱容器は導電性セラミックスにより形成されている請求項1から請求項4のいずれか1項に記載の通電加熱装置。   The energization heating apparatus according to any one of claims 1 to 4, wherein the top electrode is made of graphite, and the heating container is made of conductive ceramics. 前記加熱容器の周壁は均一の厚さに形成されている請求項1から請求項5のいずれか1項に記載の通電加熱装置。   The energization heating device according to any one of claims 1 to 5, wherein the peripheral wall of the heating container is formed to have a uniform thickness. 前記加熱容器の電気抵抗率は、50×10−3〜250×10−3Ω・cmである請求項1から請求項6のいずれか1項に記載の通電加熱装置。 The electrical heating device according to any one of claims 1 to 6, wherein the heating container has an electric resistivity of 50 x 10-3 to 250 x 10-3 Ω · cm.
JP2016091337A 2016-04-28 2016-04-28 Energizing heating device Active JP6775868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016091337A JP6775868B2 (en) 2016-04-28 2016-04-28 Energizing heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016091337A JP6775868B2 (en) 2016-04-28 2016-04-28 Energizing heating device

Publications (2)

Publication Number Publication Date
JP2017199625A true JP2017199625A (en) 2017-11-02
JP6775868B2 JP6775868B2 (en) 2020-10-28

Family

ID=60239499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016091337A Active JP6775868B2 (en) 2016-04-28 2016-04-28 Energizing heating device

Country Status (1)

Country Link
JP (1) JP6775868B2 (en)

Also Published As

Publication number Publication date
JP6775868B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6049225B2 (en) Glass manufacturing apparatus and method
KR101521366B1 (en) Energy-efficient high-temperature refining
JP4672597B2 (en) Substrate processing equipment
JP5766271B2 (en) Apparatus and method for induction heating discharge of melt
TWI593839B (en) Heater assembly for crystal growth apparatus
JP2016184645A (en) Electrostatic chuck device
JP2017199625A (en) Energizing heating apparatus
US20210130214A1 (en) Method for manufacturing glass article, and melting furnace
JP6107193B2 (en) Optical fiber drawing furnace
US10053797B2 (en) Crystal growth apparatus and thermal insulation cover of the same
JPH06227822A (en) Outflow apparatus for glass preform
JP2018005998A (en) Ceramic heater
TW201512111A (en) Method and apparatus for glass sheet manufacturing including an induction heated enclosure
JP2005119958A (en) Glass molten body refining apparatus
US1897004A (en) Electrical connection for nonmetallic resistors
JP6488649B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
US4072814A (en) Furnace for melting metal by the Joule effect
JP3709492B2 (en) Heater mounting structure of single crystal pulling device
WO2016002232A1 (en) Silicon core wire for producing polycrystalline silicon rod, and device for producing polycrystalline silicon rod
JP7080521B1 (en) Conductive container and energizing heating device
CN215002885U (en) Graphite crucible
US2585791A (en) High-temperature electric resistance oven
RU2371652C1 (en) Electric furnace for preparation of alloys of nonferrous metals
US10145615B2 (en) Structures of composite crucibles and high temperature adiabatic method in arc heating process thereof
KR20170007361A (en) Apparatus for processing a melt

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6775868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250