JP2017198644A - Detoxification device for detoxifying radioactively contaminated water in nuclear facility - Google Patents

Detoxification device for detoxifying radioactively contaminated water in nuclear facility Download PDF

Info

Publication number
JP2017198644A
JP2017198644A JP2016100894A JP2016100894A JP2017198644A JP 2017198644 A JP2017198644 A JP 2017198644A JP 2016100894 A JP2016100894 A JP 2016100894A JP 2016100894 A JP2016100894 A JP 2016100894A JP 2017198644 A JP2017198644 A JP 2017198644A
Authority
JP
Japan
Prior art keywords
water
contaminated water
detoxifying
radioactively contaminated
tritium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016100894A
Other languages
Japanese (ja)
Other versions
JP2017198644A5 (en
Inventor
安治 島
Yasuharu Shima
安治 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016100894A priority Critical patent/JP2017198644A/en
Publication of JP2017198644A publication Critical patent/JP2017198644A/en
Publication of JP2017198644A5 publication Critical patent/JP2017198644A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To provide a device for detoxifying radioactively contaminated water which detoxifies radioactively contaminated water in a nuclear facility by causing a nuclear fusion conversion using dilute heavy water and tritium water in the radioactively contaminated water.SOLUTION: Cavitation is generated by intense ultrasonic irradiation, the hydrogen bond of contaminated water is cut by the crushing impact of minute bubbles so that heavy water and tritium water are generated, and a nuclear fusion conversion is caused on the surface of metallic palladium.SELECTED DRAWING: Figure 7

Description

本発明は、原子力発電所・使用済み核燃料再処理工場等で発生する放射能汚染水を無害化する装置に関するものである。放射性原子を核変換して無害化する装置である。  The present invention relates to an apparatus for detoxifying radioactively contaminated water generated in nuclear power plants, spent nuclear fuel reprocessing plants, and the like. It is a device that transmutates radioactive atoms to make them harmless.

超音波洗浄器では、気泡が発生し、成長し、壊れる。これらの一連の気泡運動はキャビテーションと呼ばれている。微小な気泡が水中に存在し、微細なゴミ(固体微粒子)の表面や、容器壁等に形成されるキズや窪みに気体が補足されている。超音波による圧力振動が気泡を発生させ、気泡は、正の圧力の半周期において収縮し、負の圧力の半周期において膨脹する気泡振動繰り返し、不均等拡散機構による面積効果と殻効果によって図1のように成長していく。さらに、超音波の強さが強力になると、急激な収縮運動が起り、瞬間的に気泡内部では数千度・数百気圧以上の極限環境になる(図2)。この圧壊という気泡運動がソノケイストリーと呼ばれる超音波化学作用の源であり、身近な眼鏡洗浄、金属加工やプラスチック射出成型のバリ取りの衝撃波になる([非特許文献1])。  In an ultrasonic cleaner, bubbles are generated, grow and break. This series of bubble motion is called cavitation. There are minute bubbles in the water, and the gas is supplemented to the surface of fine dust (solid fine particles), scratches and dents formed on the container wall and the like. Pressure vibrations caused by ultrasonic waves generate bubbles, and the bubbles contract in the half cycle of positive pressure and expand in the half cycle of negative pressure. It will grow like Furthermore, when the intensity of the ultrasonic wave becomes strong, a rapid contraction movement occurs, and an extreme environment of several thousand degrees and several hundred atmospheres or more is instantaneously generated inside the bubble (FIG. 2). This crushing bubble motion is the source of ultrasonic chemistry called sonochemistry, and it becomes a shock wave for deburring familiar glasses cleaning, metal processing and plastic injection molding ([Non-Patent Document 1]).

超音波キャビテーションの気泡が圧壊する時、気液界面で水分子がOHラジカルと水素原子Hに分解される。このことは、ベンゼン環に塩素原子3個が結合したトリクロロフェノールが分解されて、次第に透明な液が着色して来ることから実証される。トリクロロフェノールの分解着色は、OHラジカルと塩素原子Clが発生する次亜塩素酸HOCl溶液で既に確認されている。  When the bubbles of ultrasonic cavitation are crushed, water molecules are decomposed into OH radicals and hydrogen atoms H at the gas-liquid interface. This is proved by the fact that trichlorophenol having 3 chlorine atoms bonded to the benzene ring is decomposed and the transparent liquid gradually becomes colored. The decomposition coloring of trichlorophenol has already been confirmed in a hypochlorous acid HOCl solution in which OH radicals and chlorine atom Cl are generated.

図3のように、水分子は水素結合によって繋がり、巨大分子を構成している。水素結合H−Oの乖離熱は〜30KJ/molで、水素分子H−Hの乖離熱436KJ/molよりずっと小さい。この関係は、水素ガスからよりも水からの方が水素原子Hが容易に分離されることを示している。  As shown in FIG. 3, water molecules are connected by hydrogen bonds to form a macromolecule. The heat of dissociation of hydrogen bonds HO is ˜30 KJ / mol, which is much smaller than the heat of dissociation of hydrogen molecules H—H, 436 KJ / mol. This relationship indicates that hydrogen atoms H are more easily separated from water than from hydrogen gas.

原子力発電所の炉心循環水、使用済み核燃料プールの冷却水、核燃料再処理施設の処理水では、軽水が中性子を繰り返し浴びて、軽水の水素原子が重水素原子Dに、さらに重水素原子Dがトリチウム原子Tに変換されて、重水、トリチウム水に変わる。制御棒に含まれる硼素、中性子吸収液の硼酸からのBが、さらに、加圧水型原子炉でpH調整のために添加されるLiOHからのLiが、中性子を吸収して、BまたはLi+n→He+Tの反応でトリチウムができるのでトリチウム水が多くなる。  In nuclear power plant core circulating water, spent nuclear fuel pool cooling water, nuclear fuel reprocessing facility treated water, light water is repeatedly exposed to neutrons, light water hydrogen atoms become deuterium atoms D, and deuterium atoms D further. It is converted into tritium atom T and converted into heavy water or tritium water. Boron contained in the control rod, B from boric acid in the neutron absorbing liquid, and Li from LiOH added for pH adjustment in the pressurized water reactor absorb neutrons, and B or Li + n → He + T Since tritium is formed by the reaction, the amount of tritium water increases.

軽水、重水、トリチウム水は水素結合(図3)によって繋がり、巨大分子を構成している。これらの水素結合を、超音波キャビテーションの気泡圧壊で容易に切ることができる。その時、気泡内部は太陽表面に近い数千度・数百気圧以上の極限状態になる。
太陽表面では重水素DとトリチウムTが核融合してヘリウムと中性子が発生し、その放出エネルギーで輝き続ける(図4)。地上で太陽をつくる核融合は、重水素とトリチウムを磁場で閉じ込めて核融合させるものである。核燃料汚染水を超音波キャビテーションさせることは、重水素DとトリチウムTからヘリウムが生まれる核融合を空間の1点で瞬間に実現することである。
Light water, heavy water, and tritium water are connected by hydrogen bonds (FIG. 3) to form a macromolecule. These hydrogen bonds can be easily broken by bubble collapse of ultrasonic cavitation. At that time, the inside of the bubble is in an extreme state of several thousand degrees and several hundred atmospheres close to the solar surface.
On the surface of the sun, deuterium D and tritium T fuse together to generate helium and neutrons, which continue to shine with their released energy (Fig. 4). Nuclear fusion, which creates the sun on the ground, involves deuterium and tritium confined in a magnetic field and fused. Ultrasonic cavitation of nuclear fuel-contaminated water is to instantly realize nuclear fusion in which helium is born from deuterium D and tritium T at one point in space.

近年、常温核融合の事例が散見される([非特許文献2,3])。いずれも共通することは、重水素Dと金属のパラジウムPdの組合せである。パラジウムは水素を吸蔵し、その体積比率は935倍と大きい。田中貴金属工業株式会社のパラジウム水素透過薄膜は、水素だけを通す選択透過性を利用して水素ガスの精製を実現している。水素分子はパラジウム薄膜の中で水素原子に分離し、薄膜を通過して外に出ると水素分子に戻ると想定されている。三菱重工からの報告では、重水素を透過させるパラジウム多層膜の内部のセシウムCs原子が、原子番号の大きい原子に核変換している(図5)。  In recent years, there are some cases of cold fusion ([Non-Patent Documents 2 and 3]). What is common to both is a combination of deuterium D and metallic palladium Pd. Palladium occludes hydrogen and its volume ratio is as large as 935 times. Tanaka Kikinzoku Kogyo Co., Ltd.'s palladium hydrogen permeable thin film realizes hydrogen gas purification by utilizing selective permeability that allows only hydrogen to pass through. It is assumed that hydrogen molecules are separated into hydrogen atoms in the palladium thin film and return to hydrogen molecules when they pass through the thin film and go out. According to a report from MHI, cesium Cs atoms inside a palladium multilayer that allows deuterium to pass through are transmuted to atoms with a large atomic number (FIG. 5).

中性子を含まない水素原子核よりも、中性子を余分に1個含む重水素原子核の方が、さらに、中性子を余分に2個含むトリチゥム原子核の方が不安定なので、トリチウム水が含まれる放射能汚染水の方が、核変換無害化処理は容易である。そして、核分裂するウランやプルトニウム、核分裂した放射性元素は不安定であるので、容易に安定な元素に核変換されると想定される。但し、水に溶けて居なければならない。このように、凶を吉に転ずるのが本特許の意図である。
Radioactive contaminated water containing tritium water because deuterium nuclei containing one extra neutron and tritium nuclei containing two extra neutrons are more unstable than hydrogen nuclei containing no neutrons. The transmutation detoxification process is easier. Since uranium, plutonium, and fissioned radioactive elements are unstable, it is assumed that they are easily transmuted into stable elements. However, it must be dissolved in water. In this way, the intention of this patent is to turn the evil into a good luck.

ソノプロセスのはなし−超音波の化学工学利用−;飯田康夫、日刊工業新聞社、2006年発行。The story of Sono Process-Utilization of ultrasonic chemical engineering-Yasuo Iida, Nikkan Kogyo Shimbun, 2006. 第12回凝集系核科学国際会議見聞、水素エネルギーシステム31巻、No.1(2006)Interview with the 12th International Conference on Aggregate Nuclear Science, Hydrogen Energy System Volume 31, No. 1 (2006) 凝集系核科学の現状と将来、東京工業大学蔵前会館セミナー、2015年4月Current status and future of agglomerated nuclear science, Tokyo Institute of Technology Kuramae Hall seminar, April 2015

超音波キャビテーションによって、放射能汚染水に太陽表面と同様な極限状態をつくるためには、強力な超音波装置が必要である。  In order to create an extreme state similar to the solar surface in radioactively contaminated water by ultrasonic cavitation, a powerful ultrasonic device is required.

そして、散在・漂在する微小気泡の圧壊点が、パラジウム表面で起らなければならない。そのためには、パラジウム表面が同様に水中に散在して表面積が大きく、水の流れがあることである。  And the crushing point of the scattered microbubbles must occur on the palladium surface. To that end, the palladium surface is likewise scattered in the water, has a large surface area and has a flow of water.

福島第1原発の放射能汚染水は100万トンに近い大量である。重元素の核分裂放射性元素を除いた60万トンのトリチウム水の放射能強度は420万ベクレル/リットルである。
トリチウムの崩壊半減期12.3年から概算すると、崩壊前トリチウム原子の個数は3×1014/リットルとなり、自然水の軽水分子の個数3×1025/リットル、自然水に含まれる重水分子の個数4×1021/リットルと比較すると、極端に薄い濃度である。超大量の稀薄放射能汚染水を処理しなければならない。しかし、10個/mm(1mm当り1億個)の濃度である。簡単な構造で増設容易な装置が望まれる。
The amount of radioactively contaminated water from the Fukushima Daiichi nuclear power plant is close to 1 million tons. The radioactivity intensity of 600,000 tons of tritium water excluding heavy fission radioactive elements is 4.2 million becquerels / liter.
When the decay half-life of tritium is estimated from 12.3 years, the number of tritium atoms before decay is 3 × 10 14 / liter, the number of light water molecules in natural water is 3 × 10 25 / liter, and the number of heavy water molecules contained in natural water is Compared with the number 4 × 10 21 / liter, the concentration is extremely thin. An extremely large amount of dilute radioactively contaminated water must be treated. However, the density is 10 8 pieces / mm 3 (100 million pieces per 1 mm 3 ). A device that has a simple structure and can be easily added is desired.

パラジウムをメッキまたはスパッタ法で被覆した耐蝕性のSUS316L線の網または穴開き(パンチ)板を核変換反応槽に林立させる。反応槽の底から垂直方向に超音波が放射する。垂直なパラジウム被覆の網または穴開き(パンチ)板と直角にキャビテーション気泡が漂い、パラジウム表面と衝突する。連続処理の場合は、直方体の反応槽の給水側から出水側に緩やかに水が流れる。  Corrosion-resistant SUS316L wire mesh or perforated (punch) plates coated with palladium by plating or sputtering are planted in the transmutation reactor. Ultrasonic waves are emitted vertically from the bottom of the reaction vessel. Cavitation bubbles drift perpendicular to the vertical palladium-covered net or perforated (punch) plate and collide with the palladium surface. In the case of continuous treatment, water gently flows from the water supply side to the water discharge side of the rectangular parallelepiped reaction tank.

核変換反応槽の底には外付けで超音波振動子が並ぶ。その出力強度は、超音波振動子箱にした場合は1W/cm以上のものを採用する。キャビテーションが均一に発生するように、定在波が発生しないように、隣接各超音波振動子の放射位相をずらす。An ultrasonic transducer is arranged on the bottom of the transmutation reaction tank. The output intensity is 1 W / cm 2 or more when an ultrasonic vibrator box is used. The radiation phases of adjacent ultrasonic transducers are shifted so that standing waves do not occur so that cavitation occurs uniformly.

原子力施設で発生する重水、トリチウム水が混合されている放射能汚染水から、トリチウムがヘリウムに変換されて無害化される。
トリチウム水、さらに原子番号の大きい核分裂放射性元素が含まれる放射能汚染水が核変換されて無害化される。
From radioactively contaminated water mixed with heavy water and tritium water generated at nuclear facilities, tritium is converted to helium and rendered harmless.
Radioactive contaminated water containing tritium water and fissionable radioactive elements with higher atomic numbers is transmuted and rendered harmless.

気泡の成長  Bubble growth 気泡圧壊の理論計算  Theoretical calculation of bubble collapse 水分子の水素結合  Hydrogen bonding of water molecules D−T反応  DT reaction 三菱重工発表の重水素−Pd多層膜による元素変換  Element conversion by deuterium-Pd multilayer film announced by Mitsubishi Heavy Industries パラジウム被覆網または穴開き板林立スタンド  Palladium-covered net or perforated forest stand 核変換反応処理槽  Transmutation reaction tank

▲1▼核変換反応処理槽(図7):下記仕様の槽を直並列に多数設置する。
・深さ90cm、幅44cm、長さ220cm。
・処理槽底外付けに超音波振動子が並ぶ。強度は2W/cmである。
・給水ホースは上から入り底から出水、出水口は70cm高さにある流水連続型。
・反応槽は、SUS316以上の耐蝕性ステンレス。
・放射能汚染水の飛散と、トリチウム水の蒸散を塞ぐために蓋をする。
・蓋の材質は放射能強度に拠るが、トリチウム水の場合は透明樹脂蓋にする。
▲2▼処理流量・流速・処理量
・流量: 5リットル/分、
・有効断面積: 40cm×50cm=2000cm
・流速: 2.5cm/分=150cm/時、到達長さ1.5m/時
・処理量:5リットル/分×60分=300リットル/時、300リットル/時×24時=7.2トン/日
▲3▼D−T反応による発熱量と水温上昇
・D−T反応による放出エネルギー:3.5+14.1=17.6Mev
1ev=1.6×10−19J 1Mev=1.6×10−13
17.6Mev=17.6×1.6×10−13J=2.8×10−12
1時間の処理量=300リットルの反応個数:300リットル×(3×1014/リットル)〜1017
2.8×10−12J×1017/(300リットル×1000cc)〜1J/cc
4.2J=1calなので水温昇温は無視できる程小さい。
▲4▼反応槽底に並べる超音波振動子箱からの発熱と水温上昇
・2W/cm×(20cm×30cm)=1200W 1W=1J/秒 3600J/時
・1200W×10台=12000W/槽
・12000×3600J=4.3×10J〜10cal
・10cal/(1時間の処理水量300リットル=3×10cc)=33℃の水温上昇。
・給水温度〜20℃とすると〜50℃の出水になるので、蒸散を塞ぐため蓋をする。
(1) Transmutation reaction treatment tank (Fig. 7): Many tanks with the following specifications are installed in series and parallel.
-Depth 90 cm, width 44 cm, length 220 cm.
-Ultrasonic transducers are arranged on the bottom of the treatment tank. The intensity is 2 W / cm 2 .
-The water supply hose enters from the top and flows out from the bottom, and the water outlet is a continuous running water with a height of 70 cm.
-The reaction tank is SUS316 or higher corrosion resistant stainless steel.
・ Cover to block the scattering of radioactively contaminated water and the evaporation of tritium water.
-The material of the lid depends on the radioactivity intensity, but in the case of tritium water, use a transparent resin lid.
(2) Processing flow rate, flow rate, processing amount-Flow rate: 5 liters / minute,
Effective cross-sectional area: 40 cm × 50 cm = 2000 cm 2
・ Flow rate: 2.5 cm / min = 150 cm / hour, reaching length: 1.5 m / hour ・ Processing amount: 5 liter / minute × 60 minutes = 300 liter / hour, 300 liter / hour × 24 hour = 7.2 tons / Day (3) calorific value due to DT reaction and rise in water temperature Release energy by DT reaction: 3.5 + 14.1 = 17.6 Mev
1ev = 1.6 × 10 −19 J 1Mev = 1.6 × 10 −13 J
17.6 Mev = 17.6 × 1.6 × 10 −13 J = 2.8 × 10 −12 J
1 hour throughput = 300 liter reaction number of 300 liters × (3 × 10 14 / l) 10 17
2.8 × 10 −12 J × 10 17 / (300 liters × 1000 cc) to 1 J / cc
Since 4.2J = 1cal, the water temperature rise is negligibly small.
(4) Heat generation and water temperature rise from the ultrasonic vibrator box arranged at the bottom of the reaction tank 2 W / cm 2 × (20 cm × 30 cm) = 1200 W 1 W = 1 J / second 3600 J / hour 1200 W × 10 units = 12000 W / tank 12000 × 3600J = 4.3 × 10 7 J to 10 7 cal
10 7 cal / (treated water volume for 1 hour 300 liters = 3 × 10 5 cc) = 33 ° C. water temperature rise.
・ If the water supply temperature is 20 ° C, the water discharge will be 50 ° C, so cover it to prevent transpiration.

福島第一原発の放射能汚染水の処理、その他の原子力発電所から放水されている放射能汚染水の処理、六ケ所村再処理工場の放射能汚染水の無害化処理が可能になる。また、試験使用・少量使用されるアイソトープの廃棄無害化処理に応用できる。その場合は、重水に溶かして処理する。  The treatment of radioactive contaminated water from the Fukushima Daiichi nuclear power plant, the treatment of radioactive contaminated water discharged from other nuclear power plants, and the detoxification treatment of radioactive contaminated water at the Rokkasho Reprocessing Plant will be possible. It can also be applied to the detoxification treatment of isotopes used for testing and small quantities. In that case, dissolve in heavy water and treat.

Claims (4)

原子力施設の放射能汚染水を、パラジウム表面で超音波キャビテーションによる微小気泡の圧壊を利用して核融合反応を起こして無害化することを特徴とする放射能汚染水無害化装置。Radioactive contaminated water detoxifying device characterized by detoxifying radioactive polluted water in nuclear facilities by causing a nuclear fusion reaction using the collapse of microbubbles by ultrasonic cavitation on the palladium surface. 請求項1における超音波キャビテーションによる微小気泡圧壊点をパラジウム表面で多くするために、パラジウム被覆した金網または穴開き板を林立させることを特徴とする放射能汚染水無害化装置。A radioactively contaminated water detoxifying device characterized in that a palladium-coated wire mesh or perforated plate is made to stand in order to increase the number of microbubble collapse points by ultrasonic cavitation in claim 1. 請求項2における反応槽の材質、反応槽内に林立させる金網または穴開き板の材質は、SUS316以上の耐蝕性のステンレスを採用することを特徴とする放射能汚染水無害化装置。3. The radioactive polluted water detoxifying device according to claim 2, wherein the material of the reaction vessel and the material of the wire mesh or perforated plate to be erected in the reaction vessel are made of corrosion-resistant stainless steel of SUS316 or higher. 前項に採用される反応槽底に外付けされる超音波振動子は、強度が1W/cm以上であり、定在波にならないように隣接素子間で放射位相がずれていることを特徴とする放射能汚染水無害化装置。The ultrasonic transducer externally attached to the bottom of the reaction vessel adopted in the previous section is characterized in that the intensity is 1 W / cm 2 or more and the radiation phase is shifted between adjacent elements so as not to be a standing wave. Radioactive contaminated water detoxifying device.
JP2016100894A 2016-04-28 2016-04-28 Detoxification device for detoxifying radioactively contaminated water in nuclear facility Pending JP2017198644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016100894A JP2017198644A (en) 2016-04-28 2016-04-28 Detoxification device for detoxifying radioactively contaminated water in nuclear facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100894A JP2017198644A (en) 2016-04-28 2016-04-28 Detoxification device for detoxifying radioactively contaminated water in nuclear facility

Publications (2)

Publication Number Publication Date
JP2017198644A true JP2017198644A (en) 2017-11-02
JP2017198644A5 JP2017198644A5 (en) 2018-04-05

Family

ID=60239147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100894A Pending JP2017198644A (en) 2016-04-28 2016-04-28 Detoxification device for detoxifying radioactively contaminated water in nuclear facility

Country Status (1)

Country Link
JP (1) JP2017198644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626525A (en) * 2018-12-27 2019-04-16 广州雪利昂生物科技有限公司 A kind of method for treating water based on micro-nano bubbler techniques in agricultural breeding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626525A (en) * 2018-12-27 2019-04-16 广州雪利昂生物科技有限公司 A kind of method for treating water based on micro-nano bubbler techniques in agricultural breeding

Similar Documents

Publication Publication Date Title
JP5947271B2 (en) Decontamination system
Sunder et al. Gamma radiolysis of water solutions relevant to the nuclear fuel waste management program
Rubio et al. Survey of advanced nuclear technologies for potential applications of sonoprocessing
Howe et al. Economical production of Pu-238
JP2017198644A (en) Detoxification device for detoxifying radioactively contaminated water in nuclear facility
Nikitenko et al. Sonochemistry of actinides: from ions to nanoparticles and beyond
JPWO2014115267A1 (en) Radioactive substance removal apparatus and radioactive substance removal method using high-concentration ozone water
Owens et al. USING CHEMICAL AND PROCESS MODELLING TO DESIGN, UNDERSTAND AND IMPROVE AN EFFLUENT TREATMENT PLANT.
Jones Tritium issues in commercial pressurized water reactors
JP2019002825A (en) Chemical decontamination method
JP2015141175A (en) Debris recovery method
JP2018031758A (en) Device for rendering harmless radioactive contamination water of atomic energy facility
US20220392659A1 (en) Process for the decontamination of radioactively contaminated materials
KR101655061B1 (en) Method and Apparatus for Decontamination of Radioactive Metallic Wastes
JP2022502673A (en) Systems and Methods for Electrostatic Accelerator Driven Neutron Generation for Liquid Phase Based Changes
Ahmed et al. Study of radioactive waste management of nuclear power plant: prospect of Rooppur Nuclear Power Plant
RU2270488C2 (en) Method for radiation treatment of parts and materials by hard gamma-rays
JP2023050049A (en) Water reforming treatment method
JP6118281B2 (en) Method and apparatus for treating organic radioactive solid waste
JP2020197539A (en) Debris recovery method
JP2019179047A (en) Debris recovery method
Tusa et al. Use of novel highly selective ion exchange media for minimizing the waste arising from different NPP and other liquids
JP2018124287A (en) Debris recovery method
Nakahara et al. Ultrasound-assisted removal of contaminants on stainless steel surfaces using nitrogen ultrafine bubble water
EP3799076A1 (en) Process for the decontamination of radioactively contaminated materials

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118