JP2017199535A - Separator for fuel cell and method of manufacturing the same - Google Patents

Separator for fuel cell and method of manufacturing the same Download PDF

Info

Publication number
JP2017199535A
JP2017199535A JP2016088907A JP2016088907A JP2017199535A JP 2017199535 A JP2017199535 A JP 2017199535A JP 2016088907 A JP2016088907 A JP 2016088907A JP 2016088907 A JP2016088907 A JP 2016088907A JP 2017199535 A JP2017199535 A JP 2017199535A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
substrate
film
mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088907A
Other languages
Japanese (ja)
Other versions
JP6789490B2 (en
Inventor
俊実 人羅
Toshimi Hitora
俊実 人羅
田中 孝
Takashi Tanaka
孝 田中
藤田 静雄
Shizuo Fujita
静雄 藤田
金子 健太郎
Kentaro Kaneko
健太郎 金子
良輔 高木
Ryosuke Takagi
良輔 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eyetec Co Ltd
Flosfia Inc
Kyoto University NUC
Original Assignee
Eyetec Co Ltd
Flosfia Inc
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eyetec Co Ltd, Flosfia Inc, Kyoto University NUC filed Critical Eyetec Co Ltd
Priority to JP2016088907A priority Critical patent/JP6789490B2/en
Publication of JP2017199535A publication Critical patent/JP2017199535A/en
Application granted granted Critical
Publication of JP6789490B2 publication Critical patent/JP6789490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a fuel cell having excellent conductivity and corrosion resistance and also to provide a manufacturing method capable of inexpensively, safely manufacturing the separator for the fuel cell.SOLUTION: In a supply part 59 of a separator for a fuel cell, a raw material solution 58a obtained by dissolving a raw material containing a conductive material is atomized by an ultrasonic vibrator 51 to generate a mist 58b, the mist 58b is transported to a conduit 61 together with carrier gas, a substrate 57 having an uneven shape in at least a part or all of one side is heated to transport the mist 58b from the conduit 61 to the surface of the substrate 57, and a film made of a conductive oxide is formed with a thickness of 0.1 μm to 3 μm by evaporating the transported mist 58b in the surface vicinity of the surface 57 to be reacted with oxygen.SELECTED DRAWING: Figure 2

Description

本発明は、耐食性、導電性が求められる燃料電池用のセパレータ及びその製造方法に関し、特に固体高分子形燃料電池に好適な金属製セパレータ及びその製造方法に関する。   The present invention relates to a separator for a fuel cell that requires corrosion resistance and electrical conductivity and a method for producing the same, and more particularly to a metallic separator suitable for a solid polymer fuel cell and a method for producing the same.

燃料電池は、環境への影響の少ないクリーンなエネルギーを発生させる装置として近年注目されている技術である。燃料電池は、使用される電解質の種類によりに固体高分子形燃料電池(PEFC)、りん酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)に分類される。固体高分子形燃料電池は、他の形式の燃料電池に比べセル抵抗が小さく、高電流密度での動作及び小型軽量化が可能であり、動作温度も低いことから、家庭用燃料電池や自動車用燃料電池として利用されている。   The fuel cell is a technology that has been attracting attention in recent years as a device that generates clean energy with little environmental impact. Depending on the type of electrolyte used, the fuel cell can be a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), or a solid oxide fuel cell (SOFC). are categorized. Solid polymer fuel cells have lower cell resistance than other types of fuel cells, can be operated at high current density, can be reduced in size and weight, and have low operating temperatures. It is used as a fuel cell.

燃料電池の基本構造は、図4に示すように、電解質101両側に燃料極102(アノードとして機能)及び空気極103(カソードとして機能)が接合されており、燃料極102には水素(H)が供給され、空気極103には酸素(O)を含む空気が供給される。各電極は、電解質101との間に反応の触媒である白金が分散された触媒層が形成されている。燃料極102側では、水素、触媒及び電解質が存在することで、プロトン(H)及び電子(e)が生じ、電子は、燃料極102から外部に取り出されて負荷104に供給され、プロトンは電解質101内を移動して空気極103側に向かう。一方、空気極103側では、酸素、触媒及び電解質が存在することで、負荷104から空気極103に供給された電子、電解質101内を移動してきたプロトン及び空気中の酸素が反応して水を生成するようになる。 As shown in FIG. 4, the basic structure of the fuel cell is such that a fuel electrode 102 (functioning as an anode) and an air electrode 103 (functioning as a cathode) are joined to both sides of the electrolyte 101, and hydrogen (H 2 ) is connected to the fuel electrode 102. ) And air containing oxygen (O 2 ) is supplied to the air electrode 103. Each electrode is formed with a catalyst layer in which platinum as a reaction catalyst is dispersed between the electrode and the electrolyte 101. On the fuel electrode 102 side, the presence of hydrogen, catalyst, and electrolyte generates protons (H + ) and electrons (e ). The electrons are taken out from the fuel electrode 102 and supplied to the load 104, Moves in the electrolyte 101 and moves toward the air electrode 103 side. On the other hand, on the air electrode 103 side, oxygen, a catalyst, and an electrolyte exist, so that electrons supplied from the load 104 to the air electrode 103, protons that have moved in the electrolyte 101, and oxygen in the air react to water. Will be generated.

図5は、固体高分子形燃料電池の最小単位である単セルの基本構成に関する説明図である。層状に形成された固体高分子形の電解質膜1の両面には、全体に触媒を分散させた触媒層2及び3が形成された多孔質体4及び5が接合されている。そして、多孔質体4及び5の外面にはセパレータ6及び7が接合されている。セパレータ6及び7の多孔質体4及び5との接合部分には、凹凸部として複数の溝が形成されており、これらの溝によりガスが流通する流路8及び9が形成される。   FIG. 5 is an explanatory diagram relating to the basic configuration of a single cell, which is the minimum unit of a polymer electrolyte fuel cell. Porous bodies 4 and 5 in which catalyst layers 2 and 3 in which a catalyst is dispersed are formed are bonded to both surfaces of a solid polymer electrolyte membrane 1 formed in layers. Separators 6 and 7 are bonded to the outer surfaces of the porous bodies 4 and 5. A plurality of grooves are formed as concavo-convex portions at the joint portions of the separators 6 and 7 with the porous bodies 4 and 5, and flow paths 8 and 9 through which gas flows are formed by these grooves.

そして、図示しない外部の供給装置より流路8には水素ガスが供給され、流路9には酸素を含む空気が供給されることで、触媒層2及び多孔質体4が燃料極として機能し、触媒層3及び多孔質体5が空気極として機能する。したがって、多孔質体4からは電子が外部に取り出されて、多孔質体5に電子が供給されるようになる。   Then, hydrogen gas is supplied to the flow path 8 from an external supply device (not shown), and air containing oxygen is supplied to the flow path 9 so that the catalyst layer 2 and the porous body 4 function as a fuel electrode. The catalyst layer 3 and the porous body 5 function as an air electrode. Therefore, electrons are taken out from the porous body 4 and supplied to the porous body 5.

実際の燃料電池では、必要な電力を得るために、こうした単セルを数十セット組み合わせたスタック形で使用されており、上述したセパレータ(バイポーラプレート)は、単セル同士を区分けするとともに電気的に接続するために用いられる。また、セパレータは、燃料ガス及び空気の流路となることから、セパレータには、単セル同士を接続する導電性、燃料ガス及び空気の混合防止のための気密性、発電環境下における耐食性といった特性が求められる。   In an actual fuel cell, in order to obtain the necessary power, a stack form in which several tens of such single cells are combined is used. The separator (bipolar plate) described above separates the single cells from each other electrically. Used to connect. In addition, since the separator serves as a flow path for fuel gas and air, the separator has characteristics such as conductivity for connecting single cells, airtightness for preventing mixing of fuel gas and air, and corrosion resistance in a power generation environment. Is required.

セパレータに用いられる材料としては、主に炭素系材料及び金属材料が挙げられる。炭素系材料を用いるセパレータは、耐食性の点で優れているが、導電性に課題があり、また十分な強度と気密性を得るためには一定の厚みが必要であるため、小型化及び薄型化を妨げる要因となっている。一方、金属材料を用いるセパレータは、強度及び気密性の点では問題ないため薄肉に形成することができるが、腐食が生じやすく耐食性の点で問題がある。そのため、金属製セパレータでは、導電性に優れてはいるが、耐食性に優れた皮膜で表面を被覆する必要がある。   Examples of the material used for the separator mainly include carbon-based materials and metal materials. Separators using carbon-based materials are excellent in terms of corrosion resistance, but have problems with conductivity, and a certain thickness is required to obtain sufficient strength and airtightness. It is a factor that hinders. On the other hand, a separator using a metal material can be formed thin because there is no problem in terms of strength and airtightness, but corrosion is likely to occur and there is a problem in terms of corrosion resistance. Therefore, a metal separator is excellent in conductivity but needs to be coated with a film excellent in corrosion resistance.

金属製セパレータの表面処理方法としては、例えば、特許文献1では、金属材料からなる基材表面に物理蒸着法(PVD)によって導電性非晶質膜を形成し、形成された導電性非晶質膜の表面に有機金属化学蒸着法(MOCVD)又は分子線エピキタシー法(MBE)により結晶性窒化物からなる皮膜を形成した燃料電池用セパレータの製造方法が記載されている。また、特許文献2では、基材表面にCr、Ti及びPからなる耐食導電性窒化皮膜をPVD等により形成した固体高分子型燃料電池用の金属セパレータが記載されている。   As a surface treatment method for a metallic separator, for example, in Patent Document 1, a conductive amorphous film is formed by physical vapor deposition (PVD) on the surface of a base material made of a metal material. A method for producing a separator for a fuel cell is described in which a film made of crystalline nitride is formed on the surface of the film by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). Patent Document 2 describes a metal separator for a polymer electrolyte fuel cell in which a corrosion-resistant conductive nitride film made of Cr, Ti, and P is formed on a substrate surface by PVD or the like.

特開2012−160382号公報JP 2012-160382 A 特開2014−82176号公報JP 2014-82176 A

金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月Kentaro Kaneko, “Growth and Physical Properties of Corundum Structure Gallium Oxide Mixed Crystal Thin Films”, Kyoto University Doctoral Dissertation, March 2013

上述した特許文献では、金属材料からなる基材表面にPVD等により金属窒化被膜を形成しているが、こうした金属窒化被膜は、燃料電池における発電環境のような酸性環境下では、酸化物に変化して電気抵抗を増加させる要因となり、導電性、耐食性においてまだまだ満足のいくものではなかった。すなわち、図4で説明したように、燃料極102側では、水素が酸化されて水素イオン(プロトン)となり、プロトンは電解質101内を移動して空気極103側で酸素と反応して水が生成するようになるが、こうした反応過程は60℃〜100℃の高温状態の酸性雰囲気中で行われるため、金属の腐食が進行しやすい雰囲気が継続するようになる。そのため、接触抵抗の増加や金属溶出による電解質、触媒及び拡散層への影響が生じて燃料電池の長期使用に伴う特性劣化を招くようになる。金属窒化被膜が形成された金属製セパレータでは、長期使用における燃料電池の特性を維持するための導電性、耐食性を十分備えておらず、実用化に向けた課題となっている。   In the above-mentioned patent documents, a metal nitride film is formed by PVD or the like on the surface of a base material made of a metal material. However, such a metal nitride film changes into an oxide in an acidic environment such as a power generation environment in a fuel cell. As a result, the electrical resistance was increased, and the electrical conductivity and corrosion resistance were still not satisfactory. That is, as explained in FIG. 4, hydrogen is oxidized to hydrogen ions (protons) on the fuel electrode 102 side, and the protons move in the electrolyte 101 and react with oxygen on the air electrode 103 side to generate water. However, since such a reaction process is performed in an acidic atmosphere at a high temperature of 60 ° C. to 100 ° C., an atmosphere in which corrosion of the metal easily proceeds continues. For this reason, an increase in contact resistance or metal elution affects the electrolyte, catalyst, and diffusion layer, leading to deterioration of characteristics associated with long-term use of the fuel cell. A metal separator with a metal nitride film does not have sufficient conductivity and corrosion resistance for maintaining the characteristics of a fuel cell in long-term use, and is a problem for practical application.

また、PVD等による金属被膜形成処理を行う場合、真空での処理が必要となって、処理装置の大型化及び高コスト負担が避けられず、生産効率を向上することも難しくなるため、量産化の点で難点がある。   In addition, when metal film formation processing by PVD or the like is performed, processing in vacuum is necessary, and it is inevitable to increase the size and cost of the processing apparatus, and it is difficult to improve production efficiency. There is a difficulty in this point.

そこで、本発明は、導電性及び耐食性に優れている燃料電池用セパレータ及び燃料電池用セパレータを安価で安全に製造することができる製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method which can manufacture the separator for fuel cells excellent in electroconductivity and corrosion resistance, and the separator for fuel cells cheaply and safely.

本発明者らは、上記目的を達成すべく鋭意検討した結果、少なくとも片面の一部又は全部に凹凸形状を有する基板の凹凸部に導電性酸化物からなる皮膜を、ミストCVD法を用いて形成することに成功し、得られた前記基板付きの皮膜が導電性、耐食性に優れているだけでなく、さらに密着性にも優れており、燃料電池用セパレータとして有用であることを見出し、このような燃料電池用セパレータ及びその製造方法が、上記した従来の課題を一挙に解決できるものであることを知見した。   As a result of intensive studies to achieve the above object, the inventors of the present invention formed a film made of a conductive oxide on a concavo-convex portion of a substrate having a concavo-convex shape on at least a part of one side by using a mist CVD method. It was found that the obtained film with a substrate not only has excellent conductivity and corrosion resistance, but also has excellent adhesion and is useful as a fuel cell separator. It has been found that a fuel cell separator and a method for producing the same can solve the conventional problems described above.

また、本発明者らは、上記知見を得たのち、さらに検討を重ね本発明を完成させた。すなわち、本発明は以下の発明に関する。
[1] 少なくとも片面の一部又は全部に凹凸形状を有する基板の凹凸部に導電性酸化物からなる皮膜を形成する燃料電池用セパレータの製造方法であって、導電性材料を含む原料溶液を霧化してミストを生成する霧化工程と、キャリアガスを用いて、前記基板の表面近傍まで前記ミストを搬送する搬送工程と、前記ミストを前記基板表面近傍で熱反応させることで前記皮膜を形成する製膜工程とを含む燃料電池用セパレータの製造方法。
[2] 製膜工程では、前記皮膜を、厚さが0.1μm〜3μmになるまで形成する前記[1]に記載の燃料電池用セパレータの製造方法。
[3] キャリアガスとして、酸素を用いる前記[1]又は[2]に記載の燃料電池用セパレータの製造方法。
[4] 前記導電性材料が金属を含む前記[1]〜[3]のいずれかに記載の燃料電池用セパレータの製造方法。
[5] 前記導電性材料は、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含む前記[4]に記載の燃料電池用セパレータの製造方法。
[6] 前記導電性材料は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含む前記[4]又は[5]に記載の燃料電池用セパレータの製造方法。
[7] 製膜工程では、前記基板の温度を120℃〜900℃に設定し、搬送工程では、キャリアガスの流量が0.1〜20L/分となるように前記ミストを前記基板まで搬送する前記[1]〜[6]のいずれかに記載の燃料電池用セパレータの製造方法。
[8] 少なくとも片面の一部又は全部に凹凸形状を有する基板と、前記基板の凹凸部に形成された導電性酸化物からなるCVD皮膜とを少なくとも備えている燃料電池用セパレータ。
[9] 前記CVD皮膜は、厚さが0.1μm〜3μmである前記[8]に記載の燃料電池用セパレータ。
[10] 前記CVD皮膜は、ミストCVD皮膜である前記[8]又は[9]に記載の燃料電池用セパレータ。
[11] 前記導電性酸化物が金属酸化物である、前記[8]〜[10]のいずれかに記載の燃料電池用セパレータ。
[12] 前記導電性酸化物が、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含む前記[8]〜[11]のいずれかに記載の燃料電池用セパレータ。
[13] 前記導電性酸化物は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含む前記[8]〜[12]のいずれかに記載の燃料電池用セパレータ。
[14] 前記[8]〜[13]のいずれかに記載の燃料電池用セパレータを含む燃料電池。
[15] 前記[14]に記載の燃料電池を搭載した駆動体。
[16] 前記[14]に記載の燃料電池を備える電気機器。
[17] 前記[14]に記載の燃料電池を用いた燃料電池システム。
In addition, after obtaining the above findings, the present inventors have further studied and completed the present invention. That is, the present invention relates to the following inventions.
[1] A method for producing a separator for a fuel cell, in which a film made of a conductive oxide is formed on a concavo-convex portion of a substrate having a concavo-convex shape on at least a part or all of one surface, wherein a raw material solution containing a conductive material is sprayed Forming the mist by forming a mist, forming a mist using a carrier gas, transporting the mist to the vicinity of the surface of the substrate, and thermally reacting the mist in the vicinity of the substrate surface The manufacturing method of the separator for fuel cells including a film forming process.
[2] The method for manufacturing a fuel cell separator according to [1], wherein in the film forming step, the film is formed until the thickness becomes 0.1 μm to 3 μm.
[3] The method for producing a fuel cell separator according to [1] or [2], wherein oxygen is used as a carrier gas.
[4] The method for manufacturing a fuel cell separator according to any one of [1] to [3], wherein the conductive material includes a metal.
[5] The method for manufacturing a fuel cell separator according to [4], wherein the conductive material contains at least one of tin, titanium, zirconium, zinc, indium, and gallium as a main component.
[6] In the above [4] or [5], the conductive material contains at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. The manufacturing method of the separator for fuel cells of description.
[7] In the film formation step, the temperature of the substrate is set to 120 ° C. to 900 ° C., and in the transfer step, the mist is transferred to the substrate so that the flow rate of the carrier gas is 0.1 to 20 L / min. The manufacturing method of the separator for fuel cells in any one of said [1]-[6].
[8] A fuel cell separator comprising at least a substrate having a concavo-convex shape at least on one side and a CVD film made of a conductive oxide formed on the concavo-convex portion of the substrate.
[9] The fuel cell separator according to [8], wherein the CVD film has a thickness of 0.1 μm to 3 μm.
[10] The fuel cell separator according to [8] or [9], wherein the CVD film is a mist CVD film.
[11] The fuel cell separator according to any one of [8] to [10], wherein the conductive oxide is a metal oxide.
[12] The fuel cell separator according to any one of [8] to [11], wherein the conductive oxide includes at least one of tin, titanium, zirconium, zinc, indium, and gallium as a main component. .
[13] The conductive oxide includes at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. The separator for fuel cells according to any one of the above.
[14] A fuel cell comprising the fuel cell separator according to any one of [8] to [13].
[15] A driving body on which the fuel cell according to [14] is mounted.
[16] An electric device comprising the fuel cell according to [14].
[17] A fuel cell system using the fuel cell according to [14].

本発明は、上記のような構成を有することで、導電性、耐食性及び密着性に優れている燃料電池用セパレータを実現することができるとともに燃料電池用セパレータを安価で安全に製造することができる。   By having the above-described configuration, the present invention can realize a fuel cell separator that is excellent in conductivity, corrosion resistance, and adhesion, and can be manufactured safely and inexpensively. .

プレス加工された基材の一例を示す断面図である。It is sectional drawing which shows an example of the press-processed base material. ミストCVD法を実施する装置の概略構成図である。It is a schematic block diagram of the apparatus which implements mist CVD method. 接触面積抵抗率を測定する試験装置の概略構成図である。It is a schematic block diagram of the test apparatus which measures a contact area resistivity. 燃料電池の基本構造に関する説明図である。It is explanatory drawing regarding the basic structure of a fuel cell. 固体高分子形燃料電池の単セルの基本構成に関する説明図である。It is explanatory drawing regarding the basic composition of the single cell of a polymer electrolyte fuel cell. 実施例におけるコンタクト抵抗と成長温度との関係を示すグラフである。横軸が成長温度(℃)、縦軸がコンタクト抵抗(mΩcm)を示す。It is a graph which shows the relationship between the contact resistance and growth temperature in an Example. The horizontal axis represents the growth temperature (° C.), and the vertical axis represents the contact resistance (mΩcm 2 ). 実施例における電流密度と出力密度の関係を示すグラフである。横軸が電流密度(A/cm)、縦軸が出力密度(W/cm)を示す。It is a graph which shows the relationship between the current density and output density in an Example. The horizontal axis represents current density (A / cm 2 ), and the vertical axis represents output density (W / cm 2 ). 実施例における電圧及び抵抗と時間の関係を示すグラフである。横軸が時間(時間)、縦軸が電圧(V)及び抵抗(mΩ)を示す。It is a graph which shows the voltage and resistance in an Example, and the relationship of time. The horizontal axis represents time (hour), and the vertical axis represents voltage (V) and resistance (mΩ). 実施例におけるドーパント濃度とキャリア密度の関係を示すグラフである。横軸がドーパント濃度(mol%)、縦軸がキャリア密度(1/cm)を示す。It is a graph which shows the relationship between the dopant concentration and carrier density in an Example. The horizontal axis represents the dopant concentration (mol%), and the vertical axis represents the carrier density (1 / cm 3 ). 実施例におけるドーパント濃度と移動度の関係を示すグラフである。横軸がドーパント濃度(mol%)、縦軸が移動度(cm/V・s)を示す。It is a graph which shows the relationship between the dopant concentration and mobility in an Example. The horizontal axis represents the dopant concentration (mol%), and the vertical axis represents the mobility (cm 2 / V · s).

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明の燃料電池用セパレータに用いられる基材としては、少なくとも片面の一部又は全部に凹凸形状を有する燃料電池用セパレータの基板であれば特に限定されず、プラスチック等であってもよいが、本発明においては金属製板材からなる基板を好適に用いることができる。本発明においては、前記基板が両面の一部又は全部に凹凸形状を有するのが好ましく、両面に凹凸部を有することにより、燃料電池用セパレータとしてさらに耐食性および導電性に優れたものとなる。金属製板材としては従来セパレータに使用されている金属材料を用いることができる。例えば、鉄、チタン、アルミニウム、真鍮、銅、ニッケルといった金属又はこれらのうち少なくとも1種類を含む合金が挙げられる。これらの金属材料は、機械的強度、汎用性、加工容易性及びコストの点でセパレータの基材として好適である。鉄合金としてはステンレスが代表的な材料として挙げられ、SUS304、SUS316等のオーステナイト系ステンレス、SUS430等のフェライト系ステンレス、SUS420等のマルテンサイト系ステンレスが挙げられる。ステンレスを基材として用いた場合には、他の材料に比べて、機械的強度、導電性及び耐食性の点でより優れた特性を発揮することができる。   The base material used for the fuel cell separator of the present invention is not particularly limited as long as it is a substrate for a fuel cell separator having a concavo-convex shape on at least a part or all of one surface thereof, and may be plastic or the like, In the present invention, a substrate made of a metal plate material can be suitably used. In the present invention, it is preferable that the substrate has a concavo-convex shape on a part or all of both surfaces, and by having the concavo-convex portions on both surfaces, the fuel cell separator is further excellent in corrosion resistance and conductivity. As the metal plate material, a metal material conventionally used for a separator can be used. For example, a metal such as iron, titanium, aluminum, brass, copper, nickel, or an alloy including at least one of them can be given. These metal materials are suitable as the base material of the separator in terms of mechanical strength, versatility, ease of processing, and cost. A typical example of the iron alloy is stainless steel, such as austenitic stainless steel such as SUS304 and SUS316, ferritic stainless steel such as SUS430, and martensitic stainless steel such as SUS420. When stainless steel is used as a base material, it can exhibit more excellent characteristics in terms of mechanical strength, electrical conductivity, and corrosion resistance than other materials.

基板の厚さは、特に限定されないが、機械的強度及び加工容易性、薄くすることによる燃料電池のエネルギー密度の向上といった観点から設定することができる。例えば、ステンレスを用いる場合には、0.1mm〜1mmが好ましい。また、基板は、流路形成のための溝等がプレス加工により予め形成されており、表面が凹凸形状となっている。図1は、プレス加工された基板Bの一例を示す断面図である。この例では、金属製板材をプレス加工することで、一方の面側に燃料ガス等のガスが流通する溝状のガス流路Fが複数配列するように形成され、他方の面側に冷却媒体が流れる空間が形成されるようになっている。ガス流路Fの両側に冷却媒体が流れ込むことで効率よく冷却することができるが、こうした凹凸形状の基板表面に対して導電性及び耐食性を備える皮膜を均一に形成する必要がある。特に、凹凸形状の角部f1及び傾斜部f3について平面部f2と同様の厚さで皮膜を均一に形成することが求められる。また、前記凹凸部は、凸部または凹部からなるものであれば特に限定されず、凸部からなる凹凸部であってもよいし、凹部からなる凹凸部であってもよいし、凸部および凹部からなる凹凸部であってもよい。また、前記凹凸部は、規則的な凸部または凹部から形成されていてもよいし、不規則な凸部または凹部から形成されていてもよい。本発明においては、前記凹凸部が周期的に形成されているのが好ましく、周期的かつ規則的にパターン化されているのがより好ましい。前記凹凸部の形状としては、特に限定されず、例えば、ストライプ状、メッシュ状またはランダム状などが挙げられるが、本発明においては、ストライプ状が好ましい。前記凹凸部の凹部または凸部の断面形状としては、特に限定されないが、例えば、コの字型、U字型、逆U字型、波型、または三角形、四角形(例えば正方形、長方形若しくは台形等)、五角形若しくは六角形等の多角形等が挙げられる。   The thickness of the substrate is not particularly limited, but can be set from the viewpoints of mechanical strength and ease of processing, and improvement in energy density of the fuel cell by thinning. For example, when using stainless steel, 0.1 mm to 1 mm is preferable. Further, the substrate has a groove for forming a flow path or the like formed in advance by press working, and the surface has an uneven shape. FIG. 1 is a cross-sectional view showing an example of a pressed substrate B. In this example, a metal plate material is pressed to form a plurality of groove-like gas flow paths F through which a gas such as fuel gas flows on one surface side, and a cooling medium on the other surface side. A space is formed to flow through. Although the cooling medium can be efficiently cooled by flowing into both sides of the gas flow path F, it is necessary to uniformly form a coating film having conductivity and corrosion resistance on the uneven substrate surface. In particular, it is required to uniformly form a film with the same thickness as that of the flat surface portion f2 for the concave and convex corner portions f1 and inclined portions f3. In addition, the uneven portion is not particularly limited as long as it is formed of a convex portion or a concave portion, and may be an uneven portion made of a convex portion, an uneven portion made of a concave portion, The uneven part which consists of a recessed part may be sufficient. Moreover, the said uneven | corrugated | grooved part may be formed from the regular convex part or a recessed part, and may be formed from the irregular convex part or recessed part. In this invention, it is preferable that the said uneven | corrugated | grooved part is formed periodically, and it is more preferable that it is patterned periodically and regularly. The shape of the concavo-convex portion is not particularly limited, and examples thereof include a stripe shape, a mesh shape, and a random shape. In the present invention, a stripe shape is preferable. The cross-sectional shape of the concave or convex portion of the concavo-convex portion is not particularly limited. For example, a U-shape, U-shape, inverted U-shape, wave shape, triangle, quadrangle (for example, square, rectangle, trapezoid, etc.) ), Polygons such as pentagons or hexagons.

前記基板の凹凸部に、ミストCVD法により導電性酸化物からなる皮膜を形成することで、凹凸形状に形成された基板に対しても密着性がより良好で緻密な構造の皮膜を均一に形成することができ、さらに、前記皮膜が酸化物であることから酸性環境下においても十分な耐食性を備えている。   By forming a film made of a conductive oxide on the concavo-convex part of the substrate by a mist CVD method, a film having a dense structure with better adhesion to a substrate formed in a concavo-convex shape is uniformly formed. Furthermore, since the film is an oxide, it has sufficient corrosion resistance even in an acidic environment.

ミストCVD法は、導電性材料を含む原料を水又はアルコール等の溶媒に溶解させた溶液に超音波振動を印加してミスト化することでミスト微粒子を生成し、ミスト微粒子をキャリアガスとともに加熱された基板表面に搬送することで、ミスト微粒子が基板表面近傍で加熱されて熱反応し、導電性酸化物からなる皮膜が基板表面に形成される。   The mist CVD method generates mist particles by applying ultrasonic vibration to a solution obtained by dissolving a raw material containing a conductive material in a solvent such as water or alcohol to generate mist particles, and the mist particles are heated together with a carrier gas. By transporting to the surface of the substrate, the mist particles are heated in the vicinity of the surface of the substrate to cause a thermal reaction, and a film made of a conductive oxide is formed on the surface of the substrate.

こうしたミストCVD法は、本発明者である藤田らにより研究開発が進められている技術であり(非特許文献1)、本発明においては、前記基板に均一な導電性酸化物からなる皮膜を効率よく製膜することができ、好ましい燃料電池用セパレータの製造方法として適用するものである。燃料電池用セパレータの製造方法としてミストCVDを採用したのは今回が初めてである。   Such a mist CVD method is a technology that is being researched and developed by the present inventor Fujita et al. (Non-Patent Document 1). In the present invention, a film made of a uniform conductive oxide is efficiently formed on the substrate. The film can be formed well and is applied as a preferable method for producing a fuel cell separator. This is the first time that mist CVD has been adopted as a method of manufacturing a fuel cell separator.

ミストCVD法では、MOCVD法のように、有機金属等の原料を使用することがなく、また大気開放系のシステムで行われるため真空装置等の設備が不要となってコンベヤ方式による基板の連続搬送処理も可能となり、安価で安全に製膜処理を行うことができる。また、基板を金属製板材のプレス加工等の成形加工で形成することが可能で、水やアルコール溶媒を用いることで十分な酸素分圧を得ることができ、低コストの材料で品質の良い導電性酸化物からなる皮膜が形成されたセパレータを製造することができる。   The mist CVD method does not use organic metal or other materials like the MOCVD method, and it is performed in an open air system, eliminating the need for equipment such as a vacuum device, and continuously transporting substrates using the conveyor system. Processing is also possible, and film formation can be performed safely at low cost. In addition, the substrate can be formed by a forming process such as pressing of a metal plate material, and a sufficient oxygen partial pressure can be obtained by using water or an alcohol solvent. A separator in which a film made of a conductive oxide is formed can be produced.

図面を用いて、本発明に好適に用いられるミストCVD装置を説明する。図2のミストCVD装置は、供給部59と、ファインチャネル構造を有する反応部60とからなり、供給部59には、超音波振動子51、容器52、キャリアガス供給手段から供給されるキャリアガス53の流量を調節する流量調節弁53a、および希釈ガス供給手段から供給される希釈ガス54の流量を調節する流量調節弁54aが備え付けられている。また、反応部60には、ヒーター56および基板57が備え付けられている。   A mist CVD apparatus suitably used in the present invention will be described with reference to the drawings. The mist CVD apparatus of FIG. 2 includes a supply unit 59 and a reaction unit 60 having a fine channel structure. The supply unit 59 includes a carrier gas supplied from an ultrasonic vibrator 51, a container 52, and a carrier gas supply unit. A flow rate adjusting valve 53a for adjusting the flow rate of 53 and a flow rate adjusting valve 54a for adjusting the flow rate of the dilution gas 54 supplied from the dilution gas supply means are provided. The reaction unit 60 is provided with a heater 56 and a substrate 57.

原料溶液58aを、超音波振動子51を用いて霧化してミスト58bとし、ミスト58bをキャリアガス53によって、反応部60へ送り出す。ミスト58bには、反応部60に至るまでの途中に、希釈ガス54が供給される。そして、ミスト58bは、高さ1mmの反応空間に送り出される。反応空間には基板57が備え付けられており、ヒーター56により、ミスト58bが熱反応し、基板57上に製膜できるように構成されている。   The raw material solution 58 a is atomized using the ultrasonic vibrator 51 to form a mist 58 b, and the mist 58 b is sent to the reaction unit 60 by the carrier gas 53. Dilution gas 54 is supplied to mist 58b in the middle of reaching reaction section 60. And mist 58b is sent out to the reaction space of height 1mm. A substrate 57 is provided in the reaction space, and the mist 58 b is thermally reacted by the heater 56 so that a film can be formed on the substrate 57.

超音波振動子51を駆動することで、超音波振動が供給部59内の液体に伝播して原料溶液58aを超音波振動させるようになり、超音波振動により原料溶液58aからミスト58bが連続して生成されるようになる。ミスト58bは、導電性材料を含む原料が溶解したミスト微粒子が浮遊する集合体となっている。   By driving the ultrasonic vibrator 51, the ultrasonic vibration propagates to the liquid in the supply unit 59 to cause the raw material solution 58a to vibrate ultrasonically, and the mist 58b continues from the raw material solution 58a by the ultrasonic vibration. Will be generated. The mist 58b is an aggregate in which mist fine particles in which raw materials including a conductive material are dissolved float.

キャリアガス53および希釈ガス54は、キャリアガス供給手段から供給される。キャリアガスとしては、酸素、オゾン、空気、還元ガス、窒素やアルゴン等の不活性ガスを用いることができる。キャリアガス供給手段からの供給は、それぞれ接続された流量調節弁53aおよび54aを介して所定量供給されるように制御されている。一方の系統は、直接管路61に接続されており、他方の系統は、供給部59に接続されて供給部59から管路61に接続して合流するようになっている。供給部59内に流入するキャリアガス53は、容器52内に生成されたミスト58bと混合して流出し、供給部59に直接接続された管路61に合流してミスト58bを輸送するようになっている。そして、流量調節弁53a及び54aにより流量を適宜調整することで、反応部60内に流入するミスト58bの濃度を調整することができる。キャリアガスの流量は、特に限定されないが、0.1〜20L/分であるのが好ましい。このような好ましい流量とすることで、前記基板の凹凸形状に沿ってより良質な皮膜が得られる。   The carrier gas 53 and the dilution gas 54 are supplied from a carrier gas supply means. As the carrier gas, oxygen, ozone, air, reducing gas, inert gas such as nitrogen or argon can be used. The supply from the carrier gas supply means is controlled so that a predetermined amount is supplied through the flow rate adjusting valves 53a and 54a connected thereto. One system is directly connected to the pipeline 61, and the other system is connected to the supply unit 59 and connected to the pipeline 61 from the supply unit 59 to join. The carrier gas 53 flowing into the supply unit 59 is mixed with the mist 58b generated in the container 52 and flows out, and merges with the pipe 61 directly connected to the supply unit 59 to transport the mist 58b. It has become. And the density | concentration of the mist 58b which flows in in the reaction part 60 can be adjusted by adjusting a flow volume suitably with the flow control valves 53a and 54a. The flow rate of the carrier gas is not particularly limited, but is preferably 0.1 to 20 L / min. By setting it as such a preferable flow volume, a better quality film | membrane is obtained along the uneven | corrugated shape of the said board | substrate.

基板表面にミストCVD法により導電性酸化物からなる皮膜を形成する場合には、基板57を反応部60内に設置し、ヒーター56を加熱制御して基板表面の温度を120℃〜900℃に設定しておく。基板表面の温度は、好ましくは450±30℃の範囲内であり、より好ましくは450±15℃の範囲内である。供給部59内に、導電性材料を含む原料を溶媒に溶解させた原料溶液を投入する。   When a film made of a conductive oxide is formed on the substrate surface by the mist CVD method, the substrate 57 is placed in the reaction unit 60, and the heater 56 is heated to control the temperature of the substrate surface to 120 ° C to 900 ° C. Set it. The temperature of the substrate surface is preferably in the range of 450 ± 30 ° C., more preferably in the range of 450 ± 15 ° C. In the supply part 59, the raw material solution which melt | dissolved the raw material containing an electroconductive material in the solvent is thrown in.

前記導電性酸化物は、本発明の目的を阻害しない限り特に限定されないが、金属を含むのが好ましい。また、前記導電性酸化物は、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含むのが好ましい。前記主成分は、酸素を除く材料全体に対して50%以上の組成比を有するものであればそれでよく、70%以上の組成比を有するものがより好ましい。また、前記導電性酸化物は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含むのも好ましい。前記導電性材料は、前記導電性酸化物の原料であれば特に限定されず、金属を含むのが好ましい。前記導電性材料は、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含むのが好ましい。ここで、主成分としては、前記導電性酸化物の主成分となり得る構成成分が挙げられる。また、前記導電性材料は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含むのも好ましい。前記原料溶液は、霧化または液滴化が可能であり、前記導電性材料を含有していれば特に限定されない。本発明においては、前記原料溶液としては、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。導電性材料の濃度は、0.05mol/L〜5mol/Lが好ましく、より好ましくは0.1mol/L〜1mol/Lである。前記導電性材料の濃度を1mol/L以下とすることで、より良好な皮膜を形成することができる。   Although the said conductive oxide is not specifically limited unless the objective of this invention is inhibited, It is preferable that a metal is included. The conductive oxide preferably contains at least one of tin, titanium, zirconium, zinc, indium and gallium as a main component. The main component may be any material as long as it has a composition ratio of 50% or more with respect to the entire material excluding oxygen, and more preferably has a composition ratio of 70% or more. The conductive oxide preferably contains at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. The conductive material is not particularly limited as long as it is a raw material of the conductive oxide, and preferably contains a metal. The conductive material preferably contains at least one of tin, titanium, zirconium, zinc, indium and gallium as a main component. Here, as a main component, the component which can become a main component of the said conductive oxide is mentioned. The conductive material preferably includes at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. The raw material solution can be atomized or formed into droplets, and is not particularly limited as long as it contains the conductive material. In the present invention, as the raw material solution, a solution in which the metal is dissolved or dispersed in an organic solvent or water in the form of a complex or a salt can be suitably used. Examples of complex forms include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like. Examples of the salt form include organic metal salts (for example, metal acetates, metal oxalates, metal citrates, etc.), sulfide metal salts, nitrate metal salts, phosphorylated metal salts, metal halide salts (for example, metal chlorides). Salt, metal bromide salt, metal iodide salt, etc.). The concentration of the conductive material is preferably 0.05 mol / L to 5 mol / L, more preferably 0.1 mol / L to 1 mol / L. By setting the concentration of the conductive material to 1 mol / L or less, a better film can be formed.

超音波振動子51は、管路61に輸送されるミスト58bの濃度にムラが生じないように十分なミストを発生させるように駆動制御される。発生するミスト58bのミスト微粒子の液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは1〜10μmである。   The ultrasonic transducer 51 is driven and controlled so as to generate sufficient mist so as not to cause unevenness in the concentration of the mist 58b transported to the pipeline 61. The droplet size of the generated mist particles of the mist 58b is not particularly limited, and may be a droplet of several millimeters, but is preferably 50 μm or less, and more preferably 1 to 10 μm.

なお、必要に応じて基板表面にバッファ層等の中間層となる皮膜を形成した後導電性酸化物からなる皮膜を形成することもできる。また、本発明においては、ミストCVD法の製膜時間を調整することにより、導電性酸化物からなる皮膜の膜厚を制御することができる。本発明においては、前記皮膜の膜厚を0.01μm〜100μmにするのが好ましく、0.1μm〜3μmにするのがより好ましい。   In addition, after forming the film | membrane used as intermediate | middle layers, such as a buffer layer, if necessary, the film | membrane which consists of conductive oxides can also be formed. Moreover, in this invention, the film thickness of the membrane | film | coat consisting of an electroconductive oxide is controllable by adjusting the film forming time of mist CVD method. In the present invention, the film thickness is preferably 0.01 μm to 100 μm, and more preferably 0.1 μm to 3 μm.

上記のようにして得られた導電性酸化物からなる皮膜は、燃料電池用セパレータに有用であり、前記基板と前記皮膜とを含む燃料電池用セパレータは、常法に従い燃料電池に用いることができる。前記燃料電池用セパレータを含む燃料電池は、耐食性及び電池としての導電特性に優れている。また、前記燃料電池は、公知の手段を用いて、駆動体、電気機器、燃料電池システムに用いることができ、耐食性及び導電特性に優れた燃料電池の性能を活用することができる。前記駆動体としては、モータ、駆動機構、電気自動車、電動カート、電動車椅子、電動玩具、電動飛行機、小型電動機器やMEMS等が好適な例として挙げられる。前記電気機器としては、デジタルカメラ、プリンタ、プロジェクタ、パーソナルコンピュータや携帯電話機等のCPU搭載電気機器や、掃除機、アイロン等の電源ユニット搭載電気機器等が好適な例として挙げられる。また、前記燃料電池システムとしては、前記燃料電池及びガス発生装置とを少なくとも備えた燃料電池システム等が好適な例として挙げられる。   The film made of the conductive oxide obtained as described above is useful for a fuel cell separator, and the fuel cell separator including the substrate and the film can be used for a fuel cell according to a conventional method. . A fuel cell including the fuel cell separator is excellent in corrosion resistance and conductive properties as a battery. In addition, the fuel cell can be used for a driving body, an electric device, and a fuel cell system by using known means, and the performance of the fuel cell excellent in corrosion resistance and conductive characteristics can be utilized. Suitable examples of the driving body include a motor, a driving mechanism, an electric vehicle, an electric cart, an electric wheelchair, an electric toy, an electric airplane, a small electric device, and a MEMS. Suitable examples of the electric device include CPU-equipped electric devices such as digital cameras, printers, projectors, personal computers and mobile phones, and electric device-equipped electric devices such as vacuum cleaners and irons. A preferable example of the fuel cell system is a fuel cell system including at least the fuel cell and a gas generator.

<実施例1>
基材として、ステンレス(SUS304)からなる板材を図1に示す形状にプレス加工したもの(10cm×10cm)を用い、基材表面に導電性酸化物として酸化スズからなる皮膜を形成したセパレータを製造した。まず、基材表面を、アルカリ浸漬脱脂処理及び電解脱脂処理を行った後、純水で洗浄して乾燥させ、清浄化処理を行った。図2に示す製膜装置を用いて、清浄化して異物を除去した基材表面に、ミストCVD法により酸化スズを形成した。原料として、塩化スズをメタノールと水の混合溶液(メタノール95%、水5%)にスズ濃度0.2mol/Lとなるように溶解させた原料溶液を準備し、図2に示す構成の製膜装置の容器52に投入し、基材温度は450℃に設定した。そして、超音波振動子51を駆動してミストを発生させ、キャリアガスにより管路61に輸送した。キャリアガス53の流量を5L/minに、希釈ガス54の流量を10L/minにそれぞれ調節した。キャリアガス及び希釈ガスには酸素を用いた。管路61からキャリアガスを用いてミストを基材表面に搬送し、膜厚3μmの酸化スズからなる皮膜を基材表面に形成したセパレータを得た。なお、製膜時間は10分間であった。
<Example 1>
As a base material, a plate made of stainless steel (SUS304) pressed into the shape shown in FIG. 1 (10 cm × 10 cm) is used, and a separator in which a film made of tin oxide as a conductive oxide is formed on the base material surface is manufactured. did. First, the surface of the base material was subjected to alkali dipping degreasing and electrolytic degreasing, and then washed with pure water and dried to perform a cleaning process. Using the film forming apparatus shown in FIG. 2, tin oxide was formed by mist CVD on the surface of the substrate that had been cleaned to remove foreign substances. As a raw material, a raw material solution in which tin chloride was dissolved in a mixed solution of methanol and water (methanol 95%, water 5%) so as to have a tin concentration of 0.2 mol / L was prepared. The substrate was put into the container 52 and the substrate temperature was set to 450 ° C. Then, the ultrasonic vibrator 51 was driven to generate mist, and the mist was transported to the pipeline 61 by the carrier gas. The flow rate of the carrier gas 53 was adjusted to 5 L / min, and the flow rate of the dilution gas 54 was adjusted to 10 L / min. Oxygen was used as the carrier gas and dilution gas. Mist was conveyed to the base material surface using carrier gas from the pipeline 61, and the separator which formed the membrane | film | coat which consists of a tin oxide with a film thickness of 3 micrometers on the base material surface was obtained. The film formation time was 10 minutes.

<実施例2>
基材温度を300℃としたこと以外は、実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
<Example 2>
A separator in which a film made of tin oxide was formed on the substrate surface was obtained in the same manner as in Example 1 except that the substrate temperature was 300 ° C.

<実施例3>
基材温度を350℃としたこと以外は、実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
<Example 3>
A separator in which a film made of tin oxide was formed on the surface of the substrate was obtained in the same manner as in Example 1 except that the substrate temperature was 350 ° C.

<実施例4>
基材温度を400℃としたこと以外は、実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
<Example 4>
A separator in which a film made of tin oxide was formed on the substrate surface was obtained in the same manner as in Example 1 except that the substrate temperature was 400 ° C.

<実施例5>
基材温度を500℃としたこと以外は、実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
<Example 5>
A separator in which a film made of tin oxide was formed on the surface of the substrate was obtained in the same manner as in Example 1 except that the substrate temperature was 500 ° C.

<実施例6>
基材温度を550℃としたこと以外は、実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
<Example 6>
A separator having a coating made of tin oxide formed on the substrate surface was obtained in the same manner as in Example 1 except that the substrate temperature was 550 ° C.

上記実施例1〜6にて形成された皮膜を電子顕微鏡で観察したところ、基板表面にムラなく皮膜が形成されており、凹凸形状の角部及び傾斜部においても満遍なく皮膜が形成されていた。また、セパレータの断面を観察したところ、凹凸形状の角部及び傾斜部においても平面部と同様の厚さで皮膜が形成されており、密着性も良好であった。また、XRD回析装置を用いて、上記実施例1〜6にて得られた結晶膜の同定を行ったところ、得られた膜はいずれもSnO膜であった。
<比較例1>
比較例として、ステンレス(SUS304)をそのまま用いて評価を行った。
When the film formed in Examples 1 to 6 was observed with an electron microscope, the film was formed evenly on the substrate surface, and the film was uniformly formed even in the corners and inclined parts of the concavo-convex shape. Moreover, when the cross section of the separator was observed, a film was formed with a thickness similar to that of the flat portion at the corners and inclined portions of the concavo-convex shape, and the adhesion was good. Further, by using the XRD diffraction device, where the identification of the resultant crystal film in the above Examples 1 to 6, both resulting film had a SnO 2 film.
<Comparative Example 1>
As a comparative example, evaluation was performed using stainless steel (SUS304) as it was.

<比較例2>
比較例として、実施例1と同様の基材にスパッタリング法を用いて窒化チタンからなる皮膜を形成したセパレータを用いて評価を行った。
<Comparative example 2>
As a comparative example, evaluation was performed using a separator in which a film made of titanium nitride was formed on the same base material as in Example 1 using a sputtering method.

<評価試験>
製造したセパレータの評価試験として、接触面積抵抗率の測定、耐食性試験及び簡易発電試験を行った。接触面積抵抗率の測定については、図3に示す試験装置を用いて実施した。試験装置では、セパレータ20の被覆面にカーボンシート22(東レ株式会社製TGP−H−060)を介してそれぞれ電極板21とセパレータ20へ溶着させた導線24を配置し、電極板21とセパレータ20の外側に絶縁性プレートからなる加圧保持部材23をそれぞれ配置して加圧保持部材23を両側から挟圧するように加圧して各部材を密着させた状態に設定する。そして、一対の電極板21と導線24の間に電流計及び電圧計を接続する。
<Evaluation test>
As an evaluation test of the manufactured separator, a contact area resistivity measurement, a corrosion resistance test, and a simple power generation test were performed. The contact area resistivity was measured using the test apparatus shown in FIG. In the test apparatus, the conductive wires 24 welded to the electrode plate 21 and the separator 20 via the carbon sheet 22 (TGP-H-060 manufactured by Toray Industries, Inc.) are disposed on the coated surface of the separator 20, respectively. The pressure holding member 23 made of an insulating plate is arranged on the outside, and the pressure holding member 23 is pressed so as to be clamped from both sides to set the members in close contact with each other. Then, an ammeter and a voltmeter are connected between the pair of electrode plates 21 and the conductive wire 24.

加圧保持部材23に加えられる面圧力は40kgf/cmとし、カーボンシート22のサイズを1cm×1cmに設定してセパレータの接触面積を1cmとした。一対の電極板21の電流を流す場合には一方の電極板から他方の電極板に流す場合及びその逆方向に流す場合の2通りで行い、それぞれの場合の電流値及び電圧値から抵抗値を求めた。そして、得られた抵抗値とセパレータの面積値との積を接触面積抵抗率とした。 The surface pressure applied to the pressure holding member 23 was 40 kgf / cm 2 , the size of the carbon sheet 22 was set to 1 cm × 1 cm, and the contact area of the separator was 1 cm 2 . When the current of the pair of electrode plates 21 is passed, it is performed in two ways: when flowing from one electrode plate to the other electrode plate and when flowing in the opposite direction, and the resistance value is determined from the current value and voltage value in each case. Asked. The product of the obtained resistance value and the area value of the separator was defined as the contact area resistivity.

耐食性試験では、pH3.0に調整して60℃に昇温した硫酸中にセパレータを100時間浸漬して行った。耐食性の評価は、試験前及び試験後の接触面積抵抗率を測定してその変化から評価を行なった。評価項目としては、試験後の金属溶出の有無、試験前後の抵抗率の上昇が10%以下、という基準で評価した。   In the corrosion resistance test, the separator was immersed in sulfuric acid adjusted to pH 3.0 and heated to 60 ° C. for 100 hours. Corrosion resistance was evaluated by measuring the contact area resistivity before and after the test and evaluating the change. As evaluation items, evaluation was made based on the criteria that the presence or absence of metal elution after the test and the increase in resistivity before and after the test was 10% or less.

試験後の金属溶出については、実施例1〜5で得られたセパレータについて耐食性試験後の金属溶出を調べたところ、これらのセパレータにおいて耐食性試験後の金属溶出が0.1ppm以下となり、特に高い耐食性を示した。   Regarding the metal elution after the test, when the metal elution after the corrosion resistance test was examined for the separators obtained in Examples 1 to 5, the metal elution after the corrosion resistance test was 0.1 ppm or less in these separators, and particularly high corrosion resistance. showed that.

セパレータの接触面積抵抗率は、燃料電池の性能を維持するためには約100mΩ・cm以下であることが好ましい。実施例1および比較例1で得られたセパレータについて、耐食性試験前後の接触抵抗率を図6に示す。 The contact area resistivity of the separator is preferably about 100 mΩ · cm 2 or less in order to maintain the performance of the fuel cell. FIG. 6 shows the contact resistivity before and after the corrosion resistance test for the separators obtained in Example 1 and Comparative Example 1.

図6の評価結果をみると、実施例1(基材温度450℃)では、耐食性試験の前後で接触面積抵抗率が約100mΩ・cm以下になっており、燃料電池の性能を維持するのに必要な接触面積抵抗率及び耐食性を備えていることがわかる。また、耐食性試験前後における接触抵抗の上昇率に着目すると、表1の通り、実施例1(基材温度450℃)では耐食試験前後における接触抵抗の上昇率が4.6%と高い耐食性を示すことが分かった。また、実施例5及び比較例2の耐食試験前後における接触抵抗の上昇率も表1に示す。表1から、本発明のセパレータは耐食性に優れていることが分かる。 In the evaluation result of FIG. 6, in Example 1 (base material temperature 450 ° C.), the contact area resistivity is about 100 mΩ · cm 2 or less before and after the corrosion resistance test, and the performance of the fuel cell is maintained. It can be seen that it has the required contact area resistivity and corrosion resistance. Further, focusing on the increase rate of the contact resistance before and after the corrosion resistance test, as shown in Table 1, in Example 1 (base material temperature 450 ° C.), the increase rate of the contact resistance before and after the corrosion resistance test is 4.6%, which shows high corrosion resistance. I understood that. Table 1 also shows the rate of increase in contact resistance before and after the corrosion test of Example 5 and Comparative Example 2. From Table 1, it can be seen that the separator of the present invention is excellent in corrosion resistance.

発電試験については、酸化スズからなる皮膜を一方の片面に形成したセパレータ2枚を有効面積50cmの膜電極接合体(MEA)の両面に配置して燃料電池単セルを作成した。膜電極接合体(MEA)として、パーフルオロスルホン酸からなる高分子電解質体の両面にカーボン繊維からなる電極シート部材を貼り付けたものを用いた。
作成した単セルを用いて、燃料極側に純水素からなる燃料ガスを水素利用率50%で供給し、酸化剤極側に空気を酸素利用率25%で供給した。水素ガスは水素ボンベから、空気はオイル及び粒子フリーコンプレッサ(アネスト岩田株式会社製)から、それぞれ80℃に設定したイオン交換水中に投入してバブリングを行って、水蒸気を含ませた状態で供給した。図7に電流密度と出力密度の関係、図8に電流密度0.25A/cmの一定負荷における電圧値および抵抗値の時間推移を示す。図7および図8から明らかな通り、実施例1(基材温度450℃)で得られたセパレータについて行った発電試験においては、最高出力密度0.377W/cm、連続発電時間750hを達成した。
For the power generation test, a fuel cell single cell was prepared by arranging two separators each having a coating made of tin oxide formed on one side thereof on both sides of a membrane electrode assembly (MEA) having an effective area of 50 cm 2 . As the membrane electrode assembly (MEA), one in which an electrode sheet member made of carbon fiber was attached to both surfaces of a polymer electrolyte body made of perfluorosulfonic acid was used.
Using the prepared single cell, a fuel gas composed of pure hydrogen was supplied to the fuel electrode side at a hydrogen utilization rate of 50%, and air was supplied to the oxidant electrode side at an oxygen utilization rate of 25%. Hydrogen gas was supplied from a hydrogen cylinder, and air was supplied from an oil and particle-free compressor (manufactured by Anest Iwata Co., Ltd.) into ion-exchanged water set at 80 ° C. and bubbled to supply water. . FIG. 7 shows the relationship between the current density and the output density, and FIG. 8 shows the time transition of the voltage value and the resistance value at a constant load with a current density of 0.25 A / cm 2 . As is apparent from FIGS. 7 and 8, in the power generation test performed on the separator obtained in Example 1 (base material temperature 450 ° C.), the maximum power density of 0.377 W / cm 2 and the continuous power generation time of 750 h were achieved. .

(実施例7)
原料として、塩化スズとフッ化アンモニウムをメタノールと水の混合溶液(メタノール95%、水5%)にスズ濃度0.2mol/Lおよびフッ素濃度5mol%となるように溶解させた原料溶液を用いたこと以外は実施例1と同様にして酸化スズからなる皮膜を基材表面に形成したセパレータを得た。
(Example 7)
As a raw material, a raw material solution in which tin chloride and ammonium fluoride were dissolved in a mixed solution of methanol and water (methanol 95%, water 5%) so that the tin concentration was 0.2 mol / L and the fluorine concentration was 5 mol% was used. Except for this, a separator having a film made of tin oxide formed on the substrate surface was obtained in the same manner as in Example 1.

上記実施例7にて形成された皮膜を電子顕微鏡で観察したところ、基板表面にムラなく皮膜が形成されており、凹凸形状の角部及び傾斜部においても満遍なく皮膜が形成されていた。また、セパレータの断面を観察したところ、凹凸形状の角部及び傾斜部においても平面部と同様の厚さで皮膜が形成されており、密着性も良好であった。また、XRD回析装置を用いて、上記実施例7にて得られた結晶膜の同定を行ったところ、得られた膜はSnO膜であった。 When the film formed in Example 7 was observed with an electron microscope, the film was uniformly formed on the substrate surface, and the film was evenly formed even at the corners and inclined parts of the uneven shape. Moreover, when the cross section of the separator was observed, a film was formed with a thickness similar to that of the flat portion at the corners and inclined portions of the concavo-convex shape, and the adhesion was good. Further, by using the XRD diffraction device, where the identification of the resultant crystal film in Example 7 above, the resulting film was SnO 2 film.

<Hall効果測定>
実施例7で得られたセパレータおよび図9および図10に示す条件にて実施例7と同様にして得られたセパレータについてHall効果測定を実施した。キャリア密度を図9に、移動度を図10に示す。図9および図10から明らかな通り、本発明のセパレータは燃料電池における導電特性に優れている。
<Hall effect measurement>
The Hall effect measurement was performed on the separator obtained in Example 7 and the separator obtained in the same manner as in Example 7 under the conditions shown in FIGS. 9 and 10. The carrier density is shown in FIG. 9, and the mobility is shown in FIG. As is clear from FIGS. 9 and 10, the separator of the present invention is excellent in the conductive characteristics in the fuel cell.

B 基板
F ガス流路
f1 角部
f2 平面部
f3 傾斜部
1 電解質膜
2、3 触媒層
4、5 多孔質体
6、7 セパレータ
8、9 流路
20 セパレータ
21 電極板
22 カーボンシート
23 加圧保持部材
24 導線
51 超音波振動子
52 容器
53 キャリアガス
53a 流量調節弁
54 希釈ガス
54a 流量調節弁
56 ヒーター
57 基板
58a 原料溶液
58b ミスト
59 供給部
60 反応部
61 管路
101 電解質
102 燃料極
103 空気極
104 負荷

B Substrate F Gas channel f1 Corner part f2 Flat part f3 Inclined part 1 Electrolyte membrane 2, 3 Catalyst layer 4, 5 Porous body 6, 7 Separator 8, 9 Channel 20 Separator 21 Electrode plate 22 Carbon sheet 23 Pressurization holding Member 24 Conductor 51 Ultrasonic vibrator 52 Container 53 Carrier gas 53a Flow rate adjustment valve 54 Dilution gas 54a Flow rate adjustment valve 56 Heater 57 Substrate 58a Raw material solution 58b Mist 59 Supply unit 60 Reaction unit 61 Pipe line 101 Electrolyte 102 Fuel electrode 103 Air electrode 104 load

Claims (17)

少なくとも片面の一部又は全部に凹凸形状を有する基板の凹凸部に導電性酸化物からなる皮膜を形成する燃料電池用セパレータの製造方法であって、導電性材料を含む原料溶液を霧化してミストを生成する霧化工程と、キャリアガスを用いて、前記基板の表面近傍まで前記ミストを搬送する搬送工程と、前記ミストを前記基板表面近傍で熱反応させることで前記皮膜を形成する製膜工程とを含む燃料電池用セパレータの製造方法。   A method for manufacturing a separator for a fuel cell, wherein a film made of a conductive oxide is formed on a concavo-convex portion of a substrate having a concavo-convex shape on at least a part of one side, wherein a mist is produced by atomizing a raw material solution containing a conductive material. An atomization step for generating a film, a transport step for transporting the mist to the vicinity of the surface of the substrate using a carrier gas, and a film formation step for forming the coating by thermally reacting the mist near the surface of the substrate. The manufacturing method of the separator for fuel cells containing these. 製膜工程では、前記皮膜を、厚さが0.1μm〜3μmになるまで形成する請求項1に記載の燃料電池用セパレータの製造方法。   The method for producing a fuel cell separator according to claim 1, wherein in the film forming step, the film is formed until the thickness becomes 0.1 μm to 3 μm. キャリアガスとして、酸素を用いる請求項1又は2に記載の燃料電池用セパレータの製造方法。   The manufacturing method of the separator for fuel cells of Claim 1 or 2 using oxygen as carrier gas. 前記導電性材料が金属を含む請求項1〜3のいずれかに記載の燃料電池用セパレータの製造方法。   The manufacturing method of the separator for fuel cells in any one of Claims 1-3 in which the said electroconductive material contains a metal. 前記導電性材料は、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含む請求項4に記載の燃料電池用セパレータの製造方法。   The method for producing a fuel cell separator according to claim 4, wherein the conductive material contains at least one of tin, titanium, zirconium, zinc, indium, and gallium as a main component. 前記導電性材料は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含む請求項4又は5に記載の燃料電池用セパレータの製造方法。   The fuel cell separator according to claim 4 or 5, wherein the conductive material contains at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. Manufacturing method. 製膜工程では、前記基板の温度を120℃〜900℃に設定し、搬送工程では、キャリアガスの流量が0.1〜20L/分となるように前記ミストを前記基板まで搬送する請求項1〜6のいずれかに記載の燃料電池用セパレータの製造方法。   The temperature of the said board | substrate is set to 120 to 900 degreeC in a film forming process, and the said mist is conveyed to the said board | substrate so that the flow volume of carrier gas may be 0.1-20 L / min in a conveyance process. The manufacturing method of the separator for fuel cells in any one of -6. 少なくとも片面の一部又は全部に凹凸形状を有する基板と、前記基板の凹凸部に形成された導電性酸化物からなるCVD皮膜とを少なくとも備えている燃料電池用セパレータ。   A fuel cell separator comprising at least a substrate having a concavo-convex shape on at least a part of one surface and a CVD film made of a conductive oxide formed on the concavo-convex portion of the substrate. 前記CVD皮膜は、厚さが0.1μm〜3μmである請求項8に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 8, wherein the CVD film has a thickness of 0.1 μm to 3 μm. 前記CVD皮膜は、ミストCVD皮膜である請求項8又は9に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 8 or 9, wherein the CVD film is a mist CVD film. 前記導電性酸化物が金属酸化物である、請求項8〜10のいずれかに記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 8 to 10, wherein the conductive oxide is a metal oxide. 前記導電性酸化物が、スズ、チタン、ジルコニウム、亜鉛、インジウム及びガリウムのうちの少なくとも1種類を主成分として含む請求項8〜11のいずれかに記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 8 to 11, wherein the conductive oxide contains at least one of tin, titanium, zirconium, zinc, indium, and gallium as a main component. 前記導電性酸化物は、Nb、F、Sb、Bi、Se、Te、Cl、Br、I、V、P及びTaのうち少なくとも一種類をドーパントとして含む請求項8〜12のいずれかに記載の燃料電池用セパレータ。   13. The conductive oxide according to claim 8, wherein the conductive oxide contains at least one of Nb, F, Sb, Bi, Se, Te, Cl, Br, I, V, P, and Ta as a dopant. Fuel cell separator. 請求項8〜13のいずれかに記載の燃料電池用セパレータを含む燃料電池。   A fuel cell comprising the fuel cell separator according to claim 8. 請求項14に記載の燃料電池を搭載した駆動体。   A driving body on which the fuel cell according to claim 14 is mounted. 請求項14に記載の燃料電池を備える電気機器。   An electric device comprising the fuel cell according to claim 14. 請求項14に記載の燃料電池を用いた燃料電池システム。   A fuel cell system using the fuel cell according to claim 14.
JP2016088907A 2016-04-27 2016-04-27 Fuel cell separator and its manufacturing method Active JP6789490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088907A JP6789490B2 (en) 2016-04-27 2016-04-27 Fuel cell separator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088907A JP6789490B2 (en) 2016-04-27 2016-04-27 Fuel cell separator and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017199535A true JP2017199535A (en) 2017-11-02
JP6789490B2 JP6789490B2 (en) 2020-11-25

Family

ID=60238188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088907A Active JP6789490B2 (en) 2016-04-27 2016-04-27 Fuel cell separator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6789490B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172793A (en) * 2017-03-31 2018-11-08 株式会社Flosfia Film deposition method
CN109962256A (en) * 2017-12-22 2019-07-02 丰田自动车株式会社 Separator for fuel battery and fuel cell
CN110048138A (en) * 2018-01-16 2019-07-23 丰田自动车株式会社 Fuel cell separator
DE102019109104A1 (en) 2018-04-23 2019-10-24 Toyota Jidosha Kabushiki Kaisha fuel cell
CN110391433A (en) * 2018-04-23 2019-10-29 丰田自动车株式会社 The manufacturing method of fuel cell spacer, antimony doped tin oxide and its manufacturing method and fuel cell spacer
JP2019200850A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Surface treatment method of fuel cell separator and surface processing device
DE102019130583A1 (en) 2018-11-14 2020-05-14 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A FUEL CELL SEPARATOR
US11114676B2 (en) 2018-04-23 2021-09-07 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
JP2022527340A (en) * 2019-04-03 2022-06-01 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Layer systems, bipolar plates containing such layer systems, and fuel cells produced using them.
WO2024202863A1 (en) * 2023-03-30 2024-10-03 本田技研工業株式会社 Fuel battery cell

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008741A (en) * 2000-06-23 2002-01-11 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
JP2007048753A (en) * 2005-08-11 2007-02-22 Gm Global Technology Operations Inc FUEL CELL HAVING CONTACT ELEMENT INCLUDING TiO2 LAYER AND CONDUCTIVE LAYER
JP2007305564A (en) * 2005-10-21 2007-11-22 Gm Global Technology Operations Inc Fuel cell component part with highly durable, conductive and hydrophilic coating
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method
JP2009181911A (en) * 2008-01-31 2009-08-13 Toshiba Corp Electronic device
US20090214927A1 (en) * 2008-02-27 2009-08-27 Gm Global Technology Operations, Inc. Low cost fuel cell bipolar plate and process of making the same
JP2011001239A (en) * 2009-06-22 2011-01-06 Ishihara Sangyo Kaisha Ltd Conductive titanium oxide and method of manufacturing the same
JP2011144408A (en) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> Method of depositing transparent conductive film
JP2013028480A (en) * 2011-07-27 2013-02-07 Kochi Univ Of Technology High-crystallinity conductive alpha type gallium oxide thin film with dopant added, and method of forming the same
JP2015230813A (en) * 2014-06-04 2015-12-21 日本電信電話株式会社 Fuel battery system and operation method for the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008741A (en) * 2000-06-23 2002-01-11 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
JP2007048753A (en) * 2005-08-11 2007-02-22 Gm Global Technology Operations Inc FUEL CELL HAVING CONTACT ELEMENT INCLUDING TiO2 LAYER AND CONDUCTIVE LAYER
JP2007305564A (en) * 2005-10-21 2007-11-22 Gm Global Technology Operations Inc Fuel cell component part with highly durable, conductive and hydrophilic coating
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method
JP2009181911A (en) * 2008-01-31 2009-08-13 Toshiba Corp Electronic device
US20090214927A1 (en) * 2008-02-27 2009-08-27 Gm Global Technology Operations, Inc. Low cost fuel cell bipolar plate and process of making the same
JP2011001239A (en) * 2009-06-22 2011-01-06 Ishihara Sangyo Kaisha Ltd Conductive titanium oxide and method of manufacturing the same
JP2011144408A (en) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> Method of depositing transparent conductive film
JP2013028480A (en) * 2011-07-27 2013-02-07 Kochi Univ Of Technology High-crystallinity conductive alpha type gallium oxide thin film with dopant added, and method of forming the same
JP2015230813A (en) * 2014-06-04 2015-12-21 日本電信電話株式会社 Fuel battery system and operation method for the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462746B2 (en) 2017-03-31 2022-10-04 Flosfia Inc. Multilayer structure and method of forming the same
JP2018172793A (en) * 2017-03-31 2018-11-08 株式会社Flosfia Film deposition method
JP7064723B2 (en) 2017-03-31 2022-05-11 株式会社Flosfia Film formation method
CN109962256A (en) * 2017-12-22 2019-07-02 丰田自动车株式会社 Separator for fuel battery and fuel cell
JP2019114384A (en) * 2017-12-22 2019-07-11 トヨタ自動車株式会社 Fuel cell separator and fuel cell
CN110048138A (en) * 2018-01-16 2019-07-23 丰田自动车株式会社 Fuel cell separator
JP2019125483A (en) * 2018-01-16 2019-07-25 トヨタ自動車株式会社 Separator for fuel cell
CN110048138B (en) * 2018-01-16 2022-04-26 丰田自动车株式会社 Separator for fuel cell
US11223052B2 (en) 2018-01-16 2022-01-11 Toyota Jidosha Kabushiki Kaisha Fuel-cell separator
CN110391433A (en) * 2018-04-23 2019-10-29 丰田自动车株式会社 The manufacturing method of fuel cell spacer, antimony doped tin oxide and its manufacturing method and fuel cell spacer
DE102019109104A1 (en) 2018-04-23 2019-10-24 Toyota Jidosha Kabushiki Kaisha fuel cell
CN110391433B (en) * 2018-04-23 2022-07-05 丰田自动车株式会社 Fuel cell separator, antimony-doped tin oxide, method for producing antimony-doped tin oxide, and method for producing fuel cell separator
US11114676B2 (en) 2018-04-23 2021-09-07 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
US11127957B2 (en) 2018-04-23 2021-09-21 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
JP7031486B2 (en) 2018-05-14 2022-03-08 トヨタ自動車株式会社 Surface treatment method and surface treatment device for fuel cell separator
JP2019200850A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Surface treatment method of fuel cell separator and surface processing device
US11149348B2 (en) 2018-11-14 2021-10-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing fuel cell separator
KR20200056312A (en) 2018-11-14 2020-05-22 도요타지도샤가부시키가이샤 Method for manufacturing fuel cell separator
CN111188025A (en) * 2018-11-14 2020-05-22 丰田自动车株式会社 Method for manufacturing separator for fuel cell
DE102019130583A1 (en) 2018-11-14 2020-05-14 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A FUEL CELL SEPARATOR
JP2022527340A (en) * 2019-04-03 2022-06-01 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Layer systems, bipolar plates containing such layer systems, and fuel cells produced using them.
JP7362768B2 (en) 2019-04-03 2023-10-17 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー layer systems, bipolar plates containing such layer systems, and fuel cells produced using them
WO2024202863A1 (en) * 2023-03-30 2024-10-03 本田技研工業株式会社 Fuel battery cell

Also Published As

Publication number Publication date
JP6789490B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6789490B2 (en) Fuel cell separator and its manufacturing method
Wang et al. High performance anion exchange membrane electrolysis using plasma-sprayed, non-precious-metal electrodes
US10707511B2 (en) Low temperature solid oxide cells
EP2441110B1 (en) Solution based nanostructured carbon materials (ncm) coatings on bipolar plates in fuel cells
JP5013675B2 (en) Electrocatalyst production method and electrode catalyst
Wang et al. Exploring the impacts of conditioning on proton exchange membrane electrolyzers by in situ visualization and electrochemistry characterization
CN108690969B (en) Film forming method, conductive laminated structure, and electronic device
CN103484910B (en) The method depositing the thin gold plating of durability on fuel battery double plates
Kim et al. An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer
US11189846B2 (en) Electrically-conductive member and method of manufacturing the same
JP2017041379A (en) Membrane electrode composite and electrochemical cell
CN105655610A (en) Ultrathin catalytic layer attached to anion exchange membrane, preparation and application thereof
JP2017073218A (en) Conductive member, method for manufacturing the same, separator for fuel cell using the same, and solid polymer fuel cell
Aghasibeig et al. Electrocatalytically active nickel-based electrode coatings formed by atmospheric and suspension plasma spraying
JP2019099918A (en) Method of manufacturing lamination structure, and lamination structure, and conductive member
CN102210049A (en) Catalyst thin layer and method for fabricating the same
CN111188025B (en) Method for manufacturing separator for fuel cell
JP2012160382A (en) Separator for fuel cell and method for manufacturing the same
Kim et al. Hydrogen evolving electrode with low Pt loading fabricated by repeated pulse electrodeposition
Lee et al. Miniature H2/O2 fuel cells using TiO2 nanotube substrates and sputtered Pt catalyst
JP2019192570A (en) Fuel cell separator
JP5388639B2 (en) Catalyst layer of polymer electrolyte fuel cell, membrane electrode assembly, and fuel cell
JP4734858B2 (en) Method for producing catalyst and method for producing fuel cell having catalyst
Alekseeva et al. Nanostructured Coatings to Extend the Component Lifetime in Electrochemical Devices Based on Proton Exchange Membrane
JP2022167852A (en) Catalyst for electrochemical cell and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6789490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250