JP2017199455A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2017199455A
JP2017199455A JP2016086686A JP2016086686A JP2017199455A JP 2017199455 A JP2017199455 A JP 2017199455A JP 2016086686 A JP2016086686 A JP 2016086686A JP 2016086686 A JP2016086686 A JP 2016086686A JP 2017199455 A JP2017199455 A JP 2017199455A
Authority
JP
Japan
Prior art keywords
head
hole
spark plug
glass seal
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016086686A
Other languages
Japanese (ja)
Other versions
JP6490025B2 (en
Inventor
成治 中野
Seiji Nakano
成治 中野
裕則 上垣
Hironori Uegaki
裕則 上垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016086686A priority Critical patent/JP6490025B2/en
Publication of JP2017199455A publication Critical patent/JP2017199455A/en
Application granted granted Critical
Publication of JP6490025B2 publication Critical patent/JP6490025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spark plug with improved shock resistance.SOLUTION: A center electrode has a recess provided on a top face of its head portion, and the top face has chamfered portions on the corners of its outer periphery. A glass seal fixes a flange and the head portion to a shaft hole of an insulator. The angle formed by two straight lines, which respectively connect the deepest portion of the recess and the chamfered portions, crossing at the deepest portion may be 90° or greater. When compared with a case where no chamfered portions are provided at the corners of the head portion of the center electrode, a gap between the head portion and a second hole can be more easily filled with the glass seal. At the same time, the corners of the head portion are less likely to be a starting point of breakage of the glass seal. This results in improved shock resistance.SELECTED DRAWING: Figure 3

Description

本発明はスパークプラグに関し、特に耐衝撃性を向上できるスパークプラグに関するものである。   The present invention relates to a spark plug, and more particularly to a spark plug that can improve impact resistance.

スパークプラグは、絶縁体の軸孔に挿入された中心電極が、中心電極の鍔部および頭部の周囲に充填されたガラスシールによって軸孔に固着される。頭部に接合するガラスシールの接合強度を向上させるため、頭部の頂面に凹みが形成される(特許文献1)。   In the spark plug, the center electrode inserted into the shaft hole of the insulator is fixed to the shaft hole by a glass seal filled around the flange and head of the center electrode. In order to improve the bonding strength of the glass seal bonded to the head, a recess is formed on the top surface of the head (Patent Document 1).

特開平8−315954号公報JP-A-8-315954

しかしながら近年のエンジンの高出力化等に伴い、スパークプラグに加えられる負荷や衝撃はより大きくなるので、耐衝撃性のさらなる向上が望まれる。   However, with the recent increase in engine output and the like, the load and impact applied to the spark plug become larger, so further improvement in impact resistance is desired.

本発明は上述した要求に応えるためになされたものであり、耐衝撃性を向上できるスパークプラグを提供することを目的としている。   The present invention has been made to meet the above-described demand, and an object thereof is to provide a spark plug that can improve impact resistance.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために請求項1記載のスパークプラグによれば、絶縁体は、第1孔部と第1孔部より内径の大きい第2孔部とが段部を介して連なる軸孔を備え、中心電極は、絶縁体の段部に配置される鍔部と、鍔部から第2孔部側へ突出する頭部と、鍔部から第1孔部側へ延びる脚部とを備える。ガラスシールは、鍔部および頭部を第2孔部に固定する。頭部は頂面に凹みが形成され、頂面の外周の角を取った面取部が設けられる。   In order to achieve this object, according to the spark plug according to claim 1, the insulator has a shaft hole in which the first hole and the second hole having a larger inner diameter than the first hole are connected via the step. The center electrode includes a flange portion disposed at the step portion of the insulator, a head portion protruding from the flange portion toward the second hole portion, and a leg portion extending from the flange portion toward the first hole portion. A glass seal fixes a collar part and a head to the 2nd hole. The head is provided with a chamfered portion having a recess on the top surface and a corner on the outer periphery of the top surface.

中心電極の中心軸と凹みの最深部とを含む断面または中心軸に平行な直線と凹みの最深部とを含む断面において、最深部と面取部とをそれぞれ結ぶ2本の直線が最深部で交わる角度は90°以上である。頭部の角に面取部が設けられているので、頭部の角が取られていない場合に比べて、頭部と第2孔部との隙間にガラスシールを充填し易くできると共に、角をガラスシールの破壊の起点にさせ難くできる。よって、耐衝撃性を向上できる効果がある。   In the cross section including the central axis of the central electrode and the deepest part of the recess, or the cross section including the straight line parallel to the central axis and the deepest part of the recess, the two straight lines connecting the deepest part and the chamfered part are the deepest part. The intersecting angle is 90 ° or more. Since the chamfered portion is provided at the corner of the head, it is easier to fill the gap between the head and the second hole with a glass seal than when the corner of the head is not taken. Can be made difficult to cause the glass seal to break. Therefore, there exists an effect which can improve impact resistance.

請求項2記載のスパークプラグによれば、第2孔部の内径d1と頭部の外径d2との差d1−d2は0.9mm以下である。第2孔部の内径d1と頭部の外径d2との差d1−d2が小さくなるにつれて、頭部と第2孔部との隙間にガラスシールが充填し難くなるが、頭部の角に面取部が設けられているので、それを防止できる。その結果、請求項1の効果に加え、第2孔部の内径と頭部の外径との差が0.9mm以下のスパークプラグであっても、頭部と第2孔部との隙間にガラスシールを充填し易くして強度を向上できると共に、ガラスシールを破壊し難くできる効果がある。   According to the spark plug of the second aspect, the difference d1-d2 between the inner diameter d1 of the second hole and the outer diameter d2 of the head is 0.9 mm or less. As the difference d1-d2 between the inner diameter d1 of the second hole and the outer diameter d2 of the head becomes smaller, it becomes difficult to fill the gap between the head and the second hole with a glass seal. Since the chamfered portion is provided, it can be prevented. As a result, in addition to the effect of the first aspect, even in a spark plug in which the difference between the inner diameter of the second hole and the outer diameter of the head is 0.9 mm or less, the gap between the head and the second hole The glass seal can be easily filled to improve the strength, and the glass seal can be hardly broken.

請求項3記載のスパークプラグによれば、第2孔部の内径d1、頭部の外径d2、頭部の軸方向の長さhは、h≧5/2×(d1−d2)の関係を満たす。第2孔部の内径d1と頭部の外径d2との差d1−d2が小さくなるにつれて、頭部と第2孔部との隙間にガラスシールが充填し難くなるが、頭部の角に面取部が設けられているので、それを防止できる。   According to the spark plug of the third aspect, the inner diameter d1 of the second hole portion, the outer diameter d2 of the head portion, and the axial length h of the head portion are in a relationship of h ≧ 5/2 × (d1−d2). Meet. As the difference d1-d2 between the inner diameter d1 of the second hole and the outer diameter d2 of the head becomes smaller, it becomes difficult to fill the gap between the head and the second hole with a glass seal. Since the chamfered portion is provided, it can be prevented.

その結果、請求項1又は2の効果に加え、h≧5/2×(d1−d2)の関係を満たすスパークプラグであっても、頭部と第2孔部との隙間にガラスシールを充填し易くして強度を向上できると共に、ガラスシールを破壊し難くできる効果がある。   As a result, in addition to the effect of claim 1 or 2, even if the spark plug satisfies the relationship h ≧ 5/2 × (d1−d2), a glass seal is filled in the gap between the head and the second hole. The strength can be improved by making it easy to do, and the glass seal can be made difficult to break.

請求項4記載のスパークプラグによれば、面取部は頭部の外周面と凹みとに接し、面取部の値は0.1〜1mmである。凹みの表面積を確保できるので、請求項1から3のいずれかの効果に加え、頭部に接合するガラスシールの接合強度を向上できる効果がある。   According to the spark plug of the fourth aspect, the chamfered portion is in contact with the outer peripheral surface of the head and the recess, and the value of the chamfered portion is 0.1 to 1 mm. Since the surface area of the dent can be secured, in addition to the effect of any one of claims 1 to 3, there is an effect that the bonding strength of the glass seal bonded to the head can be improved.

本発明の第1実施の形態におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in 1st Embodiment of this invention. 中心電極の斜視図である。It is a perspective view of a center electrode. 図1の部分拡大図である。It is the elements on larger scale of FIG. 第2実施の形態におけるスパークプラグの中心電極の斜視図である。It is a perspective view of the center electrode of the spark plug in 2nd Embodiment. 第3実施の形態におけるスパークプラグの部分拡大断面図である。It is a partial expanded sectional view of the spark plug in 3rd Embodiment.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の第1実施の形態におけるスパークプラグ10の中心軸Oを含む面で切断した断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。図1に示すようにスパークプラグ10は、主体金具20、接地電極30、絶縁体40、中心電極50、端子金具60及び抵抗体70を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view taken along a plane including the central axis O of the spark plug 10 according to the first embodiment of the present invention. In FIG. 1, the lower side of the drawing is referred to as the front end side of the spark plug 10, and the upper side of the drawing is referred to as the rear end side of the spark plug 10. As shown in FIG. 1, the spark plug 10 includes a metal shell 20, a ground electrode 30, an insulator 40, a center electrode 50, a terminal metal 60, and a resistor 70.

主体金具20は、内燃機関のねじ穴(図示せず)に固定される略円筒状の部材であり、中心軸Oに沿って貫通する貫通孔21が形成されている。主体金具20は導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。主体金具20は、径方向の外側へ鍔状に張り出す座部22と、座部22より先端側の外周面に形成されたねじ部23とを備えている。座部22とねじ部23との間に環状のガスケット24が嵌め込まれている。ガスケット24は、内燃機関のねじ穴にねじ部23が嵌められたときに、主体金具20と内燃機関(エンジンヘッド)との隙間を封止する。   The metal shell 20 is a substantially cylindrical member fixed to a screw hole (not shown) of the internal combustion engine, and a through hole 21 penetrating along the central axis O is formed. The metal shell 20 is made of a conductive metal material (for example, low carbon steel). The metal shell 20 includes a seat portion 22 that protrudes in the shape of a bowl outward in the radial direction, and a screw portion 23 that is formed on the outer peripheral surface on the tip side of the seat portion 22. An annular gasket 24 is fitted between the seat portion 22 and the screw portion 23. The gasket 24 seals a gap between the metal shell 20 and the internal combustion engine (engine head) when the screw portion 23 is fitted in the screw hole of the internal combustion engine.

接地電極30は、主体金具20の先端に接合される金属製(例えばニッケル基合金製)の電極母材31と、電極母材31の先端に接合されるチップ32とを備えている。電極母材31は、中心軸Oと交わるように中心軸Oへ向かって屈曲する棒状の部材である。チップ32は、白金、イリジウム、ルテニウム、ロジウム等の貴金属またはこれらを主成分とする合金によって形成される柱状の部材であり、レーザ溶接によって中心軸Oと交わる位置に接合されている。   The ground electrode 30 includes an electrode base material 31 made of metal (for example, made of a nickel base alloy) joined to the tip of the metal shell 20 and a chip 32 joined to the tip of the electrode base material 31. The electrode base material 31 is a rod-like member that is bent toward the central axis O so as to intersect the central axis O. The chip 32 is a columnar member formed of a noble metal such as platinum, iridium, ruthenium, rhodium, or an alloy containing these as a main component, and is joined to a position intersecting with the central axis O by laser welding.

絶縁体40は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された略円筒状の部材であり、中心軸Oに沿って貫通する軸孔41が形成されている。絶縁体40は、主体金具20の貫通孔21に挿入され、外周に主体金具20が固定されている。絶縁体40は、先端および後端が、主体金具20の貫通孔21からそれぞれ露出している。   The insulator 40 is a substantially cylindrical member made of alumina or the like that is excellent in mechanical properties and insulation at high temperatures, and has a shaft hole 41 penetrating along the central axis O. The insulator 40 is inserted into the through hole 21 of the metal shell 20, and the metal shell 20 is fixed to the outer periphery. The insulator 40 has a front end and a rear end exposed from the through hole 21 of the metal shell 20.

軸孔41は、絶縁体40の先端側に位置する断面が円形状の第1孔部42と、第1孔部42の後端に連なり後端側へ向かって拡径する段部43と、段部43の後端側に位置する断面が円形状の第2孔部44とを備えている。第2孔部44は、内径が、第1孔部42の内径より大きく設定されている。   The shaft hole 41 includes a first hole portion 42 having a circular cross section located on the front end side of the insulator 40, a stepped portion 43 that is continuous with the rear end of the first hole portion 42 and expands toward the rear end side, A second hole 44 having a circular cross section located on the rear end side of the stepped portion 43 is provided. The inner diameter of the second hole 44 is set larger than the inner diameter of the first hole 42.

中心電極50は、有底筒状に形成された電極母材の内部に、電極母材よりも熱伝導性に優れる芯材54を埋設した棒状の電極である。芯材54は銅または銅を主成分とする合金で形成されている。中心電極50は、軸孔41の段部43に配置される鍔部51と、中心軸Oに沿って鍔部51から第2孔部44側へ突出する頭部52と、鍔部51から中心軸Oに沿って第1孔部42側へ延びる脚部53とを備えている。   The center electrode 50 is a rod-shaped electrode in which a core material 54 having a thermal conductivity superior to that of an electrode base material is embedded in an electrode base material formed in a bottomed cylindrical shape. The core material 54 is formed of copper or an alloy containing copper as a main component. The center electrode 50 includes a flange 51 disposed on the step 43 of the shaft hole 41, a head 52 protruding from the flange 51 toward the second hole 44 along the center axis O, and a center from the flange 51. And a leg 53 extending toward the first hole 42 along the axis O.

脚部53は先端が第1孔部42から露出し、チップ55がレーザ溶接によって接合されている。チップ55は、白金、イリジウム、ルテニウム、ロジウム等の貴金属またはこれらを主成分とする合金によって形成される柱状の部材であり、火花ギャップを介して接地電極30のチップ32と対向する。   The tip of the leg 53 is exposed from the first hole 42, and the tip 55 is joined by laser welding. The tip 55 is a columnar member formed of a noble metal such as platinum, iridium, ruthenium, rhodium or an alloy containing these as a main component, and faces the tip 32 of the ground electrode 30 through a spark gap.

端子金具60は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具60の先端側は絶縁体40の軸孔41内に配置される。   The terminal fitting 60 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel). The distal end side of the terminal fitting 60 is disposed in the shaft hole 41 of the insulator 40.

抵抗体70は、スパーク時に発生する電波ノイズを抑えるための部材であり、端子金具60と中心電極50との間の第2孔部44内に配置されている。抵抗体70と中心電極50との間、抵抗体70と端子金具60との間に、導電性を有するガラスシール80,90がそれぞれ配置される。ガラスシール80は抵抗体70と中心電極50とにそれぞれ接触し、ガラスシール90は抵抗体70と端子金具60とにそれぞれ接触する。この結果、中心電極50と端子金具60とは、抵抗体70とガラスシール80,90とを介して電気的に接続される。   The resistor 70 is a member for suppressing radio noise generated during sparking, and is disposed in the second hole 44 between the terminal fitting 60 and the center electrode 50. Between the resistor 70 and the center electrode 50 and between the resistor 70 and the terminal fitting 60, conductive glass seals 80 and 90 are disposed, respectively. The glass seal 80 is in contact with the resistor 70 and the center electrode 50, and the glass seal 90 is in contact with the resistor 70 and the terminal fitting 60. As a result, the center electrode 50 and the terminal fitting 60 are electrically connected via the resistor 70 and the glass seals 80 and 90.

ガラスシール80,90は、例えばガラス粒子と金属粒子(Cu,Fe等)とを1対1程度の比率で含んでいる。ガラス粒子としては、例えばB−SiO系、BaO−B系、SiO−B−CaO−BaO系などの材料が採用され得る。ガラスシール80,90は、比抵抗が、中心電極50及び端子金具60の比抵抗と抵抗体70の比抵抗との間にある。よって、中心電極50及び端子金具60や抵抗体70との接触抵抗を安定化させることができ、中心電極50と端子金具60との間の抵抗値を安定にできる。 The glass seals 80 and 90 include, for example, glass particles and metal particles (Cu, Fe, etc.) at a ratio of about 1: 1. As the glass particles, for example, B 2 O 3 —SiO 2 -based, BaO—B 2 O 3 -based, SiO 2 —B 2 O 3 —CaO—BaO-based materials can be adopted. The glass seals 80 and 90 have a specific resistance between the specific resistance of the center electrode 50 and the terminal fitting 60 and the specific resistance of the resistor 70. Therefore, the contact resistance between the center electrode 50 and the terminal fitting 60 and the resistor 70 can be stabilized, and the resistance value between the center electrode 50 and the terminal fitting 60 can be stabilized.

スパークプラグ10は、例えば、以下のような方法によって製造される。まず、絶縁体40の第2孔部44から中心電極50を挿入する。中心電極50は、脚部53の先端にチップ55が溶接されている。中心電極50は段部43に鍔部51が支持され、先端部が軸孔41の先端から外部に露出するように配置される。   The spark plug 10 is manufactured by the following method, for example. First, the center electrode 50 is inserted from the second hole 44 of the insulator 40. The center electrode 50 has a tip 55 welded to the tip of the leg portion 53. The center electrode 50 is disposed such that the flange portion 51 is supported by the step portion 43 and the tip end portion is exposed to the outside from the tip end of the shaft hole 41.

次に、ガラスシール80の原料粉末を第2孔部44から入れて、鍔部51及び頭部52の周囲および後端側に充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填したガラスシール80の原料粉末を予備圧縮する。成形されたガラスシール80の原料粉末の成形体の上に、抵抗体70の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填した抵抗体70の原料粉末を予備圧縮する。次いで、抵抗体70の原料粉末の上に、ガラスシール90の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填したガラスシール90の原料粉末を予備圧縮する。   Next, the raw material powder of the glass seal 80 is put through the second hole 44 and filled around the flange 51 and the head 52 and on the rear end side. The raw material powder of the glass seal 80 filled in the second hole 44 is pre-compressed using a compression rod (not shown). The raw material powder of the resistor 70 is filled on the formed raw material powder of the glass seal 80. The raw material powder of the resistor 70 filled in the second hole 44 is pre-compressed using a compression rod (not shown). Next, the raw material powder of the glass seal 90 is filled on the raw material powder of the resistor 70. The raw material powder of the glass seal 90 filled in the second hole portion 44 is pre-compressed using a compression rod (not shown).

その後、軸孔41の後端側から端子金具60の先端部61を挿入して、先端部61がガラスシール90の原料粉末に接触するように端子金具60を配置する。次いで、例えば各原料粉末に含まれるガラス成分の軟化点より高い温度まで加熱しつつ、端子金具60の後端側に設けられた張出部62の先端面が絶縁体40の後端面に当接するまで端子金具60を圧入して、先端部61によってガラスシール80、抵抗体70及びガラスシール90の原料粉末に軸方向の荷重を加える。この結果、各原料粉末が圧縮・焼結され、絶縁体40の内部にガラスシール80、抵抗体70及びガラスシール90が形成される。   Thereafter, the distal end portion 61 of the terminal fitting 60 is inserted from the rear end side of the shaft hole 41, and the terminal fitting 60 is arranged so that the distal end portion 61 contacts the raw material powder of the glass seal 90. Next, for example, while heating to a temperature higher than the softening point of the glass component contained in each raw material powder, the front end surface of the overhanging portion 62 provided on the rear end side of the terminal fitting 60 contacts the rear end surface of the insulator 40. The terminal fitting 60 is press-fitted until an axial load is applied to the raw material powder of the glass seal 80, the resistor 70 and the glass seal 90 by the tip 61. As a result, each raw material powder is compressed and sintered, and the glass seal 80, the resistor 70, and the glass seal 90 are formed inside the insulator 40.

次に、予め接地電極30が接合された主体金具20を絶縁体40の外周に組み付ける。その後、接地電極30の電極母材31にチップ32を溶接し、接地電極30のチップ32が中心電極50のチップ54と軸方向に対向するように電極母材31を屈曲して、スパークプラグ10を得る。   Next, the metal shell 20 to which the ground electrode 30 is bonded in advance is assembled to the outer periphery of the insulator 40. Thereafter, the tip 32 is welded to the electrode base material 31 of the ground electrode 30, and the electrode base material 31 is bent so that the tip 32 of the ground electrode 30 faces the tip 54 of the center electrode 50 in the axial direction. Get.

図2及び図3を参照して中心電極50について説明する。図2は中心電極50の斜視図であり、図3は図1のガラスシール80付近の部分拡大図である。なお、図2では脚部53の先端側の図示が省略されている。図2及び図3に示すように中心電極50は、円盤状に形成される鍔部51と、鍔部51から脚部53の反対側へ突出する円柱状の頭部52とを備えている。頭部52は、頂面(鍔部51の反対側の面)に凹み56が形成されている。   The center electrode 50 will be described with reference to FIGS. 2 is a perspective view of the center electrode 50, and FIG. 3 is a partially enlarged view of the vicinity of the glass seal 80 of FIG. In FIG. 2, illustration of the distal end side of the leg portion 53 is omitted. As shown in FIGS. 2 and 3, the center electrode 50 includes a flange portion 51 formed in a disc shape and a columnar head portion 52 that protrudes from the flange portion 51 to the opposite side of the leg portion 53. The head 52 has a recess 56 formed on the top surface (the surface on the opposite side of the flange 51).

凹み56は、逆円錐形に形成されており、中心電極50の中心軸O上に最深部57が位置する。頭部52は、頂面の外周の角に全周に亘って面取部58が設けられている。面取部58は、頭部52の外周の角を取って角を角面または丸面にするための部位である。凹み56及び面取部58は、頭部52の冷間圧造加工時に設けられる。   The recess 56 is formed in an inverted conical shape, and the deepest portion 57 is located on the center axis O of the center electrode 50. The head portion 52 is provided with a chamfered portion 58 at the corner of the outer periphery of the top surface over the entire circumference. The chamfered portion 58 is a part for taking a corner on the outer periphery of the head 52 and making the corner a square or a round surface. The recess 56 and the chamfered portion 58 are provided when the head 52 is cold-worked.

図3に示すように面取部58は、本実施の形態では、頭部52の外周面59と凹み56とに接する丸みである。面取部58の値(丸みを表す半径の大きさ)は0.1〜1mmである。凹み56は、面取部58を介して頭部52の外周面59に接しており、面取部58の値が0.1〜1mmなので、頭部52の頂面のほぼ全体に凹み56を設けることができる。よって、凹み56の表面積を確保できる。   As shown in FIG. 3, the chamfered portion 58 has a round shape that contacts the outer peripheral surface 59 and the recess 56 of the head 52 in the present embodiment. The value of the chamfered portion 58 (the radius representing the roundness) is 0.1 to 1 mm. The dent 56 is in contact with the outer peripheral surface 59 of the head 52 via the chamfered portion 58, and the value of the chamfered portion 58 is 0.1 to 1 mm. Therefore, the dent 56 is formed on almost the entire top surface of the head 52. Can be provided. Therefore, the surface area of the recess 56 can be secured.

中心電極50の中心軸Oと凹み56の最深部57とを含む断面において、最深部57と面取部58とをそれぞれ結ぶ2本の直線L1,L2が最深部57で交わる角度θは90°以上に設定されている。直線L1,L2の交わる角度θが90°以上なので、冷間圧造加工時に頭部52の凹み56にプレス工具を付着し難くできる。また、スパークプラグ10の製造工程において、ガラスシール80を凹み56に充填させ易くすることができ、ガラスシール80の接合強度を確保できる。   In a cross section including the central axis O of the center electrode 50 and the deepest portion 57 of the recess 56, the angle θ at which the two straight lines L1 and L2 connecting the deepest portion 57 and the chamfered portion 58 intersect at the deepest portion 57 is 90 °. It is set above. Since the angle θ at which the straight lines L1 and L2 cross each other is 90 ° or more, it is difficult to attach the press tool to the recess 56 of the head 52 during cold heading. Further, in the manufacturing process of the spark plug 10, the glass seal 80 can be easily filled in the recess 56, and the bonding strength of the glass seal 80 can be ensured.

頭部52の外周に面取部58が設けられているので、スパークプラグ10の製造工程において、ガラスシール80の原料粉末を鍔部51及び頭部52の周りに充填するときに、面取部58を設けない場合に比べて、原料粉末を頭部52と第2孔部44との隙間に流入させ易くできる。頭部52と第2孔部44との隙間の原料粉末の充填密度を向上できるので、原料粉末を圧縮・焼結した後のガラスシール80の接合強度を確保できると共に、気密性や耐衝撃性も確保できる。頭部52の外周の角に面取部58が付けられているので、頭部52の角が、焼結後のガラスシール80の破壊の起点になることを抑制できる。よって、耐衝撃性を向上できる。   Since the chamfered portion 58 is provided on the outer periphery of the head portion 52, when the raw material powder of the glass seal 80 is filled around the flange portion 51 and the head portion 52 in the manufacturing process of the spark plug 10, the chamfered portion is provided. Compared with the case where 58 is not provided, the raw material powder can be easily introduced into the gap between the head 52 and the second hole 44. Since the packing density of the raw material powder in the gap between the head 52 and the second hole 44 can be improved, the bonding strength of the glass seal 80 after compression and sintering of the raw material powder can be secured, and airtightness and impact resistance can be secured. Can also be secured. Since the chamfered portion 58 is attached to the outer peripheral corner of the head 52, it is possible to suppress the corner of the head 52 from becoming the starting point of the destruction of the glass seal 80 after sintering. Therefore, impact resistance can be improved.

面取部58(丸み)によって頭部52の外周の角に丸面が作られているので、稜が作られない。よって、頭部52の外周の角を角面にする面取りに比べて、ガラスシール80に生じる応力を緩和できる。その結果、頭部52に面取りを施すよりも、頭部52に丸みを付けることによって、ガラスシール80の破壊の起点になり難くできる。   Since the chamfered portion 58 (roundness) is rounded at the outer corner of the head 52, no ridge is created. Therefore, the stress generated in the glass seal 80 can be relaxed compared to chamfering in which the corners of the outer periphery of the head 52 are square. As a result, rather than chamfering the head 52, the glass seal 80 can be made less likely to be a starting point by rounding the head 52.

ここで、面取部58の値(丸みを表す半径の大きさ)が0.1mmより小さくなると、面取部58を設けた効果が得られなくなるおそれがある。また、面取部58の分だけ頭部52の表面積が小さくなるので、面取部58の値が1mmより大きくなると、ガラスシール80の接合強度が低下するおそれがある。面取部58の値を0.1〜1mmに設定することにより、ガラスシール80の接合強度を確保できると共に耐衝撃性を向上できる。なお、面取部58の値(丸みを表す半径の大きさ)は、中心軸Oを含む頭部52の断面をSEMやCTスキャナ等によって観察し、画像解析等を行うことによって求められる。   Here, if the value of the chamfered portion 58 (the radius representing the roundness) is smaller than 0.1 mm, the effect of providing the chamfered portion 58 may not be obtained. Further, since the surface area of the head 52 is reduced by the amount of the chamfered portion 58, the bonding strength of the glass seal 80 may be reduced when the value of the chamfered portion 58 is greater than 1 mm. By setting the value of the chamfered portion 58 to 0.1 to 1 mm, the bonding strength of the glass seal 80 can be ensured and the impact resistance can be improved. The value of the chamfered portion 58 (the radius representing the roundness) is obtained by observing the cross section of the head 52 including the central axis O with an SEM, CT scanner, or the like, and performing image analysis or the like.

頭部52に面取部58を設けるのは、絶縁体40に形成された第2孔部44の内径d1と中心電極50の頭部52の外径d2との差d1−d2が0.9mm以下に設定されるスパークプラグ10に好適である。スパークプラグ10の製造工程において、差d1−d2が小さくなるにつれて(特に差d1−d2が0.9mm以下になると)、頭部52と第2孔部44との隙間にガラスシール80の原料粉末が流入し難くなるが、面取部58によってこれを抑制できるからである。   The chamfered portion 58 is provided on the head 52 because the difference d1-d2 between the inner diameter d1 of the second hole 44 formed in the insulator 40 and the outer diameter d2 of the head 52 of the center electrode 50 is 0.9 mm. It is suitable for the spark plug 10 set as follows. In the manufacturing process of the spark plug 10, as the difference d1-d2 becomes smaller (particularly when the difference d1-d2 becomes 0.9 mm or less), the raw material powder of the glass seal 80 is formed in the gap between the head 52 and the second hole 44. This is because the chamfered portion 58 can suppress this.

また、差d1−d2が小さくなるにつれて(特に差d1−d2が0.9mm以下になると)、頭部52と第2孔部44との間のガラスシール80が薄くなるので、頭部52が破壊の起点になってガラスシール80に生じたクラックが絶縁体40に伝搬し易くなるが、面取部58によってクラックの発生自体を抑制できるからである。なお、差d1−d2は0.1mm以上が好ましい。差d1−d2が0.1mm未満になると、頭部52と第2孔部44との隙間にガラスシール80の原料粉末が流入し難くなるからである。   Further, as the difference d1-d2 becomes smaller (particularly when the difference d1-d2 becomes 0.9 mm or less), the glass seal 80 between the head 52 and the second hole 44 becomes thinner. This is because cracks generated in the glass seal 80 as a starting point of breakage easily propagate to the insulator 40, but the chamfer 58 can suppress the occurrence of cracks. The difference d1-d2 is preferably 0.1 mm or more. This is because if the difference d1-d2 is less than 0.1 mm, the raw material powder of the glass seal 80 hardly flows into the gap between the head 52 and the second hole 44.

また、頭部52に面取部58を設けるのは、第2孔部44の内径d1、頭部52の外径d2、頭部52の軸方向の長さhがh≧5/2×(d1−d2)の関係を満たすスパークプラグ10に好適である。(d1−d2)/2は第2孔部44と頭部52の外周面59との隙間の大きさを示すので、h≧5/2×(d1−d2)の関係を満たすのは、頭部52の長さhが、その隙間の大きさの5倍以上の場合である。スパークプラグ10の製造工程において、差d1−d2が小さく且つ長さhが長くなるにつれて、頭部52と第2孔部44との隙間にガラスシール80の原料粉末が充填され難くなるが、面取部58によってこれを抑制できるからである。   The chamfered portion 58 is provided on the head 52 because the inner diameter d1 of the second hole 44, the outer diameter d2 of the head 52, and the axial length h of the head 52 are h ≧ 5/2 × ( It is suitable for the spark plug 10 that satisfies the relationship d1-d2). Since (d1-d2) / 2 indicates the size of the gap between the second hole 44 and the outer peripheral surface 59 of the head 52, the relationship h ≧ 5/2 × (d1-d2) is satisfied. This is a case where the length h of the portion 52 is 5 times or more the size of the gap. In the manufacturing process of the spark plug 10, as the difference d1-d2 decreases and the length h increases, the gap between the head 52 and the second hole 44 becomes difficult to be filled with the raw material powder of the glass seal 80. This is because this can be suppressed by the taking portion 58.

次に図4を参照して第2実施の形態について説明する。第1実施の形態では、頭部52の頂面のほぼ全体に凹み56が形成される場合について説明した。これに対し第2実施の形態では、頭部52の頂面101の一部に凹み102が形成される場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。   Next, a second embodiment will be described with reference to FIG. In 1st Embodiment, the case where the dent 56 was formed in the substantially whole top surface of the head 52 was demonstrated. On the other hand, 2nd Embodiment demonstrates the case where the dent 102 is formed in a part of top surface 101 of the head 52. FIG. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

図4は第2実施の形態におけるスパークプラグの中心電極100の斜視図である。図4では脚部53の先端側の図示が省略されている。中心電極100は、第1実施の形態で説明した中心電極50に代えてスパークプラグ10に配置される。   FIG. 4 is a perspective view of the center electrode 100 of the spark plug in the second embodiment. In FIG. 4, illustration of the distal end side of the leg portion 53 is omitted. The center electrode 100 is disposed in the spark plug 10 instead of the center electrode 50 described in the first embodiment.

図4に示すように中心電極100は、中心軸Oに直交する平面である頂面101の中央に凹み102が形成されている。凹み102は、逆四角錐形に形成されており、中心電極100の中心軸O上に最深部103が位置する。頭部52は、頂面101の外周の角に全周に亘って面取部104が設けられている。   As shown in FIG. 4, the center electrode 100 has a recess 102 formed at the center of the top surface 101 which is a plane orthogonal to the center axis O. The recess 102 is formed in an inverted quadrangular pyramid shape, and the deepest portion 103 is located on the center axis O of the center electrode 100. The head portion 52 is provided with a chamfered portion 104 at the outer peripheral corner of the top surface 101 over the entire circumference.

面取部104は、本実施の形態では、頭部52の頂面101と外周面59とに接する面取りである。面取部104(円錐状の傾斜面)によって、頂面101の外周の角が斜めに取られている。面取部104の値は0.1〜1mmに設定される。面取部104(面取り)の値は、中心軸Oを含む断面において、外周面59に平行な、面取部104に接する直線と外周面59との距離である。中心軸Oを含む断面における面取部104と外周面59との角度は、本実施の形態では略45°であるが、これに限られるものではなく適宜設定できる。なお、面取部104の値は、中心軸Oを含む頭部52の断面をSEMやCTスキャナ等によって観察し、画像解析等を行うことによって求められる。   In the present embodiment, the chamfered portion 104 is a chamfer that is in contact with the top surface 101 of the head 52 and the outer peripheral surface 59. By the chamfered portion 104 (conical inclined surface), the corners of the outer periphery of the top surface 101 are inclined. The value of the chamfer 104 is set to 0.1 to 1 mm. The value of the chamfered portion 104 (chamfering) is a distance between a straight line parallel to the outer peripheral surface 59 and in contact with the chamfered portion 104 and the outer peripheral surface 59 in a cross section including the central axis O. The angle between the chamfered portion 104 and the outer peripheral surface 59 in the cross section including the central axis O is approximately 45 ° in the present embodiment, but is not limited thereto and can be set as appropriate. Note that the value of the chamfered portion 104 is obtained by observing the cross section of the head 52 including the central axis O with an SEM, a CT scanner, or the like, and performing image analysis or the like.

凹み102は、第1実施の形態と同様に、中心電極100の中心軸Oと凹み102の最深部103とを含む断面(凹み102の稜を含む断面)において、最深部103と面取部104とをそれぞれ結ぶ2本の直線(図示せず)が最深部103で交わる角度θが90°以上に設定されている。本実施の形態のように、断面の位置によって角度θが変わる場合には、角度θが最も大きくなる断面における角度θを採用する。その結果、第1実施の形態で説明した作用効果と同様の作用効果が得られる。さらに、頭部52の頂面101と外周面59とに接する位置に面取部104が形成されているので、凹み102の大きさを適宜設定することができ、中心電極100の設計の自由度を向上できる。   As in the first embodiment, the recess 102 has a deepest portion 103 and a chamfered portion 104 in a cross section including the central axis O of the center electrode 100 and the deepest portion 103 of the recess 102 (a cross section including the edge of the recess 102). The angle θ at which two straight lines (not shown) connecting the two intersect each other at the deepest portion 103 is set to 90 ° or more. When the angle θ varies depending on the position of the cross section as in the present embodiment, the angle θ in the cross section where the angle θ is the largest is adopted. As a result, the same effects as those described in the first embodiment can be obtained. Furthermore, since the chamfered portion 104 is formed at a position in contact with the top surface 101 and the outer peripheral surface 59 of the head 52, the size of the recess 102 can be set as appropriate, and the degree of freedom in designing the center electrode 100 Can be improved.

次に図5を参照して第3実施の形態について説明する。第1実施の形態では、頭部52に逆円錐形の凹み56が形成される場合について説明した。これに対し第3実施の形態では、中心電極111の頭部52に半球形の112が形成される場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5は第3実施の形態におけるスパークプラグ110の中心軸Oを含む部分拡大断面図である。スパークプラグ110は、中心電極111が、第1実施の形態で説明したスパークプラグ10の中心電極50に代えて配置されている。   Next, a third embodiment will be described with reference to FIG. In the first embodiment, the case where the inverted conical recess 56 is formed in the head 52 has been described. In contrast, in the third embodiment, a case where a hemispherical 112 is formed on the head 52 of the center electrode 111 will be described. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 5 is a partially enlarged cross-sectional view including the central axis O of the spark plug 110 in the third embodiment. In the spark plug 110, the center electrode 111 is disposed in place of the center electrode 50 of the spark plug 10 described in the first embodiment.

図5に示すようにスパークプラグ110は、中心電極111は、頭部52の頂面(鍔部51の反対側の面)に凹み112が形成されている。凹み112は、逆半円形に形成されており、中心電極111の中心軸O上に最深部113が位置する。頭部52は、頂面の外周の角に全周に亘って面取部114が設けられている。   As shown in FIG. 5, in the spark plug 110, the center electrode 111 has a recess 112 formed on the top surface of the head 52 (the surface opposite to the flange portion 51). The recess 112 is formed in an inverted semicircular shape, and the deepest portion 113 is located on the center axis O of the center electrode 111. The head portion 52 is provided with a chamfered portion 114 at the outer peripheral corner of the top surface over the entire circumference.

面取部114は、頭部52の外周面59と凹み112とに接する丸みである。面取部58の値(丸みを表す半径の大きさ)は0.1〜1mmである。中心電極111の中心軸Oと凹み112の最深部113とを含む断面において、最深部113と面取部114とをそれぞれ結ぶ2本の直線L1,L2が最深部113で交わる角度θは90°以上に設定されている。スパークプラグ110は頭部52の外周に面取部114が設けられているので、第1実施の形態と同様の作用効果を実現できる。   The chamfered portion 114 is a round shape that contacts the outer peripheral surface 59 and the recess 112 of the head 52. The value of the chamfered portion 58 (the radius representing the roundness) is 0.1 to 1 mm. In a cross section including the central axis O of the center electrode 111 and the deepest part 113 of the recess 112, an angle θ between two straight lines L1 and L2 connecting the deepest part 113 and the chamfered part 114 at the deepest part 113 is 90 °. It is set above. Since the spark plug 110 is provided with the chamfered portion 114 on the outer periphery of the head portion 52, it is possible to realize the same function and effect as in the first embodiment.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<実施例1>
第1実施の形態で説明したスパークプラグ10において、面取部58(丸み)の値が異なる供試体を作成した。これらの供試体は、第2孔部44の内径d1=3.0mm、頭部52の外径d2=2.2mm、頭部52の軸方向の長さh=1.2mm、直線L1,L2の交わる角度θ=130°に設定した。なお、面取部58(丸み)の値は、2.0mm、1.5mm、1.0mm、0.5mm、0.1mm、0mm(丸み無し)の6種とした。
<Example 1>
In the spark plug 10 described in the first embodiment, specimens having different values of the chamfered portion 58 (roundness) were created. These specimens have an inner diameter d1 of the second hole 44 = 3.0 mm, an outer diameter d2 of the head 52 = 2.2 mm, an axial length h of the head 52 = 1.2 mm, and straight lines L1 and L2. Was set at an angle θ = 130 °. In addition, the value of the chamfered portion 58 (roundness) was set to six types of 2.0 mm, 1.5 mm, 1.0 mm, 0.5 mm, 0.1 mm, and 0 mm (no roundness).

これらの供試体について、JIS B8031(2006年版)に準拠した耐衝撃性試験を行った。試験は振動振幅22mmの衝撃を毎分400回の割合で各供試体に30分間加え、試験前後の中心電極と接地電極との間の絶縁抵抗を測定した。試験前の抵抗値に対する試験後の抵抗値の増加率が5%未満を「優れている(○)」、5%以上15%未満を「やや劣っている(△)」、15%以上を「劣っている(×)」と評価した。表1は丸みの値(単位:mm)と評価との関係を示す表である。試験後の抵抗値の増加は、ガラスシール80と頭部52との接合やガラスシール80等に異常があることを示している。   These specimens were subjected to an impact resistance test in accordance with JIS B8031 (2006 edition). In the test, an impact with a vibration amplitude of 22 mm was applied to each specimen for 30 minutes at a rate of 400 times per minute, and the insulation resistance between the center electrode and the ground electrode before and after the test was measured. The increase rate of the resistance value after the test with respect to the resistance value before the test is less than 5% as “excellent (◯)”, 5% or more but less than 15% “somewhat inferior (Δ)”, 15% or more as “ “Inferior (×)”. Table 1 is a table showing the relationship between the roundness value (unit: mm) and evaluation. The increase in resistance value after the test indicates that there is an abnormality in the bonding between the glass seal 80 and the head 52, the glass seal 80, or the like.

Figure 2017199455
表1に示すように、面取部58(丸み)の値を0.1〜1.0mmにすることにより、試験前の抵抗値に対する試験後の抵抗値の増加率を5%未満にすることができた。なお、面取部58(丸み)の値が2.0mmの供試体の抵抗値の増加率が15%以上になったのは、面取部58の大きさに起因して頭部52の表面積が低下し、頭部52とガラスシール80との接合力が低下したことが原因ではないかと推察している。
Figure 2017199455
As shown in Table 1, the rate of increase in the resistance value after the test with respect to the resistance value before the test is set to less than 5% by setting the value of the chamfered portion 58 (roundness) to 0.1 to 1.0 mm. I was able to. In addition, the increase rate of the resistance value of the specimen having the chamfered portion 58 (roundness) of 2.0 mm was 15% or more because of the size of the chamfered portion 58. It is speculated that this may be caused by a decrease in the bonding force between the head 52 and the glass seal 80.

<実施例2>
第1実施の形態で説明したスパークプラグ10において、面取部58(丸み)の値が異なる供試体を作成した。これらの供試体は、第2孔部44の内径d1=3.9mm、頭部52の外径d2=2.9mm、頭部52の軸方向の長さh=1.5mm、直線L1,L2の交わる角度θ=130°に設定した。なお、面取部58(丸み)の値は、2.0mm、1.5mm、1.0mm、0.5mm、0.1mm、0mm(丸み無し)の6種とした。
<Example 2>
In the spark plug 10 described in the first embodiment, specimens having different values of the chamfered portion 58 (roundness) were created. These specimens have an inner diameter d1 of the second hole 44 = 3.9 mm, an outer diameter d2 of the head 52 = 2.9 mm, an axial length h of the head 52 h = 1.5 mm, and straight lines L1 and L2. Was set at an angle θ = 130 °. In addition, the value of the chamfered portion 58 (roundness) was set to six types of 2.0 mm, 1.5 mm, 1.0 mm, 0.5 mm, 0.1 mm, and 0 mm (no roundness).

これらの供試体について、実施例1で行ったのと同じ耐衝撃性試験を行った。試験結果は実施例1と同様であり、面取部58(丸み)の値を0.1〜1.0mmにすることにより、試験前の抵抗値に対する試験後の抵抗値の増加率を5%未満にすることができた。   These specimens were subjected to the same impact resistance test as that performed in Example 1. The test results are the same as in Example 1. By setting the value of the chamfered portion 58 (roundness) to 0.1 to 1.0 mm, the increase rate of the resistance value after the test with respect to the resistance value before the test is 5%. Could be less than.

<実施例3>
第2実施の形態で説明したスパークプラグにおいて、面取部104(面取り)の値が異なる供試体を作成した。これらの供試体は、第2孔部44の内径d1=3.0mm、頭部52の外径d2=2.2mm、頭部52の軸方向の長さh=1.2mm、直線L1,L2の交わる角度θ=90°に設定した。なお、面取部104の面取りの角度は45°、面取りの値は、2.0mm、1.5mm、1.0mm、0.5mm、0.1mm、0mm(面取り無し)の6種とした。
<Example 3>
In the spark plug described in the second embodiment, specimens having different values of the chamfered portion 104 (chamfered) were created. These specimens have an inner diameter d1 of the second hole 44 = 3.0 mm, an outer diameter d2 of the head 52 = 2.2 mm, an axial length h of the head 52 = 1.2 mm, and straight lines L1 and L2. Was set at an angle θ = 90 °. The chamfering angle of the chamfered portion 104 is 45 °, and the chamfering values are 2.0 mm, 1.5 mm, 1.0 mm, 0.5 mm, 0.1 mm, and 0 mm (no chamfering).

これらの供試体について、実施例1で行ったのと同じ耐衝撃性試験を行った。試験結果は実施例1と同様であり、面取部104(面取り)の値を0.1〜1.0mmにすることにより、試験前の抵抗値に対する試験後の抵抗値の増加率を5%未満にすることができた。   These specimens were subjected to the same impact resistance test as that performed in Example 1. The test results are the same as in Example 1. By setting the value of the chamfered portion 104 (chamfering) to 0.1 to 1.0 mm, the increase rate of the resistance value after the test with respect to the resistance value before the test is 5%. Could be less than.

<実施例4>
第1実施の形態で説明したスパークプラグ10において、頭部52の軸方向の長さhが異なる供試体を作成した。これらの供試体は、第2孔部44の内径d1=3.0mm、頭部52の外径d2=2.2mm、直線L1,L2の交わる角度θ=130°、面取部58(丸み)の値は0.5mmに設定した。なお、頭部52の軸方向の長さhは0.8mm、1.2mm、1.6mm、2.0mm、2.4mm、2.8mmの6種とした。
<Example 4>
In the spark plug 10 described in the first embodiment, specimens having different lengths h in the axial direction of the head 52 were prepared. These specimens have an inner diameter d1 of the second hole 44 = 3.0 mm, an outer diameter d2 of the head 52 = 2.2 mm, an angle θ = 130 ° between the straight lines L1 and L2, and a chamfer 58 (rounded). The value of was set to 0.5 mm. Note that the axial length h of the head 52 was six types of 0.8 mm, 1.2 mm, 1.6 mm, 2.0 mm, 2.4 mm, and 2.8 mm.

これらの供試体について、実施例1で行ったのと同じ耐衝撃性試験を行った。表2はh(単位:mm)と評価との関係を示す表である。   These specimens were subjected to the same impact resistance test as that performed in Example 1. Table 2 is a table showing the relationship between h (unit: mm) and evaluation.

Figure 2017199455
表2に示すように、長さhが0.8〜2.8mmの全ての供試体において、試験前の抵抗値に対する試験後の抵抗値の増加率を5%未満にすることができた。
Figure 2017199455
As shown in Table 2, in all specimens having a length h of 0.8 to 2.8 mm, the increase rate of the resistance value after the test with respect to the resistance value before the test could be less than 5%.

<比較例>
面取部58を設けない以外は実施例4と同様にして、比較例における供試体を作成した。これらの供試体について、実施例1で行ったのと同じ耐衝撃性試験を行った。表3はh(単位:mm)と評価との関係を示す表である。
<Comparative example>
A specimen in a comparative example was created in the same manner as in Example 4 except that the chamfered portion 58 was not provided. These specimens were subjected to the same impact resistance test as that performed in Example 1. Table 3 is a table showing the relationship between h (unit: mm) and evaluation.

Figure 2017199455
表3に示すように、長さhが0.8〜1.6mmの供試体において、試験前の抵抗値に対する試験後の抵抗値の増加率を5%未満にすることができた。しかし、長さhが2.0〜2.8mmの供試体は、試験前の抵抗値に対する試験後の抵抗値の増加率が15%以上であった。抵抗値の増加率が15%以上となった長さh=2.0〜2.8mmの供試体は、h=n/2×(d1−d2)の関係式においてn=5,6,7の値を示す。上記の関係式においてn≧5の場合は、面取部58が設けられないと、頭部52と第2孔部44との隙間にガラスシール80が形成され難くなるので、耐衝撃性が低下するものと推察される。実施例4によれば、上記の関係式においてn≧5の場合であっても、面取部58を設けることにより耐衝撃性を向上できることが明らかになった。
Figure 2017199455
As shown in Table 3, in the specimen having a length h of 0.8 to 1.6 mm, the increase rate of the resistance value after the test with respect to the resistance value before the test could be less than 5%. However, in the specimen having a length h of 2.0 to 2.8 mm, the increase rate of the resistance value after the test with respect to the resistance value before the test was 15% or more. A specimen having a length h = 2.0 to 2.8 mm in which the increasing rate of the resistance value is 15% or more has n = 5, 6, 7 in the relational expression h = n / 2 × (d1−d2). Indicates the value of. In the above relational expression, when n ≧ 5, if the chamfered portion 58 is not provided, it is difficult to form the glass seal 80 in the gap between the head portion 52 and the second hole portion 44, so the impact resistance is reduced. It is assumed that According to Example 4, it was revealed that the impact resistance can be improved by providing the chamfered portion 58 even when n ≧ 5 in the above relational expression.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、凹み56,102,112や面取部58,104,114の形状や大きさは一例であり適宜設定できる。凹み56,102,112の形状は逆円錐形、逆四角錐形、逆半球形に限らない。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the shapes and sizes of the recesses 56, 102, 112 and the chamfered portions 58, 104, 114 are examples and can be set as appropriate. The shape of the recesses 56, 102, 112 is not limited to an inverted cone, an inverted quadrangular pyramid, or an inverted hemisphere.

上記各実施の形態では、中心電極50,100,111の鍔部51の外径よりも頭部52の外径が小さい場合について説明したが、必ずしもこれに限られるものではなく、鍔部51の外径と頭部52の外径とを等しくすることは当然可能である。この場合も頭部52に面取部58,104,114を設けることによって、上記各実施の形態と同様の作用効果を実現できる。   In each of the above-described embodiments, the case where the outer diameter of the head 52 is smaller than the outer diameter of the flange 51 of the center electrodes 50, 100, 111 has been described. Of course, it is possible to make the outer diameter equal to the outer diameter of the head 52. Also in this case, by providing the chamfered portions 58, 104, and 114 on the head 52, the same operational effects as those of the above-described embodiments can be realized.

上記各実施の形態では、抵抗体70が絶縁体40に内蔵されるスパークプラグ10,110について説明したが、必ずしもこれに限られるものではない。抵抗体70を内蔵しないスパークプラグに上記各実施の形態を適用することは当然可能である。中心電極50,100,111がガラスシール80によって固定されていれば、上記各実施の形態と同様の作用効果を実現できるからである。   In the above-described embodiments, the spark plugs 10 and 110 in which the resistor 70 is built in the insulator 40 have been described. However, the present invention is not necessarily limited to this. Of course, the above-described embodiments can be applied to a spark plug that does not include the resistor 70. This is because if the center electrodes 50, 100, and 111 are fixed by the glass seal 80, the same effects as those of the above embodiments can be realized.

上記各実施の形態では、凹み56,102,112の最深部57,103,113がスパークプラグ10,110の中心軸O上に位置する場合について説明したが、必ずしもこれに限られるものではない。凹み56,102,112の最深部57,103,113がスパークプラグ10,110の中心軸O上に存在しなくても良いのは当然である。この場合には、角度θは、凹み56,102,112の最深部57,103,113を通る、中心軸Oに平行な直線を考え、この直線と最深部57,103,113とを含む断面において、最深部57,103,113と面取部58,104,114とをそれぞれ結ぶ2本の直線L1,L2が最深部57,103,113で交わる角度とする。   In each of the above embodiments, the case where the deepest portions 57, 103, 113 of the recesses 56, 102, 112 are located on the central axis O of the spark plugs 10, 110 has been described, but the present invention is not necessarily limited thereto. Naturally, the deepest portions 57, 103, 113 of the recesses 56, 102, 112 need not exist on the central axis O of the spark plugs 10, 110. In this case, the angle θ is considered to be a straight line passing through the deepest portions 57, 103, 113 of the recesses 56, 102, 112 and parallel to the central axis O, and a cross section including this straight line and the deepest portions 57, 103, 113. , The two straight lines L1 and L2 connecting the deepest portions 57, 103, and 113 and the chamfered portions 58, 104, and 114 are angles at the deepest portions 57, 103, and 113, respectively.

なお、上記の各実施形態は、それぞれ、他の実施形態が有する構成の一部または複数部分を、その実施形態に追加し或いはその実施形態の構成の一部または複数部分と交換等することにより、その実施形態を変形して構成するようにしても良い。例えば、第2実施の形態で説明した頭部52の頂面101の中央に凹み102が形成される構成を、第1実施の形態や第3実施の形態の凹み56,112に採用することは当然可能である。また、第2実施の形態で説明した面取部104(面取り)と、第1実施の形態や第3実施の形態で説明した面取部58,114(丸み)とを交換することは当然可能である。   In each of the above embodiments, a part or a plurality of parts of the configuration of the other embodiments are added to the embodiment or replaced with a part or a plurality of parts of the configuration of the embodiment. The embodiment may be modified and configured. For example, adopting the configuration in which the recess 102 is formed in the center of the top surface 101 of the head 52 described in the second embodiment to the recesses 56 and 112 of the first embodiment and the third embodiment is possible. Of course it is possible. Further, it is naturally possible to replace the chamfer 104 (chamfer) described in the second embodiment with the chamfers 58 and 114 (roundness) described in the first and third embodiments. It is.

10,110 スパークプラグ
40 絶縁体
41 軸孔
42 第1孔部
43 段部
44 第2孔部
50,100,111 中心電極
51 鍔部
52 頭部
53 脚部
56,102,112 凹み
57,103,113 最深部
58,104,114 面取部
59 外周面
80 ガラスシール
101 頂面
d1 内径
d2 外径
h 長さ
L1,L2 直線
O 中心軸
θ 角度
DESCRIPTION OF SYMBOLS 10,110 Spark plug 40 Insulator 41 Shaft hole 42 1st hole part 43 Step part 44 2nd hole part 50,100,111 Center electrode 51 Grow part 52 Head part 53 Leg part 56,102,112 Recess 57,103, 113 Deepest portion 58, 104, 114 Chamfered portion 59 Outer peripheral surface 80 Glass seal 101 Top surface d1 Inner diameter d2 Outer diameter h Length L1, L2 Straight line O Central axis θ Angle

Claims (4)

第1孔部と当該第1孔部より内径の大きい第2孔部とが段部を介して連なる軸孔を備える絶縁体と、
前記絶縁体の前記段部に配置される鍔部と、前記鍔部から前記第2孔部側へ突出する頭部と、前記鍔部から前記第1孔部側へ延びる脚部とを備える中心電極と、
前記鍔部および前記頭部を前記第2孔部に固定するガラスシールとを備えるスパークプラグにおいて、
前記頭部は、頂面に形成される凹みと、前記頂面の外周の角を取った面取部とを備え、
前記中心電極の中心軸と前記凹みの最深部とを含む断面または前記中心軸に平行な直線と前記凹みの最深部とを含む断面において、前記最深部と前記面取部とをそれぞれ結ぶ2本の直線が前記最深部で交わる角度は90°以上であることを特徴とするスパークプラグ。
An insulator including a shaft hole in which a first hole and a second hole having a larger inner diameter than the first hole are connected via a step;
A center provided with a flange portion disposed on the step portion of the insulator, a head portion protruding from the flange portion toward the second hole portion, and a leg portion extending from the flange portion toward the first hole portion. Electrodes,
In a spark plug comprising a glass seal that fixes the flange and the head to the second hole,
The head includes a recess formed on the top surface, and a chamfered portion that takes a corner of the outer periphery of the top surface,
In the cross section including the central axis of the central electrode and the deepest part of the recess, or in the cross section including the straight line parallel to the central axis and the deepest part of the recess, the two connecting the deepest part and the chamfered part respectively An angle at which the straight line intersects at the deepest part is 90 ° or more.
前記第2孔部の内径d1と前記頭部の外径d2との差d1−d2は0.9mm以下であることを特徴とする請求項1記載のスパークプラグ。   The spark plug according to claim 1, wherein a difference d1-d2 between an inner diameter d1 of the second hole portion and an outer diameter d2 of the head portion is 0.9 mm or less. 前記第2孔部の内径d1、前記頭部の外径d2、前記頭部の軸方向の長さhは、
h≧5/2×(d1−d2)の関係を満たすことを特徴とする請求項1又は2に記載のスパークプラグ。
The inner diameter d1 of the second hole, the outer diameter d2 of the head, and the axial length h of the head are:
The spark plug according to claim 1, wherein a relationship of h ≧ 5/2 × (d1−d2) is satisfied.
前記面取部は、前記頭部の外周面と前記凹みとに接し、
前記面取部の値は0.1〜1mmであることを特徴とする請求項1から3のいずれかに記載のスパークプラグ。
The chamfered portion is in contact with the outer peripheral surface of the head and the recess,
The spark plug according to any one of claims 1 to 3, wherein a value of the chamfered portion is 0.1 to 1 mm.
JP2016086686A 2016-04-25 2016-04-25 Spark plug Active JP6490025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086686A JP6490025B2 (en) 2016-04-25 2016-04-25 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086686A JP6490025B2 (en) 2016-04-25 2016-04-25 Spark plug

Publications (2)

Publication Number Publication Date
JP2017199455A true JP2017199455A (en) 2017-11-02
JP6490025B2 JP6490025B2 (en) 2019-03-27

Family

ID=60238070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086686A Active JP6490025B2 (en) 2016-04-25 2016-04-25 Spark plug

Country Status (1)

Country Link
JP (1) JP6490025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243983B2 (en) 2019-05-21 2023-03-22 学校法人桐蔭学園 Non-contact acoustic analysis system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315954A (en) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd Center electrode of spark plug
WO2012105255A1 (en) * 2011-02-02 2012-08-09 日本特殊陶業株式会社 Spark plug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315954A (en) * 1995-05-16 1996-11-29 Ngk Spark Plug Co Ltd Center electrode of spark plug
WO2012105255A1 (en) * 2011-02-02 2012-08-09 日本特殊陶業株式会社 Spark plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243983B2 (en) 2019-05-21 2023-03-22 学校法人桐蔭学園 Non-contact acoustic analysis system

Also Published As

Publication number Publication date
JP6490025B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP5414896B2 (en) Spark plug
JP4922980B2 (en) Spark plug
JP5905056B2 (en) Spark plug and method of manufacturing spark plug
JP2009541946A (en) Spark plug with extra fine wire ground electrode
JP5393830B2 (en) Spark plug
JPWO2021111719A1 (en) Spark plug
JP6490025B2 (en) Spark plug
JP2016062648A (en) Insulator and spark plug
JP6177968B1 (en) Spark plug
JP5449581B2 (en) Spark plug
CN107453207B (en) Spark plug
JP6427142B2 (en) Spark plug
KR101999494B1 (en) spark plug
JP6310497B2 (en) Spark plug
JP5599840B2 (en) Spark plug and spark plug manufacturing method
JP5730447B1 (en) Spark plug
JP6653785B2 (en) Spark plug
JP7273760B2 (en) Spark plug
JP6023649B2 (en) Spark plug
JP7205333B2 (en) Spark plug and manufacturing method thereof
JP4840839B2 (en) Spark plug
JP2017134921A (en) Spark plug
JP2020119818A (en) Spark plug
JP2018152310A (en) Spark plug
JP2006147406A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6490025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250