JP2017197648A - Resin composition for circuit board and metal base circuit board using the same - Google Patents

Resin composition for circuit board and metal base circuit board using the same Download PDF

Info

Publication number
JP2017197648A
JP2017197648A JP2016089202A JP2016089202A JP2017197648A JP 2017197648 A JP2017197648 A JP 2017197648A JP 2016089202 A JP2016089202 A JP 2016089202A JP 2016089202 A JP2016089202 A JP 2016089202A JP 2017197648 A JP2017197648 A JP 2017197648A
Authority
JP
Japan
Prior art keywords
circuit board
resin composition
metal base
mass
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016089202A
Other languages
Japanese (ja)
Other versions
JP6765215B2 (en
Inventor
紗央 本間
Sao Homma
紗央 本間
八島 克憲
Katsunori Yashima
克憲 八島
公彦 依田
Kimihiko Yoda
公彦 依田
裕紀 木元
Yuki Kimoto
裕紀 木元
和樹 伊藤
Kazuki Ito
和樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2016089202A priority Critical patent/JP6765215B2/en
Publication of JP2017197648A publication Critical patent/JP2017197648A/en
Application granted granted Critical
Publication of JP6765215B2 publication Critical patent/JP6765215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal base circuit board which provides a cured body of a resin composition for circuit board having uniform voltage-resistance characteristics, and has low defective fraction which cannot be conventionally obtained.SOLUTION: A resin composition for circuit board contains a thermosetting resin, an inorganic filler and a smoothing agent, where the smoothing agent is polyether-modified silicone, and the resin composition for circuit board contains 0.05-2.0 mass% of the smoothing agent and 45-95 mass% of the inorganic filler having the maximum particle size of 30-120 μm, further contains one or two selected from polyisoprene and polybutadiene. A metal base circuit board is obtained by applying the resin composition for circuit board onto a substrate, where when the resin composition for circuit board is applied to the substrate with a thickness of 30-150 μm, there is no defect having a diameter of 10 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子をはじめとする種々の電子・電気部品を搭載する回路基板に用いられる樹脂組成物とそれを用いた金属ベース回路基板に関する。 The present invention relates to a resin composition used for a circuit board on which various electronic / electrical components including a semiconductor element are mounted, and a metal base circuit board using the resin composition.

半導体素子をはじめとする電子・電気部品を搭載し混成集積回路を形成するために、種々の回路基板が実用化されている。これらは、回路基板の基板材質に基づいて、樹脂回路基板、セラミックス回路基板、金属ベース回路基板等に分類されている。 Various circuit boards have been put to practical use in order to form a hybrid integrated circuit by mounting electronic / electrical components such as semiconductor elements. These are classified into resin circuit boards, ceramic circuit boards, metal base circuit boards, and the like based on the board material of the circuit board.

樹脂回路基板は、安価ではあるが基材の熱伝導性が悪いので比較的小さな電力用途に制限される。セラミックス回路基板は、セラミックスの電気絶縁特性や耐熱特性に優れる点を生かして比較的大きな電力用途に適するが、高価である欠点を有している。一方、金属ベース回路基板は、両者の中間的な性格を有し、比較的大きな電力で汎用的な用途、例えば、冷蔵庫用電源、家庭向け空調用電源、自動車用電源、高速鉄道用電源等の用途に好適である。 Resin circuit boards are inexpensive but limited to relatively small power applications because of the poor thermal conductivity of the substrate. Ceramic circuit boards are suitable for relatively large power applications by taking advantage of the excellent electrical insulation characteristics and heat resistance characteristics of ceramics, but have the disadvantage of being expensive. On the other hand, the metal base circuit board has an intermediate character between them and is used for general purposes with relatively large electric power, such as a power source for refrigerators, a power source for air conditioning for homes, a power source for automobiles, a power source for high-speed railways, etc. Suitable for use.

金属ベース回路基板は、アルミニウム、鉄、銅等の金属板上に、アルミナなどの無機充填材を充填したエポキシ等の樹脂の絶縁層を設け、更にその上に回路を設けた構造を有している。
しかしながら、絶縁層として使用されている樹脂組成物の硬化体の熱伝導率が低く、回路基板としての放熱特性が不足して半導体素子の誤動作が起きる場合や、絶縁層が劣化し混成集積回路の長期的な電気信頼性が低下する場合あった。
そのため、回路基板用の樹脂組成物の硬化体の熱伝導率の向上が極めて重要な検討項目となっている。
The metal base circuit board has a structure in which an insulating layer of a resin such as epoxy filled with an inorganic filler such as alumina is provided on a metal plate such as aluminum, iron, or copper, and a circuit is provided thereon. Yes.
However, the thermal conductivity of the cured resin composition used as the insulating layer is low, and the heat dissipation characteristics as a circuit board are insufficient, resulting in malfunction of the semiconductor element. In some cases, long-term electrical reliability deteriorated.
Therefore, improvement of the thermal conductivity of the cured product of the resin composition for circuit boards is a very important examination item.

一般に、樹脂組成物の硬化体の熱伝導率を改善するためには、高熱伝導率の無機充填材の含有量を増やすことが行われている。
しかしながら、無機充填材の含有量を多くすると、硬化前の樹脂組成物の粘度が高くなり、金属板上への塗布作業が難しくなる。また、熱伝導率の高い無機充填材が必ずしも充填性が良くない場合が多い。
Generally, in order to improve the thermal conductivity of the cured body of the resin composition, the content of an inorganic filler having a high thermal conductivity is increased.
However, when the content of the inorganic filler is increased, the viscosity of the resin composition before curing increases, and the application work on the metal plate becomes difficult. In addition, an inorganic filler having a high thermal conductivity is not always good in filling properties.

そこで、エポキシ樹脂と、無機充填材と、前記エポキシ樹脂を硬化するための硬化剤と、無機充填材の分散性を向上するための分散剤とを必須成分とする、回路基板用樹脂組成物が開示されている(特許文献1)。
しかしながら、この方法では、硬化物の内部に欠陥が残り、スクリーニング不良率が高いなどの課題があった。
Accordingly, there is provided a resin composition for a circuit board, which comprises an epoxy resin, an inorganic filler, a curing agent for curing the epoxy resin, and a dispersant for improving the dispersibility of the inorganic filler as essential components. (Patent Document 1).
However, this method has problems such as defects remaining in the cured product and a high screening failure rate.

特許第3751271号公報Japanese Patent No. 3751271

本発明者は、上記事情に鑑みて、種々実験的に検討した結果、絶縁層となる塗工液中に、塗工液より表面張力の低い添加剤を加え表面状態を均一化することにより、塗工液中のボイドを低減し、無機充填材を高充填しながら欠陥を減らせる結果、樹脂組成物の硬化体の耐電圧特性が均一で、従来得られなかった、低い不良率を有する金属ベース回路基板が得られることを見いだし、本発明に至ったものである。 As a result of various experimental studies in view of the above circumstances, the present inventor added an additive having a lower surface tension than the coating liquid in the coating liquid to be an insulating layer, and made the surface state uniform. As a result of reducing voids in the coating liquid and reducing defects while highly filling the inorganic filler, the withstand voltage characteristics of the cured product of the resin composition are uniform, and a metal having a low defect rate that has not been obtained in the past It has been found that a base circuit board can be obtained, and the present invention has been achieved.

即ち、本発明は、(1)熱硬化性樹脂と、無機充填材と、平滑化剤とを含有する回路基板用樹脂組成物であって、前記平滑化剤がポリエーテル変性シリコーンである回路基板用樹脂組成物、(2)前記平滑化剤を0.05〜2.0質量%、最大粒子径が30〜120μmである前記無機充填材を45〜95質量%含有してなる(1)の回路基板用樹脂組成物、
(3)前記ポリエーテル変性シリコーンが、1分子中にリン酸基、ジメチルポリシロキサン骨格、ポリエチレングリコールとポリプロピレングリコールの重合体骨格を全て含んだ分子構造であり、数平均分子量が27000以上33000未満であり、質量平均分子量が21000以上27000未満の高分子化合物である、(1)又は(2)の回路基板用樹脂組成物、(4)さらに、ポリイソプレン及びポリブタジエンの中から選ばれる1種又は2種を含有してなる(1)、(2)、又は(3)の回路基板用樹脂組成物、(5)(1)、(2)、(3)又は(4)の回路基板用樹脂組成物を基板に塗布してなる金属ベース回路基板、(6)回路基板用樹脂組成物を厚さ30〜150μmで基板に塗布した際に、直径10μm以上の欠陥がない(5)の金属ベース回路基板、である。
That is, the present invention provides (1) a circuit board resin composition containing a thermosetting resin, an inorganic filler, and a smoothing agent, wherein the smoothing agent is a polyether-modified silicone. Resin composition for use, (2) containing 0.05 to 2.0% by mass of the smoothing agent and 45 to 95% by mass of the inorganic filler having a maximum particle size of 30 to 120 μm. Circuit board resin composition,
(3) The polyether-modified silicone has a molecular structure in which a phosphoric acid group, a dimethylpolysiloxane skeleton, and a polymer skeleton of polyethylene glycol and polypropylene glycol are all contained in one molecule, and the number average molecular weight is 27,000 or more and less than 33,000. (1) or (2) a circuit board resin composition, which is a polymer compound having a mass average molecular weight of 21,000 or more and less than 27000, (4) and one or two selected from polyisoprene and polybutadiene (1), (2) or (3) circuit board resin composition containing seeds, (5) (1), (2), (3) or (4) circuit board resin composition Metal base circuit board formed by applying an object to a substrate, (6) When a resin composition for a circuit board is applied to a substrate with a thickness of 30 to 150 μm, there is no defect having a diameter of 10 μm or more (5) A metal base circuit board.

本発明により、回路基板用樹脂組成物の硬化体の耐電圧特性が均一で、従来得られなかった、低い不良率を有する金属ベース回路基板が得られる、という効果を奏する。   According to the present invention, there is an effect that a metal base circuit board having a low defect rate, which has not been obtained in the past, is obtained because the withstand voltage characteristics of the cured product of the resin composition for circuit boards is uniform.

図1は、回路基板用樹脂組成物を厚さ30〜150μmで基板に塗布した際に生じる樹脂組成物の硬化体中の直径10μm以上の欠陥の例FIG. 1 shows an example of a defect having a diameter of 10 μm or more in a cured body of a resin composition produced when a resin composition for a circuit board is applied to a substrate with a thickness of 30 to 150 μm.

本発明に用いる熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、ジアリルフタレート樹脂、ビスマレイミド樹脂、トリアジン樹脂、ポリウレタン樹脂、フェノール樹脂、シアノアクリレート樹脂、ポリイソシアネート樹脂、フラン樹脂、レゾルシノール樹脂、キシレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、シロキサン変性エポキシ樹脂及びシロキサン変性ポリアミドイミド樹脂が挙げられる。これらは単独で又は2種以上を混合して使用することができる。
また、耐熱性及び接着性を向上する観点から、(B)成分として、エポキシ樹脂を含有することが好ましい。
Examples of the thermosetting resin used in the present invention include epoxy resins, unsaturated polyester resins, melamine resins, urea resins, diallyl phthalate resins, bismaleimide resins, triazine resins, polyurethane resins, phenol resins, cyanoacrylate resins, polyisocyanates. Examples include resins, furan resins, resorcinol resins, xylene resins, benzoguanamine resins, silicone resins, siloxane-modified epoxy resins, and siloxane-modified polyamideimide resins. These can be used alone or in admixture of two or more.
Moreover, it is preferable to contain an epoxy resin as (B) component from a viewpoint of improving heat resistance and adhesiveness.

エポキシ樹脂としては、硬化して接着作用を有するものであれば特に限定されず、一般に知られているエポキシ樹脂を使用することができる。
具体的には、例えば、ビスフェノールA型エポキシ等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂を使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂又は脂環式エポキシ樹脂など、である。
The epoxy resin is not particularly limited as long as it is cured and has an adhesive action, and generally known epoxy resins can be used.
Specifically, for example, bifunctional epoxy resins such as bisphenol A type epoxy, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, and trisphenolmethane type epoxy resin can be used. Moreover, it is a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic ring-containing epoxy resin, an alicyclic epoxy resin, or the like.

エポキシ樹脂は硬化剤、または触媒型硬化剤と反応させることで、硬化することができる。触媒型硬化剤としては3級アミン、イミダゾール類の単体又は混合体等が挙げられる。硬化剤としてはフェノール系樹脂、酸無水物系樹脂、芳香族アミン系樹脂、ジシアンジアミノからなる群から選ばれる1種類以上を用いることができる。これらの中では、基板を作製した際のピール強度および耐電圧の点で、芳香族アミンが好ましい。
エポキシ樹脂に対する硬化剤の添加量は、エポキシ樹脂のエポキシ当量1に対して、硬化剤の活性水素当量(又は酸無水物当量)が0.01〜1.25になるように配合することが好ましい。
The epoxy resin can be cured by reacting with a curing agent or a catalytic curing agent. Examples of the catalyst-type curing agent include a tertiary amine, a simple substance or a mixture of imidazoles. As the curing agent, one or more selected from the group consisting of phenolic resins, acid anhydride resins, aromatic amine resins, and dicyandiamino can be used. Among these, aromatic amines are preferable in terms of peel strength and withstand voltage when the substrate is produced.
The addition amount of the curing agent to the epoxy resin is preferably blended so that the active hydrogen equivalent (or acid anhydride equivalent) of the curing agent is 0.01 to 1.25 with respect to the epoxy equivalent 1 of the epoxy resin. .

エポキシ樹脂は硬化促進剤と反応させることで、エポキシ基の自己重合反応、エポキシ基と活性水素化合物の付加反応、エポキシ基と酸無水物との共重縮合反応を促進することができる。硬化促進剤としては、3級アミン、イミダゾール類、オニウム化合物のボロン塩、有機リン酸化合物、第四級アンモニウムの単体又は混合体等が挙げられる。   By reacting the epoxy resin with a curing accelerator, an epoxy group self-polymerization reaction, an addition reaction between an epoxy group and an active hydrogen compound, and a copolycondensation reaction between an epoxy group and an acid anhydride can be promoted. Examples of the curing accelerator include tertiary amines, imidazoles, boron salts of onium compounds, organophosphate compounds, quaternary ammonium simple substances or mixtures.

本発明に用いる熱硬化性樹脂は、無機充填材とともに、必要に応じて、シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等の無機表面改質剤、さらに必要に応じて、平滑化剤、消泡剤、湿潤剤、安定剤及び硬化促進剤等を添加して用いられる。 The thermosetting resin used in the present invention is an inorganic surface modifier such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent, if necessary, together with an inorganic filler. Further, a smoothing agent, an antifoaming agent, a wetting agent, a stabilizer, a curing accelerator and the like are added and used.

本発明の平滑化剤として用いるポリエーテル変性シリコーンは、1分子中にリン酸基、ジメチルポリシロキサン骨格、ポリエチレングリコールとポリプレングリコールの重合体骨格を全て含んだ分子構造であり、数平均分子量が27000以上33000未満であり、質量平均分子量が21000以上27000未満の高分子化合物である。 The polyether-modified silicone used as the leveling agent of the present invention has a molecular structure in which a phosphoric acid group, a dimethylpolysiloxane skeleton, and a polymer skeleton of polyethylene glycol and polyprene glycol are all contained in one molecule, and the number average molecular weight is It is a polymer compound having a molecular weight of 27,000 or more and less than 33,000 and a mass average molecular weight of 21,000 or more and less than 27,000.

ポリエーテル変性シリコーンとしては、例えば、下記化学式1で示される構造のものが知られている。但し、式中mは100〜350の整数であり、nは1000〜3000の整数であり、oは50〜250の整数である。 As the polyether-modified silicone, for example, one having a structure represented by the following chemical formula 1 is known. However, in the formula, m is an integer of 100 to 350, n is an integer of 1000 to 3000, and o is an integer of 50 to 250.

本発明において、ポリエーテル変性シリコーンと無機充填材の配合割合は、熱硬化性樹脂と添加される無機充填材の量によって若干変動するが、ポリエーテル変性シリコーンの量は、両者の全量100質量部に対して0.05〜2.0質量部が好ましい。0.05質量部未満では平滑化剤としての効果が少なく、また、2.0質量部を超えて添加すると、金属ベース回路基板を作製した際に、ピール強度が低下する傾向にある。 In the present invention, the blending ratio of the polyether-modified silicone and the inorganic filler varies slightly depending on the amount of the thermosetting resin and the inorganic filler to be added, but the amount of the polyether-modified silicone is 100 parts by mass in total of both. The amount is preferably 0.05 to 2.0 parts by mass. If the amount is less than 0.05 parts by mass, the effect as a smoothing agent is small. If the amount exceeds 2.0 parts by mass, the peel strength tends to decrease when a metal base circuit board is produced.

ポリエーテル変性シリコーンの使用により、無機充填材と熱硬化性樹脂とからなる塗工液の表面張力を低下させることで、塗工液乾燥工程において、塗工液の粘度が上昇時においても表面状態を均一化し、塗膜欠陥が低減する。なお、塗工液の粘度を低下させる目的で溶剤等で希釈しても構わない。 By using polyether-modified silicone, the surface tension of the coating liquid consisting of inorganic filler and thermosetting resin is reduced, so that the surface condition is maintained even when the viscosity of the coating liquid increases in the coating liquid drying process. And film defects are reduced. In addition, you may dilute with a solvent etc. in order to reduce the viscosity of a coating liquid.

本発明に用いる無機充填材は、その構成粒子の最大粒子径が20〜120μmの範囲であることが好ましい。120μmより大きな粒子が存在すると、塗膜厚に近くなり、耐電圧不良に起因することが知られている。
無機充填材として、シリカ、アルミナ等の酸化物や、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の非酸化物が挙げられる。非酸化物を用いる場合、酸化処理、リン酸系処理及びシリカ等による表面コートといった表面処理を施したものを用いても構わない。
The inorganic filler used in the present invention preferably has a maximum particle size of the constituent particles in the range of 20 to 120 μm. It is known that when particles larger than 120 μm are present, the film thickness is close to that due to poor withstand voltage.
Examples of the inorganic filler include oxides such as silica and alumina, and non-oxides such as aluminum nitride, boron nitride, and silicon nitride. In the case of using a non-oxide, a material subjected to a surface treatment such as an oxidation treatment, a phosphoric acid treatment, and a surface coating with silica or the like may be used.

本発明の回路基板用樹脂組成物中における無機充填材は、熱硬化性樹脂100質量部に対して45〜150質量部を含有することが好ましく、高い熱放散性を有する金属ベース回路基板が絶縁耐電圧とピール強度が低下することなく得られる。45質量部未満では十分な熱放散性を得られなく、150質量部を超えると樹脂に充填する際の充填性が悪く、金属ベース回路基板の電気信頼性が乏しくなる。 The inorganic filler in the circuit board resin composition of the present invention preferably contains 45 to 150 parts by mass with respect to 100 parts by mass of the thermosetting resin, and the metal base circuit board having high heat dissipation is insulated. It can be obtained without lowering the withstand voltage and peel strength. If it is less than 45 parts by mass, sufficient heat dissipation cannot be obtained, and if it exceeds 150 parts by mass, the filling property when filling the resin is poor, and the electrical reliability of the metal base circuit board becomes poor.

本発明の金属ベース回路基板は、絶縁層が高熱伝導率であり、しかも金属板と回路との密着性に優れ、耐電圧特性にも優れる特徴を有している。
具体的には、本発明になる金属ベース回路基板は、熱伝導率が7.0W/mK 以上であり、さらに、本発明の好ましい実施態様においては、8.0W/mK 以上に達するので、例えば、自動車搭載用の回路基板を初め、種々の大電流用途の回路基板として好ましく用いられる。
The metal base circuit board of the present invention has the characteristics that the insulating layer has high thermal conductivity, excellent adhesion between the metal plate and the circuit, and excellent withstand voltage characteristics.
Specifically, the metal base circuit board according to the present invention has a thermal conductivity of 7.0 W / mK or more, and in a preferred embodiment of the present invention, it reaches 8.0 W / mK or more. It is preferably used as a circuit board for various large current applications including circuit boards for mounting on automobiles.

本発明の金属ベース回路基板に用いられる金属板としては、アルミニウム、アルミニウム合金、銅、銅合金、鉄、及びステンレス等が使用可能である。
金属板の厚みとしては、特に制限はないが、0.5〜3.0mmが一般に用いられる。
As the metal plate used for the metal base circuit board of the present invention, aluminum, aluminum alloy, copper, copper alloy, iron, stainless steel and the like can be used.
Although there is no restriction | limiting in particular as thickness of a metal plate, 0.5-3.0 mm is generally used.

本発明の回路の材質は、導電性のものであれば良く、通常、銅、アルミニウム、ニッケル、或いはこれらの複合層からなるものなどが用いられる。 The material of the circuit of the present invention may be any material as long as it is conductive. Usually, a material made of copper, aluminum, nickel, or a composite layer thereof is used.

本発明の金属ベース回路基板を作製する方法は、金属板上に樹脂組成物を塗布し、硬化あるいは半硬化させて絶縁層とする。このとき、絶縁層は単一層もしくは複数層にする。その後、銅、アルミニウムあるいは銅−アルミニウム複合箔等の回路となる金属箔をロールラミネート法もしくは積層プレス法を用いて接合する方法、あるいは、予め回路形成された金属箔に前記樹脂組成物を塗布、硬化或いは半硬化し、金属板上に貼り付ける方法等が挙げられるが、生産性を考慮すると、前者の方法が好ましく採用される。なお、本方法において、金属箔のエッチングに関しては従来公知の方法を適用すれば良い。 In the method for producing a metal base circuit board of the present invention, a resin composition is applied on a metal plate and cured or semi-cured to form an insulating layer. At this time, the insulating layer is a single layer or a plurality of layers. Thereafter, a method of joining a metal foil to be a circuit such as copper, aluminum or copper-aluminum composite foil using a roll laminating method or a lamination press method, or applying the resin composition to a metal foil that has been previously formed with a circuit, Although the method of hardening or semi-hardening and sticking on a metal plate etc. is mentioned, the former method is preferably employ | adopted when productivity is considered. In this method, a conventionally known method may be applied for etching the metal foil.

以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this.

<実施例1>
ビスフェノールA型液状エポキシ樹脂(DIC社製、「EPICLON 850CRP」)11質量%に、芳香族アミン(日本合成化工社製、「H−48B」)4質量%、窒化アルミニウム「1」(デンカ社製、平均粒子径16μm、最大粒子径70μm)85質量%、シランカップリング剤(東レ・ダウコーニング社製、「z−6040」)1.0質量部(前記エポキシ樹脂とアミンと窒化アルミニウムの混合物100質量部に対して)を加えた。さらに、ポリエーテル変性ポリジメチルシロキサン(BYK社製、「BYK−302」)0.3質量部、分散剤(BYK社製、「DISPERBYK−110」)0.2質量部を加え、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混練し、回路基板用樹脂組成物を作製した。(表1−1)
<Example 1>
Bisphenol A type liquid epoxy resin (manufactured by DIC, “EPICLON 850CRP”) 11 mass%, aromatic amine (manufactured by Nippon Synthetic Chemical Industry, “H-48B”) 4 mass%, aluminum nitride “1” (manufactured by Denka) , Average particle diameter 16 μm, maximum particle diameter 70 μm) 85 mass%, silane coupling agent (manufactured by Dow Corning Toray, “z-6040”) 1.0 mass part (mixture 100 of the epoxy resin, amine and aluminum nitride 100 To the parts by mass). Further, 0.3 parts by mass of polyether-modified polydimethylsiloxane (BYK, “BYK-302”) and 0.2 parts by mass of a dispersant (BYK, “DISPERBYK-110”) were added, and a planetary stirrer was added. (Sinky Co., Ltd. “Awatori Netaro AR-250”, rotation speed: 2000 rpm) to prepare a resin composition for a circuit board. (Table 1-1)

厚み2.0mm のアルミニウム板(天野アルミニウム社製、「A1050 2.0mm厚さ」)上に、回路基板用樹脂組成物を硬化後の絶縁層の厚さが100μmとなるように塗布し、100℃で15分間乾燥してBステージ状態とした。 On a 2.0 mm thick aluminum plate (“A1050 2.0 mm thickness” manufactured by Amano Aluminum Co., Ltd.), the circuit board resin composition was applied so that the thickness of the insulating layer after curing was 100 μm. It dried at 15 degreeC for 15 minute (s), and was set as the B stage state.

その後、厚さ35μm の銅箔(三井金属社製、「電解銅箔35μm厚さ」)を、絶縁層上に置き、熱プレス法にて積層状態のまま回路基板用樹脂組成物を180℃で2時間熱処理して硬化させて金属ベース基板を得た。 Thereafter, a 35 μm thick copper foil (Mitsui Metals Co., Ltd., “electrolytic copper foil 35 μm thickness”) is placed on the insulating layer, and the resin composition for circuit boards is placed at 180 ° C. while being laminated by a hot press method A metal base substrate was obtained by curing by heat treatment for 2 hours.

金属ベース基板について、所望の位置をエッチングレジストでマスクして硫酸−過酸化水素混合溶液をエッチング液として、銅箔をエッチングした後、エッチングレジストを除去し洗浄乾燥することで、回路を形成し、金属ベース回路基板とした。 About a metal base substrate, a desired position is masked with an etching resist, and a copper foil is etched using a sulfuric acid-hydrogen peroxide mixed solution as an etching solution. Then, the etching resist is removed and washed and dried to form a circuit. A metal-based circuit board was obtained.

実施例1で用いた無機充填材、得られた回路基板用樹脂組成物、及び金属ベース基板を、以下の方法で評価した。
[無機充填材の平均粒子径、最大粒子径]
島津製作所社製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。試料は、ガラスビーカーに50ccの純水と無機充填材を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った無機充填材の分散積をスポイドで装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。吸光度が安定になった時点で測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径はd50、最大粒子径はd90とした。
The inorganic filler used in Example 1, the obtained resin composition for circuit boards, and the metal base substrate were evaluated by the following methods.
[Average particle size and maximum particle size of inorganic filler]
The measurement was performed using a “laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As a sample, 5 g of 50 cc pure water and an inorganic filler were added to a glass beaker, stirred using a spatula, and then subjected to dispersion treatment for 10 minutes using an ultrasonic cleaner. The dispersion product of the inorganic filler that had been subjected to the dispersion treatment was added dropwise to the sampler portion of the apparatus with a dropper and waited until the absorbance became measurable. Measurements were taken when the absorbance was stable. In the laser diffraction particle size distribution analyzer, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was d50 and the maximum particle size was d90.

[回路基板用樹脂組成物の硬化体の熱伝導率]
回路基板用樹脂組成物の硬化体を作成し、熱拡散率、比重、比熱から算出した。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製LFA447NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温〜400℃まで昇温させて求めた。(表3−1)
[Thermal conductivity of cured resin composition for circuit board]
A cured product of the circuit board resin composition was prepared and calculated from the thermal diffusivity, specific gravity, and specific heat. The thermal diffusivity was determined by a laser flash method after processing the sample into a width of 10 mm × 10 mm × thickness of 1 mm. The measuring device used was a xenon flash analyzer (LFA447 NanoFlash manufactured by NETZSCH). Specific gravity was determined using the Archimedes method. The specific heat was obtained by using a differential scanning calorimeter (“Q Instruments”, “Q2000”) and raising the temperature from room temperature to 400 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. (Table 3-1)

[回路基板用樹脂組成物の硬化後の塗膜の欠陥]
厚み2.0mm のアルミニウム板上に、回路基板用樹脂組成物を硬化後の絶縁層の厚さが100μmとなるように塗布し、100℃で15分間乾燥してBステージ状態とし、1mm×1mmの範囲を実態顕微鏡(Nikon MM−800)にて観察し、図1に示すような10μm以上の欠陥の個数を測定した。なお、測定は異なる場所を20回繰り返し、その算術平均値を欠陥数とした。(表3−1)
[Defects in coating film after curing of resin composition for circuit board]
On a 2.0 mm thick aluminum plate, the resin composition for a circuit board was applied so that the thickness of the insulating layer after curing was 100 μm, and dried at 100 ° C. for 15 minutes to obtain a B stage state. 1 mm × 1 mm Was observed with an actual microscope (Nikon MM-800), and the number of defects of 10 μm or more as shown in FIG. 1 was measured. The measurement was repeated 20 times at different places, and the arithmetic average value was defined as the number of defects. (Table 3-1)

[金属ベース回路基板の耐電圧不良率]
回路基板用樹脂組成物を用い、厚さ35μmの銅箔と厚さ2.0mmのAl板を接着し金属ベース基板を得た。さらに銅箔をエッチングして直径50mmの円電極を作製したものを測定サンプルとした。測定サンプル500個において、銅板と銅箔との間にDC3.6kVの電圧を1秒間かけ、絶縁破壊したものの個数から不良率を算出した。(表3−1)
[Metal base circuit board withstand voltage failure rate]
Using a resin composition for circuit boards, a 35 μm thick copper foil and a 2.0 mm thick Al plate were bonded to obtain a metal base substrate. Furthermore, what produced the circular electrode of diameter 50mm by etching copper foil was made into the measurement sample. In 500 measurement samples, a voltage of DC 3.6 kV was applied between the copper plate and the copper foil for 1 second, and the defect rate was calculated from the number of dielectric breakdowns. (Table 3-1)

[金属ベース基板のピール強度]
回路基板用樹脂組成物を用い、厚さ35μmの銅箔と厚さ2.0mmのAl板を接着し金属ベース基板を得た。接着した銅箔を10mm×100mmに切り出し、JIS C 6481に規定された方法に従い、23±2℃、相対湿度50%の条件で銅箔と回路基板用樹脂組成物とのピール強度を測定した。なお、測定は5回繰り返し、その算術平均値をピール強度とした。(表3−1)
[Peel strength of metal base substrate]
Using a resin composition for circuit boards, a 35 μm thick copper foil and a 2.0 mm thick Al plate were bonded to obtain a metal base substrate. The bonded copper foil was cut into a size of 10 mm × 100 mm, and the peel strength between the copper foil and the circuit board resin composition was measured under the conditions of 23 ± 2 ° C. and 50% relative humidity in accordance with the method defined in JIS C 6481. The measurement was repeated 5 times, and the arithmetic average value was defined as the peel strength. (Table 3-1)

[金属ベース基板のプレッシャークッカーテスト後の耐電圧不良率]
回路基板用樹脂組成物を用い、厚さ35μmの銅箔と厚さ2.0mmのAl板を接着し金属ベース基板を得た。さらに銅箔をエッチングして直径50mmの円電極を作製したものを、プレッシャークッカーテスト(2気圧、湿度100%、121℃の条件で96時間連続処理)の後、乾燥させて測定サンプルとした。測定サンプル500個において、銅板と銅箔との間にDC3.6kVの電圧を1秒間かけ、絶縁破壊したものの個数から不良率を算出した。(表3−1)
[Rate of defective withstand voltage after pressure cooker test of metal base substrate]
Using a resin composition for circuit boards, a 35 μm thick copper foil and a 2.0 mm thick Al plate were bonded to obtain a metal base substrate. Further, a copper electrode was etched to produce a circular electrode having a diameter of 50 mm, and after a pressure cooker test (continuous treatment for 96 hours under the conditions of 2 atm, 100% humidity and 121 ° C.), it was dried to obtain a measurement sample. In 500 measurement samples, a voltage of DC 3.6 kV was applied between the copper plate and the copper foil for 1 second, and the defect rate was calculated from the number of dielectric breakdowns. (Table 3-1)

<実施例2>
実施例1でポリエーテル変性ポリジメチルシロキサンの添加量を0.04質量部に変更したこと以外は、実施例1と同様に行った。(表1−1、表3−1)
<Example 2>
The same procedure as in Example 1 was performed except that the amount of polyether-modified polydimethylsiloxane added in Example 1 was changed to 0.04 parts by mass. (Table 1-1, Table 3-1)

<実施例3>
実施例1でポリエーテル変性ポリジメチルシロキサンの添加量を0.06質量部に変更したこと以外は、実施例1と同様に行った。(表1−1、表3−1)
<Example 3>
The same procedure as in Example 1 was performed except that the amount of the polyether-modified polydimethylsiloxane added in Example 1 was changed to 0.06 parts by mass. (Table 1-1, Table 3-1)

<実施例4>
実施例1でポリエーテル変性ポリジメチルシロキサンの添加量を1.9質量部に変更したこと以外は、実施例1と同様に行った。(表1−1、表3−1)
<Example 4>
The same procedure as in Example 1 was conducted except that the amount of the polyether-modified polydimethylsiloxane added in Example 1 was changed to 1.9 parts by mass. (Table 1-1, Table 3-1)

<実施例5>
実施例1でポリエーテル変性ポリジメチルシロキサンの添加量を2.1質量部に変更したこと以外は、実施例1と同様に行った。(表1−1、表3−1)
<Example 5>
The same operation as in Example 1 was performed except that the amount of the polyether-modified polydimethylsiloxane added in Example 1 was changed to 2.1 parts by mass. (Table 1-1, Table 3-1)

<実施例6〜11>
実施例1でビスフェノールA型液状エポキシ樹脂、芳香族アミン及び無機充填材の種類と配合量を表1に示す通りに変更した以外は、実施例1と同様に行った。
無機充填材は、窒化アルミニウム「2」(デンカ社製、平均粒子径65μm、最大粒子径113μm)、窒化アルミニウム「3」(デンカ社製、平均粒子径70μm、最大粒子径125μm)、窒化アルミニウム「4」(デンカ社製、平均粒子径11μm、最大粒子径27μm)、窒化アルミニウム「5」(デンカ社製、平均粒子径4.5μm、最大粒子径12μm)、窒化ホウ素(デンカ社製、平均粒子径20μm、最大粒子径65μm)、窒化ケイ素(デンカ社製、平均粒子径18μm、最大粒子径85μm)、アルミナ(デンカ社製、平均粒子径2μm、最大粒子径5μm)を用いた。(表1−1、表1−2、表3−1、表3−2)
<Examples 6 to 11>
The same procedure as in Example 1 was performed except that the types and blending amounts of bisphenol A type liquid epoxy resin, aromatic amine and inorganic filler were changed as shown in Table 1.
The inorganic fillers are aluminum nitride “2” (Denka, average particle size 65 μm, maximum particle size 113 μm), aluminum nitride “3” (Denka, average particle size 70 μm, maximum particle size 125 μm), aluminum nitride “ 4 ”(manufactured by Denka, average particle diameter 11 μm, maximum particle diameter 27 μm), aluminum nitride“ 5 ”(manufactured by Denka, average particle diameter 4.5 μm, maximum particle diameter 12 μm), boron nitride (manufactured by Denka, average particle A silicon nitride (manufactured by Denka Corporation, average particle diameter of 18 μm, maximum particle diameter of 85 μm), and alumina (manufactured by Denka Corporation, average particle diameter of 2 μm, maximum particle diameter of 5 μm) were used. (Table 1-1, Table 1-2, Table 3-1, Table 3-2)

<実施例12>
実施例1でポリエーテル変性ポリジメチルシロキサンに加え、さらにポリイソプレン(Kraton社製、ZieglerIR)を0.3質量部添加したこと以外は、実施例1と同様に行った。(表1−2、表3−2)
<Example 12>
The same procedure as in Example 1 was conducted except that 0.3 parts by mass of polyisoprene (manufactured by Kraton, Ziegler IR) was added in addition to the polyether-modified polydimethylsiloxane in Example 1. (Table 1-2, Table 3-2)

<実施例13>
実施例1でポリエーテル変性ポリジメチルシロキサンに加え、さらにポリブタジエン(宇部興産社製、UBEPOLBR−150)を0.3質量部添加したこと以外は、実施例1と同様に行った。(表1−2、表3−2)
<Example 13>
In addition to the polyether-modified polydimethylsiloxane in Example 1, the same procedure as in Example 1 was performed except that 0.3 parts by mass of polybutadiene (UBEPOLBR-150, manufactured by Ube Industries) was added. (Table 1-2, Table 3-2)

<実施例14>
実施例1でポリエーテル変性ポリジメチルシロキサンに加え、さらにポリイソプレン(Kraton社製、ZieglerIR)を0.2質量部とポリブタジエン(宇部興産社製、UBEPOLBR−150)を0.2質量部添加したこと以外は、実施例1と同様に行った。(表1−2、表3−2)
<Example 14>
In addition to polyether-modified polydimethylsiloxane in Example 1, 0.2 parts by mass of polyisoprene (manufactured by Kraton, Ziegler IR) and 0.2 parts by mass of polybutadiene (manufactured by Ube Industries, UBEPOLBR-150) were added. Except for this, the same procedure as in Example 1 was performed. (Table 1-2, Table 3-2)

<実施例15>
実施例1でビスフェノールA型液状エポキシ樹脂と芳香族アミンの代わりにビスマレイミド樹脂とシアネート樹脂の混合物(三菱ガス化学社製、「BT2160」)を使用したこと以外は、実施例1と同様に行った。(表1−2、表3−2)
<Example 15>
The same procedure as in Example 1 was performed except that a mixture of bismaleimide resin and cyanate resin ("BT2160" manufactured by Mitsubishi Gas Chemical Company) was used in Example 1 instead of bisphenol A liquid epoxy resin and aromatic amine. It was. (Table 1-2, Table 3-2)

<実施例16>
実施例14でビスフェノールA型液状エポキシ樹脂と芳香族アミンの代わりビスマレイミド樹脂とシアネート樹脂の混合物(三菱ガス化学社製、「BT2160」)を使用したこと以外は、実施例14と同様に行った。(表1−2、表3−2)
<Example 16>
The same procedure as in Example 14 was performed except that a mixture of bismaleimide resin and cyanate resin ("BT2160" manufactured by Mitsubishi Gas Chemical Company) was used instead of bisphenol A type liquid epoxy resin and aromatic amine in Example 14. . (Table 1-2, Table 3-2)

<比較例1>
実施例1でポリエーテル変性ポリジメチルシロキサンを添加しないこと以外は、実施例1と同様に行った。(表2、表4)
<Comparative Example 1>
The same procedure as in Example 1 was performed except that the polyether-modified polydimethylsiloxane was not added in Example 1. (Table 2, Table 4)

<比較例2>
実施例1でポリエーテル変性ポリジメチルシロキサンの代わりにアクリルポリマー(共栄社化学社製、「ポリフローNo99C」)を使用したこと以外は、実施例1と同様に行った。(表2、表4)
<Comparative example 2>
The same procedure as in Example 1 was performed except that an acrylic polymer (manufactured by Kyoeisha Chemical Co., “Polyflow No99C”) was used instead of the polyether-modified polydimethylsiloxane in Example 1. (Table 2, Table 4)

<比較例3>
実施例1でポリエーテル変性ポリジメチルシロキサンの代わりにフッ素系レベリング剤(DIC社製、「メガファック F−554」)を使用したこと以外は、実施例1と同様に行った。(表2、表4)
<Comparative Example 3>
Example 1 was performed in the same manner as in Example 1 except that a fluorine-based leveling agent (manufactured by DIC, “Megafac F-554”) was used instead of the polyether-modified polydimethylsiloxane. (Table 2, Table 4)

表3−1、3−2と表4の結果から、実施例の回路基板用樹脂組成物を用いた硬化体は熱伝導性に優れることが分かった。さらに、実施例の回路基板用樹脂組成物により作製した金属ベース回路基板は、耐電圧特性、及びピール強度に優れることが分かった。 From the results of Tables 3-1, 3-2 and Table 4, it was found that the cured bodies using the circuit board resin compositions of the examples were excellent in thermal conductivity. Furthermore, it turned out that the metal base circuit board produced with the resin composition for circuit boards of an Example is excellent in a withstand voltage characteristic and peel strength.

以上の結果は、実施例で用いた金属ベース回路基板の他、混成集積回路に関しても同様
であった。
The above results were the same for the hybrid integrated circuit in addition to the metal base circuit board used in the example.

本発明は、回路基板用樹脂組成物の硬化体の耐電圧特性が均一で、従来得られなかった、低い不良率を有する金属ベース回路基板が得られ、半導体素子をはじめとする種々の電子・電気部品を搭載する回路基板に用いられる。 The present invention provides a metal base circuit board having a low defect rate, which is uniform and has a withstand voltage characteristic of a cured product of a resin composition for a circuit board, which has not been obtained in the past. Used for circuit boards on which electrical components are mounted.

1 直径10μm以上の欠陥 1 Defects with a diameter of 10 μm or more

Claims (6)

熱硬化性樹脂と、無機充填材と、平滑化剤とを含有する回路基板用樹脂組成物であって、前記平滑化剤がポリエーテル変性シリコーンである回路基板用樹脂組成物。 A resin composition for circuit boards, comprising a thermosetting resin, an inorganic filler, and a smoothing agent, wherein the smoothing agent is polyether-modified silicone. 前記平滑化剤を0.05〜2.0質量%、最大粒子径が30〜120μmである前記無機充填材を45〜95質量%含有してなる請求項1記載の回路基板用樹脂組成物。 The resin composition for a circuit board according to claim 1, comprising from 0.05 to 2.0 mass% of the smoothing agent and from 45 to 95 mass% of the inorganic filler having a maximum particle size of 30 to 120 µm. 前記ポリエーテル変性シリコーンが、1分子中にリン酸基、ジメチルポリシロキサン骨格、ポリエチレングリコールとポリプロピレングリコールの重合体骨格を全て含んだ分子構造であり、数平均分子量が27000以上33000未満であり、質量平均分子量が21000以上27000未満の高分子化合物である、請求項1又は請求項2に記載の回路基板用樹脂組成物。 The polyether-modified silicone has a molecular structure that includes all of a phosphate group, a dimethylpolysiloxane skeleton, a polymer skeleton of polyethylene glycol and polypropylene glycol in one molecule, and has a number average molecular weight of 27,000 or more and less than 33,000, The resin composition for circuit boards according to claim 1 or 2, wherein the polymer compound has an average molecular weight of 21,000 or more and less than 27000. さらに、ポリイソプレン及びポリブタジエンの中から選ばれる1種又は2種を含有してなる請求項1、請求項2、又は請求項3記載の回路基板用樹脂組成物。 Furthermore, the resin composition for circuit boards of Claim 1, Claim 2, or Claim 3 formed by containing 1 type or 2 types chosen from polyisoprene and polybutadiene. 請求項1、請求項2、請求項3又は請求項4記載の回路基板用樹脂組成物を基板に塗布してなる金属ベース回路基板。 A metal base circuit board obtained by coating the circuit board resin composition according to claim 1, 2, 3, or 4 on a board. 回路基板用樹脂組成物を厚さ30〜150μmで基板に塗布した際に、直径10μm以上の欠陥がない請求項5記載の金属ベース回路基板。 The metal base circuit board according to claim 5, wherein when the resin composition for a circuit board is applied to the substrate with a thickness of 30 to 150 μm, there is no defect having a diameter of 10 μm or more.
JP2016089202A 2016-04-27 2016-04-27 Resin composition for circuit board and metal base circuit board using it Active JP6765215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089202A JP6765215B2 (en) 2016-04-27 2016-04-27 Resin composition for circuit board and metal base circuit board using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089202A JP6765215B2 (en) 2016-04-27 2016-04-27 Resin composition for circuit board and metal base circuit board using it

Publications (2)

Publication Number Publication Date
JP2017197648A true JP2017197648A (en) 2017-11-02
JP6765215B2 JP6765215B2 (en) 2020-10-07

Family

ID=60237393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089202A Active JP6765215B2 (en) 2016-04-27 2016-04-27 Resin composition for circuit board and metal base circuit board using it

Country Status (1)

Country Link
JP (1) JP6765215B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108517A (en) * 2017-12-15 2019-07-04 住友ベークライト株式会社 Thermosetting resin composition, and cured product thereof, laminate, metal base substrate and power module
JP2019167435A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Resin composition, semiconductor device and method for producing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230265A (en) * 2000-02-15 2001-08-24 Sony Chem Corp Connecting material and mounting method using it
JP2011225831A (en) * 2010-03-31 2011-11-10 Sekisui Chem Co Ltd Curable composition and connected structure
JP2017193691A (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film for multilayer printed board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230265A (en) * 2000-02-15 2001-08-24 Sony Chem Corp Connecting material and mounting method using it
JP2011225831A (en) * 2010-03-31 2011-11-10 Sekisui Chem Co Ltd Curable composition and connected structure
JP2017193691A (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film for multilayer printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108517A (en) * 2017-12-15 2019-07-04 住友ベークライト株式会社 Thermosetting resin composition, and cured product thereof, laminate, metal base substrate and power module
JP2019167435A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Resin composition, semiconductor device and method for producing semiconductor device
JP7119477B2 (en) 2018-03-23 2022-08-17 三菱ケミカル株式会社 RESIN COMPOSITION, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP6765215B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2018181606A1 (en) Heat-conducting member and heat-dissipating structure including said heat-conducting member
WO2013147086A1 (en) Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate
JP5562334B2 (en) Resin composition, laminate including the same, semiconductor device and film
CN107406728B (en) Adhesive composition sheet, method for producing same, and semiconductor device
US20210166844A1 (en) Insulating film, insulated conductor, metal base substrate
JP4507488B2 (en) Bonding material
JP7352173B2 (en) Compositions, cured products, multilayer sheets, heat dissipation parts, and electronic parts
WO2014021427A1 (en) Metal base printed wiring board
JP6765215B2 (en) Resin composition for circuit board and metal base circuit board using it
WO2018025538A1 (en) Insulating film
JP2017022265A (en) Metal circuit board and method for manufacturing the same
CN113710747A (en) Insulating resin composition, cured insulating resin, laminate, and circuit board
JP2018026320A (en) Insulation film
JP2013038094A (en) Thermally conductive insulating substrate with copper foil
JP2020117619A (en) Insulating resin composition, insulating resin cured product, laminate, and circuit board
WO2021192479A1 (en) Insulation film, metal base plate and metal base plate production method
JP5881540B2 (en) Method for producing thermally conductive insulating sheet
WO2021200895A1 (en) Metal base substrate, electronic component mounting substrate
EP4299649A1 (en) Polyimide resin composition and metal-based substrate
WO2021192480A1 (en) Insulating film, metal base substrate, and method for producing metal base substrate
WO2021241298A1 (en) Thermally conductive sheet with metal plate and method for poducing thermally conductive sheet
WO2023002789A1 (en) Thermosetting resin composition, substrate for power modules, printed wiring board and heat dissipation sheet
WO2022050415A1 (en) Insulating resin composition, insulating resin cured body, layered body, and circuit substrate
KR20230171990A (en) Laminates, circuit boards and methods of manufacturing circuit boards
TW202124575A (en) Insulating resin composition, insulating resin cured article, laminate, and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250