JP2017195127A - Manufacturing method of spark plug - Google Patents

Manufacturing method of spark plug Download PDF

Info

Publication number
JP2017195127A
JP2017195127A JP2016085696A JP2016085696A JP2017195127A JP 2017195127 A JP2017195127 A JP 2017195127A JP 2016085696 A JP2016085696 A JP 2016085696A JP 2016085696 A JP2016085696 A JP 2016085696A JP 2017195127 A JP2017195127 A JP 2017195127A
Authority
JP
Japan
Prior art keywords
assembly
mirror
central axis
spark plug
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085696A
Other languages
Japanese (ja)
Other versions
JP6553540B2 (en
Inventor
祐輔 天雲
Yusuke Amagumo
祐輔 天雲
智行 五十嵐
Tomoyuki Igarashi
智行 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016085696A priority Critical patent/JP6553540B2/en
Publication of JP2017195127A publication Critical patent/JP2017195127A/en
Application granted granted Critical
Publication of JP6553540B2 publication Critical patent/JP6553540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a spark plug, which can stably manufactured an electrode with excellent durability.SOLUTION: An assembly structured by overlapping an electrode base material with a chip is formed, and is rotated at a rotation axis with a center axis. A laser beam is emitted from an emission port of a processing head of a continuous oscillation laser arranged on the center axis toward the assembly, and a reflection light of the laser beam is reflected by a rotation mirror arranged between the processing head and the assembly. The rotation mirror is rotated so as to be rotated inversely with the assembly around the center axis, and the reflection light is reflected by a reflection mirror and is irradiated to a processing point of the assembly. Since a relative rotation number of the rotation mirror to the assembly is 1000 or more in any one minute, a continuous melting part can be formed to a circumference of the assembly while suppressing the generation of a spatter or the like. Since the size of the melting part is prevented from being unevenly formed, the size of the melting part in an axial direction can be reduced.SELECTED DRAWING: Figure 3

Description

本発明はスパークプラグの製造方法に関し、特に耐久性に優れる電極を安定に製造できるスパークプラグの製造方法に関するものである。   The present invention relates to a method for manufacturing a spark plug, and more particularly to a method for manufacturing a spark plug that can stably manufacture an electrode having excellent durability.

電極母材と貴金属を含有するチップとがレーザ溶接により接合された中心電極および接地電極を備えるスパークプラグが知られている(例えば特許文献1)。特許文献1では、電極母材とチップとの溶接は、電極母材とチップとを重ね合せた組立体を形成した後、組立体の全周に多点から同時にレーザ光を照射して行われる。   A spark plug including a center electrode and a ground electrode in which an electrode base material and a tip containing a noble metal are joined by laser welding is known (for example, Patent Document 1). In Patent Document 1, welding of the electrode base material and the tip is performed by forming an assembly in which the electrode base material and the tip are overlapped, and then irradiating the entire circumference of the assembly with laser beams simultaneously from multiple points. .

特開2003−68421号公報JP 2003-68421 A

しかしながら上述した従来の技術では、組立体の全周に多点からレーザ光が照射されるので、レーザ光が照射された部分に、チップ及び電極母材が溶融した溶融部が点状に形成される。組立体の周方向で溶融部の大きさが不均一になるので、溶融部が大きい部分ではチップの先端から溶融部までの寸法が減少する。溶融部はチップに比べて耐火花消耗性が劣るので、チップの先端から溶融部までの寸法が減少すると、耐久性が低下する(チップが火花消耗して溶融部に達すると耐火花消耗性が著しく低下する)という問題点がある。   However, in the conventional technique described above, the laser beam is irradiated from multiple points on the entire periphery of the assembly, so that a melted portion in which the chip and the electrode base material are melted is formed in a spot shape in the portion irradiated with the laser beam. The Since the size of the melted portion becomes non-uniform in the circumferential direction of the assembly, the dimension from the tip of the chip to the melted portion is reduced at a portion where the melted portion is large. Since the melted portion is inferior in spark resistance compared to the tip, the durability decreases when the dimension from the tip of the tip to the melted portion decreases. There is a problem that it is significantly reduced).

本発明は上述した問題点を解決するためになされたものであり、耐久性に優れる電極を安定に製造できるスパークプラグの製造方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a spark plug manufacturing method capable of stably manufacturing an electrode having excellent durability.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために請求項1記載のスパークプラグの製造方法によれば、中心電極および接地電極の少なくとも一方を、電極母材と貴金属を含有するチップとをレーザ溶接により接合する。組立工程により、電極母材とチップとを重ね合わせた組立体を形成し、回転工程により、チップの中心軸を回転軸として組立体を回転する。   In order to achieve this object, according to the spark plug manufacturing method of the first aspect, at least one of the center electrode and the ground electrode is joined by laser welding to the electrode base material and the tip containing the noble metal. An assembly in which the electrode base material and the chip are overlapped is formed by the assembly process, and the assembly is rotated about the center axis of the chip as the rotation axis by the rotation process.

照射工程により、中心軸上に配置された連続発振レーザの加工ヘッドの出射口から組立体へ向けてレーザ光を出射し、加工ヘッドと組立体との間に配置される回転鏡によってレーザ光の反射光を反射する。中心軸の回りに組立体と逆回転となるように回転鏡を回転させ、1枚以上の反射鏡によって反射光を反射して組立体の加工点へ照射する。組立体に対する回転鏡の相対回転数が毎分1000回転以上なので、スパッタ等の発生を抑制しつつ、連続する溶融部を組立体の周囲に形成できる。溶融部の大きさが不均一になることを防止できると共に、軸方向における溶融部の大きさを小さくできるので、耐久性に優れる電極を安定に製造できる効果がある。   By the irradiation process, laser light is emitted from the exit of the processing head of the continuous wave laser disposed on the central axis toward the assembly, and the laser light is emitted by a rotating mirror disposed between the processing head and the assembly. Reflects reflected light. The rotating mirror is rotated around the central axis so as to be reverse to the assembly, and the reflected light is reflected by one or more reflecting mirrors to irradiate the processing point of the assembly. Since the relative rotational speed of the rotary mirror with respect to the assembly is 1000 rotations or more per minute, a continuous melting portion can be formed around the assembly while suppressing the occurrence of spatter and the like. Since the size of the melted portion can be prevented from becoming non-uniform and the size of the melted portion in the axial direction can be reduced, there is an effect that an electrode having excellent durability can be stably manufactured.

請求項2記載のスパークプラグの製造方法によれば、反射鏡は回転鏡と一体に回転する。従って、中心軸に対する回転鏡および反射鏡の角度を中心軸の周りの各点において逐一調整してレーザ光の焦点の位置を合せなくても、回転鏡の回転を止めた状態で中心軸に対する回転鏡および反射鏡の角度を調整すれば、組立体の全周においてレーザ光の焦点の位置を合せることができる。よって、請求項1の効果に加え、レーザ光の焦点の位置を合せる作業を簡素化できる効果がある。   According to the spark plug manufacturing method of the second aspect, the reflecting mirror rotates integrally with the rotating mirror. Therefore, even if the angle of the rotating mirror and the reflecting mirror with respect to the central axis is adjusted one by one at each point around the central axis and the position of the focus of the laser beam is not adjusted, the rotation of the rotating mirror with respect to the central axis is stopped. By adjusting the angles of the mirror and the reflecting mirror, the focal point of the laser beam can be aligned over the entire circumference of the assembly. Therefore, in addition to the effect of the first aspect, there is an effect that the work of aligning the focal point of the laser beam can be simplified.

請求項3記載のスパークプラグの製造方法によれば、出射口から回転鏡までのビーム軸の長さは、出射口から加工点までのビーム軸の長さの1/2以下なので、回転鏡から組立体の加工点までのビーム軸の長さを確保できる。反射鏡を配置する位置等の制約を受けて組立体の形状や大きさ等を制限され難くできるので、請求項1又は2の効果に加え、組立体の形状や大きさ等に関わらず様々な組立体を溶接できる効果がある。   According to the spark plug manufacturing method of claim 3, the length of the beam axis from the exit port to the rotary mirror is less than or equal to ½ of the length of the beam axis from the exit port to the processing point. The length of the beam axis up to the machining point of the assembly can be secured. Since the shape and size of the assembly can be made difficult to be restricted due to restrictions such as the position where the reflecting mirror is disposed, in addition to the effects of claim 1 or 2, there are various effects regardless of the shape and size of the assembly. There is an effect that the assembly can be welded.

本発明の一実施の形態におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in one embodiment of this invention. 第1実施の形態における溶接装置の斜視図である。It is a perspective view of the welding apparatus in 1st Embodiment. 溶接装置の断面図である。It is sectional drawing of a welding apparatus. (a)はチップが溶接された中心電極の側面図であり、(b)は従来の中心電極の側面図であり、(c)は従来の中心電極の側面図である。(A) is a side view of the center electrode to which the tip is welded, (b) is a side view of the conventional center electrode, and (c) is a side view of the conventional center electrode. 第2実施の形態における溶接装置の断面図である。It is sectional drawing of the welding apparatus in 2nd Embodiment. 第3実施の形態における溶接装置の断面図である。It is sectional drawing of the welding apparatus in 3rd Embodiment.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の一実施の形態におけるスパークプラグ10の中心軸Oを含む面で切断した断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。図1に示すようにスパークプラグ10は、主体金具20、接地電極30、絶縁体40、中心電極50、端子金具60及び抵抗体70を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view taken along a plane including the central axis O of a spark plug 10 according to an embodiment of the present invention. In FIG. 1, the lower side of the drawing is referred to as the front end side of the spark plug 10, and the upper side of the drawing is referred to as the rear end side of the spark plug 10. As shown in FIG. 1, the spark plug 10 includes a metal shell 20, a ground electrode 30, an insulator 40, a center electrode 50, a terminal metal 60, and a resistor 70.

主体金具20は、内燃機関のねじ穴(図示せず)に固定される略円筒状の部材であり、中心軸Oに沿って貫通する貫通孔21が形成されている。主体金具20は導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。主体金具20は、径方向の外側へ鍔状に張り出す座部22と、座部22より先端側の外周面に形成されたねじ部23とを備えている。   The metal shell 20 is a substantially cylindrical member fixed to a screw hole (not shown) of the internal combustion engine, and a through hole 21 penetrating along the central axis O is formed. The metal shell 20 is made of a conductive metal material (for example, low carbon steel). The metal shell 20 includes a seat portion 22 that protrudes in the shape of a bowl outward in the radial direction, and a screw portion 23 that is formed on the outer peripheral surface on the tip side of the seat portion 22.

座部22とねじ部23との間に環状のガスケット24が嵌め込まれている。ガスケット24は、内燃機関のねじ穴にねじ部23が嵌められたときに、主体金具20と内燃機関(エンジンヘッド)との隙間を封止する。   An annular gasket 24 is fitted between the seat portion 22 and the screw portion 23. The gasket 24 seals a gap between the metal shell 20 and the internal combustion engine (engine head) when the screw portion 23 is fitted in the screw hole of the internal combustion engine.

接地電極30は、主体金具20の先端に接合される金属製(例えばニッケル基合金製)の電極母材31と、電極母材31の先端に接合されるチップ32とを備えている。電極母材31は、中心軸Oと交わるように中心軸Oへ向かって屈曲する棒状の部材である。チップ32は、白金、イリジウム、ルテニウム、ロジウム等の貴金属またはこれらを主成分とする合金によって形成される板状の部材であり、レーザ溶接によって中心軸Oと交わる位置に接合されている。   The ground electrode 30 includes an electrode base material 31 made of metal (for example, made of a nickel base alloy) joined to the tip of the metal shell 20 and a chip 32 joined to the tip of the electrode base material 31. The electrode base material 31 is a rod-like member that is bent toward the central axis O so as to intersect the central axis O. The chip 32 is a plate-like member formed of a noble metal such as platinum, iridium, ruthenium, or rhodium or an alloy containing these as a main component, and is joined to a position that intersects the central axis O by laser welding.

絶縁体40は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された略円筒状の部材であり、中心軸Oに沿って貫通する軸孔41が形成されている。絶縁体40は、主体金具20の貫通孔21に挿入され、外周に主体金具20が固定されている。絶縁体40は、先端および後端が、主体金具20の貫通孔21からそれぞれ露出している。   The insulator 40 is a substantially cylindrical member made of alumina or the like that is excellent in mechanical properties and insulation at high temperatures, and has a shaft hole 41 penetrating along the central axis O. The insulator 40 is inserted into the through hole 21 of the metal shell 20, and the metal shell 20 is fixed to the outer periphery. The insulator 40 has a front end and a rear end exposed from the through hole 21 of the metal shell 20.

軸孔41は、絶縁体40の先端側に位置する第1孔部42と、第1孔部42の後端に連なり後端側へ向かうにつれて拡径する段部43と、段部43の後端側に位置する第2孔部44とを備えている。第2孔部44は、内径が、第1孔部42の内径より大きく設定されている。   The shaft hole 41 includes a first hole portion 42 located on the leading end side of the insulator 40, a stepped portion 43 that is continuous with the rear end of the first hole portion 42 and expands toward the rear end side, and a rear portion of the stepped portion 43. And a second hole 44 located on the end side. The inner diameter of the second hole 44 is set larger than the inner diameter of the first hole 42.

中心電極50は、有底筒状に形成された電極母材52の内部に、電極母材52よりも熱伝導性に優れる芯材53を埋設した棒状の電極である。芯材53は銅または銅を主成分とする合金で形成されている。電極母材52は大部分が第1孔部42内に位置する。電極母材52は先端が第1孔部42から露出し、先端にチップ54がレーザ溶接によって接合されている。チップ54は、白金、イリジウム、ルテニウム、ロジウム等の貴金属またはこれらを主成分とする合金によって形成される柱状の部材であり、火花ギャップを介して接地電極30のチップ32と対向する。   The center electrode 50 is a rod-like electrode in which a core material 53 having a thermal conductivity superior to that of the electrode base material 52 is embedded in an electrode base material 52 formed in a bottomed cylindrical shape. The core material 53 is made of copper or an alloy containing copper as a main component. Most of the electrode base material 52 is located in the first hole 42. The tip of the electrode base material 52 is exposed from the first hole 42, and the tip 54 is joined to the tip by laser welding. The chip 54 is a columnar member formed of a noble metal such as platinum, iridium, ruthenium, rhodium, or an alloy containing these as a main component, and faces the chip 32 of the ground electrode 30 through a spark gap.

端子金具60は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具60の先端側は絶縁体40の軸孔41内に配置される。   The terminal fitting 60 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel). The distal end side of the terminal fitting 60 is disposed in the shaft hole 41 of the insulator 40.

抵抗体70は、スパーク時に発生する電波ノイズを抑えるための部材であり、端子金具60と中心電極50との間の第2孔部44内に配置されている。抵抗体70と中心電極50との間、抵抗体70と端子金具60との間に、導電性を有する導電性シール80,90がそれぞれ配置される。導電性シール80は抵抗体70と中心電極50とにそれぞれ接触し、導電性シール90は抵抗体70と端子金具60とにそれぞれ接触する。この結果、中心電極50と端子金具60とは、抵抗体70と導電性シール80,90とを介して電気的に接続される。   The resistor 70 is a member for suppressing radio noise generated during sparking, and is disposed in the second hole 44 between the terminal fitting 60 and the center electrode 50. Conductive seals 80 and 90 having conductivity are disposed between the resistor 70 and the center electrode 50 and between the resistor 70 and the terminal fitting 60, respectively. The conductive seal 80 is in contact with the resistor 70 and the center electrode 50, and the conductive seal 90 is in contact with the resistor 70 and the terminal fitting 60. As a result, the center electrode 50 and the terminal fitting 60 are electrically connected via the resistor 70 and the conductive seals 80 and 90.

スパークプラグ10は、例えば、以下のような方法によって製造される。まず、絶縁体40の第2孔部44から中心電極50を挿入する。中心電極50は、電極母材52の先端にチップ54が溶接されている。中心電極50は段部43に後端部51が支持され、先端部が軸孔41の先端から外部に露出するように配置される。   The spark plug 10 is manufactured by the following method, for example. First, the center electrode 50 is inserted from the second hole 44 of the insulator 40. The center electrode 50 has a tip 54 welded to the tip of an electrode base material 52. The center electrode 50 is disposed such that the rear end portion 51 is supported by the stepped portion 43 and the front end portion is exposed to the outside from the front end of the shaft hole 41.

次に、導電性シール80の原料粉末を第2孔部44から入れて、後端部51の周囲および後端側に充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填した導電性シール80の原料粉末を予備圧縮する。成形された導電性シール80の原料粉末の成形体の上に、抵抗体70の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填した抵抗体70の原料粉末を予備圧縮する。次いで、抵抗体70の原料粉末の上に、導電性シール90の原料粉末を充填する。圧縮用棒材(図示せず)を用いて、第2孔部44に充填した導電性シール90の原料粉末を予備圧縮する。   Next, the raw material powder of the conductive seal 80 is put through the second hole portion 44 and filled around the rear end portion 51 and the rear end side. The raw material powder of the conductive seal 80 filled in the second hole 44 is pre-compressed using a compression rod (not shown). The raw material powder of the resistor 70 is filled on the molded body of the raw material powder of the formed conductive seal 80. The raw material powder of the resistor 70 filled in the second hole 44 is pre-compressed using a compression rod (not shown). Next, the raw material powder of the conductive seal 90 is filled on the raw material powder of the resistor 70. The raw material powder of the conductive seal 90 filled in the second hole 44 is pre-compressed using a compression rod (not shown).

その後、軸孔41の後端側から端子金具60の先端部61を挿入して、先端部61が導電性シール90の原料粉末に接触するように端子金具60を配置する。次いで、例えば各原料粉末に含まれるガラス成分の軟化点より高い温度まで加熱しつつ、端子金具60の後端側に設けられた鍔部62の先端面が絶縁体40の後端面に当接するまで端子金具60を圧入して、端子金具60の先端部61によって導電性シール80、抵抗体70及び導電性シール90の原料粉末に軸方向の荷重を加える。この結果、各原料粉末が圧縮・焼結され、絶縁体40の内部に導電性シール80、抵抗体70及び導電性シール90が形成される。   Thereafter, the distal end portion 61 of the terminal fitting 60 is inserted from the rear end side of the shaft hole 41, and the terminal fitting 60 is disposed so that the distal end portion 61 contacts the raw material powder of the conductive seal 90. Next, for example, while heating to a temperature higher than the softening point of the glass component contained in each raw material powder, until the front end surface of the flange 62 provided on the rear end side of the terminal fitting 60 comes into contact with the rear end surface of the insulator 40 The terminal fitting 60 is press-fitted, and an axial load is applied to the raw material powder of the conductive seal 80, the resistor 70, and the conductive seal 90 by the tip 61 of the terminal fitting 60. As a result, each raw material powder is compressed and sintered, and the conductive seal 80, the resistor 70 and the conductive seal 90 are formed inside the insulator 40.

次に、予め接地電極30が接合された主体金具20を絶縁体40の外周に組み付ける。その後、接地電極30の電極母材31にチップ32を溶接し、接地電極30のチップ32が中心電極50のチップ54と軸方向に対向するように電極母材31を屈曲して、スパークプラグ10を得る。   Next, the metal shell 20 to which the ground electrode 30 is bonded in advance is assembled to the outer periphery of the insulator 40. Thereafter, the tip 32 is welded to the electrode base material 31 of the ground electrode 30, and the electrode base material 31 is bent so that the tip 32 of the ground electrode 30 faces the tip 54 of the center electrode 50 in the axial direction. Get.

図2及び図3を参照して、接地電極30や中心電極50を構成する電極母材31,52にチップ32,54を接合する溶接装置100について説明する。図2は第1実施の形態における溶接装置100の斜視図であり、図3は中心軸Oを含む溶接装置100の断面図である。本実施の形態では、溶接装置100を用いて、中心電極50を構成する電極母材52にチップ54をレーザ溶接する場合について説明する。図3では電極母材52の軸方向の一部(後端部51側)の図示が省略されている(図5及び図6において同じ)。   With reference to FIG.2 and FIG.3, the welding apparatus 100 which joins the chip | tips 32 and 54 to the electrode base materials 31 and 52 which comprise the ground electrode 30 and the center electrode 50 is demonstrated. FIG. 2 is a perspective view of the welding apparatus 100 according to the first embodiment, and FIG. 3 is a cross-sectional view of the welding apparatus 100 including the central axis O. In the present embodiment, a case where the tip 54 is laser welded to the electrode base material 52 constituting the center electrode 50 using the welding apparatus 100 will be described. 3, illustration of a part of the electrode base material 52 in the axial direction (the rear end 51 side) is omitted (the same applies to FIGS. 5 and 6).

図2に示すように溶接装置100は、円筒状に形成される第1筒部101と、第1筒部101の端部に連接される角筒状の第2筒部102とを備えている。第1筒部101は、第1端が開口する第1開口部103を備え、アーム108により支持されている。第1筒部101は、第1端の周囲にギヤ109が固着されている。ギヤ109は第1モータ(図示せず)が駆動するギヤ(図示せず)に噛み合い、第1モータ(図示せず)の駆動によって第1筒部101及び第2筒部102を回転させる。   As shown in FIG. 2, the welding apparatus 100 includes a first tube portion 101 formed in a cylindrical shape, and a square tube-shaped second tube portion 102 connected to an end portion of the first tube portion 101. . The first cylindrical portion 101 includes a first opening 103 having a first end that is open, and is supported by an arm 108. The first cylinder portion 101 has a gear 109 fixed around the first end. The gear 109 meshes with a gear (not shown) driven by a first motor (not shown), and rotates the first cylinder part 101 and the second cylinder part 102 by driving the first motor (not shown).

図3に示すように溶接装置100は、加工ヘッド110の出射口111から出射するレーザ光112を組立体55の加工点56に照射する装置である。組立体55は、電極母材52とチップ54とを重ね合せたものであり、溶接時にチップ54が電極母材52から離れたりチップ54の位置がずれたりしないように、チャック等の保持装置(図示せず)によってチップ54と電極母材52とが中心軸O方向へ押し付けられる。加工点56は、電極母材52とチップ54との境界付近に設定される。なお、保持装置(図示せず)を使用しなくても良い。その場合には、抵抗溶接等によって予め電極母材52にチップ54を仮止めしておく。   As shown in FIG. 3, the welding apparatus 100 is an apparatus that irradiates the machining point 56 of the assembly 55 with a laser beam 112 emitted from the emission port 111 of the machining head 110. The assembly 55 is obtained by superposing the electrode base material 52 and the tip 54, and a holding device (such as a chuck) prevents the tip 54 from separating from the electrode base material 52 or the position of the tip 54 from shifting during welding. The tip 54 and the electrode base material 52 are pressed in the direction of the central axis O by a not shown). The processing point 56 is set near the boundary between the electrode base material 52 and the tip 54. Note that a holding device (not shown) may not be used. In that case, the tip 54 is temporarily fixed to the electrode base material 52 in advance by resistance welding or the like.

加工ヘッド110は、加工点56にレーザ光112を集光する装置であり、レンズやミラー等の集光系(図示せず)が内蔵されており、中心軸O上に配置されている。加工ヘッド110はレーザ発振器(図示せず)から連続発振レーザが伝送され、連続発振レーザのレーザ光112を出射口111から中心軸O上に出射する。   The processing head 110 is a device that condenses the laser beam 112 at the processing point 56, and includes a condensing system (not shown) such as a lens and a mirror, and is disposed on the central axis O. The processing head 110 receives a continuous wave laser from a laser oscillator (not shown), and emits laser light 112 of the continuous wave laser onto the central axis O from the emission port 111.

第1筒部101は、加工ヘッド110の出射口111に第1開口部103が対向し、中心軸O上に軸が配置される。第1筒部101は、軸受107を介してアーム108に回転可能に支持されている。第1筒部101は軸受107により支持されるので、アーム108に対してスムーズに回転できる。第2筒部102は、第1端の反対側の第1筒部101の第2端に連接されており、第1筒部101に対して鈍角に交わる。第2筒部102は、中心軸Oを臨む側面に開口する第2開口部104が端部に形成されている。第2筒部102は、第1筒部101との境界に回転鏡105が配置されており、第2開口部104を挟んで中心軸Oの反対側に反射鏡106が配置されている。   In the first cylinder portion 101, the first opening 103 is opposed to the emission port 111 of the processing head 110, and the axis is disposed on the central axis O. The first cylinder portion 101 is rotatably supported by the arm 108 via a bearing 107. Since the first cylinder portion 101 is supported by the bearing 107, it can rotate smoothly with respect to the arm. The second tube portion 102 is connected to the second end of the first tube portion 101 opposite to the first end, and intersects the first tube portion 101 at an obtuse angle. The second cylinder portion 102 has a second opening portion 104 formed at the end portion that opens on a side surface facing the central axis O. The second cylindrical portion 102 has a rotating mirror 105 disposed at the boundary with the first cylindrical portion 101, and a reflecting mirror 106 disposed on the opposite side of the central axis O across the second opening 104.

回転鏡105は、加工ヘッド110の出射口111から中心軸O上に出射されるレーザ光112を中心軸Oとは異なる方向へ反射する板状の鏡であり、鏡面が中心軸Oに斜めに交わるように加工ヘッド110と組立体55との間に配置される。回転鏡105は、反射鏡106へ向けてレーザ光112の反射光113を反射する。反射鏡106は、反射光113を反射して組立体55の加工点56へ向けて反射光113を照射する板状の鏡であり、鏡面が中心軸Oと平行な直線に斜めに交わるように組立体55の軸直角方向に配置されている。本実施の形態では、第1筒部101と第2筒部102とが一体的に回転し、反射鏡106は回転鏡105と一体に回転する。反射光113は加工点56において中心軸Oに直交する。   The rotary mirror 105 is a plate-like mirror that reflects the laser beam 112 emitted from the emission port 111 of the processing head 110 onto the central axis O in a direction different from the central axis O, and the mirror surface is oblique to the central axis O. It arrange | positions between the process head 110 and the assembly 55 so that it may cross. The rotating mirror 105 reflects the reflected light 113 of the laser light 112 toward the reflecting mirror 106. The reflecting mirror 106 is a plate-like mirror that reflects the reflected light 113 and irradiates the reflected light 113 toward the processing point 56 of the assembly 55, so that the mirror surface obliquely intersects a straight line parallel to the central axis O. The assembly 55 is disposed in a direction perpendicular to the axis. In the present embodiment, the first cylindrical portion 101 and the second cylindrical portion 102 rotate integrally, and the reflecting mirror 106 rotates integrally with the rotating mirror 105. The reflected light 113 is orthogonal to the central axis O at the processing point 56.

組立体55は、第2モータ(図示せず)により中心軸Oの回りに回転する。第2モータ(図示せず)による組立体55の回転方向は、第1モータ(図示せず)による第1筒部101及び第2筒部102の回転方向の反対である。第1筒部101及び第2筒部102と組立体55とを逆方向に回転させることで、組立体55に対する第1筒部101及び第2筒部102(回転鏡105)の相対回転数は毎分1000回転以上に設定されている。   The assembly 55 is rotated around the central axis O by a second motor (not shown). The rotation direction of the assembly 55 by the second motor (not shown) is opposite to the rotation directions of the first cylinder portion 101 and the second cylinder portion 102 by the first motor (not shown). By rotating the first cylinder part 101 and the second cylinder part 102 and the assembly 55 in the opposite directions, the relative rotational speed of the first cylinder part 101 and the second cylinder part 102 (rotating mirror 105) with respect to the assembly 55 is It is set to 1000 rpm or more.

溶接装置100は、加工ヘッド110の出射口111から回転鏡105までのレーザ光112のビーム軸の長さが、出射口111から回転鏡105及び反射鏡106を経て加工点56までのレーザ光112及び反射光113のビーム軸の長さの1/2以下に設定されている。その結果、回転鏡105から組立体55の加工点56までの反射光113のビーム軸の長さを確保できる。組立体55を設置するスペースを確保できるので、反射鏡106を配置する位置等の制約を受けて組立体55の形状や大きさ等を制限され難くできる。よって、組立体55の形状や大きさ等に関わらず様々な組立体55を溶接できる。   In the welding apparatus 100, the length of the beam axis of the laser beam 112 from the exit port 111 of the machining head 110 to the rotary mirror 105 is such that the laser beam 112 from the exit port 111 to the processing point 56 through the rotary mirror 105 and the reflecting mirror 106. And the length of the beam axis of the reflected light 113 is set to ½ or less. As a result, the length of the beam axis of the reflected light 113 from the rotary mirror 105 to the processing point 56 of the assembly 55 can be secured. Since a space for installing the assembly 55 can be secured, the shape, size, and the like of the assembly 55 can be hardly restricted due to restrictions on the position where the reflecting mirror 106 is disposed. Therefore, various assemblies 55 can be welded regardless of the shape and size of the assembly 55.

次に図3及び図4を参照して、溶接装置100を用いたチップ54の溶接方法について説明する。図4(a)はチップ54が溶接された中心電極50(図1参照)の側面図であり、図4(b)及び図4(c)は従来の中心電極の側面図である。まず、チャック等の保持装置(図示せず)によってチップ54(図3参照)と電極母材52とを中心軸O方向へ押し付け(組立工程)、その状態で組立体55を中心軸O回りに回転する(回転工程)。同様に、組立体55の回転方向とは反対方向に、中心軸Oを回転軸として第1筒部101及び第2筒部102を回転する。   Next, with reference to FIG.3 and FIG.4, the welding method of the chip | tip 54 using the welding apparatus 100 is demonstrated. 4A is a side view of the center electrode 50 (see FIG. 1) to which the tip 54 is welded, and FIGS. 4B and 4C are side views of the conventional center electrode. First, the tip 54 (see FIG. 3) and the electrode base material 52 are pressed in the direction of the central axis O by a holding device (not shown) such as a chuck (assembly process), and the assembly 55 is moved around the central axis O in this state. Rotate (rotation process). Similarly, the first cylinder portion 101 and the second cylinder portion 102 are rotated in the direction opposite to the rotation direction of the assembly 55 with the central axis O as the rotation axis.

組立体55に対する第1筒部101及び第2筒部102(回転鏡105)の相対回転数が毎分1000回転以上に到達したときに、加工ヘッド110の出射口111からレーザ光112を出射し、組立体55の加工点56に反射光113を照射する(照射工程)。出射口111からレーザ光112を出射する時間は、チップ54の周りを加工点56が少なくとも1周するだけの時間があれば良い。   When the relative rotational speed of the first cylindrical portion 101 and the second cylindrical portion 102 (rotating mirror 105) with respect to the assembly 55 reaches 1000 rpm or more, the laser beam 112 is emitted from the emission port 111 of the processing head 110. Then, the reflected light 113 is irradiated to the processing point 56 of the assembly 55 (irradiation process). As long as the laser beam 112 is emitted from the emission port 111, it is sufficient that the machining point 56 takes at least one round around the chip 54.

これにより、図4(a)に示すように、チップ54及び電極母材52が溶融した溶融部57がチップ54の周りに形成される。溶接装置100は、組立体55の加工点56へ連続発振レーザのレーザ光を照射するので、パルス発振レーザを用いる場合に生じ易いスパッタ等を抑制しつつ、連続する溶融部57を組立体55の周囲に形成できる。   As a result, as shown in FIG. 4A, a melted portion 57 in which the tip 54 and the electrode base material 52 are melted is formed around the tip 54. Since the welding apparatus 100 irradiates the processing point 56 of the assembly 55 with laser light of a continuous wave laser, the continuous melting portion 57 of the assembly 55 is suppressed while suppressing spatter and the like that are likely to occur when using a pulsed laser. Can be formed around.

さらに、組立体55に対する回転鏡105の相対回転数が毎分1000回転以上なので、組立体55に対するレーザ光の照射時間を著しく短くできる。その結果、組立体55の周方向で溶融部57の大きさ(幅)が不均一になることを防止できると共に、軸方向における溶融部57の大きさを小さく(細く)できる。溶融部57の幅を細くできれば、相対的にチップ54の軸方向の長さL1(チップ54の端面から溶融部57までの距離)を長くできる。チップ54は溶融部57よりも耐火花消耗性が高いので、チップ54の長さL1を確保しつつ溶接不完全部の発生を抑制して、耐久性に優れる中心電極50を安定に製造できる。   Furthermore, since the relative rotational speed of the rotary mirror 105 with respect to the assembly 55 is 1000 rpm or more, the irradiation time of the laser beam to the assembly 55 can be remarkably shortened. As a result, it is possible to prevent the size (width) of the melting portion 57 from becoming uneven in the circumferential direction of the assembly 55 and to reduce (thinn) the size of the melting portion 57 in the axial direction. If the width of the melting part 57 can be reduced, the axial length L1 of the chip 54 (distance from the end surface of the chip 54 to the melting part 57) can be relatively increased. Since the tip 54 is more resistant to sparks than the melted portion 57, it is possible to stably produce the center electrode 50 having excellent durability by suppressing the occurrence of incompletely welded portions while ensuring the length L1 of the tip 54.

これに対し、組立体55に対する第1筒部101及び第2筒部102(回転鏡105)の相対回転数が毎分1000回転未満のときに加工ヘッド110の出射口111からレーザ光112(連続発振レーザ)を出射した場合には、組立体55に対するレーザ光の照射時間が長くなるので、パワーが、相対回転数が毎分1000回転以上のときのレーザ光112のパワーと同じであれば、加工点56におけるエネルギ密度が高くなる。   On the other hand, when the relative rotation speed of the first cylinder portion 101 and the second cylinder portion 102 (rotating mirror 105) with respect to the assembly 55 is less than 1000 revolutions per minute, the laser beam 112 (continuous) is emitted from the emission port 111 of the processing head 110. When the oscillation laser is emitted, the irradiation time of the laser beam to the assembly 55 becomes long. Therefore, if the power is the same as the power of the laser beam 112 when the relative rotation speed is 1000 rotations per minute or more, The energy density at the processing point 56 is increased.

その結果、図4(b)に示すように、チップ54及び電極母材52が溶融した溶融部58の幅が、溶融部57(図4(a)参照)の幅より広くなる。溶融部58の幅が広くなると、相対的にチップ54の軸方向の長さL2(チップ54の端面から溶融部58までの距離)が短くなる。その結果、第1実施の形態に比べて、火花消耗可能なチップ54の体積が小さくなるので耐火花消耗性が悪化する。   As a result, as shown in FIG. 4B, the width of the melted portion 58 where the tip 54 and the electrode base material 52 are melted becomes wider than the width of the melted portion 57 (see FIG. 4A). When the width of the melting part 58 is increased, the axial length L2 of the chip 54 (the distance from the end surface of the chip 54 to the melting part 58) is relatively shortened. As a result, compared to the first embodiment, the volume of the chip 54 that can be consumed by the spark is reduced, so that the spark consumption is deteriorated.

また、加工ヘッド110の出射口111からレーザ光112(パルス発振レーザ)を出射した場合には、連続発振レーザを用いる場合に比べて、中心電極50にスパッタが生じ易くなる。さらに、チップ54の周囲にパルス状のレーザ光が照射されて形成された溶融部59が重ね合されるので、図4(c)に示すように、チップ54の周方向において溶融部59の幅が不均一になり易い。溶融部59の幅が不均一になると、溶融部59の幅の広い部分では、相対的にチップ54の軸方向の長さL3(チップ54の端面から溶融部59までの距離)が短くなる。その結果、第1実施の形態に比べて、火花消耗可能なチップ54の体積が小さくなるので耐火花消耗性が悪化する。   Further, when the laser beam 112 (pulsed laser) is emitted from the emission port 111 of the processing head 110, the center electrode 50 is more likely to be sputtered than when the continuous wave laser is used. Further, since the melted part 59 formed by irradiating the periphery of the chip 54 with the pulsed laser beam is overlapped, the width of the melted part 59 in the circumferential direction of the chip 54 as shown in FIG. Tends to be non-uniform. When the width of the melting part 59 becomes non-uniform, the length L3 in the axial direction of the chip 54 (the distance from the end surface of the chip 54 to the melting part 59) is relatively shortened in the wide part of the melting part 59. As a result, compared to the first embodiment, the volume of the chip 54 that can be consumed by the spark is reduced, so that the spark consumption is deteriorated.

これに対し本実施の形態によれば、連続発振レーザを用いるのでスパッタ等を生じ難くできると共に、組立体55に対するレーザ光の照射時間を短くできるので溶融部57の中心軸O方向の大きさを小さくできる。その結果、チップ54による耐火花消耗性を確保できるので、耐久性に優れる中心電極50を安定に製造できる。   On the other hand, according to the present embodiment, since a continuous wave laser is used, it is possible to prevent the occurrence of sputtering and the like, and the irradiation time of the laser beam to the assembly 55 can be shortened. Can be small. As a result, the spark wear resistance by the chip 54 can be ensured, so that the center electrode 50 having excellent durability can be manufactured stably.

溶接装置100は、反射鏡106が回転鏡105と一体に回転する。従って、中心軸Oに対する回転鏡105及び反射鏡106の角度を中心軸Oの周りの各点において逐一調整してレーザ光112の焦点の位置を組立体55の加工点56の位置に合せなくても良い。回転鏡105の回転を止めた状態で中心軸Oに対する回転鏡105及び反射鏡106の角度を調整してレーザ光112の焦点の位置を組立体55の加工点56の位置に合せれば、チップ54の全周においてレーザ光112の焦点の位置を合せられるからである。よって、反射鏡106が回転鏡105と一体に回転しない場合に比べて、レーザ光112の焦点の位置を合せる作業を簡素化できる。   In the welding apparatus 100, the reflecting mirror 106 rotates integrally with the rotating mirror 105. Therefore, the angles of the rotary mirror 105 and the reflecting mirror 106 with respect to the central axis O are adjusted one by one at each point around the central axis O so that the focal point of the laser beam 112 does not match the position of the processing point 56 of the assembly 55. Also good. If the rotation mirror 105 and the reflection mirror 106 are adjusted with respect to the center axis O while the rotation of the rotation mirror 105 is stopped, the focal point of the laser beam 112 is adjusted to the position of the processing point 56 of the assembly 55. This is because the focal point of the laser beam 112 can be aligned over the entire circumference of the line 54. Therefore, compared with the case where the reflecting mirror 106 does not rotate integrally with the rotating mirror 105, the work of aligning the focal point of the laser beam 112 can be simplified.

また、反射鏡106が回転鏡105と一体に回転するので、反射鏡を回転させずに固定し、回転鏡105だけを回転させる場合に比べて、反射鏡の鏡面の面積を小さくできる。反射鏡を回転させずに固定する場合には、反射鏡は、中心軸Oを取り囲む環状の鏡面が必要だからである。よって、本実施の形態によれば、反射鏡を回転させずに固定する場合に比べて、反射鏡に係るコストを削減できる。   Further, since the reflecting mirror 106 rotates integrally with the rotating mirror 105, the area of the mirror surface of the reflecting mirror can be reduced as compared with the case where the reflecting mirror is fixed without rotating and only the rotating mirror 105 is rotated. This is because when the reflecting mirror is fixed without being rotated, the reflecting mirror needs an annular mirror surface surrounding the central axis O. Therefore, according to this Embodiment, the cost which concerns on a reflective mirror can be reduced compared with the case where a reflective mirror is fixed without rotating.

ここで、組立体55及び回転鏡105の回転数は、組立体55に対する回転鏡105の相対回転数が毎分1000回転以上になるように、チップ54や電極母材52の材質や大きさ等に応じて適宜設定される。組立体55だけを回転させて組立体55の全周にレーザ光112を照射すると、組立体55の回転数が高くなるにつれて、レーザ光112の照射によって生じる溶融金属が飛散したり溶融部57が変形したりし易くなる。しかし、本実施の形態によれば、組立体55及び回転鏡105の双方を回転するので、相対的に組立体55の回転数を低くできる。よって、溶融金属の飛散や溶融部57の変形を抑制できる。   Here, the rotational speed of the assembly 55 and the rotating mirror 105 is such that the relative rotational speed of the rotating mirror 105 with respect to the assembly 55 is 1000 rpm or more, and the material and size of the chip 54 and the electrode base material 52. It is set appropriately according to When only the assembly 55 is rotated and the entire circumference of the assembly 55 is irradiated with the laser beam 112, as the number of rotations of the assembly 55 increases, the molten metal generated by the irradiation of the laser beam 112 is scattered or the molten portion 57 is It becomes easy to deform. However, according to the present embodiment, since both the assembly 55 and the rotary mirror 105 are rotated, the rotational speed of the assembly 55 can be relatively lowered. Therefore, scattering of molten metal and deformation of the molten part 57 can be suppressed.

なお、回転鏡105の回転数を組立体55の回転数より高く設定するのが好ましい。組立体55の回転数が高くなると、レーザ光112の照射によって生じる溶融金属が飛散したり溶融部57が変形したりするおそれがあるからである。チップ54や電極母材52の材質や大きさ等にもよるが、組立体55の回転数は毎分150回転を上限とするのが好ましい。   It is preferable to set the rotational speed of the rotary mirror 105 higher than the rotational speed of the assembly 55. This is because when the number of rotations of the assembly 55 increases, molten metal generated by the irradiation of the laser beam 112 may be scattered or the molten portion 57 may be deformed. Although depending on the material and size of the chip 54 and the electrode base material 52, the number of rotations of the assembly 55 is preferably 150 rpm.

また、加工ヘッド110を固定し、加工ヘッド110の出射口111から出射されるレーザ光112を反射する回転鏡105を回転し、反射鏡106を使って組立体55の周囲に反射光113を照射するので、加工ヘッド110を回転させる場合に比べて、溶接装置100の構成を簡素化できる。加工ヘッド110は1点に固定されているので、加工ヘッドを複数用いて多点からレーザ光を照射する場合に比べて、加工ヘッドの数を削減できる。   Further, the processing head 110 is fixed, the rotating mirror 105 that reflects the laser light 112 emitted from the emission port 111 of the processing head 110 is rotated, and the reflected light 113 is irradiated around the assembly 55 using the reflecting mirror 106. Therefore, the configuration of the welding apparatus 100 can be simplified as compared with the case where the machining head 110 is rotated. Since the machining head 110 is fixed at one point, the number of machining heads can be reduced as compared with the case where a plurality of machining heads are used and laser light is irradiated from multiple points.

回転鏡105及び反射鏡106が固定された第1筒部101及び第2筒部102の質量は、加工ヘッド110の質量に比べて小さくできるので、ギヤ109を介して第1筒部101及び第2筒部102を回転させるモータ(図示せず)は、出力の比較的小さいものを採用できる。中心軸O回りに回転する第1筒部101及び第2筒部102の質量を小さくできるので、第1筒部101及び第2筒部102を比較的短時間で最高回転数(相対回転数1000rpm以上)まで上昇させ、溶接後は比較的短時間のうちに停止させることができる。その結果、組立体55を溶接装置100にセットしてからチップ54を溶接し終えるまでの時間を短くできるので、生産性を向上できる。   Since the mass of the first cylindrical portion 101 and the second cylindrical portion 102 to which the rotary mirror 105 and the reflecting mirror 106 are fixed can be made smaller than the mass of the processing head 110, the first cylindrical portion 101 and the first cylindrical portion 101 are connected via the gear 109. As the motor (not shown) for rotating the two cylinder portions 102, a motor having a relatively small output can be adopted. Since the mass of the 1st cylinder part 101 and the 2nd cylinder part 102 which rotate around the center axis | shaft O can be made small, the 1st cylinder part 101 and the 2nd cylinder part 102 can be made the maximum rotation speed (relative rotation speed 1000rpm in a comparatively short time. And the like can be stopped within a relatively short time after welding. As a result, it is possible to shorten the time from setting the assembly 55 to the welding apparatus 100 to completing the welding of the tip 54, so that productivity can be improved.

次に図5を参照して第2実施の形態について説明する。第1実施の形態では、回転鏡105と一体に反射鏡106を回転させる場合について説明した。これに対し第2実施の形態では、反射鏡124を固定する場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5は中心軸Oを含む第2実施の形態における溶接装置120の断面図である。   Next, a second embodiment will be described with reference to FIG. In the first embodiment, the case where the reflecting mirror 106 is rotated integrally with the rotating mirror 105 has been described. In contrast, in the second embodiment, a case where the reflecting mirror 124 is fixed will be described. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 5 is a cross-sectional view of the welding apparatus 120 according to the second embodiment including the central axis O.

図5に示すように溶接装置120は、加工ヘッド110の出射口111から出射するレーザ光112を組立体55の加工点56に照射する装置である。加工ヘッド110の出射口111に、第1筒部121の第1端に形成された第1開口部103が対向する。第1筒部121は、第1端の反対側の第2端に、回転鏡105を支持する支持部122が連接されている。第1筒部121は、支持部122を臨む側面に開口する第2開口部123が形成されている。第2開口部123は、反射光113を反射鏡124へ照射するための開口である。   As shown in FIG. 5, the welding apparatus 120 is an apparatus that irradiates the processing point 56 of the assembly 55 with a laser beam 112 emitted from the emission port 111 of the machining head 110. The first opening 103 formed at the first end of the first cylindrical portion 121 faces the emission port 111 of the processing head 110. The first cylindrical portion 121 has a support portion 122 that supports the rotary mirror 105 connected to the second end opposite to the first end. The 1st cylinder part 121 is formed with the 2nd opening part 123 opened to the side which faces the support part 122. As shown in FIG. The second opening 123 is an opening for irradiating the reflected light 113 to the reflecting mirror 124.

反射鏡124は、反射光113を反射して組立体55の加工点56へ向けて反射光113を照射する円環状の鏡であり、中心軸Oを取り囲むように中心軸Oの周囲に配置されている。反射鏡124は、鏡面が中心軸Oと平行な直線に斜めに交わるように組立体55の軸直角方向の外側に配置されている。反射鏡124は、鏡面の内径が、加工ヘッド110から中心軸O方向へ離れるにつれて次第に小さくなるように設定されている。本実施の形態では、反射鏡124は固定部材(図示せず)によって中心軸O回りに固定されている。   The reflecting mirror 124 is an annular mirror that reflects the reflected light 113 and irradiates the reflected light 113 toward the processing point 56 of the assembly 55, and is disposed around the central axis O so as to surround the central axis O. ing. The reflecting mirror 124 is disposed outside the assembly 55 in the direction perpendicular to the axis so that the mirror surface obliquely intersects with a straight line parallel to the central axis O. The reflecting mirror 124 is set so that the inner diameter of the mirror surface gradually decreases as the distance from the processing head 110 in the direction of the central axis O increases. In the present embodiment, the reflecting mirror 124 is fixed around the central axis O by a fixing member (not shown).

組立体55は、第2モータ(図示せず)により中心軸Oを回転軸として回転する。第2モータ(図示せず)による組立体55の回転方向は、第1モータ(図示せず)による第1筒部121の回転方向の反対である。第1筒部121と組立体55とを逆方向に回転させることで、組立体55に対する第1筒部121(回転鏡105)の相対回転数は毎分1000回転以上に設定される。   The assembly 55 is rotated about a central axis O as a rotation axis by a second motor (not shown). The rotation direction of the assembly 55 by the second motor (not shown) is opposite to the rotation direction of the first cylindrical portion 121 by the first motor (not shown). By rotating the first cylinder 121 and the assembly 55 in the opposite directions, the relative rotation speed of the first cylinder 121 (rotating mirror 105) with respect to the assembly 55 is set to 1000 rotations per minute or more.

溶接装置120は、加工ヘッド110の出射口111から回転鏡105までのレーザ光112のビーム軸の長さが、出射口111から回転鏡105及び反射鏡124を経て加工点56までのレーザ光112及び反射光113のビーム軸の長さの1/2以下に設定されている。その結果、第1実施の形態と同様の作用効果を実現できる。   In the welding apparatus 120, the length of the beam axis of the laser beam 112 from the exit port 111 of the machining head 110 to the rotary mirror 105 is such that the laser beam 112 from the exit port 111 to the machining point 56 through the rotary mirror 105 and the reflecting mirror 124. And the length of the beam axis of the reflected light 113 is set to ½ or less. As a result, the same effect as the first embodiment can be realized.

溶接装置120を使ってチップ54を溶接するには、まず、組立体55を中心軸O回りに回転し、組立体55の回転方向とは反対方向に中心軸Oを回転軸として第1筒部121を回転する。組立体55に対する第1筒部121(回転鏡105)の相対回転数が毎分1000回転以上に到達したときに、加工ヘッド110の出射口111からレーザ光112を出射し、組立体55の加工点56に反射光113を照射する。   In order to weld the tip 54 using the welding apparatus 120, first, the assembly 55 is rotated around the central axis O, and the first tube portion is rotated about the central axis O in the direction opposite to the rotational direction of the assembly 55. 121 is rotated. When the relative rotational speed of the first cylindrical portion 121 (rotating mirror 105) with respect to the assembly 55 reaches 1000 rotations per minute or more, the laser beam 112 is emitted from the emission port 111 of the processing head 110 to process the assembly 55. The point 56 is irradiated with the reflected light 113.

これにより第1実施の形態と同様の作用効果を実現できる。また、溶接装置120は反射鏡124が固定されているので、中心軸O回りに回転する第1筒部121の質量をより小さくできる。その結果、第1筒部121をさらに短時間で最高回転数(相対回転数1000rpm以上)まで上昇させ、溶接後は短時間のうちに停止させることができる。   Thereby, the same effect as 1st Embodiment is realizable. Moreover, since the reflecting mirror 124 is fixed to the welding apparatus 120, the mass of the 1st cylinder part 121 rotated around the central axis O can be made smaller. As a result, the first cylinder 121 can be further raised to the maximum rotation speed (relative rotation speed 1000 rpm or more) in a short time, and can be stopped within a short time after welding.

次に図6を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、1枚の鏡によって反射鏡106,124が形成されている場合について説明した。これに対し第3実施の形態では、2枚の鏡によって反射鏡135が形成される場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図6は中心軸Oを含む第3実施の形態における溶接装置130の断面図である。   Next, a third embodiment will be described with reference to FIG. In the first embodiment and the second embodiment, the case where the reflecting mirrors 106 and 124 are formed by one mirror has been described. In contrast, in the third embodiment, a case where the reflecting mirror 135 is formed by two mirrors will be described. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 6 is a cross-sectional view of the welding apparatus 130 according to the third embodiment including the central axis O.

図6に示すように溶接装置130は、加工ヘッド110の出射口111から出射するレーザ光112を組立体55の加工点56に照射する装置である。加工ヘッド110の出射口111に、第1筒部131の第1端に形成された第1開口部103が対向する。第1筒部131は、第1端の反対側の第2端に、回転鏡134を支持する支持部132が連接されている。第1筒部131は、支持部132を臨む側面に開口する第2開口部133が形成されている。第2開口部133は、反射光138を反射鏡135へ照射するための開口である。   As shown in FIG. 6, the welding apparatus 130 is an apparatus that irradiates the processing point 56 of the assembly 55 with a laser beam 112 emitted from the emission port 111 of the machining head 110. The first opening 103 formed at the first end of the first cylindrical portion 131 faces the emission port 111 of the processing head 110. The first cylindrical portion 131 has a support portion 132 that supports the rotary mirror 134 connected to the second end opposite to the first end. The first cylindrical portion 131 is formed with a second opening 133 that opens to a side surface facing the support portion 132. The second opening 133 is an opening for irradiating the reflecting mirror 135 with the reflected light 138.

反射鏡135は、反射光138を反射して組立体55の加工点56へ向けて反射光138を照射する円環状の鏡であり、中心軸O方向に並んで配置される第1鏡136及び第2鏡137を備えている。第1鏡136及び第2鏡137は、中心軸Oを取り囲むように中心軸Oの周囲に配置されており、中心軸Oを臨む鏡面が、中心軸Oと平行な直線に斜めに交わる。第1鏡136は、鏡面の内径が、加工ヘッド110から中心軸O方向へ離れるにつれて次第に大きくなるように設定されている。第2鏡137は、鏡面の内径が、加工ヘッド110から中心軸O方向へ離れるにつれて次第に小さくなるように設定されている。本実施の形態では、反射鏡135は固定部材(図示せず)によって中心軸O回りに固定されている。   The reflecting mirror 135 is an annular mirror that reflects the reflected light 138 and irradiates the reflected light 138 toward the processing point 56 of the assembly 55, and includes a first mirror 136 that is arranged side by side in the direction of the central axis O, and A second mirror 137 is provided. The first mirror 136 and the second mirror 137 are arranged around the central axis O so as to surround the central axis O, and a mirror surface facing the central axis O obliquely intersects a straight line parallel to the central axis O. The first mirror 136 is set such that the inner diameter of the mirror surface gradually increases as it moves away from the processing head 110 in the direction of the central axis O. The second mirror 137 is set such that the inner diameter of the mirror surface gradually decreases as it moves away from the processing head 110 in the direction of the central axis O. In the present embodiment, the reflecting mirror 135 is fixed around the central axis O by a fixing member (not shown).

組立体55は、第2モータ(図示せず)により中心軸Oの回りに回転する。第2モータ(図示せず)による組立体55の回転方向は、第1モータ(図示せず)による第1筒部131の回転方向の反対である。第1筒部131と組立体55とを逆方向に回転させることで、組立体55に対する第1筒部131(回転鏡134)の相対回転数は毎分1000回転以上に設定される。   The assembly 55 is rotated around the central axis O by a second motor (not shown). The rotation direction of the assembly 55 by the second motor (not shown) is opposite to the rotation direction of the first tube portion 131 by the first motor (not shown). By rotating the first tube portion 131 and the assembly 55 in the opposite directions, the relative rotation speed of the first tube portion 131 (rotating mirror 134) with respect to the assembly 55 is set to 1000 rotations per minute or more.

溶接装置130は、加工ヘッド110の出射口111から回転鏡134までのレーザ光112のビーム軸の長さが、出射口111から回転鏡134及び反射鏡135を経て加工点56までのレーザ光112及び反射光138のビーム軸の長さの1/2以下に設定されている。その結果、第1実施の形態と同様の作用効果を実現できる。   In the welding apparatus 130, the length of the beam axis of the laser beam 112 from the exit port 111 of the machining head 110 to the rotary mirror 134 is such that the laser beam 112 from the exit port 111 to the machining point 56 through the rotary mirror 134 and the reflecting mirror 135. And ½ or less of the length of the beam axis of the reflected light 138. As a result, the same effect as the first embodiment can be realized.

溶接装置130を使ってチップ54を溶接するには、まず、組立体55を中心軸O回りに回転し、組立体55の回転方向とは反対方向に中心軸Oを回転軸として第1筒部131を回転する。組立体55に対する第1筒部131(回転鏡134)の相対回転数が毎分1000回転以上に到達したときに、加工ヘッド110の出射口111からレーザ光112を出射し、組立体55の加工点56に反射光113を照射する。これにより第2実施の形態と同様の作用効果を実現できる。   In order to weld the tip 54 using the welding apparatus 130, first, the assembly 55 is rotated around the central axis O, and the first tube portion is rotated about the central axis O in the direction opposite to the rotational direction of the assembly 55. 131 is rotated. When the relative rotational speed of the first cylindrical portion 131 (rotating mirror 134) with respect to the assembly 55 reaches 1000 rotations per minute or more, the laser beam 112 is emitted from the emission port 111 of the processing head 110 to process the assembly 55. The point 56 is irradiated with the reflected light 113. Thereby, the same effect as 2nd Embodiment is realizable.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、電極母材52及びチップ54の形状や寸法などは一例であり適宜設定できる。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the shapes and dimensions of the electrode base material 52 and the chip 54 are examples and can be set as appropriate.

上記各実施の形態では、中心電極50を構成する電極母材52にチップ54を溶接する場合について説明したが、必ずしもこれに限られるものではない。接地電極30を構成する電極母材31にチップ32を溶接する場合に、上記各実施の形態を適用することは当然可能である。   In each of the above embodiments, the case where the tip 54 is welded to the electrode base material 52 constituting the center electrode 50 has been described, but the present invention is not necessarily limited thereto. When welding the tip 32 to the electrode base material 31 constituting the ground electrode 30, it is naturally possible to apply each of the above embodiments.

上記実施の形態では、抵抗体70が絶縁体40に内蔵されるスパークプラグ10について説明したが、必ずしもこれに限られるものではない。抵抗体70を内蔵しないスパークプラグの製造に上記各実施の形態を適用することは当然可能である。   Although the spark plug 10 in which the resistor 70 is built in the insulator 40 has been described in the above embodiment, the present invention is not necessarily limited thereto. Of course, the above-described embodiments can be applied to the manufacture of a spark plug that does not incorporate the resistor 70.

上記第1実施の形態では、1枚の鏡で反射鏡106が構成された溶接装置100について説明したが、必ずしもこれに限られるものではない。2枚以上の鏡で反射鏡を構成することは当然可能である。同様に、上記第2実施の形態では1枚の鏡で反射鏡124が構成された溶接装置120について説明し、上記第3実施の形態では2枚の鏡で反射鏡135が構成された溶接装置130について説明したが、必ずしもこれに限られるものではない。3枚以上の鏡で反射鏡を構成することは当然可能である。   In the first embodiment, the welding apparatus 100 in which the reflecting mirror 106 is configured by a single mirror has been described. However, the present invention is not necessarily limited thereto. Of course, it is possible to construct a reflecting mirror with two or more mirrors. Similarly, in the second embodiment, the welding apparatus 120 in which the reflecting mirror 124 is configured by one mirror will be described. In the third embodiment, the welding apparatus in which the reflecting mirror 135 is configured by two mirrors will be described. Although 130 has been described, the present invention is not necessarily limited thereto. Of course, it is possible to construct a reflecting mirror with three or more mirrors.

上記各実施の形態では、組立体55の加工点56において、中心軸Oに対して反射光113,138が直交する場合について説明したが、必ずしもこれに限られるものではない。電極母材52及びチップ54の材質や形状、大きさ等に応じて、組立体55の加工点56において、中心軸Oに対して反射光113,138が斜めに交わるように反射光113,138を組立体55に照射することは当然可能である。なお、反射光113,138の焦点の位置は組立体55の表面に合せても良いし、組立体55の表面よりも深いところに合せても良い。   In each of the above-described embodiments, the case where the reflected lights 113 and 138 are orthogonal to the central axis O at the processing point 56 of the assembly 55 has been described, but the present invention is not necessarily limited thereto. In accordance with the material, shape, size, and the like of the electrode base material 52 and the chip 54, the reflected light 113, 138 is formed so that the reflected light 113, 138 crosses the central axis O obliquely at the processing point 56 of the assembly 55. Of course, it is possible to irradiate the assembly 55. The focal positions of the reflected light 113 and 138 may be adjusted to the surface of the assembly 55 or may be adjusted to be deeper than the surface of the assembly 55.

上記各実施の形態では、溶接装置100,120,130の第1筒部101,121,131がギヤ109を含む歯車列によって回転する場合について説明したが、必ずしもこれに限られるものではない。歯車列以外の伝達機構によって、モータ等のアクチュエータの動力を第1筒部101,121,131に伝達して第1筒部101,121,131を回転させることは当然可能である。他の伝達機構としては、ベルトやチェーン等が挙げられる。   In each of the above embodiments, the case where the first cylindrical portions 101, 121, 131 of the welding apparatuses 100, 120, 130 are rotated by a gear train including the gear 109 has been described, but the present invention is not necessarily limited thereto. Of course, it is possible to transmit the power of an actuator such as a motor to the first tube portions 101, 121, 131 by rotating the first tube portions 101, 121, 131 by a transmission mechanism other than the gear train. Examples of other transmission mechanisms include a belt and a chain.

10 スパークプラグ
30 接地電極
31 電極母材
32 チップ
50 中心電極
52 電極母材
54 チップ
55 組立体
56 加工点
105,134 回転鏡
106,124,135 反射鏡
110 加工ヘッド
111 出射口
112 レーザ光
113,138 反射光
O 中心軸
DESCRIPTION OF SYMBOLS 10 Spark plug 30 Ground electrode 31 Electrode base material 32 Tip 50 Center electrode 52 Electrode base material 54 Tip 55 Assembly 56 Processing point 105,134 Rotary mirror 106,124,135 Reflective mirror 110 Processing head 111 Output port 112 Laser beam 113, 138 Reflected light O Central axis

Claims (3)

中心電極および接地電極の少なくとも一方が、電極母材と貴金属を含有するチップとがレーザ溶接により接合されるスパークプラグの製造方法であって、
前記電極母材と前記チップとを重ね合わせた組立体を形成する組立工程と、
前記チップの中心軸を回転軸として前記組立体を回転させる回転工程と、
前記中心軸上に配置された連続発振レーザの加工ヘッドの出射口から前記組立体へ向けてレーザ光を出射し、前記加工ヘッドと前記組立体との間に配置される回転鏡によって前記レーザ光の反射光を反射し、その反射光を1枚以上の反射鏡によって反射して前記組立体の加工点へ照射する照射工程とを備え、
前記照射工程は、前記中心軸を回転軸として前記組立体の回転方向とは逆方向に前記回転鏡を回転させ、前記組立体に対する前記回転鏡の相対回転数は毎分1000回転以上であることを特徴とするスパークプラグの製造方法。
At least one of the center electrode and the ground electrode is a method of manufacturing a spark plug in which an electrode base material and a tip containing a noble metal are joined by laser welding,
An assembly step of forming an assembly in which the electrode base material and the chip are superimposed;
A rotation step of rotating the assembly about the center axis of the chip as a rotation axis;
Laser light is emitted from the exit of the processing head of the continuous wave laser disposed on the central axis toward the assembly, and the laser light is output by a rotating mirror disposed between the processing head and the assembly. And an irradiation step of irradiating the processed point of the assembly by reflecting the reflected light by one or more reflecting mirrors,
In the irradiation step, the rotary mirror is rotated in the direction opposite to the rotation direction of the assembly with the central axis as a rotation axis, and the relative rotational speed of the rotary mirror with respect to the assembly is 1000 rpm or more. A method of manufacturing a spark plug characterized by the above.
前記反射鏡は、前記回転鏡と一体に回転することを特徴とする請求項1記載のスパークプラグの製造方法。   The method of manufacturing a spark plug according to claim 1, wherein the reflecting mirror rotates integrally with the rotating mirror. 前記出射口から前記回転鏡までのビーム軸の長さは、前記出射口から前記加工点までのビーム軸の長さの1/2以下であることを特徴とする請求項1又は2に記載のスパークプラグの製造方法。   3. The length of the beam axis from the exit port to the rotary mirror is ½ or less of the length of the beam axis from the exit port to the processing point. 4. Spark plug manufacturing method.
JP2016085696A 2016-04-22 2016-04-22 Manufacturing method of spark plug Expired - Fee Related JP6553540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085696A JP6553540B2 (en) 2016-04-22 2016-04-22 Manufacturing method of spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085696A JP6553540B2 (en) 2016-04-22 2016-04-22 Manufacturing method of spark plug

Publications (2)

Publication Number Publication Date
JP2017195127A true JP2017195127A (en) 2017-10-26
JP6553540B2 JP6553540B2 (en) 2019-07-31

Family

ID=60156415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085696A Expired - Fee Related JP6553540B2 (en) 2016-04-22 2016-04-22 Manufacturing method of spark plug

Country Status (1)

Country Link
JP (1) JP6553540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977191B1 (en) * 2021-03-19 2021-12-08 株式会社東京精密 Laser processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145119B2 (en) * 1972-08-26 1976-12-02
JP2002170648A (en) * 2000-11-30 2002-06-14 Ngk Spark Plug Co Ltd Manufacturing method of spark plug and spark plug
JP2014035863A (en) * 2012-08-08 2014-02-24 Ngk Spark Plug Co Ltd Method of manufacturing spark plug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145119B2 (en) * 1972-08-26 1976-12-02
JP2002170648A (en) * 2000-11-30 2002-06-14 Ngk Spark Plug Co Ltd Manufacturing method of spark plug and spark plug
JP2014035863A (en) * 2012-08-08 2014-02-24 Ngk Spark Plug Co Ltd Method of manufacturing spark plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977191B1 (en) * 2021-03-19 2021-12-08 株式会社東京精密 Laser processing equipment
JP2022144377A (en) * 2021-03-19 2022-10-03 株式会社東京精密 Laser processing device

Also Published As

Publication number Publication date
JP6553540B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6243476B2 (en) Spark plug and manufacturing method thereof
JP5047363B2 (en) Spark plug and manufacturing method thereof
EP3378593B1 (en) Method of manufacturing spark plug with first and second laser welding steps
JP4674696B2 (en) Manufacturing method of spark plug
JP2003068421A (en) Spark plug and its manufacturing method
FR2858477A1 (en) EXCLUSIVE LASER WELDING NONLIGHT METAL PASTILLATION CANDLE, AND METHOD OF MANUFACTURING THE SAME
MXPA06008753A (en) Spark plug configuration having a noble metal tip.
KR20100082786A (en) Ignition device having an induction welded and laser weld reinforced firing tip and method of construction
JP2016062664A (en) Spark plug, and method of manufacturing spark plug
JP6553540B2 (en) Manufacturing method of spark plug
JP2014519169A (en) Electrode for spark plug and method of manufacturing the same
CN107210587B (en) Spark plug electrode with a deep-penetration weld seam, spark plug with a spark plug electrode, and method for producing a spark plug electrode
JP2002319468A (en) Spark plug and its manufacturing method
JP6532491B2 (en) Method of manufacturing spark plug
US20170294763A1 (en) Spark plug
JP5755708B2 (en) Manufacturing method of spark plug
JP2001135456A (en) Spark plug for internal combustion engine and its manufacturing method
JP2018190586A (en) Manufacturing method of spark plug
US10439369B1 (en) Method for producing an electrode device for a spark plug
JP7126961B2 (en) spark plug
JP2002237370A (en) Spark plug
JP6780381B2 (en) Spark plugs and their manufacturing methods
JP2019129083A (en) Manufacturing method of ignition plug
JPH09223569A (en) Manufacture of central electrode and multipolar spark plug
JP2014164797A (en) Method of manufacturing spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6553540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees