JP2017194437A - Telemetry device and telemetering method - Google Patents

Telemetry device and telemetering method Download PDF

Info

Publication number
JP2017194437A
JP2017194437A JP2016086598A JP2016086598A JP2017194437A JP 2017194437 A JP2017194437 A JP 2017194437A JP 2016086598 A JP2016086598 A JP 2016086598A JP 2016086598 A JP2016086598 A JP 2016086598A JP 2017194437 A JP2017194437 A JP 2017194437A
Authority
JP
Japan
Prior art keywords
light
measurement
measurement light
analysis unit
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016086598A
Other languages
Japanese (ja)
Inventor
大輔 飯田
Daisuke Iida
大輔 飯田
邦弘 戸毛
Kunihiro Komo
邦弘 戸毛
哲也 真鍋
Tetsuya Manabe
哲也 真鍋
文彦 伊藤
Fumihiko Ito
文彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Nippon Telegraph and Telephone Corp
Original Assignee
Shimane University
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University, Nippon Telegraph and Telephone Corp filed Critical Shimane University
Priority to JP2016086598A priority Critical patent/JP2017194437A/en
Publication of JP2017194437A publication Critical patent/JP2017194437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a telemetry device in which a measuring device head thereof has a compact and simple structure and which, even if an object is put in a place where large spatial restrictions exist, enables irregularities on a surface of the object to be measured.SOLUTION: A telemetry device of the present disclosure comprises: a sensor section (3-3) in which measurement light is emitted from an emission port and on which reflection light reflected by a surface of an object is incident through an incident port; an optical fiber (3-2) for propagating the measurement light and the reflection light; and an analysis unit (3-1) that measures irregularities on the surface of the object using a change in phase of interference fringes between the measurement light and the reflection light.SELECTED DRAWING: Figure 3

Description

本開示は、遠隔で物体表面の凹凸を測定する測定装置及びその測定方法に関する。   The present disclosure relates to a measurement apparatus that remotely measures unevenness of an object surface and a measurement method thereof.

物体表面の比較的小さなcm〜μm程度の凹凸の測定は、精密な機械部品の摩耗性、気密性の検査や、製品の外観の違いや直に手で触る場合の感触などの数値管理などのために、利用されている。具体的な測定技術としては、触針による測定や、顕微鏡類、白色干渉計などが利用されている(例えば、非特許文献1参照。)。   Measurement of unevenness of relatively small cm to μm on the surface of the object includes numerical control such as precision wear inspection and airtightness inspection of machine parts, and differences in product appearance and touch when touched directly. It is used for. As a specific measurement technique, measurement with a stylus, a microscope, a white interferometer, or the like is used (for example, see Non-Patent Document 1).

しかし、これらの技術は、測定器のある部分に被測定物体の表面を固定するなどして測定することになり、動かせないほど大きいものや、形がシンプルでないものの表面は測定が困難である。このため、位置部分を切り出して加工するなどして測定することも考えられるが、そのような直接の加工ができないような物体、例えばインフラのような大きな構造物は測定することが困難である。   However, these techniques measure by fixing the surface of the object to be measured to a certain part of the measuring instrument, and it is difficult to measure a surface that is so large that it cannot be moved or a surface that is not simple in shape. For this reason, it is conceivable to measure by cutting out and processing the position portion, but it is difficult to measure an object that cannot be directly processed, for example, a large structure such as an infrastructure.

一方、そのような大きい構造物は、劣化する際には、歪みが生じ、表面形状に変化が起こると考えられる。その小さな変化を持続的にモニタし検出することで、構造物の劣化時間を分析し、故障に至る前に警告を発することができる。このような構造物の歪を検出する、いわゆるセンサ技術としては様々なものが研究、開発されてきた。例えば構造物の形に柔軟に対応でき、通電しないでセンシングが可能な光ファイバセンサとして非特許文献2などのように様々なものが考えられてきた。しかし、現在考案されている、インフラなどの大きな構造物に対するセンサ技術では、構造物表面の凹凸をμmの精度で測定することは困難である。   On the other hand, when such a large structure deteriorates, it is considered that distortion occurs and the surface shape changes. By continuously monitoring and detecting the small changes, it is possible to analyze the deterioration time of the structure and issue a warning before failure occurs. Various so-called sensor technologies for detecting the strain of such a structure have been researched and developed. For example, various optical fiber sensors such as Non-Patent Document 2 have been considered as optical fiber sensors that can flexibly cope with the shape of a structure and can perform sensing without energization. However, it is difficult to measure the unevenness of the surface of the structure with an accuracy of μm with the sensor technology for a large structure such as an infrastructure that has been devised at present.

関連技術では、物体の表面をμmの精度で測定するためには、物体を切断・加工などして、測定器に固定する方法でないと測定が困難である。また、そのような切断・加工ができないようなインフラなどの構造物のセンシング技術では物体表面などを精度よく測定することが困難で、構造物の劣化分析、故障予知の精度に限界がある。   In the related art, in order to measure the surface of an object with an accuracy of μm, it is difficult to measure unless the object is cut and processed and fixed to a measuring instrument. In addition, it is difficult to accurately measure the surface of an object such as an infrastructure or the like that cannot be cut or processed, and there is a limit to the accuracy of deterioration analysis and failure prediction of the structure.

http://www.keyence.co.jp/microscope/special/3dprofiler/arasa/http: // www. keyence. co. jp / microscope / special / 3dprofiler / arasa / P.R.Hoffman, et al, “Position determination of an acoustic burst along a Sagnac Interferometer,” Journal of Lightwave Technology, vol.22, No.2, February, 2004P. R. Hoffman, et al, “Position determination of an acoustic burst a sagnac interferometer,” Journal of Lightwave Technology, vol. 22, no. 2, February, 2004

本開示では、大きな構造物であっても非破壊で高精度に表面凹凸を測定することを目的とする。   An object of the present disclosure is to measure surface irregularities with high accuracy without breaking even in a large structure.

本開示の遠隔測定装置は、
出射口から測定光を出射し、物体表面で反射された反射光が入射口から入射されるセンサ部と、
前記測定光及び前記反射光を伝搬する光ファイバと、
前記測定光及び前記反射光の干渉縞の位相の変化を用いて、前記物体表面の凹凸を測定する解析部と、
を備える。
The telemetry device of the present disclosure is
A sensor unit that emits measurement light from the exit port, and the reflected light reflected from the object surface enters from the entrance port;
An optical fiber that propagates the measurement light and the reflected light;
An analysis unit that measures unevenness of the object surface using a change in phase of interference fringes of the measurement light and the reflected light;
Is provided.

本開示の遠隔測定方法は、
解析部から光ファイバを介して伝搬された測定光をセンサ部から物体表面に向けて出射し、前記物体表面で反射されかつセンサ部に入射された反射光を光ファイバを介して前記解析部に伝搬する手順と、
前記解析部が、前記測定光及び前記反射光の干渉縞の位相の変化を用いて、前記物体表面の凹凸を測定する手順と、
を順に備える。
The telemetry method of the present disclosure is:
The measurement light propagated from the analysis unit through the optical fiber is emitted from the sensor unit toward the object surface, and the reflected light reflected by the object surface and incident on the sensor unit is transmitted to the analysis unit through the optical fiber. The procedure to propagate;
The analysis unit measures irregularities on the surface of the object using a change in phase of interference fringes of the measurement light and the reflected light, and
In order.

本開示によれば、大きな構造物であっても非破壊で高精度に表面凹凸を測定することができる。   According to the present disclosure, surface irregularities can be measured with high accuracy in a nondestructive manner even in a large structure.

実施形態に係る遠隔測定装置の構成の一例を示す。An example of the structure of the telemetry apparatus which concerns on embodiment is shown. 実施形態に係る遠隔測定装置の別形態の被測定構造物への適用例を示す。The example of application to the structure under test of another form of the telemetry device concerning an embodiment is shown. 測定原理の一例を示す。An example of the measurement principle is shown.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, this indication is not limited to embodiment shown below. These embodiments are merely examples, and the present disclosure can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.

本実施形態に係る遠隔測定装置の構成例を図1に示す。ここで、1−1はデータの解析を行う解析部、1−2は解析部1−1とのデータ伝送を行う光ファイバ、1−3は被測定物体の表面を測定するセンサ部である。実施形態に係る遠隔測定装置は、解析部1−1、光ファイバ1−2及びセンサ部1−3を備える。   A configuration example of a telemetry device according to the present embodiment is shown in FIG. Here, 1-1 is an analysis unit that performs data analysis, 1-2 is an optical fiber that performs data transmission with the analysis unit 1-1, and 1-3 is a sensor unit that measures the surface of the object to be measured. The telemetry device according to the embodiment includes an analysis unit 1-1, an optical fiber 1-2, and a sensor unit 1-3.

1−4は被測定物体である。被測定物体1−4の形状は任意であるが、図1では、被測定物体1−4の例として、トンネルを模擬した円筒を表している。被測定物体1−4の複数個所にセンサ測定をするセンサ部1−3を設置し、解析部1−1とセンサ部1−3を光ファイバ1−2で結ぶことにより、センサ部1−3で測定した各所の形状またはその変化などの表面データを解析部1−1で解析する。   1-4 is an object to be measured. Although the shape of the measured object 1-4 is arbitrary, in FIG. 1, as an example of the measured object 1-4, a cylinder simulating a tunnel is shown. The sensor unit 1-3 that performs sensor measurement is installed at a plurality of locations of the measured object 1-4, and the analysis unit 1-1 and the sensor unit 1-3 are connected by the optical fiber 1-2. The analysis unit 1-1 analyzes the surface data such as the shape of each place or the change thereof measured in (1).

図2は、被測定物体1−4がパイプ形状製品など、空間的に制約された場所での形状測定の場合を示す。この場合も光ファイバ1−2を使うことにより、センサ部1−3を被測定物体1−4の内部の奥まで挿入することができ、柔軟に表面の凹凸等を測定することが可能である。   FIG. 2 shows a case where the object to be measured 1-4 is shape-measured in a spatially restricted place such as a pipe-shaped product. Also in this case, by using the optical fiber 1-2, the sensor unit 1-3 can be inserted deep inside the object to be measured 1-4, and surface irregularities and the like can be measured flexibly. .

次に具体的な凹凸測定方法を示す。図3は提案する凹凸測定方式を示す図である。3−1は本方式での解析部である。高分解能で凹凸を測定するため、空間的に高分解能な測定が可能なコヒーレント光反射計を解析部3−1に用いることが好ましい。具体的な光反射計の種類としては、反射光の距離に対する電界振幅(振幅と位相)を検出するようなものならば何でもよいが、本実施形態では、周波数掃引した測定光を用いて、測定光の到達距離と測定光の周波数を対応させて測定光の散乱位置を特定する測定器である、OFDR(OpticalFrequency Domain Reflkectometry)を用いる。コヒーレント光反射計であるため、光源は高コヒーレンスなものを用いる。このため、以後の説明での測定光は光線のような細い光として扱うことが可能である。光ファイバ3−2を通して接続された3−3はセンサ部で、3−4は入射部レンズ、3−5は出射部レンズ、3−6は回折格子、3−7は被測定物体1−4の表面に相当する被測定試料である。   Next, a specific unevenness measuring method is shown. FIG. 3 is a diagram showing the proposed unevenness measurement method. Reference numeral 3-1 denotes an analysis unit in this method. In order to measure unevenness with high resolution, it is preferable to use a coherent light reflectometer capable of spatially high resolution measurement for the analysis unit 3-1. As a specific type of the light reflectometer, any kind of device that detects the electric field amplitude (amplitude and phase) with respect to the distance of the reflected light may be used, but in this embodiment, measurement is performed using the frequency-swept measurement light. OFDR (Optical Frequency Domain Reflexometry), which is a measuring device that specifies the scattering position of the measurement light by associating the distance of the light with the frequency of the measurement light, is used. Since it is a coherent light reflectometer, a light source with high coherence is used. For this reason, the measurement light in the following description can be handled as thin light such as light rays. Reference numeral 3-3 connected through the optical fiber 3-2 denotes a sensor unit, 3-4 denotes an entrance lens, 3-5 denotes an exit lens, 3-6 denotes a diffraction grating, and 3-7 denotes an object to be measured 1-4. It is a sample to be measured corresponding to the surface.

光ファイバ3−2を通して入射された測定光は入射部レンズ3−4を通して、回折格子3−6に入射する。回折格子3−6では、その入射光が光周波数ごとに分離され、それぞれが出射部レンズ3−5を通して近視野像が被測定試料3−7の表面上に結像されるようにする。このときに、被測定試料3−7の表面上の位置を1次元的にx軸で表現すると、結像された近視野像はxに対して線形な遅延が与えられる。近視野像と回折格子の間の角度をθとする。   The measurement light incident through the optical fiber 3-2 enters the diffraction grating 3-6 through the incident part lens 3-4. In the diffraction grating 3-6, the incident light is separated for each optical frequency, and a near-field image is formed on the surface of the sample 3-7 to be measured through the exit lens 3-5. At this time, if the position on the surface of the sample 3-7 to be measured is expressed one-dimensionally on the x axis, the imaged near-field image is given a linear delay with respect to x. Let θ be the angle between the near-field image and the diffraction grating.

コヒーレント反射計の空間分解能をΔz=cΔτ(Δτ:時間分解能、c:光速)とすると、特定の遅延τの位置からの反射光は、Δτ程度の広がりをもつパルスとして観測され、その位相は2π×光周波数×τだけ遅れたものになる。   If the spatial resolution of the coherent reflectometer is Δz = cΔτ (Δτ: temporal resolution, c: speed of light), the reflected light from the position of a specific delay τ is observed as a pulse having a spread of about Δτ, and its phase is 2π. × Optical frequency × τ delayed.

被測定試料3−7が完全に平坦である場合、被測定試料3−7上の点xから反射されたビームの時間遅延はτ=ax(ただしa=tanθ/c)であり、点xからの反射光は、コヒーレント反射計において以下のようなパルスとして観測される。

Figure 2017194437
ただし、A(t)は、コヒーレント反射計で単一点からの反射を観測したときのパルス波形(電界振幅)であり、その広がりは約Δτである。νは光源の光周波数である。 When the sample 3-7 to be measured is completely flat, the time delay of the beam reflected from the point x on the sample 3-7 to be measured is τ = ax (where a = tan θ / c). The reflected light is observed as a pulse as follows in a coherent reflectometer.
Figure 2017194437
However, A (t) is a pulse waveform (electric field amplitude) when reflection from a single point is observed with a coherent reflectometer, and its spread is about Δτ. ν 0 is the optical frequency of the light source.

式(1)から明らかなように、C−OFDRによって観測される電界複素振幅の位相は、2πνaxに比例して変化する。もし、試料の形状が変わり、局所的な傾斜がΔ(tanθ)=Δd/Δxだけ変化したとすると、そこでの位相は、次式となり、試料表面の傾斜は、測定信号の干渉縞の位相の変化となって現れる。これを用いれば、測定された信号から試料表面の凹凸を検出することができる。

Figure 2017194437
As is clear from Equation (1), the phase of the electric field complex amplitude observed by C-OFDR changes in proportion to 2πν 0 ax. If the shape of the sample changes and the local tilt changes by Δ (tan θ) = Δd / Δx, the phase there is given by the following equation, and the tilt of the sample surface is the phase of the interference fringes of the measurement signal: It appears as a change. If this is used, the unevenness | corrugation of the sample surface can be detected from the measured signal.
Figure 2017194437

傾斜角度の測定限界について説明する。C−OFDRの時間分解能Δτは、OFDRで掃引する光周波数幅をΔFとすると次式で表され、これは同時にサンプリング時間間隔に等しい。

Figure 2017194437
The measurement limit of the tilt angle will be described. The time resolution Δτ of C-OFDR is expressed by the following equation where the optical frequency width swept by OFDR is ΔF, which is simultaneously equal to the sampling time interval.
Figure 2017194437

従って、Δτの間に2π以上の位相変化が生じた場合には、検出に2π×整数の誤差が生じる。このため測定可能な傾斜角度の変化に次の制約がある。

Figure 2017194437
Therefore, when a phase change of 2π or more occurs during Δτ, an error of 2π × integer occurs in detection. For this reason, there are the following restrictions on the change in measurable inclination angle.
Figure 2017194437

C−OFDRの分解能はΔF〜10THz程度まで可能であるから、期待できる能力として、ν=200THzとすると、次式となり、これが試料の傾斜角度の限界を表す。

Figure 2017194437
Since the resolution of C-OFDR is possible up to about ΔF to 10 THz, if ν 0 = 200 THz is expected, the following equation is obtained, which represents the limit of the tilt angle of the sample.
Figure 2017194437

また、この測定のx方向の空間分解能力Δxresは、次式となる。

Figure 2017194437
Further, the spatial resolution capability Δx res in the x direction of this measurement is expressed by the following equation.
Figure 2017194437

以上の手順で試料の凹凸を1次元的に測定することが可能である。また、上記θを変化させる時のそれぞれにおいて、回折格子をθの回転軸と垂直な軸の周りにも回転させることで、上記xの軸と垂直な方向の測定が可能でき、この2つの軸の回転の測定により2次元的に測定することも可能である。   The unevenness of the sample can be measured one-dimensionally by the above procedure. Further, at each time of changing the θ, by rotating the diffraction grating also about an axis perpendicular to the rotation axis of θ, measurement in the direction perpendicular to the x axis can be performed. It is also possible to measure two-dimensionally by measuring the rotation of.

コヒーレンス光反射計はOFDRに限らず、場所を特定できる測定方法であれば何でもよい。また、センサ部3−3と解析部3−1を結ぶ光ファイバ3−2は1対1ではなく、一つの解析部3−1に複数の光ファイバ3−2とセンサ部3−3を接続させてスイッチで測定光を入射する光ファイバ3−2を選択すれば、一つの測定で多数の光ファイバを接続することも可能であり、効率的に被測定物体1−4の全体の表面を一つの解析部3−1で測定することが可能である。   The coherence light reflectometer is not limited to OFDR, and any measurement method can be used as long as the location can be specified. The optical fiber 3-2 connecting the sensor unit 3-3 and the analysis unit 3-1 is not one-to-one, and a plurality of optical fibers 3-2 and the sensor unit 3-3 are connected to one analysis unit 3-1. Then, if the optical fiber 3-2 on which the measurement light is incident is selected by the switch, a large number of optical fibers can be connected in one measurement, and the entire surface of the object to be measured 1-4 can be efficiently covered. It can be measured by one analysis unit 3-1.

なお、本開示は、上記実施形態例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態例に開示されている複数の構成要素の適宜な組合せにより種種の開示を形成できる。例えば、実施形態例に示される全構成要素からいくつかの構成要素を削除しても良い。更に、異なる実施形態例に亘る構成要素を適宜組み合わせても良い。   Note that the present disclosure is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Various disclosures can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiment examples may be appropriately combined.

(本開示の効果)
本開示による遠隔測定方法は、関連技術に対して、以下の優位性を持つと考えられる。光ファイバを用いてセンサ部と解析部を遠隔に設置することができるため、大きな被測定物体に対して、柔軟に表面の凹凸を測定することが可能である。また、この光ファイバによる伝送と親和性の高い、コヒーレントな光を用いた反射計による測定を利用して、凹凸の測定精度を高分解能なもので測定することも可能である。また、センサ部は測定する被測定物体に向ければよく、加工・切断が不要なため、非破壊で高精度な表面の凹凸が可能である。これにより、詳細な構造物状態の計測が可能になり、より精度の高い異常検知・予防保全が可能となり、インフラなどの構造物に対する保守管理の効率化、信頼性の向上に貢献する。
(Effects of the present disclosure)
The telemetry method according to the present disclosure is considered to have the following advantages over the related art. Since the sensor unit and the analysis unit can be remotely installed using an optical fiber, it is possible to flexibly measure the surface roughness of a large object to be measured. It is also possible to measure the measurement accuracy of unevenness with a high resolution by using a reflectometer that uses coherent light, which is highly compatible with the transmission by this optical fiber. In addition, the sensor unit only needs to be directed to the object to be measured, and processing / cutting is not required, so that the surface irregularities can be made nondestructively and with high accuracy. As a result, detailed structural state measurement becomes possible, more accurate abnormality detection / preventive maintenance becomes possible, and it contributes to improving the efficiency and reliability of maintenance management for structures such as infrastructure.

本開示は情報通信産業に適用することができる。   The present disclosure can be applied to the information communication industry.

1−1、3−1:解析部
1−2、3−2:光ファイバ
1−3、3−3:センサ部
1−4:被測定物体
3−4:入射部レンズ
3−5:出射部レンズ
3−6:回折格子
3−7:被測定試料
1-1, 3-1: Analysis unit 1-2, 3-2: Optical fiber 1-3, 3-3: Sensor unit 1-4: Object to be measured 3-4: Incident unit lens 3-5: Emission unit Lens 3-6: Diffraction grating 3-7: Sample to be measured

Claims (3)

出射口から測定光を出射し、物体表面で反射された反射光が入射口から入射されるセンサ部と、
前記測定光及び前記反射光を伝搬する光ファイバと、
前記測定光及び前記反射光の干渉縞の位相の変化を用いて、前記物体表面の凹凸を測定する解析部と、
を備える遠隔測定装置。
A sensor unit that emits measurement light from the exit port, and the reflected light reflected from the object surface enters from the entrance port;
An optical fiber that propagates the measurement light and the reflected light;
An analysis unit that measures unevenness of the object surface using a change in phase of interference fringes of the measurement light and the reflected light;
A telemetry device comprising:
前記センサ部は、
前記測定光を光周波数の異なる複数の入射光に分離する回折格子と、
前記物体表面の凹凸に応じて前記位相がずれるように、前記入射光を前記物体表面で結像させる出射部レンズと、
を備える、
請求項1に記載の遠隔測定装置。
The sensor unit is
A diffraction grating for separating the measurement light into a plurality of incident lights having different optical frequencies;
An exit lens that forms an image of the incident light on the object surface so that the phase is shifted according to the unevenness of the object surface;
Comprising
The telemetry device according to claim 1.
解析部から光ファイバを介して伝搬された測定光をセンサ部から物体表面に向けて出射し、前記物体表面で反射されかつセンサ部に入射された反射光を光ファイバを介して前記解析部に伝搬する手順と、
前記解析部が、前記測定光及び前記反射光の干渉縞の位相の変化を用いて、前記物体表面の凹凸を測定する手順と、
を順に備える遠隔測定方法。
The measurement light propagated from the analysis unit through the optical fiber is emitted from the sensor unit toward the object surface, and the reflected light reflected by the object surface and incident on the sensor unit is transmitted to the analysis unit through the optical fiber. The procedure to propagate;
The analysis unit measures irregularities on the surface of the object using a change in phase of interference fringes of the measurement light and the reflected light, and
A telemetry method comprising:
JP2016086598A 2016-04-22 2016-04-22 Telemetry device and telemetering method Pending JP2017194437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086598A JP2017194437A (en) 2016-04-22 2016-04-22 Telemetry device and telemetering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086598A JP2017194437A (en) 2016-04-22 2016-04-22 Telemetry device and telemetering method

Publications (1)

Publication Number Publication Date
JP2017194437A true JP2017194437A (en) 2017-10-26

Family

ID=60155410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086598A Pending JP2017194437A (en) 2016-04-22 2016-04-22 Telemetry device and telemetering method

Country Status (1)

Country Link
JP (1) JP2017194437A (en)

Similar Documents

Publication Publication Date Title
Bao et al. Recent development in the distributed fiber optic acoustic and ultrasonic detection
US10429172B2 (en) Defect detection method and defect detection device
JP6247752B2 (en) Optical measuring apparatus and optical measuring method for obtaining distance difference
KR101130344B1 (en) Apparatus and method of distributed fiber sensor using Brillouin optical time domain analysis based on Brillouin dynamic grating
JP6403682B2 (en) Interferometer and sample characterization apparatus using such an apparatus
CN108431545A (en) For measuring, there are the device and method of height when thin layer
EP3492910A1 (en) Subsurface inspection method and system
EA032547B1 (en) Optical fiber vibration measurement system in multiphase flows and related method to monitor multiphase flows
US10571321B2 (en) Device for measuring fluid parameters, a method for measuring fluid parameters and a computer program product
WO2019235330A1 (en) Optical-fiber path searching method, optical-fiber path searching system, signal processing device, and program
Williams et al. Multichannel fiber laser acoustic emission sensor system for crack detection and location in accelerated fatigue testing of aluminum panels
GB2416835C (en) Method and apparatus for studying surfaces
Handerek et al. Improved optical power budget in distributed acoustic sensing using enhanced scattering optical fibre
US11391700B2 (en) Defect detection device
US20080266570A1 (en) Detection and location of breaks in distributed brillouin fiber sensors
JP2017194437A (en) Telemetry device and telemetering method
WO2013015349A1 (en) Optical tomographic image measuring apparatus and optical tomographic image measuring system
KR101664470B1 (en) Multiple beam path optical system using rear surface reflection of beam splitter
CN108489647B (en) Method for demodulating dynamic stress frequency in polarization maintaining optical fiber
JP6706192B2 (en) Propagation delay time difference measuring method between spatial channels and propagation delay time difference measuring apparatus between spatial channels
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
US20130088707A1 (en) Method and system for crack detection
KR101538908B1 (en) Safety monitoring system of nuclear equipment with intergrating system of laser ultrasonic and shearography
KR101797966B1 (en) wavelength measurement system using flat surface object and method thereof
JP2001255115A (en) Apparatus for measuring low coherence interference