JP2017195716A - Power transmission line protection system - Google Patents

Power transmission line protection system Download PDF

Info

Publication number
JP2017195716A
JP2017195716A JP2016085210A JP2016085210A JP2017195716A JP 2017195716 A JP2017195716 A JP 2017195716A JP 2016085210 A JP2016085210 A JP 2016085210A JP 2016085210 A JP2016085210 A JP 2016085210A JP 2017195716 A JP2017195716 A JP 2017195716A
Authority
JP
Japan
Prior art keywords
power transmission
transmission line
current
overcurrent relay
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085210A
Other languages
Japanese (ja)
Other versions
JP6698414B2 (en
Inventor
福太郎 安保
Fukutaro Anpo
福太郎 安保
克洋 別府
Katsuhiro Beppu
克洋 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016085210A priority Critical patent/JP6698414B2/en
Publication of JP2017195716A publication Critical patent/JP2017195716A/en
Application granted granted Critical
Publication of JP6698414B2 publication Critical patent/JP6698414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a power transmission line protection system which can be protected by a simple circuit structure.SOLUTION: An electric power substation includes a plurality of power transmission circuits 5 and 7 connected to a power incoming circuit 1 through a transformer 3 and a power transmission bus bar 4, and comprises: a current transformer 10 that detects a current of the power incoming circuit 1; an overcurrent relay 12 for a backup protection that is operated by the current of the current transformer 10; a current transformer 20 that detects the current of the power transmission circuit 5; an overcurrent relay 21 that is operated by the current of the current transformer 20 and protects the power transmission circuit 5; a current transformer 30 that detects the current of the power transmission circuit 7; and an overcurrent relay 31 that is operated by the current of the current transformer 30 and protects the power transmission circuit 7. The overcurrent relay 21 includes a fault monitoring function that outputs a fault detection signal when the electric power substation itself is broken down. In a case where a short circuit accident occurs in the power transmission circuit 5 when braking down the overcurrent relay 21, the accident is detected by the overcurrent relay 12 for a backup protection, a circuit breaker 6 as a circuit breaker to be executed the backup protection is specified on the basis of the fault detection signal, and the circuit breaker 6 is tripped.SELECTED DRAWING: Figure 1

Description

この発明は、送電回線保護システムに関する。   The present invention relates to a power transmission line protection system.

従来の低位系の例えば負荷供給用の変電所では、負荷供給線の保護リレー故障時には、無保護となってしまうため、事故が発生すると上位系の変圧器保護リレーが後備保護リレーとして機能して、上位の変圧器等をトリップさせ、他の健全負荷供給線も停電となり、広範囲の供給支障が発生するという問題があった。これに対し、変圧器保護リレーを活用したトリップ装置を設置することで、保護対象となる負荷供給線(送電回線)の遮断器の動作状態(開閉状態)を取り込むことにより、送電線の事故に対し、該当する負荷供給線と母線等を段階的にトリップさせることができる送電回線保護システムとしての送電線代替保護システムが提案されている(例えば、特許文献1参照)。   In conventional low-voltage substations, for example, load supply substations, there is no protection when the load supply line protection relay fails, so if an accident occurs, the upper-level transformer protection relay functions as a backup protection relay. There was a problem that a high-order transformer, etc., tripped, and other healthy load supply lines were also blacked out, causing a wide range of supply problems. On the other hand, by installing a trip device that utilizes a transformer protection relay, by taking in the operating state (open / closed state) of the circuit breaker of the load supply line (transmission line) to be protected, On the other hand, a power transmission line alternative protection system has been proposed as a power transmission line protection system capable of tripping the corresponding load supply line and bus line in a stepwise manner (for example, see Patent Document 1).

特開2011−199962号公報(段落番号0017〜0052および図4)Japanese Patent Laying-Open No. 2011-199962 (paragraph numbers 0017 to 0052 and FIG. 4)

従来の送電回線保護システムは以上のように構成され、保護対象となる送電回線数分の遮断器の動作状態を取り込む必要があり、送電回線数が増大すると回路構成が複雑になるという問題点があった。   The conventional power transmission line protection system is configured as described above, and it is necessary to capture the operation state of the circuit breaker as many as the number of power transmission lines to be protected. As the number of power transmission lines increases, the circuit configuration becomes complicated. there were.

この発明は前記のような課題を解決するためになされたものであり、簡易な構成にて保護が可能な送電回線保護システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a power transmission line protection system capable of protection with a simple configuration.

この発明に係る送電回線保護システムにおいては、
受電回線に接続された複数の送電回線を保護する送電回線保護システムであって、第1異常検出装置と、第2異常検出装置または第3異常検出装置と、保護指令発信装置とを備え、
前記第1異常検出装置は、自己の故障を検出して故障検出信号を発する自己監視機能を有し、前記送電回線ごとに設けられ前記送電回線ごとの異常を検出して第1検出信号を発するものであり、
前記第2異常検出装置は、前記受電回線に接続され前記送電回線の異常を検出して第2検出信号を発するものであり、
前記第3異常検出装置は、前記第1異常検出装置に共通に設けられ、前記第1異常検出装置のいずれが故障しても故障した前記第1異常検出装置に代わって前記送電回線の異常を検出可能にされるとともに、前記異常を検出したとき第3検出信号を発するものであり、
前記保護指令発信装置は、前記故障検出信号および前記第2検出信号、または前記故障検出信号および前記第3検出信号に基づいて保護すべき前記送電回線を特定して保護指令を発信するものである。
In the power transmission line protection system according to the present invention,
A power transmission line protection system for protecting a plurality of power transmission lines connected to a power reception line, comprising a first abnormality detection device, a second abnormality detection device or a third abnormality detection device, and a protection command transmission device,
The first abnormality detection device has a self-monitoring function that detects a failure of itself and issues a failure detection signal, and is provided for each of the power transmission lines and detects a failure for each of the power transmission lines and issues a first detection signal. Is,
The second abnormality detection device is connected to the power receiving line, detects an abnormality of the power transmission line, and issues a second detection signal;
The third abnormality detection device is provided in common with the first abnormality detection device, and detects an abnormality in the power transmission line in place of the first abnormality detection device that has failed even if any of the first abnormality detection devices fails. The detection is enabled and a third detection signal is issued when the abnormality is detected,
The protection command transmission device transmits a protection command by specifying the power transmission line to be protected based on the failure detection signal and the second detection signal, or the failure detection signal and the third detection signal. .

この発明に係る送電回線保護システムは、
受電回線に接続された複数の送電回線を保護するものであって、
自己の故障を検出して故障検出信号を発する自己監視機能を有し、送電回線ごとに設けられ送電回線ごとの異常を検出して第1検出信号を発する第1異常検出装置、
受電回線に接続され送電回線の異常を検出して第2検出信号を発する第2異常検出装置、
第1異常検出装置に共通に設けられ、第1異常検出装置のいずれが故障しても故障した第1異常検出装置に代わって送電回線の異常を検出可能にされるとともに、異常を検出したとき第3検出信号を発する第3異常検出装置、
故障検出信号および第2検出信号、または故障検出信号および第3検出信号に基づいて保護すべき送電回線を特定して保護指令を発信する保護指令発信装置
を有するものであるので、
簡易な構成にて保護が可能な送電回線保護システムを得ることができる。
A power transmission line protection system according to the present invention includes:
It protects multiple power transmission lines connected to the power reception line,
A first abnormality detection device which has a self-monitoring function for detecting a failure of itself and issuing a failure detection signal, which is provided for each transmission line and which detects a failure for each transmission line and issues a first detection signal;
A second abnormality detection device that is connected to the power reception line and detects a power transmission line abnormality to generate a second detection signal;
When it is provided in common with the first abnormality detection device and the abnormality of the power transmission line can be detected in place of the first abnormality detection device which has failed even if any one of the first abnormality detection devices fails, and the abnormality is detected A third abnormality detection device for emitting a third detection signal;
Since it has a protection command transmission device that specifies a power transmission line to be protected based on the failure detection signal and the second detection signal, or the failure detection signal and the third detection signal, and transmits a protection command,
A power transmission line protection system that can be protected with a simple configuration can be obtained.

この発明の実施の形態1である送電回線保護システムの構成を示す構成図である。It is a block diagram which shows the structure of the power transmission line protection system which is Embodiment 1 of this invention. 実施の形態1における短絡事故が発生したときの電流の流れを示す説明図である。FIG. 6 is an explanatory diagram showing a flow of current when a short circuit accident occurs in the first embodiment. 実施の形態1における送電回線保護システムの動作を説明するための展開接続図である。FIG. 6 is an exploded connection diagram for explaining the operation of the power transmission line protection system in the first embodiment. 実施の形態2である送電回線保護システムの構成を示す構成図である。It is a block diagram which shows the structure of the power transmission line protection system which is Embodiment 2. FIG. 実施の形態2における短絡事故が発生したときの電流の流れを示す説明図である。It is explanatory drawing which shows the flow of an electric current when the short circuit accident in Embodiment 2 generate | occur | produces. 実施の形態2における送電回線保護システムの動作を説明するための展開接続図である。FIG. 10 is a developed connection diagram for explaining the operation of the power transmission line protection system in the second embodiment. 実施の形態3である送電回線保護システムの構成を示す構成図である。FIG. 10 is a configuration diagram illustrating a configuration of a power transmission line protection system according to a third embodiment. 実施の形態3における短絡事故が発生したときの電流の流れを示す説明図である。FIG. 10 is an explanatory diagram showing a current flow when a short circuit accident occurs in the third embodiment. 実施の形態3における送電回線保護システムの動作を説明するための展開接続図である。FIG. 10 is a developed connection diagram for explaining the operation of a power transmission line protection system in a third embodiment. 過電流継電器が故障中に短絡事故が発生したときの電流の流れを示す説明図である。It is explanatory drawing which shows the flow of an electric current when a short circuit accident generate | occur | produces while the overcurrent relay is out of order. 別の過電流継電器が故障中に短絡事故が発生したときの電流の流れを示す説明図である。It is explanatory drawing which shows the flow of an electric current when a short circuit accident generate | occur | produces while another overcurrent relay fails.

実施の形態1.
図1〜図3は、この発明を実施するための実施の形態1を示すものであり、図1は送電回線保護システムの構成を示す構成図、図2は短絡事故が発生したときの電流の流れを示す説明図、図3は送電回線保護システムの動作を説明するための展開接続図である。図1において、電力システムとしての変電所の主回路は次のように構成されている。受電回線1に遮断器2を介して変圧器3が接続されている。変圧器3の二次側に送電母線4が接続されている。送電母線4に、送電回線5と遮断器6との直列回路、および送電回線7と遮断器8との直列回路が接続され、送電回線5および送電回線6から各遮断器6,8を介してさらに下位の変電所(図示しない)に電力が送られる。
Embodiment 1 FIG.
1 to 3 show a first embodiment for carrying out the present invention. FIG. 1 is a configuration diagram showing a configuration of a power transmission line protection system, and FIG. 2 is a diagram of current when a short-circuit accident occurs. FIG. 3 is a developed connection diagram for explaining the operation of the power transmission line protection system. In FIG. 1, the main circuit of a substation as a power system is configured as follows. A transformer 3 is connected to the power receiving line 1 through a circuit breaker 2. A power transmission bus 4 is connected to the secondary side of the transformer 3. A series circuit of a power transmission line 5 and a circuit breaker 6 and a series circuit of a power transmission line 7 and a circuit breaker 8 are connected to the power transmission bus 4, and the power transmission line 5 and the power transmission line 6 are connected to the circuit breakers 6 and 8. Further, power is sent to a subordinate substation (not shown).

送電回線保護システムは、次のように構成されている。受電回線1に、変流器10が設けられ、変流器10の二次側には保護リレーとしての過電流継電器(OCR)11と、後備保護および第2異常検出装置としての過電流継電器12とが接続されている。過電流継電器11の出力信号側は制御回路14に接続されている。制御回路14は、遮断器2の開閉装置(図示しない)に接続されている。過電流継電器12の出力信号側は、補助リレー(AXR)13に接続されている。補助リレー13は、コイル13Cを有し、過電流継電器12の出力信号を増幅、すなわち、より大きい電流を流しうる接点13aの開閉信号に変換する。   The power transmission line protection system is configured as follows. The power receiving line 1 is provided with a current transformer 10, an overcurrent relay (OCR) 11 as a protection relay on the secondary side of the current transformer 10, and an overcurrent relay 12 as a back-up protection and second abnormality detection device. And are connected. The output signal side of the overcurrent relay 11 is connected to the control circuit 14. The control circuit 14 is connected to a switchgear (not shown) of the circuit breaker 2. The output signal side of the overcurrent relay 12 is connected to an auxiliary relay (AXR) 13. The auxiliary relay 13 has a coil 13C, and amplifies the output signal of the overcurrent relay 12, that is, converts it to an opening / closing signal of the contact 13a through which a larger current can flow.

送電回線5に、変流器20が設けられ、変流器20の二次側には第1異常検出装置としての過電流継電器21が接続されている。過電流継電器21の出力信号側は制御回路22に接続されている。制御回路22は、遮断器6の開閉装置(図示しない)に接続されている。送電回線7に、変流器30が設けられ、変流器30の二次側には第1異常検出装置としての過電流継電器31が接続されている。過電流継電器31の出力信号側は制御回路32に接続されている。制御回路32は、遮断器8の開閉装置(図示しない)に接続されている。補助リレー13の出力側は、各制御回路22,32に接続されている。過電流継電器12は、過電流継電器12が動作したとき閉路する常時開接点12aのほかに、自己の内部故障を常時監視する自己監視機能を有し、内部故障が検出されていないときは故障検出接点12xが開路され、故障検出接点12yが閉路されている。過電流継電器12において内部故障が検出されたときは、故障検出接点12xが閉路され、故障検出接点12yが開路される(図3参照)。   A current transformer 20 is provided in the power transmission line 5, and an overcurrent relay 21 serving as a first abnormality detection device is connected to the secondary side of the current transformer 20. The output signal side of the overcurrent relay 21 is connected to the control circuit 22. The control circuit 22 is connected to a switchgear (not shown) of the circuit breaker 6. A current transformer 30 is provided in the power transmission line 7, and an overcurrent relay 31 serving as a first abnormality detection device is connected to the secondary side of the current transformer 30. The output signal side of the overcurrent relay 31 is connected to the control circuit 32. The control circuit 32 is connected to a switchgear (not shown) of the circuit breaker 8. The output side of the auxiliary relay 13 is connected to the control circuits 22 and 32. The overcurrent relay 12 has a self-monitoring function for constantly monitoring its own internal failure in addition to the normally open contact 12a that is closed when the overcurrent relay 12 is operated, and detects a failure when no internal failure is detected. The contact 12x is opened, and the failure detection contact 12y is closed. When an internal failure is detected in the overcurrent relay 12, the failure detection contact 12x is closed and the failure detection contact 12y is opened (see FIG. 3).

過電流継電器21は、図3に示すように、動作したとき閉路する常時開接点21aのほかに、自己の内部故障を常時監視する自己監視機能を有し、内部故障が検出されていないときは、故障検出接点21xが開路され、故障検出接点21yが閉路されている。過電流継電器21において、内部故障が検出されたときは、故障検出接点21xが閉路され、故障検出接点21yが開路される(図3参照)。また、図示しないが過電流継電器31についても同様である。過電流継電器11および過電流継電器12には、制御電源線P1,N1から直流電力が供給される。過電流継電器21および過電流継電器31には、制御電源線P2,N2から直流電力が供給される。過電流継電器21および過電流継電器31は、この実施の形態においては、マイクロプロセッサやディジタルシグナルプロセッサによるディジタル制御でソフトウエア処理により実現されるもの(自己監視機能を持つデジタル形継電器)を使用している。なお、過電流継電器12、補助リレー13、過電流継電器21、制御回路22、過電流継電器31、制御回路32がこの発明における保護指令発信装置である。   As shown in FIG. 3, the overcurrent relay 21 has a self-monitoring function for constantly monitoring its own internal failure in addition to the normally-open contact 21a that is closed when operated, and when no internal failure is detected. The failure detection contact 21x is opened and the failure detection contact 21y is closed. In the overcurrent relay 21, when an internal failure is detected, the failure detection contact 21x is closed and the failure detection contact 21y is opened (see FIG. 3). Although not shown, the same applies to the overcurrent relay 31. DC power is supplied to the overcurrent relay 11 and the overcurrent relay 12 from the control power supply lines P1 and N1. The overcurrent relay 21 and the overcurrent relay 31 are supplied with DC power from the control power supply lines P2 and N2. In this embodiment, the overcurrent relay 21 and the overcurrent relay 31 are realized by software processing by digital control using a microprocessor or a digital signal processor (a digital relay having a self-monitoring function). Yes. The overcurrent relay 12, the auxiliary relay 13, the overcurrent relay 21, the control circuit 22, the overcurrent relay 31, and the control circuit 32 are the protection command transmission device in the present invention.

次に動作について説明する。図2のように、事故点F1で主回路が短絡した場合には、変圧器3の一次側に事故電流J1が流れ、変流器10の二次側に接続された過電流継電器11、後備保護の過電流継電器12には、電流C1が流れる。変圧器3の二次側には、事故電流J2が流れ、変流器20の二次側に接続された過電流継電器21に電流C2が流れる。過電流継電器11、過電流継電器12、過電流継電器21の全てに異常がなければ、整定値、整定時間の大小関係により、事故点F1に近い過電流継電器21が動作し、第1検出信号としての常時開接点21aが閉路され制御電源線P2,N2から制御回路22のコイル22Cに電圧が印加され励磁される。コイル22Cが励磁されると、保護指令としてのコイル22Cの開閉接点信号(図示しない)が遮断器6の開閉装置に対し遮断器トリップ信号として出力され、遮断器6を開路させ、事故点F1の送電母線4からの切り離しが完了する。   Next, the operation will be described. As shown in FIG. 2, when the main circuit is short-circuited at the fault point F1, the fault current J1 flows on the primary side of the transformer 3, and the overcurrent relay 11 connected to the secondary side of the current transformer 10 is provided. A current C1 flows through the protective overcurrent relay 12. The fault current J2 flows on the secondary side of the transformer 3, and the current C2 flows in the overcurrent relay 21 connected to the secondary side of the current transformer 20. If there is no abnormality in all of the overcurrent relay 11, overcurrent relay 12, and overcurrent relay 21, the overcurrent relay 21 close to the fault point F1 operates due to the magnitude relationship between the settling value and the settling time, and serves as the first detection signal. The normally open contact 21a is closed, and a voltage is applied to the coil 22C of the control circuit 22 from the control power supply lines P2 and N2 to be excited. When the coil 22C is energized, a switching contact signal (not shown) of the coil 22C as a protection command is output as a circuit breaker trip signal to the switching device of the circuit breaker 6 to open the circuit breaker 6 and to open the fault point F1. Disconnection from the power transmission bus 4 is completed.

次に、送電回線5の過電流継電器21が故障している場合について図3を参照しながら説明する。図3において、送電回線5の過電流継電器21が故障している場合、送電回線5の過電流継電器21の故障検出信号としての故障検出接点21xが閉路されている。この状態で受電回線1に設けた後備保護の過電流継電器12が動作した場合、第2検出信号としての常時開接点12aの閉路により制御電源線P1,N1から補助リレー13のコイル13Cに電圧が印加されて励磁され、その接点13aが閉路される。接点13aが閉路されると、過電流継電器21の故障検出接点21xは閉路されているので、制御電源線P2,N2から制御回路22のコイル22Cに電圧が印加されて励磁され、その常時開接点(図示しない)が閉路される。常時開接点の閉路信号は、遮断器6の開閉装置に送られ、遮断器6を開路させ、事故点F1が送電母線4から切り離される。なお、短絡事故時に過電流継電器11に電流C1が流入するが、過電流継電器11、過電流継電器12の整定値、整定時間の大小関係により、過電流継電器12が動作し、事故点F1に近い遮断器6が開放され、遮断器2は開放されない。   Next, the case where the overcurrent relay 21 of the power transmission line 5 is broken will be described with reference to FIG. In FIG. 3, when the overcurrent relay 21 of the power transmission line 5 is out of order, the failure detection contact 21x as a failure detection signal of the overcurrent relay 21 of the power transmission line 5 is closed. In this state, when the overcurrent relay 12 for protection of protection provided in the power receiving line 1 is operated, a voltage is applied from the control power supply lines P1 and N1 to the coil 13C of the auxiliary relay 13 by closing the normally open contact 12a as the second detection signal. Applied and excited, the contact 13a is closed. When the contact point 13a is closed, the failure detection contact point 21x of the overcurrent relay 21 is closed, so that a voltage is applied to the coil 22C of the control circuit 22 from the control power supply lines P2 and N2, and the normally open contact point is applied. (Not shown) is closed. The normally open contact closing signal is sent to the switchgear of the circuit breaker 6 to open the circuit breaker 6 and the fault point F1 is disconnected from the power transmission bus 4. Although the current C1 flows into the overcurrent relay 11 at the time of the short-circuit accident, the overcurrent relay 12 operates due to the magnitude relationship between the set values of the overcurrent relay 11 and the overcurrent relay 12 and the settling time, and is close to the accident point F1. The circuit breaker 6 is opened and the circuit breaker 2 is not opened.

過電流継電器31が故障した場合も過電流継電器21が故障した場合と同様にして遮断器8が開路される。   When the overcurrent relay 31 fails, the circuit breaker 8 is opened in the same manner as when the overcurrent relay 21 fails.

以上のように、この実施の形態によれば、自己の故障を検出して故障検出信号を発する自己監視機能を有する過電流継電器21および過電流継電器31を設け、前記故障検出信号と後備保護の過電流継電器12とにより後備保護すべき送電回線を特定して当該送電回線を保護する保護指令を発するようにしたので、送電回線5に設けられた遮断器6や送電回線7に設けられた遮断器8の開閉状態の情報を使用することを要しない。従って、送電回線数が増加するに従い回路構成が複雑になることを抑制することができ、簡易な構成の送電回線保護システムを得ることができる。   As described above, according to this embodiment, the overcurrent relay 21 and the overcurrent relay 31 having a self-monitoring function for detecting a self-failure and generating a fault detection signal are provided. Since the overcurrent relay 12 identifies the power transmission line to be protected after the protection and issues a protection command to protect the power transmission line, the circuit breaker 6 provided in the power transmission line 5 and the interruption provided in the power transmission line 7 It is not necessary to use information on the open / close state of the container 8. Therefore, the complexity of the circuit configuration can be suppressed as the number of power transmission lines increases, and a power transmission line protection system with a simple configuration can be obtained.

実施の形態2.
図4〜図6は、実施の形態2を示すものであり、図4は送電回線保護システムの構成を示す構成図、図5は短絡事故が発生したときの電流の流れを示す説明図、図6は送電回線保護システムの動作を説明するための展開接続図である。前記実施の形態1では、受電回線1に過電流継電器12を設けることを特徴としている。これに対し、この実施の形態では、図4に示すように、送電回線5および送電回線7側に後備保護および第3異常検出装置としての過電流継電器42を設けることを特徴とする。過電流継電器42は、変流器20および変流器30の両者の電流が加算され(全ての送電回線の電流の総和)が流れる、すなわち供給されるように接続されている。過電流継電器42は、過電流継電器21および過電流継電器31との共通する後備装置として設けられているものである。
Embodiment 2. FIG.
4 to 6 show the second embodiment. FIG. 4 is a configuration diagram showing the configuration of the power transmission line protection system. FIG. 5 is an explanatory diagram showing the flow of current when a short circuit accident occurs. 6 is a developed connection diagram for explaining the operation of the power transmission line protection system. The first embodiment is characterized in that an overcurrent relay 12 is provided in the power receiving line 1. On the other hand, in this embodiment, as shown in FIG. 4, an overcurrent relay 42 serving as a back-end protection and a third abnormality detection device is provided on the power transmission line 5 and the power transmission line 7 side. The overcurrent relay 42 is connected such that the currents of both the current transformer 20 and the current transformer 30 are added (the sum of the currents of all transmission lines) flows, that is, supplied. The overcurrent relay 42 is provided as a back-up device common to the overcurrent relay 21 and the overcurrent relay 31.

過電流継電器42の出力信号側は、補助リレー43に接続され、その出力信号は、より大きい電流を流しうる接点43aの開閉信号に変換される。過電流継電器42は、過電流継電器42が動作したとき閉路する常時開接点42aのほかに、自己の内部故障を常時監視する自己監視機能を有し、内部故障が検出されていないときは故障検出接点42xが開路され、故障検出接点42yが閉路されている。過電流継電器42において内部故障が検出されたときは、故障検出接点42xが閉路され、故障検出接点42yが開路される(図6参照)。その他の構成については、実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。なお、過電流継電器21、制御回路22、過電流継電器31、制御回路32、過電流継電器42、補助リレー43がこの発明における保護指令発信装置である。   The output signal side of the overcurrent relay 42 is connected to the auxiliary relay 43, and the output signal is converted into an opening / closing signal of the contact 43a that can flow a larger current. The overcurrent relay 42 has a self-monitoring function for constantly monitoring its own internal failure in addition to the normally open contact 42a that is closed when the overcurrent relay 42 is operated, and detects a failure when no internal failure is detected. The contact 42x is opened, and the failure detection contact 42y is closed. When an internal failure is detected in the overcurrent relay 42, the failure detection contact 42x is closed and the failure detection contact 42y is opened (see FIG. 6). Since other configurations are the same as those in the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted. The overcurrent relay 21, the control circuit 22, the overcurrent relay 31, the control circuit 32, the overcurrent relay 42, and the auxiliary relay 43 are the protection command transmission device in the present invention.

次に、動作について説明する。図5のように、事故点F1で主回路が短絡した場合には、受電回線1に事故電流J1が流れ、変流器10に接続された過電流継電器11、過電流継電器12は電流C1が流れる。変圧器3の二次側には事故電流J2が流れ、変流器20に接続された過電流継電器21および過電流継電器42には電流C3が流れる。このとき、過電流継電器11、過電流継電器12、過電流継電器21、過電流継電器42の全てに異常がなければ、整定値、整定時間の大小関係により、事故点に近い過電流継電器21が動作し、その常時開接点21aが閉路され(故障検出接点21yは閉じられている)制御回路22のコイル22Cが励磁される(図6参照)。コイル22Cが励磁されると、その開閉接点信号が遮断器トリップ信号として遮断器6の開閉装置へ出力され、遮断器6が開放される。   Next, the operation will be described. As shown in FIG. 5, when the main circuit is short-circuited at the fault point F1, the fault current J1 flows through the power receiving line 1, and the overcurrent relay 11 and the overcurrent relay 12 connected to the current transformer 10 have the current C1. Flowing. The fault current J2 flows through the secondary side of the transformer 3, and the current C3 flows through the overcurrent relay 21 and the overcurrent relay 42 connected to the current transformer 20. At this time, if all of the overcurrent relay 11, the overcurrent relay 12, the overcurrent relay 21, and the overcurrent relay 42 are not abnormal, the overcurrent relay 21 that is close to the accident point is operated depending on the magnitude relationship between the set value and the settling time. Then, the normally open contact 21a is closed (the failure detection contact 21y is closed), and the coil 22C of the control circuit 22 is excited (see FIG. 6). When the coil 22C is excited, the switching contact signal is output to the switching device of the circuit breaker 6 as a circuit breaker trip signal, and the circuit breaker 6 is opened.

以下、過電流継電器21が故障している場合について説明する。図6において、過電流継電器42が動作して第3検出信号としての常時開接点42aが閉路されると補助リレー43のコイル43Cが励磁され、接点43aが閉路する。このとき、過電流継電器21が故障している場合は、故障検出接点21xが閉路し故障検出接点21yが開路しているので、故障検出接点21xおよび接点43aを介して制御電源線P2,N2から制御回路22のコイル22Cに電圧が印加されて励磁される。コイル22Cが励磁されると、保護指令としてのコイル22Cの開閉接点の開閉信号が遮断器6の開閉装置に対し遮断器トリップ信号として出力され、遮断器6を開路させ、過電流継電器21が正常である場合と同様に事故点F1の送電母線4からの切り離しが完了する。   Hereinafter, the case where the overcurrent relay 21 has failed will be described. In FIG. 6, when the overcurrent relay 42 operates and the normally open contact 42a as the third detection signal is closed, the coil 43C of the auxiliary relay 43 is excited and the contact 43a is closed. At this time, if the overcurrent relay 21 is faulty, the fault detection contact 21x is closed and the fault detection contact 21y is open, so the control power supply lines P2 and N2 are connected via the fault detection contact 21x and the contact 43a. A voltage is applied to the coil 22C of the control circuit 22 to excite it. When the coil 22C is energized, an opening / closing signal of the switching contact of the coil 22C as a protection command is output as a circuit breaker trip signal to the switching device of the circuit breaker 6 to open the circuit breaker 6 and the overcurrent relay 21 is normal. In the same manner as in the case of the above, the disconnection of the accident point F1 from the power transmission bus 4 is completed.

過電流継電器31が故障している場合も過電流継電器21が故障している場合と同様に、事故点F1で短絡が発生すると、過電流継電器42に変流器30で検出された事故電流が流れ、過電流継電器42が動作して遮断器8が開路される。なお、過電流継電器42には送電回線5および送電回線7を流れる電流の和が流れるので、過電流継電器42の整定値を送電回線5および送電回線7のそれぞれの最大負荷電流の和よりも小さい値に設定した場合は、過電流継電器42の動作により、過電流継電器21が故障している場合には遮断器6が開路され、過電流継電器31が故障している場合には遮断器8が開路されることとなる。   Similarly to the case where the overcurrent relay 21 is out of order when the overcurrent relay 31 is faulty, the fault current detected by the current transformer 30 is detected in the overcurrent relay 42 when a short circuit occurs at the fault point F1. The overcurrent relay 42 operates and the circuit breaker 8 is opened. Since the sum of the currents flowing through the power transmission line 5 and the power transmission line 7 flows through the overcurrent relay 42, the set value of the overcurrent relay 42 is smaller than the sum of the maximum load currents of the power transmission line 5 and the power transmission line 7, respectively. When the value is set to a value, the operation of the overcurrent relay 42 causes the circuit breaker 6 to be opened when the overcurrent relay 21 is faulty, and when the overcurrent relay 31 is faulty, the circuit breaker 8 is It will be opened.

以上のように、この実施の形態によれば、過電流継電器21および過電流継電器31の故障検出信号、ならびに後備保護の過電流継電器42により後備保護すべき送電回線を特定して当該送電回線を保護する保護指令を発するようにしたので、送電回線5に設けられた遮断器6や送電回線7に設けられた遮断器8の開閉状態の情報を使用することを要しない。従って、送電回線数が増加するに従い回路構成が複雑になることを抑制することができ、簡易な構成の送電回線保護システムを得ることができる。   As described above, according to this embodiment, the failure detection signal of the overcurrent relay 21 and the overcurrent relay 31 and the power transmission line to be protected by the overcurrent relay 42 for the protection of the back-up are identified and the power transmission line is defined. Since the protection command for protection is issued, it is not necessary to use information on the open / close state of the circuit breaker 6 provided in the power transmission line 5 or the circuit breaker 8 provided in the power transmission line 7. Therefore, the complexity of the circuit configuration can be suppressed as the number of power transmission lines increases, and a power transmission line protection system with a simple configuration can be obtained.

なお、図1の実施の形態1では、送電回線5,7の保護の後備のために、受電回線1に後備保護の過電流継電器12を設けるため、その保護整定にあたって電圧階級差を考慮しなければならないのに対し、実施の形態2では、同じ電圧階級である送電回線5,7側に後備保護の過電流継電器42を設けるようにしたので、過電流継電器42の整定検討が容易になる。   In the first embodiment shown in FIG. 1, since the overcurrent relay 12 is provided for the protection of the power transmission lines 5 and 7 in the power receiving line 1, the difference in voltage class must be taken into account when setting the protection. On the other hand, in the second embodiment, since the overcurrent relay 42 for the back-end protection is provided on the side of the transmission lines 5 and 7 having the same voltage class, the setting of the overcurrent relay 42 can be easily studied.

実施の形態3.
図7〜図11は、実施の形態3を示すものであり、図7は送電回線保護システムの構成を示す構成図、図8は短絡事故が発生したときの電流の流れを示す説明図、図9は送電回線保護システムの動作を説明するための展開接続図である。図10は、過電流継電器が故障中に短絡事故が発生したときの電流の流れを示す説明図である。図11は、別の過電流継電器が故障中に短絡事故が発生したときの電流の流れを示す説明図である。前記実施の形態2では、変流器20および変流器30の両者の検出電流が供給される過電流継電器42を設けたことを特徴としている。これに対し、この実施の形態では、図7に示すように、変流器20および変流器30の検出電流を切り替えて供給する電流切替部としての切替器51,52を設けたことを特徴とする。図7において、変流器20の二次側に過電流継電器21および切替器51が接続されている。変流器30の二次側に過電流継電器31および切替器52が接続されている。
Embodiment 3 FIG.
7 to 11 show the third embodiment. FIG. 7 is a configuration diagram showing the configuration of the power transmission line protection system. FIG. 8 is an explanatory diagram showing the flow of current when a short-circuit accident occurs. 9 is a developed connection diagram for explaining the operation of the power transmission line protection system. FIG. 10 is an explanatory diagram showing the flow of current when a short circuit accident occurs while the overcurrent relay is out of order. FIG. 11 is an explanatory diagram showing the flow of current when a short circuit accident occurs while another overcurrent relay fails. The second embodiment is characterized in that an overcurrent relay 42 to which detection currents of both the current transformer 20 and the current transformer 30 are supplied is provided. On the other hand, in this embodiment, as shown in FIG. 7, switching devices 51 and 52 are provided as current switching units that switch and supply the detected currents of the current transformer 20 and the current transformer 30. And In FIG. 7, an overcurrent relay 21 and a switch 51 are connected to the secondary side of the current transformer 20. An overcurrent relay 31 and a switch 52 are connected to the secondary side of the current transformer 30.

後備保護および第3異常検出装置としての過電流継電器54が、切替器51を介して過電流継電器21に接続されるとともに、切替器52を介して過電流継電器31に接続されている。過電流継電器54の出力信号側は、補助リレー55に接続され、その出力信号は、より大きい電流を流しうる接点55aの開閉信号に変換される。過電流継電器54は、過電流継電器54が動作したとき閉路する常時開接点54aのほかに、自己の内部故障を常時監視する自己監視機能を有し、内部故障が検出されていないときは故障検出接点54xが開路され、故障検出接点54yが閉路されている。過電流継電器54において内部故障が検出されたときは、故障検出接点54xが閉路され、故障検出接点54yが開路される(図8参照)。その他の構成については、実施の形態2と同様のものであるので、相当するものに同じ符号を付して説明を省略する。この場合も、過電流継電器54が過電流継電器21および過電流継電器31の共通の後備装置としての機能を担うものとして設けられたものである。なお、過電流継電器21、制御回路22、過電流継電器31、制御回路32、過電流継電器54、補助リレー55がこの発明における保護指令発信装置である。   An overcurrent relay 54 as a back-up protection and third abnormality detection device is connected to the overcurrent relay 21 through the switch 51 and is connected to the overcurrent relay 31 through the switch 52. The output signal side of the overcurrent relay 54 is connected to the auxiliary relay 55, and the output signal is converted into an opening / closing signal of the contact 55a that can flow a larger current. The overcurrent relay 54 has a self-monitoring function for constantly monitoring its own internal fault in addition to the normally open contact 54a that is closed when the overcurrent relay 54 is operated, and detects a fault when no internal fault is detected. The contact 54x is opened, and the failure detection contact 54y is closed. When an internal failure is detected in the overcurrent relay 54, the failure detection contact 54x is closed and the failure detection contact 54y is opened (see FIG. 8). Since other configurations are the same as those in the second embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted. In this case as well, the overcurrent relay 54 is provided as a function that serves as a common back-up device for the overcurrent relay 21 and the overcurrent relay 31. The overcurrent relay 21, the control circuit 22, the overcurrent relay 31, the control circuit 32, the overcurrent relay 54, and the auxiliary relay 55 are the protection command transmission device in the present invention.

次に、動作について説明する。図7において、過電流継電器21が故障していないときは、切替器51は励磁されておらず、2個の接点51aは開路され、接点51bは閉路されており、過電流継電器21が変流器20に接続され、過電流継電器54は変流器20に接続されていない。同様に、過電流継電器31が故障していないときは、切替器52は励磁されておらず、図7に示される2個の接点52aは開路され、接点52bは閉路されており、過電流継電器31が変流器30に接続され、過電流継電器54は変流器30に接続されていない。この正常な状態で、事故点F1で主回路が短絡した場合には、図8に示すように変圧器3の一次側に事故電流J1が流れ、変圧器3の二次側に事故電流J2がそれぞれ流れる。そして、過電流継電器11および過電流継電器12には変流器10の二次側電流である電流C1が、過電流継電器21には変流器20の二次側電流である電流C2が流れ、各過電流継電器11,12,21の整定により、事故点F1に最も近い過電流継電器21が動作し、遮断器6を開路させる。   Next, the operation will be described. In FIG. 7, when the overcurrent relay 21 is not out of order, the switch 51 is not excited, the two contacts 51a are opened, the contact 51b is closed, and the overcurrent relay 21 is transformed. The overcurrent relay 54 is not connected to the current transformer 20. Similarly, when the overcurrent relay 31 is not faulty, the switch 52 is not excited, the two contacts 52a shown in FIG. 7 are opened, and the contact 52b is closed, so that the overcurrent relay is closed. 31 is connected to the current transformer 30, and the overcurrent relay 54 is not connected to the current transformer 30. In this normal state, when the main circuit is short-circuited at the fault point F1, the fault current J1 flows on the primary side of the transformer 3 and the fault current J2 on the secondary side of the transformer 3 as shown in FIG. Each flows. A current C1 that is a secondary current of the current transformer 10 flows in the overcurrent relay 11 and the overcurrent relay 12, and a current C2 that is a secondary current of the current transformer 20 flows in the overcurrent relay 21. By setting each of the overcurrent relays 11, 12, and 21, the overcurrent relay 21 closest to the fault point F <b> 1 is operated to open the circuit breaker 6.

一方、過電流継電器21が故障している場合は、図9に示す過電流継電器21の故障検出信号としての故障検出接点21xが閉路され、故障検出接点21yが開路されている。故障検出接点21xが閉路されると、切替器51のコイル51Cが励磁され、その二つの接点51a(図7)が閉路され、接点51b(図7)が開路される。これにより、変流器20に過電流継電器54が接続された状態になり、事故電流J2が変流器20に流れたとき過電流継電器54に変流器20の二次電流C4が図10に示すように流れ、すなわち供給される。すると、過電流継電器54が動作し、第3検出信号としての常時開接点54aが閉路され(図9)、常時開接点54aおよび故障検出接点54y(閉じている)を介して制御電源線P2,N2から補助リレー55のコイル55Cに電圧が印加されて励磁され、接点55aが閉路される。接点55aが閉路されると、過電流継電器21が故障して故障検出接点21xが閉路されているので、ダイオード55dを介して制御回路22のコイル22Cが励磁され、保護指令としてのコイル22Cの開閉接点の開閉信号が遮断器6の開閉装置へ遮断器トリップ信号として出力され、遮断器6が開放される。   On the other hand, when the overcurrent relay 21 has failed, the failure detection contact 21x as a failure detection signal of the overcurrent relay 21 shown in FIG. 9 is closed and the failure detection contact 21y is opened. When the failure detection contact 21x is closed, the coil 51C of the switch 51 is excited, the two contacts 51a (FIG. 7) are closed, and the contact 51b (FIG. 7) is opened. As a result, the overcurrent relay 54 is connected to the current transformer 20, and when the fault current J2 flows to the current transformer 20, the secondary current C4 of the current transformer 20 is changed to the overcurrent relay 54 in FIG. Flow, or supply, as shown. Then, the overcurrent relay 54 operates, the normally open contact 54a as the third detection signal is closed (FIG. 9), and the control power line P2, via the normally open contact 54a and the failure detection contact 54y (closed). A voltage is applied from N2 to the coil 55C of the auxiliary relay 55 to be excited, and the contact 55a is closed. When the contact point 55a is closed, the overcurrent relay 21 breaks down and the failure detection contact point 21x is closed. Therefore, the coil 22C of the control circuit 22 is excited via the diode 55d and opens and closes the coil 22C as a protection command. The contact opening / closing signal is output as a circuit breaker trip signal to the switchgear of the circuit breaker 6, and the circuit breaker 6 is opened.

過電流継電器31が故障した場合は、同様にして切替器52の図示しないコイルが励磁され、その二つの接点52a(図7)が閉路され、接点52b(図7)が開路される。これにより、変流器30に過電流継電器54が接続された状態になり、遮断器8の負荷側で短絡事故が発生した場合は、図11に示すように過電流継電器54に変流器30の二次側の電流C5が流れ、過電流継電器54が動作し、遮断器8を開路させる。   When the overcurrent relay 31 fails, the coil (not shown) of the switch 52 is similarly excited, the two contacts 52a (FIG. 7) are closed, and the contact 52b (FIG. 7) is opened. As a result, when the overcurrent relay 54 is connected to the current transformer 30 and a short circuit accident occurs on the load side of the circuit breaker 8, the current transformer 30 is connected to the overcurrent relay 54 as shown in FIG. The secondary current C5 flows, the overcurrent relay 54 operates, and the circuit breaker 8 is opened.

以上のように、この実施の形態によれば、過電流継電器21および過電流継電器31の故障検出信号、ならびに後備保護の過電流継電器42により後備保護すべき送電回線を特定して当該送電回線を保護する保護指令を発するようにしたので、送電回線5に設けられた遮断器6や送電回線7に設けられた遮断器8の開閉状態の情報を使用することを要しない。従って、送電回線数が増加するに従い回路構成が複雑になることを抑制することができ、簡易な構成の送電回線保護システムを得ることができる。   As described above, according to this embodiment, the failure detection signal of the overcurrent relay 21 and the overcurrent relay 31 and the power transmission line to be protected by the overcurrent relay 42 for the protection of the back-up are identified and the power transmission line is defined. Since the protection command for protection is issued, it is not necessary to use information on the open / close state of the circuit breaker 6 provided in the power transmission line 5 or the circuit breaker 8 provided in the power transmission line 7. Therefore, the complexity of the circuit configuration can be suppressed as the number of power transmission lines increases, and a power transmission line protection system with a simple configuration can be obtained.

なお、実施の形態2では、全ての送電回線の電流の和である送電回線5および送電回線7の電流の和が供給される(和を取り込む)のに対し、この実施の形態では、故障した過電流継電器の受け持つ送電回線のみの電流が供給されるように構成されている。そのため、実施の形態2では、各送電回線に流れる負荷電流の総和が大きくなると、後備保護の過電流継電器42の誤動作が起こりやすくなるのに対し、この実施の形態3では、後備保護のために必要となる電流に限定して供給することで誤動作が起こりにくくなり、より信頼性の高い送電回線保護システムを得ることが可能となる。   In the second embodiment, the sum of the currents of the power transmission line 5 and the power transmission line 7 which is the sum of the currents of all the power transmission lines is supplied (the sum is taken in). It is configured so that the current of only the power transmission line handled by the overcurrent relay is supplied. Therefore, in the second embodiment, when the sum of the load currents flowing through the respective transmission lines increases, malfunction of the overcurrent relay 42 for the back-end protection is likely to occur, whereas in this third embodiment, for the back-end protection. By supplying only the necessary current, malfunctions are less likely to occur, and a more reliable power transmission line protection system can be obtained.

なお、以上の実施の形態においては、送電回線を2回線としているが、3回線以上であっても同様の効果を奏するし、回線数が増えればより本願発明の効果が大きくなる。
また、保護すべき異常現象は過電流に限られるものではなく、他の異常検出例えば過負荷の検出等を行うものであってもよいし、受電回線や送電回線が直流である変電所であっても、同様の効果を奏する。
In the above embodiment, two power transmission lines are used. However, the same effect can be obtained even if three or more lines are used, and the effect of the present invention is further enhanced if the number of lines is increased.
In addition, the abnormal phenomenon to be protected is not limited to overcurrent, but may be other abnormality detection such as detection of overload, or a substation where the power receiving line or power transmission line is DC. However, the same effect can be obtained.

なお、本発明は、その発明の範囲内において、上述した各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略したりすることが可能である。   In the present invention, the above-described embodiments can be freely combined within the scope of the invention, or each embodiment can be appropriately changed or omitted.

1 受電回線、3 変圧器、5,7 送電回線、10 変流器、12 過電流継電器、13 補助リレー、14 制御回路、20 変流器、21 過電流継電器、
22 制御回路、30 変流器、31 過電流継電器、32 制御回路、
42 過電流継電器、43 補助リレー、51,52 切替器、54 過電流継電器、
55 補助リレー。
1 power receiving line, 3 transformer, 5, 7 power transmission line, 10 current transformer, 12 overcurrent relay, 13 auxiliary relay, 14 control circuit, 20 current transformer, 21 overcurrent relay,
22 control circuit, 30 current transformer, 31 overcurrent relay, 32 control circuit,
42 Overcurrent relay, 43 Auxiliary relay, 51, 52 selector, 54 Overcurrent relay,
55 Auxiliary relay.

Claims (6)

受電回線に接続された複数の送電回線を保護する送電回線保護システムであって、第1異常検出装置と、第2異常検出装置または第3異常検出装置と、保護指令発信装置とを備え、
前記第1異常検出装置は、自己の故障を検出して故障検出信号を発する自己監視機能を有し、前記送電回線ごとに設けられ前記送電回線ごとの異常を検出して第1検出信号を発するものであり、
前記第2異常検出装置は、前記受電回線に接続され前記送電回線の異常を検出して第2検出信号を発するものであり、
前記第3異常検出装置は、前記第1異常検出装置に共通に設けられ、前記第1異常検出装置のいずれが故障しても故障した前記第1異常検出装置に代わって前記送電回線の異常を検出可能にされるとともに、前記異常を検出したとき第3検出信号を発するものであり、
前記保護指令発信装置は、前記故障検出信号および前記第2検出信号、または前記故障検出信号および前記第3検出信号に基づいて保護すべき前記送電回線を特定して保護指令を発信するものである
送電回線保護システム。
A power transmission line protection system for protecting a plurality of power transmission lines connected to a power reception line, comprising a first abnormality detection device, a second abnormality detection device or a third abnormality detection device, and a protection command transmission device,
The first abnormality detection device has a self-monitoring function that detects a failure of itself and issues a failure detection signal, and is provided for each of the power transmission lines and detects a failure for each of the power transmission lines and issues a first detection signal. Is,
The second abnormality detection device is connected to the power receiving line, detects an abnormality of the power transmission line, and issues a second detection signal;
The third abnormality detection device is provided in common with the first abnormality detection device, and detects an abnormality in the power transmission line in place of the first abnormality detection device that has failed even if any of the first abnormality detection devices fails. The detection is enabled and a third detection signal is issued when the abnormality is detected,
The protection command transmission device transmits a protection command by specifying the power transmission line to be protected based on the failure detection signal and the second detection signal, or the failure detection signal and the third detection signal. Transmission line protection system.
前記第1異常検出装置と、前記第2異常検出装置または前記第3異常検出装置とは、いずれも過電流を検出するものであり、
前記第1異常検出装置は、前記送電回線の電流を検出する変流器の検出電流に基づいて前記送電回線の過電流を検出して前記第1検出信号を発するものであり、
前記第2異常検出装置は、前記受電回線の過電流を検出して前記第2検出信号を発するものであり、
前記第3異常検出装置は、前記第1異常検出装置が故障した場合故障した前記第1異常検出装置に代わって前記変流器の前記検出電流に基づいて前記送電回線の前記過電流を検出可能にされるとともに、前記過電流を検出したとき前記第3検出信号を発するものである
請求項1に記載の送電回線保護システム。
The first abnormality detection device and the second abnormality detection device or the third abnormality detection device both detect an overcurrent,
The first abnormality detection device detects an overcurrent of the power transmission line based on a detection current of a current transformer that detects a current of the power transmission line, and issues the first detection signal.
The second abnormality detection device detects an overcurrent of the power receiving line and issues the second detection signal;
The third abnormality detection device can detect the overcurrent of the power transmission line based on the detection current of the current transformer instead of the failed first abnormality detection device when the first abnormality detection device fails. The power transmission line protection system according to claim 1, wherein the third detection signal is generated when the overcurrent is detected.
前記第3異常検出装置は、前記第1異常検出装置が故障した場合故障した前記第1異常検出装置に対応する前記変流器の前記検出電流の供給を受けて前記送電回線の前記過電流を検出し前記第3検出信号を発するものである
請求項2に記載の送電回線保護システム。
The third abnormality detection device receives the supply of the detection current of the current transformer corresponding to the failed first abnormality detection device when the first abnormality detection device fails and receives the overcurrent of the transmission line. The transmission line protection system according to claim 2, which detects and issues the third detection signal.
前記第3異常検出装置は、全ての前記変流器の前記検出電流の総和電流の供給を受けて前記送電回線の前記過電流を検出し前記第3検出信号を発するものである
請求項3に記載の送電回線保護システム。
The third abnormality detection device receives the sum of the detection currents of all the current transformers, detects the overcurrent of the power transmission line, and generates the third detection signal. The transmission line protection system described.
前記変流器の前記検出電流の供給先を前記第1異常検出装置と前記第3異常検出装置とに切り換える電流切替部を有するものであって
前記第3異常検出装置は、前記第1異常検出装置が故障した場合故障した前記第1異常検出装置に対応する前記変流器の前記検出電流の供給を前記電流切替部を介して受けて前記送電回線の前記過電流を検出し前記第3検出信号を発するものである
請求項3に記載の送電回線保護システム。
A current switching unit that switches a supply destination of the detection current of the current transformer between the first abnormality detection device and the third abnormality detection device; and the third abnormality detection device includes the first abnormality detection When the device fails, the detection current of the current transformer corresponding to the failed first abnormality detection device is supplied via the current switching unit to detect the overcurrent of the power transmission line, and the third detection The power transmission line protection system according to claim 3, which emits a signal.
前記受電回線と複数の前記送電回線とは、変圧器を介して接続されたものである
請求項1から請求項5のいずれか1項に記載の送電回線保護システム。
The power transmission line protection system according to any one of claims 1 to 5, wherein the power reception line and the plurality of power transmission lines are connected via a transformer.
JP2016085210A 2016-04-21 2016-04-21 Power transmission line protection system Active JP6698414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085210A JP6698414B2 (en) 2016-04-21 2016-04-21 Power transmission line protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085210A JP6698414B2 (en) 2016-04-21 2016-04-21 Power transmission line protection system

Publications (2)

Publication Number Publication Date
JP2017195716A true JP2017195716A (en) 2017-10-26
JP6698414B2 JP6698414B2 (en) 2020-05-27

Family

ID=60156530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085210A Active JP6698414B2 (en) 2016-04-21 2016-04-21 Power transmission line protection system

Country Status (1)

Country Link
JP (1) JP6698414B2 (en)

Also Published As

Publication number Publication date
JP6698414B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP4731403B2 (en) Bus protection relay device with comprehensive rearrangement protection function
US20150280427A1 (en) System and method of controlling current-limiters in ring systems
CN105765393A (en) Electronic circuit breaker
US9954352B2 (en) Power system including a circuit providing smart zone selective interlocking communication
US8149550B2 (en) Protective device having a circuit breaker, in particular a low-voltage circuit breaker
KR100437446B1 (en) Sub-system connecting device in power supply system
JP2011097797A (en) Protection system of loop system
JP2008220136A (en) Protection relay system of distribution system
JP2013062974A (en) Protection relay system
KR101208468B1 (en) Device for prevention disaster in cabinet panel
JP6698414B2 (en) Power transmission line protection system
CN101521379A (en) Isolating device for a power semiconductor and method for operation thereof, power module and system installation
KR20170042070A (en) Apparatus and method for preventing disaster caused by short-circuit in electric power systems
KR20100074829A (en) Breaker for high tension power board
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
KR101545891B1 (en) Triple protecting apparatus using 3 relays
KR102127471B1 (en) Total AI Backup Protection System for Substation
CN106684840A (en) Exit method under unavailable condition of DC protection in DC pole control systems
KR200264800Y1 (en) Sub-system connecting device in power supply system
Rozine et al. Protective device problems and solutions
JP2007330068A (en) Circuit breaker control circuit
KR200449994Y1 (en) Protect relay system for OF cable
KR200377582Y1 (en) A Control Circuit Apparatus for Circuit Braker or LBS
JP6645759B2 (en) Current differential relay system
RU2504882C1 (en) Protective cutout device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R151 Written notification of patent or utility model registration

Ref document number: 6698414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250