JP2017194391A - Gas detection device and gas detection method - Google Patents

Gas detection device and gas detection method Download PDF

Info

Publication number
JP2017194391A
JP2017194391A JP2016085619A JP2016085619A JP2017194391A JP 2017194391 A JP2017194391 A JP 2017194391A JP 2016085619 A JP2016085619 A JP 2016085619A JP 2016085619 A JP2016085619 A JP 2016085619A JP 2017194391 A JP2017194391 A JP 2017194391A
Authority
JP
Japan
Prior art keywords
gas
detection
thermal conductivity
air
target gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085619A
Other languages
Japanese (ja)
Other versions
JP6305459B2 (en
Inventor
伊藤 達也
Tatsuya Ito
達也 伊藤
靖男 松川
Yasuo Matsukawa
靖男 松川
泰成 杠
Yasunari Yuzuriha
泰成 杠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2016085619A priority Critical patent/JP6305459B2/en
Publication of JP2017194391A publication Critical patent/JP2017194391A/en
Application granted granted Critical
Publication of JP6305459B2 publication Critical patent/JP6305459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device that more correctly detects detection object gas such as hydrogen gas mixed in air containing water vapor and dry air.SOLUTION: A gas detection device according to the present invention is a gas detection device 1 that detects detection object gas in measurement object gas in which the detection object gas is contained in air containing water vapor and dry air. The device comprises: a signal intensity detection unit 2 that detects signal intensity relevant to thermal conductivity of the measurement object gas; and a detection object gas detection unit 3 that detects the detection object gas on the basis of the signal intensity. The detection object gas detection unit 3 is configured to detect the detection object gas from a correlation function indicative of a correspondence between the signal intensity and concentration of the detection object gas, and signal intensity obtained by the signal intensity detection unit. The correlation function is obtained from a thermal conductivity function of the measurement object gas to be obtained by an interaction function considering an interaction between the air and the detection object gas, and a thermal conductivity function of the measurement object gas to be obtained by thermal conductivity of the air and thermal conductivity of the detection object gas.SELECTED DRAWING: Figure 1

Description

本発明は、ガス検知装置およびガス検知方法に関する。より具体的には、本発明は、水蒸気および乾燥空気を含む空気に混入した検知対象ガスを検知するガス検知装置およびガス検知方法に関する。   The present invention relates to a gas detection device and a gas detection method. More specifically, the present invention relates to a gas detection device and a gas detection method for detecting a detection target gas mixed in air containing water vapor and dry air.

空気中の検知対象ガスを検知する様々な装置が知られている。たとえば、空気中に含まれるガスを検知する装置として、特許文献1に開示された気体熱伝導式ガス検知装置が知られている。このような検知装置は、気体の熱伝導率を利用して、空気中の検知対象ガスを検知している。より具体的には、検知対象ガスが水素ガスの場合、水素ガスの熱伝導率が、標準状態で気体として存在しうる物質と比較して著しく大きいことから、水素ガスが混入した空気中では、水素ガスを含まない空気中と比べて、熱源からの放熱量が大きくなる。気体熱伝導式ガス検知装置では、このような原理を利用して、空気中に含まれる、水素ガスなどの検知対象ガスの検知が可能となる。   Various devices for detecting a detection target gas in the air are known. For example, a gas heat conduction type gas detection device disclosed in Patent Document 1 is known as a device for detecting gas contained in air. Such a detection device detects a detection target gas in the air using the thermal conductivity of the gas. More specifically, when the detection target gas is hydrogen gas, the thermal conductivity of the hydrogen gas is significantly larger than a substance that can exist as a gas in the standard state. Compared to air that does not contain hydrogen gas, the amount of heat released from the heat source is increased. In the gas heat conduction type gas detection device, it is possible to detect a detection target gas such as hydrogen gas contained in the air using such a principle.

特開2001−242114号公報JP 2001-242114 A

ところが、この種の気体熱伝導式ガス検知装置は、検知対象ガスが水素ガスである場合を一例に挙げると、水素ガスを含む空気の熱伝導率が水素ガスの濃度だけでなく空気中の水蒸気にも大きく依存するために、湿度が変動する環境では、測定対象である水素ガスを精度よく検知することが難しい。つまり、「水素ガスを含む空気」と標準ガスに用いられる「乾燥空気」との熱伝導率の差を検知しても、その熱伝導率の差が、後述するように、「水素ガスを含む空気」と「乾燥空気」との水素ガスおよび水蒸気の濃度の変化に単純には比例しないので、「水素ガスを含む空気」中の水蒸気の濃度が既知であっても、「水素ガスを含む空気」中の水素ガスを精度よく検知することが難しい。そして、このような問題は、空気中に含まれる水素ガスに限られず、空気中に含まれる他の検知対象ガスについても同様のことが言える。このように空気中に水素ガスなどの他のガスが発生した場合、検知対象ガスを含んだ空気と標準ガスとの間の熱伝導率の違いを単純に利用しても、精度の高い測定が困難であった。   However, in this type of gas heat conduction type gas detector, when the detection target gas is hydrogen gas, for example, the thermal conductivity of air containing hydrogen gas is not only the concentration of hydrogen gas but also water vapor in the air. Therefore, it is difficult to accurately detect hydrogen gas as a measurement target in an environment where the humidity varies. In other words, even if a difference in thermal conductivity between “air containing hydrogen gas” and “dry air” used for the standard gas is detected, the difference in thermal conductivity is determined to be “including hydrogen gas” as described later. Since it is not simply proportional to changes in the concentration of hydrogen gas and water vapor between “air” and “dry air”, even if the concentration of water vapor in “air containing hydrogen gas” is known, “air containing hydrogen gas” It is difficult to accurately detect the hydrogen gas. Such a problem is not limited to hydrogen gas contained in the air, and the same can be said for other detection target gases contained in the air. In this way, when other gases such as hydrogen gas are generated in the air, accurate measurement is possible even if the difference in thermal conductivity between the air containing the detection target gas and the standard gas is simply used. It was difficult.

本発明は、上述した問題に鑑みなされたもので、水蒸気および乾燥空気を含む空気に混入した検知対象ガスをより正確に検知する装置および方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an apparatus and a method for more accurately detecting a detection target gas mixed in air including water vapor and dry air.

本発明のガス検知装置は、水蒸気および乾燥空気を含む空気に検知対象ガスが含まれる測定対象ガスにおける前記検知対象ガスを検知するためのガス検知装置であって、前記測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出部と、前記信号強度に基づいて前記検知対象ガスを検知する検知対象ガス検知部とを備え、前記検知対象ガス検知部が、前記信号強度と前記検知対象ガスの濃度との間の対応を示す相関関数、および、前記信号強度検出部により得られた信号強度から、前記検知対象ガスを検知するように構成され、前記相関関数が、i)前記水蒸気および前記乾燥空気を1成分とした前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とに基づいた、前記空気と前記検知対象ガスとの間の相互作用を考慮した相互作用関数、およびii)前記空気の熱伝導率および前記検知対象ガスの熱伝導率により求められる、前記測定対象ガス中の前記検知対象ガスの濃度を変数とする前記測定対象ガスの熱伝導率関数から得られることを特徴とする。   The gas detection device of the present invention is a gas detection device for detecting the detection target gas in the measurement target gas in which the detection target gas is contained in air containing water vapor and dry air, and the thermal conductivity of the measurement target gas A signal intensity detection unit that detects a signal intensity related to the detection signal, and a detection target gas detection unit that detects the detection target gas based on the signal intensity, and the detection target gas detection unit includes the signal intensity and the detection It is configured to detect the detection target gas from a correlation function indicating a correspondence between the concentration of the target gas and the signal intensity obtained by the signal intensity detection unit, and the correlation function includes i) the water vapor And the interaction between the air and the detection target gas based on the viscosity and molecular weight of the air with the dry air as one component and the viscosity and molecular weight of the detection target gas. And ii) the concentration of the detection target gas in the measurement target gas determined by the thermal conductivity of the air and the thermal conductivity of the detection target gas as variables. It is obtained from a thermal conductivity function.

また、本発明のガス検知装置は、前記測定対象ガスの熱伝導率関数が、前記相互作用関数と、前記空気の熱伝導率および前記検知対象ガスの熱伝導率とを用いて、以下の[数式1]から求められることが好ましい。

Figure 2017194391
λm:混合ガスの気体熱伝導率
λi:成分iの気体熱伝導率
i、xj:成分iおよび成分jのモル分率
ij:相互作用を考慮した相互作用関数(Aii=1) Further, in the gas detection device of the present invention, the thermal conductivity function of the measurement target gas uses the interaction function, the thermal conductivity of the air, and the thermal conductivity of the detection target gas. It is preferable to be obtained from Equation 1].
Figure 2017194391
λ m : gas thermal conductivity of mixed gas λ i : gas thermal conductivity of component i x i , x j : mole fraction of component i and component j A ij : interaction function considering interaction (A ii = 1)

また、本発明のガス検知装置は、前記相互作用関数が、前記水蒸気および前記乾燥空気を含む前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とを用いて、以下の[数式2]から求められることが好ましい。

Figure 2017194391
i、Mj:成分iおよび成分jの分子量
λtri、λtrj:成分iおよび成分jの気体熱伝導率
γ:相互作用パラメータ
Figure 2017194391
ηi、ηj:成分iおよび成分jの粘度 Further, in the gas detection device of the present invention, the interaction function uses the viscosity and molecular weight of the air containing the water vapor and the dry air and the viscosity and molecular weight of the detection target gas, and the following [Formula 2 It is preferable that it is calculated | required from this.
Figure 2017194391
M i , M j : molecular weight of component i and component j λ tri , λ trj : gas thermal conductivity of component i and component j γ: interaction parameter
Figure 2017194391
η i , η j : viscosity of component i and component j

また、本発明のガス検知装置は、前記空気の粘度が、前記水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度と、前記乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度とを用いて求められることが好ましい。   Further, in the gas detector of the present invention, the viscosity of the air is such that the molecular weight of the water vapor, the dipole moment, the critical pressure, the critical temperature, the concentration in the air, the molecular weight of the dry air, the dipole moment, the critical pressure. Preferably, it is determined using the critical temperature and the concentration in the air.

また、本発明のガス検知装置は、前記空気の粘度が、前記水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度と、前記乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度とを用いて、以下の[数式3]から求められることが好ましい。

Figure 2017194391
ηm:混合ガスの粘度
i、Mj、Mk:成分i、成分jおよび成分kの分子量
i、xk:成分iおよび成分kのモル分率
ηi:成分iの粘度
rij:対臨界温度(reduced temperature)
Figure 2017194391
ci、Tcj:成分i、成分jの臨界温度
Figure 2017194391
μ:双極子モーメント
c:臨界圧力
c:臨界温度 Further, in the gas detector of the present invention, the viscosity of the air is such that the molecular weight of the water vapor, the dipole moment, the critical pressure, the critical temperature, the concentration in the air, the molecular weight of the dry air, the dipole moment, the critical pressure. It is preferable to obtain from the following [Equation 3] using the critical temperature and the concentration in the air.
Figure 2017194391
η m : viscosity of mixed gas M i , M j , M k : molecular weight of component i, component j and component k xi , x k : molar fraction of component i and component k η i : viscosity of component i T rij : Reduced temperature
Figure 2017194391
T ci and T cj : critical temperatures of component i and component j
Figure 2017194391
μ: Dipole moment P c : Critical pressure T c : Critical temperature

また、本発明のガス検知装置は、前記相関関数が、前記水蒸気の前記空気中の濃度および前記検知対象ガスの濃度が異なる複数の状態にある測定対象ガスから得られる複数の信号強度と、前記測定対象ガスの熱伝導率関数とをフィッティングさせることにより得られることが好ましい。   Further, in the gas detection device of the present invention, the correlation function includes a plurality of signal intensities obtained from measurement target gases in a plurality of states in which the concentration of the water vapor in the air and the concentration of the detection target gas are different, and It is preferably obtained by fitting a thermal conductivity function of the measurement object gas.

本発明のガス検知方法は、水蒸気および乾燥空気を含む空気に検知対象ガスが含まれる測定対象ガスにおける前記検知対象ガスを検知するガス検知方法であって、前記測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出工程と、前記信号強度に基づいて、前記検知対象ガスを検知する検知対象ガス検知工程とを含み、前記検知対象ガス検知工程が、前記信号強度と前記検知対象ガスの濃度との間の対応を示す相関関数、および、前記信号強度検出工程において得られた信号強度から、前記検知対象ガスを検知し、前記相関関数が、i)前記水蒸気および前記乾燥空気を1成分とした前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とに基づいた、前記空気と前記検知対象ガスとの間の相互作用を考慮した相互作用関数、およびii)前記空気の熱伝導率および前記検知対象ガスの熱伝導率により求められる、前記測定対象ガス中の前記検知対象ガスの濃度を変数とする前記測定対象ガスの熱伝導率関数から得られることを特徴とする。   The gas detection method of the present invention is a gas detection method for detecting the detection target gas in a measurement target gas in which the detection target gas is contained in air containing water vapor and dry air, and relates to the thermal conductivity of the measurement target gas. A signal intensity detection step for detecting the detected signal intensity and a detection target gas detection step for detecting the detection target gas based on the signal intensity, wherein the detection target gas detection step includes the signal intensity and the detection target. The detection target gas is detected from a correlation function indicating a correspondence between the gas concentration and the signal intensity obtained in the signal intensity detection step, and the correlation function includes i) the water vapor and the dry air. Considering the interaction between the air and the detection target gas based on the viscosity and molecular weight of the air as one component and the viscosity and molecular weight of the detection target gas Interaction function, and ii) the thermal conductivity of the measurement target gas obtained from the thermal conductivity of the air and the thermal conductivity of the detection target gas, with the concentration of the detection target gas in the measurement target gas as a variable It is obtained from a function.

本発明によれば、水蒸気および乾燥空気を含む空気に混入した水素ガスなどの検知対象ガスをより正確に検知する装置および方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the apparatus and method of detecting more correctly detection object gas, such as hydrogen gas mixed in the air containing water vapor | steam and dry air, can be provided.

本発明の一実施形態に係るガス検知装置の概略図である。It is the schematic of the gas detection apparatus which concerns on one Embodiment of this invention. (a)は、図1のガス検知装置の検知素子を示す概略斜視図であり、(b)は、図1のガス検知装置の補償素子を示す概略斜視図である。(A) is a schematic perspective view which shows the detection element of the gas detection apparatus of FIG. 1, (b) is a schematic perspective view which shows the compensation element of the gas detection apparatus of FIG. 測定環境周囲温度が80℃で、測定対象ガス中の水素ガスの濃度が0vol%で、第1変動抵抗体が異なる温度条件のときの、空気中の相対湿度の変化に対する検知回路のc−d間の電位差(実測値)の変化を示すグラフである。Cd of a detection circuit for a change in relative humidity in the air when the ambient temperature of the measurement environment is 80 ° C., the concentration of hydrogen gas in the measurement target gas is 0 vol%, and the first variable resistor has different temperature conditions It is a graph which shows the change of the electrical potential difference (measured value) between. 測定環境周囲温度が80℃で、測定対象ガス中の水素ガスの濃度が0vol%で、第1変動抵抗体が異なる温度条件のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差(計算値)の変化を示すグラフである。Measurement target gas and standard gas for changes in relative humidity in air when the ambient temperature of the measurement environment is 80 ° C., the concentration of hydrogen gas in the measurement target gas is 0 vol%, and the first variable resistor has different temperature conditions It is a graph which shows the change of the difference (calculated value) of thermal conductivity of. 測定環境周囲温度が80℃で、第1変動抵抗体の温度が200℃で、測定対象ガス中の水素ガスの濃度が異なる条件のときの、空気中の相対湿度の変化に対する検知回路のc−d間の電位差(実測値)の変化を示すグラフである。C- of the detection circuit for a change in relative humidity in the air when the ambient temperature of the measurement environment is 80 ° C., the temperature of the first variable resistor is 200 ° C., and the hydrogen gas concentration in the measurement target gas is different. It is a graph which shows the change of the electric potential difference (measured value) between d. 測定環境周囲温度が80℃で、第1変動抵抗体の温度が200℃で、測定対象ガス中の水素ガスの濃度が異なる条件のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差(計算値)の変化を示すグラフである。Measurement target gas and standard for changes in relative humidity in air when the ambient temperature of the measurement environment is 80 ° C., the temperature of the first variable resistor is 200 ° C., and the concentration of hydrogen gas in the measurement target gas is different It is a graph which shows the change of the difference (calculated value) of the thermal conductivity of gas. 図6に示された熱伝導率の差(計算値)と、図5に示された電位差(実測値)との関係を示すグラフであり、(a)は、測定対象ガス中の空気の相対湿度が20%の条件であり、(b)は、測定対象ガス中の空気の相対湿度が40%の条件であり、(c)は、測定対象ガス中の空気の相対湿度が60%の条件であり、(d)は、測定対象ガス中の空気の相対湿度が80%の条件である。6 is a graph showing the relationship between the difference in thermal conductivity (calculated value) shown in FIG. 6 and the potential difference (actually measured value) shown in FIG. 5, where (a) shows the relative air in the measurement target gas. Humidity is a condition of 20%, (b) is a condition in which the relative humidity of the air in the measurement target gas is 40%, and (c) is a condition in which the relative humidity of the air in the measurement target gas is 60%. (D) is a condition where the relative humidity of the air in the measurement target gas is 80%. 図6に示された熱伝導率の差を、検知回路のc−d間の電位差に対応する値に変換した値を、図5上に重ね合せた結果を示すグラフである(点線は計算値を、プロットは実測値を示す)。6 is a graph showing the result of superimposing the value obtained by converting the difference in thermal conductivity shown in FIG. 6 into a value corresponding to the potential difference between cd of the detection circuit on FIG. 5 (dotted lines are calculated values). The plot shows actual measurement values). 測定環境周囲温度が80℃で、第1変動抵抗体の温度が200℃で、測定対象ガス中の水素ガスの濃度が異なる条件のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差(計算値)の変化を示すグラフである。Measurement target gas and standard for changes in relative humidity in air when the ambient temperature of the measurement environment is 80 ° C., the temperature of the first variable resistor is 200 ° C., and the concentration of hydrogen gas in the measurement target gas is different It is a graph which shows the change of the difference (calculated value) of the thermal conductivity of gas. 図9に示された熱伝導率の差(計算値)と、図5に示された電位差(実測値)との関係を示すグラフであり、(a)は、測定対象ガス中の空気の相対湿度が20%の条件であり、(b)は、測定対象ガス中の空気の相対湿度が40%の条件であり、(c)は、測定対象ガス中の空気の相対湿度が60%の条件であり、(d)は、測定対象ガス中の空気の相対湿度が80%の条件である。9 is a graph showing the relationship between the difference in thermal conductivity (calculated value) shown in FIG. 9 and the potential difference (actually measured value) shown in FIG. 5, where (a) shows the relative air in the measurement target gas. Humidity is a condition of 20%, (b) is a condition in which the relative humidity of the air in the measurement target gas is 40%, and (c) is a condition in which the relative humidity of the air in the measurement target gas is 60%. (D) is a condition where the relative humidity of the air in the measurement target gas is 80%. 図9に示された熱伝導率の差を、検知回路のc−d間の電位差に対応する値に変換した値を、図5上に重ね合せた結果を示すグラフである(点線は計算値を、プロットは実測値を示す)。9 is a graph showing the result of superimposing the value obtained by converting the difference in thermal conductivity shown in FIG. 9 into a value corresponding to the potential difference between cd of the detection circuit on FIG. 5 (dotted lines are calculated values). The plot shows actual measurement values).

以下、添付図面を参照して、本発明の一実施形態に係るガス検知装置およびガス検知方法を説明する。   Hereinafter, a gas detection device and a gas detection method according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態のガス検知装置およびガス検知方法はそれぞれ、水蒸気および乾燥空気を含む空気に検知対象ガスが含まれる測定対象ガスにおける検知対象ガスを検知する装置および方法である。ガス検知装置およびガス検知方法は、たとえば、原子炉格納容器内や原子炉建屋内の空気中の水素ガスを検知する目的や、燃料電池から空気中に漏出する水素ガスを検知する目的のために用いることができるが、その適用範囲はこれらに限定されることはなく、ガス検知が必要な水素ガス以外のガスの検知にも適用可能である。   The gas detection device and the gas detection method of this embodiment are an apparatus and a method for detecting a detection target gas in a measurement target gas in which the detection target gas is contained in air containing water vapor and dry air, respectively. The gas detection device and the gas detection method are used, for example, for the purpose of detecting hydrogen gas in the air inside the reactor containment vessel or the reactor building, or for the purpose of detecting hydrogen gas leaking into the air from the fuel cell. Although it can be used, its application range is not limited to these, and it can be applied to detection of gases other than hydrogen gas that requires gas detection.

本実施形態のガス検知装置およびガス検知方法の検知の対象となる検知対象ガスは、測定対象ガスに含まれる水蒸気および乾燥空気とは異なる種類の気体であれば、特に限定されることはなく、1種の単体ガスや2種以上の混合ガスであってもよい。ただし、検知対象ガスが、水蒸気と乾燥空気との熱伝導率の差分値よりも、水蒸気との熱伝導率の差分値が大きい気体であることが好ましく、この場合には、本実施形態のガス検知装置およびガス検知方法をより好適に適用可能であり、以下で詳しく述べるように、測定対象ガス中の検知対象ガスをより正確に検知することができる。検知対象ガスとしては、水素ガス、ヘリウムガス、アルゴンガス、クリプトンガス、一酸化炭素ガス、二酸化炭素ガス、一酸化窒素ガス、二酸化窒素ガス、二酸化硫黄ガス、一酸化二窒素ガス、エタンガス、メタンガス、プロパンガス、プロペンガス、ブタンガス、1−ブテンガス、2−ブテンガス、ペンタンガス、1−ペンテンガス、トランス−2−ペンテンガス、シス−2−ペンテンガス、ヘキサンガス、1−ヘキセンガス、トランス−2−ヘキセンガス、シス−2−ヘキセンガス、ヘプタンガス、オクタンガス、ノナンガス、シクロヘキサンガス、シクロヘキサノンガス、イソブタンガス、六フッ化硫黄ガス、三フッ化窒素ガス、ベンゼンガス、トルエンガス、キシレンガス、トリメチルベンゼンガス、ヨードベンゼンガス、クロロベンゼンガス、フルオロベンゼンガス、ジメチルエーテルガス、ジエチルエーテルガス、フルオロカーボンガス、クロロフルオロカーボンガス、ハイドロクロロフルオロカーボンガス、ハイドロフルオロカーボンガス、トリフルオロヨードメタンガス、ハイドロフルオロエーテルガスおよびハイドロフルオロオレフィンガスなどの中から選択される1種の単体ガスまたは2種以上の混合ガスを例示することができる。   The detection target gas to be detected by the gas detection device and the gas detection method of the present embodiment is not particularly limited as long as it is a gas different from the water vapor and dry air contained in the measurement target gas. One kind of single gas or two or more kinds of mixed gas may be used. However, it is preferable that the detection target gas is a gas having a difference value of thermal conductivity between water vapor and dry air that is larger than the difference value between heat conductivity of water vapor and dry air. The detection apparatus and the gas detection method can be more suitably applied, and the detection target gas in the measurement target gas can be detected more accurately as described in detail below. Gases to be detected include hydrogen gas, helium gas, argon gas, krypton gas, carbon monoxide gas, carbon dioxide gas, nitrogen monoxide gas, nitrogen dioxide gas, sulfur dioxide gas, nitrous oxide gas, ethane gas, methane gas, Propane gas, propene gas, butane gas, 1-butene gas, 2-butene gas, pentane gas, 1-pentene gas, trans-2-pentene gas, cis-2-pentene gas, hexane gas, 1-hexene gas, trans-2-hexene gas, cis- 2-hexene gas, heptane gas, octane gas, nonane gas, cyclohexane gas, cyclohexanone gas, isobutane gas, sulfur hexafluoride gas, nitrogen trifluoride gas, benzene gas, toluene gas, xylene gas, trimethylbenzene gas, iodobenzene gas, chloroform Selected from Zen gas, fluorobenzene gas, dimethyl ether gas, diethyl ether gas, fluorocarbon gas, chlorofluorocarbon gas, hydrochlorofluorocarbon gas, hydrofluorocarbon gas, trifluoroiodomethane gas, hydrofluoroether gas and hydrofluoroolefin gas One kind of single gas or two or more kinds of mixed gases can be exemplified.

なお、測定対象ガスに含まれる水蒸気は、水分子により構成される気体であり、測定対象ガスに含まれる乾燥空気は、空気から水蒸気を除いた残りの気体である。   The water vapor contained in the measurement target gas is a gas composed of water molecules, and the dry air contained in the measurement target gas is the remaining gas obtained by removing water vapor from the air.

<ガス検知装置>
ガス検知装置は、水蒸気、乾燥空気および検知対象ガスを含む測定対象ガスの熱伝導率に関連した信号強度を検出し、その信号強度から測定対象ガスに含まれる検知対象ガスを検知する。ガス検知装置の詳細を以下で説明するが、以下の説明では、ガス検知装置の一例として気体熱伝導式ガス検知装置を挙げ、その気体熱伝導式ガス検知装置を、検知対象ガスが、水素ガスである測定対象ガスにおける水素ガスの検知に適用した例を用いて説明する。しかし、ガス検知装置は、以下に例示する気体熱伝導式ガス検知装置に限定されることはなく、非定常熱線法などの他の公知の熱伝導率測定法の測定原理が適用された装置であってもよい。また、検知対象ガスも、水素ガスに限定されることはなく、上述したように他のガスであっても構わない。
<Gas detection device>
The gas detection device detects the signal intensity related to the thermal conductivity of the measurement target gas including water vapor, dry air, and the detection target gas, and detects the detection target gas included in the measurement target gas from the signal intensity. Details of the gas detection device will be described below. In the following description, a gas heat conduction type gas detection device is cited as an example of the gas detection device, and the gas heat conduction type gas detection device is a detection target gas such as hydrogen gas. This will be described using an example applied to detection of hydrogen gas in the measurement target gas. However, the gas detection device is not limited to the gas heat conduction type gas detection device exemplified below, and is a device to which the measurement principle of another known heat conductivity measurement method such as the unsteady hot wire method is applied. There may be. Further, the detection target gas is not limited to hydrogen gas, and may be another gas as described above.

<気体熱伝導式ガス検知装置>
気体熱伝導式ガス検知装置は、本実施形態では、水蒸気および乾燥空気を含む空気に水素ガスが含まれる3成分系の測定対象ガスにおける水素ガスを検知する。気体熱伝導式ガス検知装置1は、図1に示されるように、測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出部2と、その信号強度に基づいて水素ガス(検知対象ガス)を検知する検知対象ガス検知部3とを備えている。
<Gas heat conduction type gas detector>
In this embodiment, the gas heat conduction type gas detection device detects hydrogen gas in a three-component measurement target gas in which hydrogen gas is contained in air containing water vapor and dry air. As shown in FIG. 1, the gas heat conduction type gas detection device 1 includes a signal intensity detection unit 2 that detects a signal intensity related to the thermal conductivity of the measurement target gas, and hydrogen gas (detection based on the signal intensity. And a detection target gas detection unit 3 that detects a target gas).

<信号強度検出部>
信号強度検出部2は、本実施形態では、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した信号強度を検出することにより、測定対象ガスおよび標準ガスの熱伝導率の違いを検知する。信号強度検出部2は、図1に示されるように、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した信号強度として電位差を生成する検知回路4と、検知回路4に直流電圧を印加する直流電圧源5と、検知回路4に生じる電位差を検出する電位差計6とを備えている。
<Signal intensity detector>
In this embodiment, the signal intensity detection unit 2 detects the difference in thermal conductivity between the measurement target gas and the standard gas by detecting the signal intensity due to the difference in thermal conductivity between the measurement target gas and the standard gas. . As shown in FIG. 1, the signal intensity detection unit 2 applies a DC voltage to the detection circuit 4 that generates a potential difference as a signal intensity resulting from a difference in thermal conductivity between the measurement target gas and the standard gas. And a potentiometer 6 for detecting a potential difference generated in the detection circuit 4.

検知回路4は、ホイートストンブリッジ回路として構成され、測定対象ガスおよび標準ガスの熱伝導率の違いに起因して回路内の抵抗値に違いが生じ、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した電位差を生成する。検知回路4は、図1に示されるように、検知素子41および補償素子42が直列に接続された検知片と、第1固定抵抗43および第2固定抵抗44が直列に接続された、ブリッジ回路における検知片に対する対辺抵抗片とが並列に設けられている。検知片および対辺抵抗片の両端(a点、b点)は、直流電圧源5の正極および負極の2つの端子のそれぞれに接続され、検知素子41および補償素子42の間(c点)と、第1固定抵抗43および第2固定抵抗44の間(d点)とは、電位差計6の正極および負極の2つの端子のそれぞれに接続されている。   The detection circuit 4 is configured as a Wheatstone bridge circuit, resulting in a difference in resistance value in the circuit due to a difference in thermal conductivity between the measurement target gas and the standard gas, and a difference in thermal conductivity between the measurement target gas and the standard gas. A potential difference caused by the is generated. As shown in FIG. 1, the detection circuit 4 includes a detection piece in which a detection element 41 and a compensation element 42 are connected in series, and a bridge circuit in which a first fixed resistor 43 and a second fixed resistor 44 are connected in series. The opposite side resistance piece with respect to the detection piece in is provided in parallel. Both ends (points a and b) of the detection piece and the opposite resistance piece are connected to the two positive and negative terminals of the DC voltage source 5, respectively, between the detection element 41 and the compensation element 42 (point c), Between the 1st fixed resistance 43 and the 2nd fixed resistance 44 (d point), it connects to each of two terminals of the positive electrode of the potentiometer 6, and a negative electrode.

検知素子41は、測定対象ガスが貫流(自然拡散)されて、測定対象ガスとの熱収支により抵抗値が変化する部材である。検知素子41は、図2(a)に示されるように、測定対象ガスとの熱収支により抵抗値が変化する第1変動抵抗体41aと、第1変動抵抗体41aを収容し、測定対象ガスが貫流可能な検知用容器41bとを備えている。第1変動抵抗体41aは、測定対象ガスとの熱収支が測定対象ガスの熱伝導率に影響を受けるため、測定対象ガスの熱伝導率に応じて抵抗値が変化する。第1変動抵抗体41aは、測定対象ガスの熱伝導率の変化に応じて抵抗値が変化するように構成されていれば、特に限定されることはなく、たとえば公知の白金薄膜抵抗体を用いることができる。検知用容器41bは、本実施形態では、図2(a)に示されるように、上部に測定対象ガスが貫流可能な貫流孔が設けられて、測定対象ガスが貫流可能に構成されている。しかし、検知用容器41bは、第1変動抵抗体41aが測定対象ガスに曝露されるように測定対象ガスが貫流可能であれば、図示された構造に限定されることはなく、貫流孔が検知用容器41bの側部に設けられるなどの他の構造であってもよい。   The detection element 41 is a member whose resistance value changes due to a heat balance with the measurement target gas through which the measurement target gas flows (natural diffusion). As shown in FIG. 2A, the sensing element 41 contains a first variable resistor 41a whose resistance value changes due to a heat balance with the measurement target gas, and a first variable resistor 41a. Is provided with a detection container 41b. Since the heat balance with the measurement target gas is affected by the thermal conductivity of the measurement target gas, the resistance value of the first variable resistor 41a changes according to the thermal conductivity of the measurement target gas. The first variable resistor 41a is not particularly limited as long as the resistance value is configured to change in accordance with the change in the thermal conductivity of the measurement target gas. For example, a known platinum thin film resistor is used. be able to. In the present embodiment, as shown in FIG. 2A, the detection container 41b is provided with a through hole through which the measurement target gas can flow, so that the measurement target gas can flow therethrough. However, the detection container 41b is not limited to the illustrated structure as long as the measurement target gas can flow so that the first variable resistor 41a is exposed to the measurement target gas. Other structures, such as being provided on the side of the container 41b, may be used.

補償素子42は、測定対象ガスに対して基準となる標準ガスが充填されて、標準ガスとの熱収支により抵抗値が変化する部材である。補償素子42は、図2(b)に示されるように、第1変動抵抗体41aと熱的に等価な第2変動抵抗体42aと、第2変動抵抗体42aを収容し、標準ガスが充填される補償用容器42bとを備えている。第2変動抵抗体42aは、標準ガスとの熱収支が標準ガスの熱伝導率に影響を受けるため、標準ガスの熱伝導率に応じて抵抗値が変化する。なお、測定中において、標準ガスの熱伝導率が変化しないように状態が一定に保たれる場合には、第2変動抵抗体42aの抵抗値が変化することはない。第2変動抵抗体42aは、第1変動抵抗体41aと熱的に等価であれば、特に限定されることはなく、たとえば第1変動抵抗体41aと同じ構成のものを用いることができる。補償用容器42bは、標準ガスが充填されて、他のガスが流入しないように構成されている。補償用容器42bは、充填された標準ガスが所定の状態に維持されて、第2変動抵抗体42aがその標準ガスに曝露されるように構成されていれば、その構造はいかなるものであってもよい。標準ガスとしては、測定対象ガスに対して基準となるガスであれば、特に限定されることはなく、たとえば乾燥空気、ヘリウムガス、窒素ガスなどを用いることができる。   The compensation element 42 is a member that is filled with a standard gas serving as a reference for the measurement target gas, and whose resistance value changes due to a heat balance with the standard gas. As shown in FIG. 2B, the compensation element 42 contains a second variable resistor 42a that is thermally equivalent to the first variable resistor 41a and a second variable resistor 42a, and is filled with a standard gas. Compensation container 42b. Since the heat balance with the standard gas is affected by the thermal conductivity of the standard gas, the resistance value of the second variable resistor 42a changes according to the thermal conductivity of the standard gas. In addition, during the measurement, when the state is kept constant so that the thermal conductivity of the standard gas does not change, the resistance value of the second variable resistor 42a does not change. The second variable resistor 42a is not particularly limited as long as it is thermally equivalent to the first variable resistor 41a. For example, the second variable resistor 42a having the same configuration as the first variable resistor 41a can be used. The compensation container 42b is configured to be filled with standard gas and prevent other gases from flowing in. The compensation container 42b may have any structure as long as the filled standard gas is maintained in a predetermined state and the second variable resistor 42a is exposed to the standard gas. Also good. The standard gas is not particularly limited as long as it is a reference gas with respect to the measurement target gas. For example, dry air, helium gas, nitrogen gas, or the like can be used.

第1固定抵抗43および第2固定抵抗44は、固定された所定の抵抗値を有する部材である。第1固定抵抗43および第2固定抵抗44はそれぞれ、本実施形態では、測定対象ガスの熱伝導率と標準ガスの熱伝導率とが同じ場合に、検知回路4のc−d点間に電位差が生じないようにその抵抗値が設定されている。ただし、検知回路4としては、測定対象ガスおよび標準ガスの熱伝導率が同じ場合と、測定対象ガスおよび標準ガスの熱伝導率が異なる場合とで、検知回路4のc−d点間に生じる電位差に有意な差が生じればよい。したがって、第1固定抵抗43および第2固定抵抗44はそれぞれ、上述した抵抗値に限定されることはなく、測定対象ガスおよび標準ガスの熱伝導率が同じ場合と、測定対象ガスおよび標準ガスの熱伝導率が異なる場合とで、検知回路4のc−d点間に生じる電位差に有意な差が生じるように抵抗値が設定されればよい。   The first fixed resistor 43 and the second fixed resistor 44 are members having fixed predetermined resistance values. In the present embodiment, the first fixed resistor 43 and the second fixed resistor 44 each have a potential difference between the points cd of the detection circuit 4 when the thermal conductivity of the measurement target gas is the same as that of the standard gas. The resistance value is set so as not to occur. However, the detection circuit 4 is generated between points cd of the detection circuit 4 when the measurement target gas and the standard gas have the same thermal conductivity and when the measurement target gas and the standard gas have different thermal conductivities. It is sufficient that a significant difference occurs in the potential difference. Therefore, the first fixed resistor 43 and the second fixed resistor 44 are not limited to the above-described resistance values, respectively, and the case where the measurement target gas and the standard gas have the same thermal conductivity and the measurement target gas and the standard gas The resistance value may be set so that a significant difference occurs in the potential difference generated between the points cd of the detection circuit 4 when the thermal conductivity is different.

本実施形態の信号強度検出部2では、測定対象ガスの熱伝導率と標準ガスの熱伝導率とが同じであれば、第1変動抵抗体41aおよび第2変動抵抗体42aの抵抗値は同じままであり、検知回路4のc−d点間に電位差が生じることはない。一方、測定対象ガスの熱伝導率と標準ガスの熱伝導率とが異なる場合には、第1変動抵抗体41aおよび第2変動抵抗体42aのそれぞれと測定対象ガスおよび標準ガスのそれぞれとの熱収支が異なるため、第1変動抵抗体41aおよび第2変動抵抗体42aの抵抗値に違いが生じ、それによって検知回路4のc−d点間に電位差が生じる。信号強度検出部2は、検知回路4のc−d点間に生じた電位差を電位差計6により測定することで、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した電位差を信号強度として検出することができる。ただし、信号強度検出部2は、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した信号強度を検出するように構成されていれば、上述した構成に限定されることはなく、たとえば電位差計の代わりに電流計を用いて信号強度として電流を検出するように構成されていてもよい。   In the signal intensity detection unit 2 of the present embodiment, if the thermal conductivity of the measurement target gas is the same as the thermal conductivity of the standard gas, the resistance values of the first variable resistor 41a and the second variable resistor 42a are the same. Therefore, no potential difference is generated between the points cd of the detection circuit 4. On the other hand, when the thermal conductivity of the measurement target gas is different from the thermal conductivity of the standard gas, the heat of each of the first variable resistor 41a and the second variable resistor 42a and each of the measurement target gas and the standard gas. Since the balance is different, a difference occurs in the resistance values of the first variable resistor 41a and the second variable resistor 42a, thereby generating a potential difference between the cd points of the detection circuit 4. The signal intensity detection unit 2 measures the potential difference generated between the points c and d of the detection circuit 4 with the potentiometer 6, so that the potential difference caused by the difference in thermal conductivity between the measurement target gas and the standard gas is used as the signal intensity. Can be detected. However, the signal intensity detection unit 2 is not limited to the above-described configuration as long as it is configured to detect the signal intensity due to the difference in thermal conductivity between the measurement target gas and the standard gas. Instead of the meter, an ammeter may be used to detect the current as the signal intensity.

信号強度検出部2は、本実施形態では、上述したように、測定対象ガスおよび標準ガスの熱伝導率の違いに起因した信号強度を検出するように構成されている。しかし、信号強度検出部は、測定対象ガスの熱伝導率に関連した信号強度を検出するように構成されていれば、本実施形態に限定されることはなく、たとえば、他の測定原理を適用したガス検知装置では、測定対象ガスの熱伝導率の変化に起因した信号を検出するように構成されていてもよい。   In this embodiment, the signal intensity detection unit 2 is configured to detect the signal intensity due to the difference in thermal conductivity between the measurement target gas and the standard gas, as described above. However, the signal intensity detection unit is not limited to the present embodiment as long as the signal intensity detection unit is configured to detect the signal intensity related to the thermal conductivity of the measurement target gas. For example, another measurement principle is applied. The gas detector may be configured to detect a signal resulting from a change in the thermal conductivity of the measurement target gas.

<検知対象ガス検知部>
検知対象ガス検知部3は、信号強度と水素ガスの濃度との間の対応を示す相関関数、および、信号強度検出部2により得られた信号強度から、水素ガスを検知するように構成されている。すなわち、検知対象ガス検知部3は、信号強度Vと水素ガスの濃度xとの間の対応を示す相関関数(V=F(x)またはV≒F(x))を用いて、信号強度検出部2により得られた信号強度Vを、水素ガスの濃度xに対応した値に変換(x=F-1(V)またはx≒F-1(V))することで、測定対象ガス中の水素ガスの有無および/または濃度を検知するように構成されている。ここで相関関数は、信号強度と水素ガスの濃度との間の対応を示す関数であって、信号強度と水素ガスの濃度との関係を完全な形で示す関数(V=F(x))だけではなく、たとえば水素ガスの濃度の増減に応じて信号強度が増減するように構成されるなど、信号強度が水素ガスの濃度に対応するように構成された関数(V≒F(x))も含む。また、水素ガスの濃度に対応した値は、水素ガスの濃度だけでなく、水素ガスの濃度の増減に対応して増減する間接的な値も含む。
<Detection target gas detection unit>
The detection target gas detection unit 3 is configured to detect hydrogen gas from the correlation function indicating the correspondence between the signal intensity and the hydrogen gas concentration and the signal intensity obtained by the signal intensity detection unit 2. Yes. That is, the detection target gas detection unit 3 detects the signal intensity using a correlation function (V = F (x) or V≈F (x)) indicating the correspondence between the signal intensity V and the hydrogen gas concentration x. The signal intensity V obtained by the unit 2 is converted into a value corresponding to the hydrogen gas concentration x (x = F −1 (V) or x≈F −1 (V)). It is configured to detect the presence and / or concentration of hydrogen gas. Here, the correlation function is a function indicating a correspondence between the signal intensity and the concentration of hydrogen gas, and a function (V = F (x)) indicating the relationship between the signal intensity and the concentration of hydrogen gas in a complete form. In addition, for example, a function (V≈F (x)) configured such that the signal intensity corresponds to the hydrogen gas concentration, for example, the signal intensity increases or decreases according to the increase or decrease of the hydrogen gas concentration. Including. The value corresponding to the concentration of hydrogen gas includes not only the concentration of hydrogen gas but also an indirect value that increases or decreases in accordance with the increase or decrease of the concentration of hydrogen gas.

検知対象ガス検知部3は、図1には、信号強度検出部2の直流電圧源5および電位差計6に通信可能に接続された情報処理装置として示されている。検知対象ガス検知部3は、本実施形態では、電位差計6から電位差を受信し、受信した電位差と相関関数とを用いて、測定対象ガス中の水素ガスの濃度に対応した値を算出する。検知対象ガス検知部3としては、CPUなどの演算処理装置、ハードディスクなどの記憶装置、ネットワークインターフェースなどの通信装置、キーボード・マウスなどの入力装置、液晶ディスプレイなどの表示装置などを内部または外部に備えたパーソナルコンピュータなどの公知の計算装置を用いることができる。しかし、検知対象ガス検知部3は、信号強度と水素ガスの濃度との間の対応を示す相関関数、および、信号強度検出部2により得られた信号強度から、水素ガスを検知するように構成されていれば、上述した実施形態に限定されることはなく、たとえば信号強度検出部2の外部ではなく信号強度検出部2と一体となって設けられるなど、様々な変形が許容される。   The detection target gas detection unit 3 is shown in FIG. 1 as an information processing apparatus that is communicably connected to the DC voltage source 5 and the potentiometer 6 of the signal intensity detection unit 2. In the present embodiment, the detection target gas detection unit 3 receives a potential difference from the potentiometer 6 and calculates a value corresponding to the concentration of hydrogen gas in the measurement target gas using the received potential difference and the correlation function. The detection target gas detection unit 3 includes an arithmetic processing device such as a CPU, a storage device such as a hard disk, a communication device such as a network interface, an input device such as a keyboard / mouse, a display device such as a liquid crystal display, etc. inside or outside. A known computing device such as a personal computer can be used. However, the detection target gas detection unit 3 is configured to detect hydrogen gas from the correlation function indicating the correspondence between the signal intensity and the hydrogen gas concentration and the signal intensity obtained by the signal intensity detection unit 2. If it is, the present invention is not limited to the above-described embodiment, and various modifications such as being provided integrally with the signal intensity detection unit 2 instead of the outside of the signal intensity detection unit 2 are allowed.

信号強度Vと水素ガスの濃度xとの間の対応を示す相関関数(V=F(x)またはV≒F(x))は、測定対象ガス中の水素ガスの濃度xを変数とする測定対象ガスの熱伝導率関数(λsamp(x))から得られる(V=F(λsamp(x))またはV≒F(λsamp(x)))。より具体的には、本実施形態では、相関関数は、測定対象ガス中の水素ガスの濃度xを変数とする測定対象ガスの熱伝導率関数(λsamp(x))と、定数である標準ガスの熱伝導率(λref)との差(λsamp(x)−λref=Δλ(x))を含む形で得られる(V=F(Δλ(x))またはV≒F(Δλ(x)))。ただし、相関関数は、測定対象ガス中の水素ガスの濃度を変数とする測定対象ガスの熱伝導率関数から得られるものであればよく、その具体的な構成は、用いられる気体熱伝導式ガス検知装置の検知原理および/または実測値に応じて適宜決定することができ、気体熱伝導式ガス検知装置以外のガス検知装置が用いられる場合には、そのガス検知装置の検知原理および/または実測値に応じて適宜決定することができる。 The correlation function (V = F (x) or V≈F (x)) indicating the correspondence between the signal intensity V and the hydrogen gas concentration x is a measurement using the hydrogen gas concentration x in the measurement target gas as a variable. It is obtained from the thermal conductivity function (λ samp (x)) of the target gas (V = F (λ samp (x)) or V≈Fsamp (x))). More specifically, in the present embodiment, the correlation function includes a thermal conductivity function (λ samp (x)) of the measurement target gas with the concentration x of the hydrogen gas in the measurement target gas as a variable, and a standard that is a constant. (V = F (Δλ (x)) or V≈F (Δλ () including a difference (λ samp (x) −λ ref = Δλ (x)) from the thermal conductivity (λ ref ) of the gas. x))). However, the correlation function only needs to be obtained from the thermal conductivity function of the measurement target gas with the concentration of hydrogen gas in the measurement target gas as a variable, and the specific configuration thereof is the gas heat conduction type gas used. It can be appropriately determined according to the detection principle and / or actual measurement value of the detection device, and when a gas detection device other than the gas heat conduction type gas detection device is used, the detection principle and / or actual measurement of the gas detection device. It can be determined appropriately according to the value.

ここで、測定対象ガスの熱伝導率関数は、単純に測定対象ガスに含まれるガス成分のそれぞれの熱伝導率にそれぞれの比率を掛け合わせて合算することによっては得ることができない。これは、ガス成分が互いに相互作用するため、この相互作用を無視することができないからである。したがって、測定対象ガスの熱伝導率関数は、たとえば、Wassiljewaの式(以下の数式1)を用いて、測定対象ガスに含まれるガス成分同士の相互作用を考慮しつつ、各ガス成分の熱伝導率に各ガス成分の比率を乗じてその和を得ることによって求められる。乾燥空気、水蒸気および水素ガスの3成分が含まれる本実施形態の測定対象ガスに、この数式1を用いた方法を採用する場合には、乾燥空気、水蒸気および水素ガスのそれぞれの相互作用を考慮しつつ、乾燥空気、水蒸気および水素ガスの熱伝導率にそれぞれの比率を乗じて合算することになる。しかしながら、本発明者らはこの数式1を用いた方法を詳細に検討したが、この方法では、後に詳述するように、信号強度検出部2により得られた信号強度に対応するような熱伝導率関数を求めることができず、それにより正確な相関関数を得ることができないことが分かった。これは、測定対象ガスに双極子モーメントが大きい水蒸気(水分子)が含まれ、その水蒸気(水分子)が、特異な分子間相互作用として水素結合をする能力を有するので、異種分子間相互作用または同種分子間相互作用しやすい傾向を示し、異種分子または同種分子と衝突しやすく、測定対象ガスの熱伝導率に特異な影響を及ぼすことによるものと考えられる。したがって、測定対象ガスの熱伝導率関数をより正確に求め、相関関数をより正確に求めるには、水蒸気(水分子)の双極子モーメントを考慮する必要がある。   Here, the thermal conductivity function of the measurement target gas cannot be obtained by simply multiplying the respective thermal conductivities of the gas components contained in the measurement target gas and multiplying the respective ratios. This is because the gas components interact with each other and this interaction cannot be ignored. Therefore, the thermal conductivity function of the gas to be measured is calculated by, for example, using the Wassiljewa's equation (the following Equation 1) while considering the interaction between the gas components contained in the gas to be measured. It is obtained by multiplying the ratio by the ratio of each gas component to obtain the sum. When the method using Formula 1 is adopted for the measurement target gas containing the three components of dry air, water vapor, and hydrogen gas, each interaction of dry air, water vapor, and hydrogen gas is considered. However, the thermal conductivity of dry air, water vapor, and hydrogen gas is multiplied by the respective ratios and added up. However, the present inventors have examined the method using Equation 1 in detail. In this method, as will be described in detail later, the heat conduction corresponding to the signal intensity obtained by the signal intensity detector 2 is performed. It was found that the rate function could not be obtained, and therefore an accurate correlation function could not be obtained. This is because the gas to be measured contains water vapor (water molecule) with a large dipole moment, and the water vapor (water molecule) has the ability to form hydrogen bonds as a unique intermolecular interaction. Alternatively, it is likely that the same type of molecules tend to interact with each other, easily collide with different types of molecules or the same type of molecules, and have a specific influence on the thermal conductivity of the measurement target gas. Therefore, in order to more accurately determine the thermal conductivity function of the measurement target gas and more accurately determine the correlation function, it is necessary to consider the dipole moment of water vapor (water molecule).

Figure 2017194391
λm:混合ガスの気体熱伝導率
λi:成分iの気体熱伝導率
i、xj:成分iおよび成分jのモル分率
ij:相互作用を考慮した相互作用関数(Aii=1)
Figure 2017194391
λ m : gas thermal conductivity of mixed gas λ i : gas thermal conductivity of component i x i , x j : mole fraction of component i and component j A ij : interaction function considering interaction (A ii = 1)

以上に述べた理由により、本実施形態では、測定対象ガスの熱伝導率関数は、乾燥空気、水蒸気および水素ガスの3成分ではなく、乾燥空気および水蒸気を含む空気と水素ガスとの間の相互作用を考慮した相互作用関数、ならびに空気の熱伝導率および水素ガスの熱伝導率により求められる。より具体的には、測定対象ガスの熱伝導率関数は、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数と、空気の熱伝導率および水素ガスの熱伝導率とを用いて、上述した数式1から求められる。そして、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数は、水蒸気および乾燥空気を1成分とした空気の粘度および分子量と、水素ガスの粘度および分子量とに基づいて求められる。測定対象ガスの熱伝導率関数を求めるにあたり、乾燥空気、水蒸気および水素ガスの3成分ではなく、空気と水素ガスとの間の2成分の相互作用を考慮することで、水蒸気および乾燥空気を1成分とした空気の粘度に水蒸気(水分子)の双極子モーメントの影響を反映させることができるので、より正確な熱伝導率関数を求めることができる。さらに、相対比較として、互いの熱伝導率の差分値の大きい水素ガスと水蒸気とを1成分として取り扱うのではなく、互いの熱伝導率の差分値の小さい水蒸気と乾燥空気とを1成分として取り扱うことにより、より正確な熱伝導率関数を求めることができる。したがって、相関関数をより正確に求めることができ、測定対象ガス中の水素ガスをより正確に検知することができる。同じ観点から、水蒸気との熱伝導率の差分値が大きいヘリウムガスやアルゴンガスなどの水素ガス以外の検知対象ガスが測定対象ガスに含まれる場合には、水蒸気の双極子モーメントを考慮しつつ、水蒸気と乾燥空気とが1成分として取り扱われて、測定対象ガスの熱伝導率関数が求められる。   For the reasons described above, in this embodiment, the thermal conductivity function of the measurement target gas is not the three components of dry air, water vapor, and hydrogen gas, but the mutual relationship between air containing dry air and water vapor and hydrogen gas. It is obtained by an interaction function considering the action, and the thermal conductivity of air and the thermal conductivity of hydrogen gas. More specifically, the thermal conductivity function of the measurement target gas includes an interaction function that takes into account the interaction of two components between air and hydrogen gas, and the thermal conductivity of air and the thermal conductivity of hydrogen gas. Is obtained from Equation 1 described above. The interaction function considering the interaction of the two components between air and hydrogen gas is obtained based on the viscosity and molecular weight of air with water vapor and dry air as one component, and the viscosity and molecular weight of hydrogen gas. It is done. In obtaining the thermal conductivity function of the gas to be measured, the water vapor and the dry air are set to 1 by considering the interaction of the two components between the air and the hydrogen gas, not the three components of the dry air, the water vapor and the hydrogen gas. Since the influence of the dipole moment of water vapor (water molecule) can be reflected on the viscosity of air as a component, a more accurate thermal conductivity function can be obtained. Furthermore, as a relative comparison, hydrogen gas and water vapor having a large difference in thermal conductivity between each other are not treated as one component, but water vapor and dry air having a small difference in each other's thermal conductivity are treated as one component. Thus, a more accurate thermal conductivity function can be obtained. Therefore, the correlation function can be obtained more accurately, and the hydrogen gas in the measurement target gas can be detected more accurately. From the same point of view, if the gas to be measured includes a gas other than hydrogen gas such as helium gas or argon gas, which has a large difference in thermal conductivity with water vapor, the dipole moment of water vapor is considered, Steam and dry air are handled as one component, and the thermal conductivity function of the measurement target gas is obtained.

ここで相互作用関数は、2成分ガス間の相互作用を考慮した関数であり、相互作用する2成分ガスのそれぞれの分子量、粘度、分子間相互作用に関係する経験的なパラメータ(相互作用パラメータ)によって表わされる。本実施形態では、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数は、水蒸気および乾燥空気を1成分とした空気の粘度および分子量と、水素ガスの粘度および分子量とを用いて、以下のMasonとSaxenaの式(数式2)から求められる。   Here, the interaction function is a function that considers the interaction between the two component gases, and is an empirical parameter (interaction parameter) related to the molecular weight, viscosity, and intermolecular interaction of each of the interacting two component gases. Is represented by In the present embodiment, the interaction function considering the interaction of two components between air and hydrogen gas has the viscosity and molecular weight of air with water vapor and dry air as one component, and the viscosity and molecular weight of hydrogen gas. And obtained from the following Mason and Saxena equations (Equation 2).

Figure 2017194391
i、Mj:成分iおよび成分jの分子量
λtri、λtrj:成分iおよび成分jの気体熱伝導率
γ:相互作用パラメータ
Figure 2017194391
ηi、ηj:成分iおよび成分jの粘度
Figure 2017194391
M i , M j : molecular weight of component i and component j λ tri , λ trj : gas thermal conductivity of component i and component j γ: interaction parameter
Figure 2017194391
η i , η j : viscosity of component i and component j

また、空気の粘度は、たとえば公知の粘度センサによっても測定することができるが、本実施形態では、水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および空気中の濃度と、乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および空気中の濃度とを用いて求められる。より具体的には、空気の粘度は、水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および空気中の濃度と、乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および空気中の濃度とを用いて、以下のReichenbergの式(数式3)から求められる。   The viscosity of air can also be measured by, for example, a known viscosity sensor. In this embodiment, the molecular weight of water vapor, the dipole moment, the critical pressure, the critical temperature, the concentration in air, and the molecular weight of dry air. , Dipole moment, critical pressure, critical temperature and concentration in air. More specifically, the viscosity of air is the molecular weight of water vapor, dipole moment, critical pressure, critical temperature and concentration in air and the molecular weight of dry air, dipole moment, critical pressure, critical temperature and concentration in air. And the following Reichenberg equation (Equation 3).

Figure 2017194391
ηm:混合ガスの粘度
i、Mj、Mk:成分i、成分jおよび成分kの分子量
i、xk:成分iおよび成分kのモル分率
ηi:成分iの粘度
rij:対臨界温度(reduced temperature)
Figure 2017194391
ci、Tcj:成分i、成分jの臨界温度
Figure 2017194391
μ:双極子モーメント
c:臨界圧力
c:臨界温度
Figure 2017194391
η m : viscosity of mixed gas M i , M j , M k : molecular weight of component i, component j and component k xi , x k : molar fraction of component i and component k η i : viscosity of component i T rij : Reduced temperature
Figure 2017194391
T ci and T cj : critical temperatures of component i and component j
Figure 2017194391
μ: Dipole moment P c : Critical pressure T c : Critical temperature

なお、検知対象ガスが、都市ガス(13A)のように2種以上のガスを含む混合ガスである場合には、水蒸気および乾燥空気を含む空気と、検知対象ガスに含まれる2種以上のガスとの、3種以上のガス成分同士の組み合わせの相互作用を考慮して、測定対象ガスの熱伝導率関数を求めてもよいし、2種以上のガスを1つの検知対象ガスとして取り扱って、空気と検知対象ガスとの相互作用を考慮して、測定対象ガスの熱伝導率関数を求めてもよい。このとき、検知対象ガスに含まれる2種以上のガスのそれぞれの熱伝導率は、実験的に得られた値を用いてもよいし、経験的な式や半経験的な式により求めた値を用いてもよいし、以下に述べる剛体球近似を用いて算出してもよい。また、2種以上のガスを1つの検知対象ガスとして取り扱う場合には、検知対象ガスの熱伝導率は、2種以上のガス同士の相互作用の大きさに応じて、異なる方法により求めることができる。たとえば、検知対象ガスの熱伝導率は、2種以上のガス同士の相互作用が比較的強い場合には、2種以上のガス同士の相互作用を考慮して、上述した数式1、数式2および数式3を用いて算出してもよいし、上述した数式1および数式2と、数式2中の熱伝導率の比(λtri/λtrj)を求めるRoy-Thodosの手法(以下の数式7)とを用いて算出してもよい。また、2種以上のガス同士の相互作用を無視できる場合には、2種以上のガスのそれぞれの比率にそれぞれの熱伝導率を掛けて単純に足し合わせて、第3成分ガスの熱伝導率を算出してもよい。 In addition, when detection object gas is a mixed gas containing 2 or more types of gas like city gas (13A), the air containing water vapor | steam and dry air, and 2 or more types of gas contained in detection target gas In consideration of the interaction of the combination of three or more gas components, the thermal conductivity function of the gas to be measured may be obtained, or two or more gases are handled as one gas to be detected, The thermal conductivity function of the measurement target gas may be obtained in consideration of the interaction between air and the detection target gas. At this time, as the thermal conductivity of each of the two or more gases included in the detection target gas, an experimentally obtained value may be used, or a value obtained by an empirical formula or a semi-empirical formula. Or may be calculated using a hard sphere approximation described below. When two or more kinds of gases are handled as one detection target gas, the thermal conductivity of the detection target gas can be obtained by a different method depending on the magnitude of the interaction between the two or more kinds of gases. it can. For example, when the interaction between two or more gases is relatively strong, the thermal conductivity of the detection target gas takes into account the interaction between the two or more gases, and the above-described Equations 1, 2 and It may be calculated using Equation 3, or the above-described Equation 1 and Equation 2 and the Roy-Thodos method for obtaining the thermal conductivity ratio (λ tri / λ trj ) in Equation 2 (Formula 7 below) You may calculate using. Also, when the interaction between two or more gases can be ignored, the ratio of the two or more gases is multiplied by the respective thermal conductivity and simply added to obtain the thermal conductivity of the third component gas. May be calculated.

ここで、空気中の水蒸気濃度は、公知の湿度センサなどを用いて測定することが可能である。たとえば、水素ガスが含まれない空気中の湿度が湿度センサにより測定される場合には、湿度センサによって測定された湿度を空気中の水蒸気濃度に換算することができ、水素ガスが含まれる測定対象ガス中の湿度が湿度センサにより測定される場合には、空気中の水蒸気濃度は、水素ガスの濃度xの関数として表わされる。この目的のために、気体熱伝導式ガス検知装置1は、空気中の水蒸気濃度および/または測定対象ガス中の水蒸気濃度を測定するための、公知の湿度センサなどを用いた水蒸気濃度測定装置を備えていてもよい。   Here, the water vapor concentration in the air can be measured using a known humidity sensor or the like. For example, when the humidity in the air that does not contain hydrogen gas is measured by a humidity sensor, the humidity measured by the humidity sensor can be converted to the water vapor concentration in the air, and the measurement object that contains hydrogen gas When the humidity in the gas is measured by a humidity sensor, the water vapor concentration in the air is expressed as a function of the hydrogen gas concentration x. For this purpose, the gas heat conduction type gas detector 1 is a water vapor concentration measuring device using a known humidity sensor or the like for measuring the water vapor concentration in the air and / or the water vapor concentration in the measurement target gas. You may have.

また、気体熱伝導式ガス検知装置1は、測定対象ガスおよび/または標準ガスの温度を直接的または間接的に測定するための公知の温度センサを備えていてもよい。たとえば測定対象ガスおよび/または標準ガスの温度が変動する場合には、測定対象ガスおよび/または標準ガスの熱伝導率が変化するので、温度センサは、その温度変化による影響を補償するために用いることができる。   In addition, the gas heat conduction type gas detection device 1 may include a known temperature sensor for directly or indirectly measuring the temperature of the measurement target gas and / or the standard gas. For example, when the temperature of the measurement target gas and / or the standard gas varies, the thermal conductivity of the measurement target gas and / or the standard gas changes, so that the temperature sensor is used to compensate for the influence of the temperature change. be able to.

信号強度Vと水素ガスの濃度xとの間の対応を示す相関関数(V=F(λsamp(x))またはV≒F(λsamp(x)))は、測定対象ガスの熱伝導率関数(λsamp(x))から、たとえば、用いられる気体熱伝導式ガス検知装置の検知原理に応じて理論的に求めることもできるし、水蒸気の空気中の濃度および水素ガスの濃度が異なる複数の状態にある測定対象ガスから得られる複数の信号強度と、測定対象ガスの熱伝導率関数とをフィッティングさせることにより得ることもできる。後者の場合、本実施形態では、測定対象ガスの熱伝導率関数(λsamp(x))および標準ガスの熱伝導率(λref)の差の関数(Δλ(x))と、水蒸気の空気中の濃度が異なる条件下で得られた水素ガスの濃度変化に対する信号強度変化の関係とをフィッティングさせることにより、水蒸気の空気中の濃度に応じて相関関数を得ることができる。 Correlation function indicating the correspondence (V = F (λ samp ( x)) or V ≒ F (λ samp (x ))) , the thermal conductivity of the gas to be measured between the concentration x of the signal strength V and hydrogen gas From the function (λ samp (x)), for example, it can be theoretically determined according to the detection principle of the gas heat conduction type gas detection device used, or the concentration of water vapor in the air and the concentration of hydrogen gas are different. It can also be obtained by fitting a plurality of signal intensities obtained from the measurement target gas in the above state and the thermal conductivity function of the measurement target gas. In the latter case, in this embodiment, a function (Δλ (x)) of the difference between the thermal conductivity function (λ samp (x)) of the measurement target gas and the thermal conductivity (λ ref ) of the standard gas, and the water vapor A correlation function can be obtained in accordance with the concentration of water vapor in the air by fitting the relationship of the change in signal intensity with the change in the concentration of hydrogen gas obtained under different conditions.

つぎに、本実施形態のガス検知方法について説明する。   Next, the gas detection method of this embodiment will be described.

<ガス検知方法>
ガス検知方法は、水蒸気、乾燥空気および検知対象ガスを含む測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出工程と、その信号強度に基づいて、検知対象ガスを検知する検知対象ガス検知工程とを含んでいる。また、ガス検知方法は、任意で、水蒸気および乾燥空気を含む空気中の水蒸気の濃度および/または測定対象ガス中の水蒸気の濃度を測定する水蒸気濃度測定工程を含んでいてもよい。また、ガス検知方法は、任意で、測定対象ガスおよび/または標準ガスの温度を直接的または間接的に測定するガス温度測定工程を含んでいてもよい。
<Gas detection method>
The gas detection method includes a signal intensity detection step for detecting a signal intensity related to the thermal conductivity of a measurement target gas including water vapor, dry air, and a detection target gas, and detection for detecting the detection target gas based on the signal intensity. And a target gas detection process. In addition, the gas detection method may optionally include a water vapor concentration measurement step of measuring the concentration of water vapor in the air including water vapor and dry air and / or the concentration of water vapor in the measurement target gas. In addition, the gas detection method may optionally include a gas temperature measurement step for directly or indirectly measuring the temperature of the measurement target gas and / or the standard gas.

ガス検知方法のさらなる詳細を以下で説明するが、以下の説明では、上述した気体熱伝導式ガス検知装置1を用いて、検知対象ガスが、水素ガスである測定対象ガスにおける水素ガスを検知する例について説明する。しかし、本発明のガス検知方法は、以下の例に限定されることはなく、気体熱伝導式ガス検知装置1以外の装置を用いてもよいし、水素ガス以外のガスを検知対象ガスとしてもよい。なお、測定対象ガスの熱伝導率関数、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数、および空気の粘度は、上述した方法と同じ方法により求められるので、以下ではその詳細な説明は省略する。   Further details of the gas detection method will be described below. In the following description, the detection target gas detects hydrogen gas in the measurement target gas, which is hydrogen gas, using the gas heat conduction type gas detection device 1 described above. An example will be described. However, the gas detection method of the present invention is not limited to the following example, and a device other than the gas heat conduction type gas detection device 1 may be used, or a gas other than hydrogen gas may be used as the detection target gas. Good. Note that the thermal conductivity function of the measurement target gas, the interaction function considering the interaction of the two components between the air and hydrogen gas, and the viscosity of the air are obtained by the same method as described above. Detailed description thereof is omitted.

信号強度検出工程において、上述した気体熱伝導式ガス検知装置1を用いた実施形態では、信号強度は、気体熱伝導式ガス検知装置1を用いて、測定対象ガスおよび標準ガスの熱伝導率の違いに起因して検出される。より具体的には、信号強度検出の前段階として、気体熱伝導式ガス検知装置1の信号強度検出部2の補償用容器42bに標準ガスである乾燥空気が充填され、検知用容器41bに、気体熱伝導式ガス検知装置1の周囲の測定対象ガスが自然拡散される。そして、直流電圧源5により検知回路4のa−b点間に電流が供給される。このとき、検知素子41の第1変動抵抗体41aおよび補償素子42の第2変動抵抗体42aはそれぞれ、検知回路4に供給された電流により加熱される一方で、検知用容器41b内の測定対象ガスおよび補償用容器42b内の標準ガス中にその熱が放散される。水素ガスが発生していない場合には、測定対象ガスの熱伝導率と標準ガスの熱伝導率とは同じであるが、水素ガスが発生している場合には、測定対象ガスの熱伝導率と標準ガスの熱伝導率とが異なるため、第1変動抵抗体41aと第2変動抵抗体42aとで、放熱効率に差が生じ、その温度および抵抗値に差が生じる。その結果、検知回路4のc−d間に電位差が生じ、この電位差が電位差計6により信号強度として検出される。この電位差を検出することにより、測定対象ガスおよび標準ガスの熱伝導率の違いが検知される。ただし、信号強度検出工程は、測定対象ガスの熱伝導率に関連した信号強度を検出することができれば、検出に用いる装置は特に限定されることはなく、本実施形態の気体熱伝導式ガス検知装置1ではない、他の公知の気体熱伝導式ガス検知装置を用いて実施してもよいし、気体熱伝導式ガス検知装置ではない、測定対象ガスの熱伝導率に関連した信号強度を検出可能な他の装置を用いて実施してもよい。   In the signal intensity detection step, in the embodiment using the gas heat conduction type gas detection device 1 described above, the signal intensity is obtained by using the gas heat conduction type gas detection device 1 and the heat conductivity of the measurement target gas and the standard gas. Detected due to differences. More specifically, as a pre-stage of signal intensity detection, the compensation container 42b of the signal intensity detection unit 2 of the gas heat conduction type gas detection device 1 is filled with dry air as a standard gas, and the detection container 41b The measurement target gas around the gas heat conduction type gas detector 1 is naturally diffused. A current is supplied between points a and b of the detection circuit 4 by the DC voltage source 5. At this time, the first variable resistor 41a of the detection element 41 and the second variable resistor 42a of the compensation element 42 are heated by the current supplied to the detection circuit 4, respectively, while being measured in the detection container 41b. The heat is dissipated into the gas and the standard gas in the compensation vessel 42b. When hydrogen gas is not generated, the thermal conductivity of the measurement target gas is the same as that of the standard gas, but when hydrogen gas is generated, the thermal conductivity of the measurement target gas is the same. Since the thermal conductivity of the standard gas is different from that of the standard gas, the first variable resistor 41a and the second variable resistor 42a have a difference in heat dissipation efficiency and a difference in temperature and resistance value. As a result, a potential difference is generated between cd of the detection circuit 4, and this potential difference is detected as a signal intensity by the potentiometer 6. By detecting this potential difference, a difference in thermal conductivity between the measurement target gas and the standard gas is detected. However, in the signal intensity detection step, the apparatus used for detection is not particularly limited as long as the signal intensity related to the thermal conductivity of the measurement target gas can be detected, and the gas heat conduction type gas detection according to the present embodiment. It may be carried out using another known gas heat conduction type gas detection device that is not the device 1, or it is not a gas heat conduction type gas detection device, and the signal intensity related to the thermal conductivity of the measurement target gas is detected. It may be implemented using other possible devices.

検知対象ガス検知工程において、上述した気体熱伝導式ガス検知装置1を用いた実施形態では、信号強度検出工程により得られる信号強度と水素ガスの濃度との間の対応を示す相関関数、および、信号強度検出工程において得られた信号強度から、水素ガスを検知する。より具体的には、信号強度である電位差Vと水素ガスの濃度xとの間の対応を示す相関関数(V=F(x)またはV≒F(x))を用いて、信号強度検出工程により得られた電位差Vを、水素ガスの濃度xに対応した値に変換(x=F-1(V)またはx≒F-1(V))することで、測定対象ガス中の水素ガスの有無および/または濃度を検知する。 In the detection target gas detection step, in the embodiment using the gas heat conduction type gas detection device 1 described above, a correlation function indicating a correspondence between the signal intensity obtained by the signal intensity detection step and the concentration of hydrogen gas, and Hydrogen gas is detected from the signal intensity obtained in the signal intensity detection step. More specifically, the signal intensity detecting step using a correlation function (V = F (x) or V≈F (x)) indicating the correspondence between the potential difference V, which is the signal intensity, and the hydrogen gas concentration x. Is converted into a value corresponding to the hydrogen gas concentration x (x = F −1 (V) or x≈F −1 (V)), so that the hydrogen gas in the measurement target gas Detect presence and / or concentration.

このとき、信号強度と水素ガスの濃度との間の対応を示す相関関数(V=F(x)またはV≒F(x))は、測定対象ガス中の水素ガスの濃度xを変数とする測定対象ガスの熱伝導率関数(λsamp(x))から得られる(V=F(λsamp(x))またはV≒F(λsamp(x)))。そして、測定対象ガスの熱伝導率関数(λsamp(x))は、乾燥空気、水蒸気および水素ガスの3成分ではなく、乾燥空気および水蒸気を含む空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数、ならびに空気の熱伝導率および水素ガスの熱伝導率により求められる。そして、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数は、水蒸気および乾燥空気を1成分とした空気の粘度および分子量と、水素ガスの粘度および分子量とに基づいて求められる。すでに上述したように、測定対象ガスの熱伝導率関数を求めるにあたり、乾燥空気、水蒸気および水素ガスの3成分ではなく、空気と水素ガスとの間の2成分の相互作用を考慮することで、水蒸気および乾燥空気を1成分とした空気の粘度に水蒸気(水分子)の双極子モーメントの影響を反映させることができるので、より正確な熱伝導率関数を求めることができる。さらに、相対比較として、互いの熱伝導率の差分値の大きい水素ガスと水蒸気とを1成分として取り扱うのではなく、互いの熱伝導率の差分値の小さい水蒸気と乾燥空気とを1成分として取り扱うことにより、より正確な熱伝導率関数を求めることができる。したがって、相関関数をより正確に求めることができ、測定対象ガス中の水素ガスをより正確に検知することができる。特に、水素ガスのように爆発の危険性のあるガスが空気中に含まれる場合には、爆発の危険を回避するために、爆発下限以下の混合比(濃度)を高い精度で監視する必要がある。水素ガスの場合、空気との混合比で4.1%という非常に低い爆発下限を有しており、0〜4.1%という非常に狭い混合比の範囲内でのより高い検知精度が要求される。本実施形態のガス検知装置およびガス検知方法は、0〜4.1%という非常に狭い混合比の範囲内であっても、水素ガスをより正確に検知することができるので、爆発の危険を回避するのに十分な監視機能を有している。 At this time, the correlation function (V = F (x) or V≈F (x)) indicating the correspondence between the signal intensity and the hydrogen gas concentration uses the hydrogen gas concentration x in the measurement target gas as a variable. It is obtained from the thermal conductivity function (λ samp (x)) of the gas to be measured (V = F (λ samp (x)) or V≈Fsamp (x))). In addition, the thermal conductivity function (λ samp (x)) of the measurement target gas is not the three components of dry air, water vapor, and hydrogen gas, but the two components between air containing dry air and water vapor and hydrogen gas. It is obtained by an interaction function considering the action, and the thermal conductivity of air and the thermal conductivity of hydrogen gas. The interaction function considering the interaction of the two components between air and hydrogen gas is obtained based on the viscosity and molecular weight of air with water vapor and dry air as one component, and the viscosity and molecular weight of hydrogen gas. It is done. As already mentioned above, in determining the thermal conductivity function of the gas to be measured, by considering the interaction of the two components between air and hydrogen gas instead of the three components of dry air, water vapor and hydrogen gas, Since the influence of the dipole moment of water vapor (water molecule) can be reflected on the viscosity of air containing water vapor and dry air as one component, a more accurate thermal conductivity function can be obtained. Furthermore, as a relative comparison, hydrogen gas and water vapor having a large difference in thermal conductivity between each other are not treated as one component, but water vapor and dry air having a small difference in each other's thermal conductivity are treated as one component. Thus, a more accurate thermal conductivity function can be obtained. Therefore, the correlation function can be obtained more accurately, and the hydrogen gas in the measurement target gas can be detected more accurately. In particular, when a gas with a risk of explosion, such as hydrogen gas, is contained in the air, it is necessary to monitor the mixture ratio (concentration) below the lower explosion limit with high accuracy in order to avoid the risk of explosion. is there. In the case of hydrogen gas, it has a very low explosion limit of 4.1% as a mixture ratio with air, and higher detection accuracy is required within a very narrow mixture ratio range of 0 to 4.1%. Is done. The gas detection device and gas detection method of the present embodiment can detect hydrogen gas more accurately even within a very narrow mixing ratio range of 0 to 4.1%. It has sufficient monitoring function to avoid it.

検知対象ガス検知工程は、たとえば本実施形態の気体熱伝導式ガス検知装置1の検知対象ガス検知部3により実施することができるが、信号強度検出工程により得られる信号強度と水素ガスの濃度との間の対応を示す上記相関関数、および、信号強度検出工程において得られた信号強度から、検知対象ガス(水素ガス)を検知することができればよく、検知対象ガス検知部3とは異なる他の装置を用いて実施してもよい。   The detection target gas detection step can be performed by, for example, the detection target gas detection unit 3 of the gas heat conduction type gas detection device 1 of the present embodiment, but the signal intensity and hydrogen gas concentration obtained by the signal intensity detection step are As long as the detection target gas (hydrogen gas) can be detected from the correlation function indicating the correspondence between the two and the signal intensity obtained in the signal intensity detection step, other detection target gas detection unit 3 is different. You may implement using an apparatus.

以下、実施例をもとに本発明のガス検知装置およびガス検知方法の優れた効果を説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although the outstanding effect of the gas detection apparatus and gas detection method of this invention is demonstrated based on an Example, this invention is not limited to a following example.

<実施例>
気体熱伝導式ガス検知装置として、図1および図2に示される装置を用意し、水蒸気、乾燥空気および水素ガスが含まれる3成分系の測定対象ガスと、乾燥空気である標準ガスとについて、検知回路4中のc−d点間の電位差を測定した。測定対象ガス、標準ガス、検知素子41の第1変動抵抗体41aおよび補償素子42の第2変動抵抗体42aについては、以下の条件のものを用いた。第1固定抵抗43および第2固定抵抗44については、測定対象ガスの熱伝導率と標準ガスの熱伝導率とが同じ場合に、検知回路4のc−d点間に電位差が生じないようにその抵抗値を設定した。
(1)測定対象ガス
ガス種:水蒸気、乾燥空気および水素ガス
測定対象ガス中の水素ガスの濃度(vol%)=水素ガス/(水蒸気+乾燥空気+水素ガス)x100(vol%):0、1、2、3、4
水素ガス濃度が0vol%のときの相対湿度(%RH):4.5、36.5、55.9、75.8、90.2
水素ガス濃度が1〜4vol%のときの相対湿度(%RH):20、40、60、80
温度(℃):80
(2)標準ガス
ガス種:乾燥空気
温度(℃):80
(3)第1変動抵抗体
作製方法:アルミナ基板上に、スパッタリング法により白金を蛇行形状で成膜し、その上層にシリカをコーティングして作製
温度(℃):100、200、300、400、500、600
(4)第2変動抵抗体
作製方法:第1変動抵抗体と同じ
温度(℃):80
<Example>
As the gas heat conduction type gas detection device, the device shown in FIG. 1 and FIG. 2 is prepared, and a three-component measurement target gas containing water vapor, dry air and hydrogen gas, and a standard gas which is dry air, The potential difference between the points cd in the detection circuit 4 was measured. Regarding the measurement object gas, the standard gas, the first variable resistor 41a of the detection element 41, and the second variable resistor 42a of the compensation element 42, the following conditions were used. As for the first fixed resistor 43 and the second fixed resistor 44, when the thermal conductivity of the measurement target gas is the same as that of the standard gas, no potential difference is generated between the points cd of the detection circuit 4. The resistance value was set.
(1) Gas gas type to be measured: water vapor, dry air, and hydrogen gas concentration (vol%) in the gas to be measured (vol%) = hydrogen gas / (water vapor + dry air + hydrogen gas) × 100 (vol%): 0, 1 2, 3, 4
Relative humidity (% RH) when the hydrogen gas concentration is 0 vol%: 4.5, 36.5, 55.9, 75.8, 90.2
Relative humidity (% RH) when the hydrogen gas concentration is 1 to 4 vol%: 20, 40, 60, 80
Temperature (° C): 80
(2) Standard gas type: Dry air temperature (° C): 80
(3) First variable resistor manufacturing method: platinum is formed in a meandering shape by sputtering on an alumina substrate, and silica is coated on the upper layer, and manufacturing temperature (° C.): 100, 200, 300, 400, 500, 600
(4) Second variable resistor manufacturing method: same temperature (° C.) as the first variable resistor: 80

つぎに、測定対象ガスの熱伝導率と標準ガスの熱伝導率との差を計算により求め、その計算結果と上述した測定の結果との対比を行なった。測定対象ガスの熱伝導率および標準ガスの熱伝導率は、以下の方法で計算した。なお、以下の例では、個々のガスの熱伝導率等を数式4〜6を用いた計算により求めたが、他の式を用いて求めてもよいし、実験的に得られた値や経験的もしくは半経験的な式により求めた値を採用してもよい。
(1)測定対象ガスの熱伝導率
測定対象ガスの熱伝導率を以下の手順で求めた。まず、水蒸気および乾燥空気を1成分とした空気の粘度を上述した数式3により求め、水素ガスの粘度を剛体球近似(以下の数式4)により求めた。空気の粘度を求める際に、測定対象ガスの温度を、第1変動抵抗体41aの温度と同じ温度まで上昇しているものと仮定し、第1変動抵抗体41aの温度と同じとした。つぎに、空気の粘度および分子量と、水素ガスの粘度および分子量とを用いて、上述した数式2により、空気と水素ガスとの間の2成分の相互作用を考慮した相互作用関数(相互作用係数)を求めた。このとき、経験的パラメータ(相互作用パラメータ)γは、極性分子(空気)−無極性分子(水素ガス)の相互作用を考慮して、TandonとSaxenaによる推奨値(P. K. Tandon and S. C. Saxena, Appl. Sci. Res., 19, 163(1965))を採用した。最後に、得られた相互作用関数(相互作用係数)と、空気の熱伝導率および水素ガスの熱伝導率とを用いて、上述した数式3により、測定対象ガスの熱伝導率を求めた。なお、空気の熱伝導率は、多項式で表わされる経験的な式(以下の数式5)により求め、水素ガスの熱伝導率は、剛体球近似(以下の数式6)により求めた。
Next, the difference between the thermal conductivity of the measurement target gas and the thermal conductivity of the standard gas was obtained by calculation, and the calculation result was compared with the measurement result described above. The thermal conductivity of the measurement target gas and the standard gas were calculated by the following methods. In the following examples, the thermal conductivity and the like of each gas are obtained by calculation using Equations 4 to 6, but may be obtained using other equations, and experimentally obtained values and experiences. A value obtained by a manual or semi-empirical formula may be adopted.
(1) Thermal conductivity of measurement object gas The thermal conductivity of measurement object gas was calculated | required in the following procedures. First, the viscosity of air with water vapor and dry air as one component was determined by the above-described formula 3, and the viscosity of hydrogen gas was determined by a hard sphere approximation (the following formula 4). When determining the viscosity of the air, it was assumed that the temperature of the measurement target gas had risen to the same temperature as that of the first variable resistor 41a, and was the same as the temperature of the first variable resistor 41a. Next, using the viscosity and molecular weight of air and the viscosity and molecular weight of hydrogen gas, an interaction function (interaction coefficient) that takes into account the interaction of the two components between air and hydrogen gas according to the above-described formula 2. ) In this case, the empirical parameter (interaction parameter) γ is a value recommended by Tandon and Saxena (PK Tandon and SC Saxena, Appl.) In consideration of the interaction between polar molecules (air) and nonpolar molecules (hydrogen gas). Sci. Res., 19, 163 (1965)). Finally, using the obtained interaction function (interaction coefficient), the thermal conductivity of air, and the thermal conductivity of hydrogen gas, the thermal conductivity of the measurement target gas was obtained by Equation 3 described above. In addition, the thermal conductivity of air was calculated | required by the empirical formula (following Numerical formula 5) represented by a polynomial, and the thermal conductivity of hydrogen gas was calculated | required by the hard sphere approximation (following Numerical formula 6).

Figure 2017194391
η:粘度
m:分子の質量
k:ボルツマン定数
T:気体の温度
ε:ポテンシャルパラメータ
0:0.354125
1:−0.427581
2:0.149251
3:−0.037174
4:0.003176
σ=0.2968nm(水素の分子直径)
(参考文献)M. J. Assael and S. Mixafendi, J. Phys. Chem. Ref. Data, 15, 4(1986)
Figure 2017194391
η: viscosity m: mass of the molecule k: Boltzmann constant T: gas temperature ε: potential parameter a 0 : 0.354125
a 1 : -0.427581
a 2 : 0.149251
a 3: -0.037174
a 4: 0.003176
σ = 0.2968 nm (molecular diameter of hydrogen)
(Reference) MJ Assael and S. Mixafendi, J. Phys. Chem. Ref. Data, 15, 4 (1986)

[数式5]
λA=AA+BA・T+CA・T2+DA・T3
λA:ガスの熱伝導率
T:ガスの温度
A、BA、CA、DA:ガス種に応じた定数
(参考文献)A. Melling, et al., J. Phys. Chem. Ref. Data, 26, 4(1997)
[Formula 5]
λ A = A A + B A · T + C A · T 2 + D A · T 3
λ A : thermal conductivity of gas T: gas temperature A A , B A , C A , D A : constants according to gas type (reference) A. Melling, et al., J. Phys. Chem. Ref Data, 26, 4 (1997)

Figure 2017194391
λ(H2):水素ガスの熱伝導率
T:水素ガスの温度
M:水素ガスの分子量
Figure 2017194391
k:ボルツマン定数
T:気体の温度
ε:ポテンシャルパラメータ
σ=0.2968nm(水素の分子直径)
A:1.16145
B:0.14874
C:0.52487
D:0.77320
E:2.16178
F:2.43787
(参考文献)P. D. Neufeld, A. R. Janzen, and R. A. Aziz, J. Chem. Phys., 57, 1100 (1972)
(2)標準ガスの熱伝導率
標準ガスの熱伝導率は、多項式で表わされる経験的な式(上記数式5)により求めた。
Figure 2017194391
λ (H 2 ): thermal conductivity of hydrogen gas T: temperature of hydrogen gas M: molecular weight of hydrogen gas
Figure 2017194391
k: Boltzmann constant T: gas temperature ε: potential parameter σ = 0.2968 nm (molecular diameter of hydrogen)
A: 1.16145
B: 0.14874
C: 0.52487
D: 0.77320
E: 2.16178
F: 2.437787
(Reference) PD Neufeld, AR Janzen, and RA Aziz, J. Chem. Phys., 57, 1100 (1972)
(2) Thermal conductivity of standard gas The thermal conductivity of the standard gas was determined by an empirical formula (the above formula 5) represented by a polynomial.

図3は、測定環境周囲温度が80℃で、水素ガスの濃度が0vol%で、第1変動抵抗体41aが異なる温度条件のときの測定結果であり、空気中の相対湿度の変化に対する検知回路4のc−d間の電位差の変化を示す。図3から、第1変動抵抗体41aの温度が200℃以下の場合には、相対湿度が50%に増加するまで電位差は増加するが、相対湿度が50%を超えて増加すると電位差が減少していることがわかる。また、第1変動抵抗体41aの温度が300℃以上では、相対湿度の増加に伴い電位差は増加するが、その増加率は徐々に減少していることがわかる。   FIG. 3 shows the measurement results when the ambient temperature of the measurement environment is 80 ° C., the hydrogen gas concentration is 0 vol%, and the first variable resistor 41a is under different temperature conditions, and a detection circuit for a change in relative humidity in the air. 4 shows a change in potential difference between cd of 4; From FIG. 3, when the temperature of the first variable resistor 41a is 200 ° C. or lower, the potential difference increases until the relative humidity increases to 50%, but the potential difference decreases when the relative humidity increases beyond 50%. You can see that It can also be seen that when the temperature of the first variable resistor 41a is 300 ° C. or higher, the potential difference increases as the relative humidity increases, but the increase rate gradually decreases.

図4は、図3の測定結果に対応する計算結果であり、測定環境周囲温度が80℃で、水素ガスの濃度が0vol%で、第1変動抵抗体41aが異なる温度条件(測定対象ガスが異なる温度条件)のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差の変化を示す。図4から、第1変動抵抗体41aの温度が200℃以下の場合(測定対象ガスが200℃以下の場合)には、相対湿度が50%に増加するまで熱伝導率の差は増加するが、相対湿度が50%を超えて増加すると熱伝導率の差が減少していることがわかる。また、第1変動抵抗体41aの温度が300℃以上(測定対象ガスの温度が300℃以上)では、相対湿度の増加に伴い熱伝導率の差は増加するが、その増加率は徐々に減少していることがわかる。この図4に示された相対湿度の変化に対する熱伝導率の差の変化は、図3に示された相対湿度の変化に対する電位差の変化と非常によく整合している。   FIG. 4 is a calculation result corresponding to the measurement result of FIG. 3, in which the ambient temperature of the measurement environment is 80 ° C., the hydrogen gas concentration is 0 vol%, and the first variable resistor 41 a has different temperature conditions (the measurement target gas is The change of the difference of the heat conductivity of measurement object gas and standard gas with respect to the change of the relative humidity in the air in different temperature conditions) is shown. From FIG. 4, when the temperature of the first variable resistor 41 a is 200 ° C. or less (when the measurement target gas is 200 ° C. or less), the difference in thermal conductivity increases until the relative humidity increases to 50%. It can be seen that the difference in thermal conductivity decreases as the relative humidity increases beyond 50%. Further, when the temperature of the first variable resistor 41a is 300 ° C. or higher (the temperature of the measurement target gas is 300 ° C. or higher), the difference in thermal conductivity increases as the relative humidity increases, but the increase rate gradually decreases. You can see that The change in the difference in thermal conductivity with respect to the change in relative humidity shown in FIG. 4 is very well matched with the change in potential difference with respect to the change in relative humidity shown in FIG.

図5は、測定環境周囲温度が80℃で、第1変動抵抗体41aの温度が200℃で、測定対象ガス中の水素ガスの濃度が異なる条件のときの測定結果であり、空気中の相対湿度の変化に対する検知回路4のc−d間の電位差の変化を示す。図4から、1〜4vol%のいずれの水素ガス濃度の場合でも、空気中の相対湿度の増加に伴い電位差は減少するが、その減少率は徐々に減少していることがわかる。   FIG. 5 shows the measurement results when the ambient temperature of the measurement environment is 80 ° C., the temperature of the first variable resistor 41a is 200 ° C., and the hydrogen gas concentration in the measurement target gas is different. The change of the potential difference between cd of the detection circuit 4 with respect to the change of humidity is shown. FIG. 4 shows that the potential difference decreases with increasing relative humidity in the air at any hydrogen gas concentration of 1 to 4 vol%, but the decrease rate gradually decreases.

図6は、図5の測定結果に対応する計算結果であり、測定環境周囲温度が80℃で、第1変動抵抗体41aの温度が200℃(測定対象ガスの温度が200℃)で、測定対象ガス中の水素ガスの濃度が異なる条件のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差の変化を示す。図6から、1〜4vol%のいずれの水素ガス濃度の場合でも、空気中の相対湿度の増加に伴い熱伝導率の差は減少するが、その減少率は徐々に減少していることがわかる。この図6に示された相対湿度の変化に対する熱伝導率の差の変化は、図5に示された相対湿度の変化に対する電位差の変化と非常によく整合している。   FIG. 6 is a calculation result corresponding to the measurement result of FIG. 5, and is measured when the ambient temperature of the measurement environment is 80 ° C., the temperature of the first variable resistor 41 a is 200 ° C. (the temperature of the measurement target gas is 200 ° C.). The change of the difference of the heat conductivity of measurement object gas and standard gas with respect to the change of the relative humidity in air in the case where the density | concentration of hydrogen gas in object gas differs is shown. FIG. 6 shows that the difference in thermal conductivity decreases with increasing relative humidity in the air at any hydrogen gas concentration of 1 to 4 vol%, but the rate of decrease gradually decreases. . The change in the difference in thermal conductivity with respect to the change in relative humidity shown in FIG. 6 is very well matched with the change in potential difference with respect to the change in relative humidity shown in FIG.

図7(a)〜(d)は、図6に示された熱伝導率の差と、図5に示された電位差との関係を示す。空気中の相対湿度が20〜80%のいずれの場合でも、計算された熱伝導率の差と測定された電位差とが、非常に良い直線関係を有し、しかもほぼ同一の傾きを有している(傾きが約2.6〜2.7の範囲)ことがわかる。この直線関係(4つの傾きの平均値)を用いて、図6に示された熱伝導率の差を変換した値を、図4上に重ね合せた結果を図8に示す。図8から、測定された電位差と、計算された熱伝導率の差から変換された値とが非常によく一致していることがわかる。この結果から分かるように、本実施例の方法によれば、水素ガスの濃度が、上述したような爆発下限(4.1%)以下であっても、水素ガスを精度よく検知することができる。   7A to 7D show the relationship between the difference in thermal conductivity shown in FIG. 6 and the potential difference shown in FIG. In any case where the relative humidity in the air is 20 to 80%, the calculated difference in thermal conductivity and the measured potential difference have a very good linear relationship and almost the same slope. (The slope is in the range of about 2.6 to 2.7). FIG. 8 shows the result of superimposing the values obtained by converting the difference in thermal conductivity shown in FIG. 6 on FIG. 4 using this linear relationship (average value of four inclinations). FIG. 8 shows that the measured potential difference agrees very well with the value converted from the calculated difference in thermal conductivity. As can be seen from this result, according to the method of the present embodiment, even when the concentration of hydrogen gas is below the lower explosion limit (4.1%) as described above, hydrogen gas can be detected with high accuracy. .

<比較例>
測定対象ガスの熱伝導率と標準ガスの熱伝導率との差を、上述した実施例とは異なる方法による計算により求め、その計算結果と上述した測定の結果との対比を行なった。測定対象ガスの熱伝導率は、以下の方法で算出した。なお、ここに記載していない条件は、上記実施例と同じとした。
<Comparative example>
The difference between the thermal conductivity of the gas to be measured and the thermal conductivity of the standard gas was obtained by calculation using a method different from the above-described example, and the calculation result was compared with the above-described measurement result. The thermal conductivity of the measurement object gas was calculated by the following method. The conditions not described here were the same as in the above example.

まず、水蒸気、乾燥空気および水素ガスのそれぞれの分子量、臨界温度、臨界圧力を用いて、Roy-Thodosの手法(以下の数式7)により、上述した数式2の中のλtri/λtrjの値を求めた。得られたλtri/λtrjの値を用いて、上述した数式2により、水蒸気、乾燥空気および水素ガスの3成分のうちのすべての組み合わせの2成分間の相互作用を考慮して、相互作用関数(相互作用係数)を求めた。このとき、経験的パラメータ(相互作用パラメータ)γは、無極性ガス(乾燥空気)と無極性ガス(水素ガス)との組み合わせについては、無極性分子−無極性分子の相互作用を考慮して、MasonとSaxenaによる推奨値(E. A. Mason and S. C. Saxena, Phys. Fluids, 1, 361(1958))を採用し、極性ガス(水蒸気)と無極性ガス(乾燥空気または水素ガス)との組み合わせについては、極性分子−無極性分子の相互作用を考慮して、TandonとSaxenaによる推奨値(P. K. Tandon and S. C. Saxena, Appl. Sci. Res., 19, 163(1965))を採用した。そして、得られた相互作用関数(相互作用係数)と、水蒸気の熱伝導率、乾燥空気の熱伝導率および水素ガスの熱伝導率とを用いて、上述した数式1により、測定対象ガスの熱伝導率を求めた。なお、水蒸気の熱伝導率および乾燥空気の熱伝導率は、上述した数式5により求め、水素ガスの熱伝導率は、剛体球近似(数式6)により求めた。 First, using the respective molecular weight, critical temperature, and critical pressure of water vapor, dry air, and hydrogen gas, the value of λ tri / λ trj in Equation 2 described above by the Roy-Thodos method (Formula 7 below) Asked. Using the obtained values of λ tri / λ trj , the interaction between the two components of all combinations of the three components of water vapor, dry air, and hydrogen gas is considered according to Equation 2 described above. A function (interaction coefficient) was obtained. At this time, the empirical parameter (interaction parameter) γ is a combination of nonpolar gas (dry air) and nonpolar gas (hydrogen gas) in consideration of the interaction between nonpolar molecules and nonpolar molecules, The recommended values by Mason and Saxena (EA Mason and SC Saxena, Phys. Fluids, 1, 361 (1958)) are used. For combinations of polar gas (water vapor) and nonpolar gas (dry air or hydrogen gas), Considering the interaction between polar and nonpolar molecules, the recommended values by Tandon and Saxena (PK Tandon and SC Saxena, Appl. Sci. Res., 19, 163 (1965)) were adopted. Then, using the obtained interaction function (interaction coefficient), the thermal conductivity of water vapor, the thermal conductivity of dry air, and the thermal conductivity of hydrogen gas, the heat of the measurement target gas is calculated according to the above-described Equation 1. The conductivity was determined. In addition, the heat conductivity of water vapor and the heat conductivity of dry air were calculated | required by Numerical formula 5 mentioned above, and the heat conductivity of hydrogen gas was calculated | required by the hard sphere approximation (Formula 6).

Figure 2017194391
λtri、λtrj:成分iおよび成分jの気体熱伝導率
c:臨界温度
c:臨界圧力
M:分子量
Figure 2017194391
λ tri , λ trj : gas thermal conductivity of component i and component j T c : critical temperature P c : critical pressure M: molecular weight

図9は、図5の測定結果に対応する計算結果であり、測定環境周囲温度が80℃で、第1変動抵抗体41aの温度が200℃(測定対象ガスの温度が200℃)で、測定対象ガス中の水素ガスの濃度が異なる条件のときの、空気中の相対湿度の変化に対する測定対象ガスおよび標準ガスの熱伝導率の差の変化を示す。図9から、1〜4vol%のいずれの水素ガス濃度の場合でも、空気中の相対湿度の増加に伴い熱伝導率の差が直線的に減少していることがわかる。このことは、図5に示された相対湿度の変化に対する電位差の変化と、図9に示された相対湿度の変化に対する熱伝導率の差の変化とが整合していないことを示している。   FIG. 9 is a calculation result corresponding to the measurement result of FIG. 5, and is measured when the ambient temperature of the measurement environment is 80 ° C. and the temperature of the first variable resistor 41 a is 200 ° C. (the temperature of the measurement target gas is 200 ° C.). The change of the difference of the heat conductivity of measurement object gas and standard gas with respect to the change of the relative humidity in air in the case where the density | concentration of hydrogen gas in object gas differs is shown. From FIG. 9, it can be seen that the difference in thermal conductivity decreases linearly as the relative humidity in the air increases at any hydrogen gas concentration of 1 to 4 vol%. This indicates that the change in potential difference with respect to the change in relative humidity shown in FIG. 5 and the change in difference in thermal conductivity with respect to the change in relative humidity shown in FIG. 9 do not match.

図10(a)〜(d)は、図9に示された熱伝導率の差と、図5に示された電位差との関係を示す。空気中の相対湿度が20〜80%のいずれの場合でも、計算された熱伝導率の差と測定された電位差とが直線関係を有しているものの、図7(a)〜(d)に示された実施例とは異なり、それぞれの傾きが互いに大きく異なる(傾きが約3.2〜4.3の範囲)ことがわかる。この直線関係(4つの傾きの平均値)を用いて、図9に示された熱伝導率の差を変換した値を、図5上に重ね合せた結果を図11に示す。図8から、測定された電位差と、計算された熱伝導率の差から変換された値とが全く一致していないことがわかる。   10A to 10D show the relationship between the difference in thermal conductivity shown in FIG. 9 and the potential difference shown in FIG. In any case where the relative humidity in the air is 20 to 80%, although the calculated difference in thermal conductivity and the measured potential difference have a linear relationship, FIGS. Unlike the example shown, it can be seen that the slopes of each are greatly different (the slope is in the range of about 3.2 to 4.3). FIG. 11 shows the result of superimposing the values obtained by converting the difference in thermal conductivity shown in FIG. 9 on FIG. 5 using this linear relationship (average value of four inclinations). It can be seen from FIG. 8 that the measured potential difference and the value converted from the calculated difference in thermal conductivity do not match at all.

上述した実施例および比較例から分かるように、水蒸気、乾燥空気および水素ガスの3成分として相互作用関数を求めて測定対象ガスの熱伝導率を算出しても、算出された熱伝導率の差と測定された電位差との間に良好な相関関係は得られないが、水蒸気および乾燥空気を含む空気と水素ガスとの2成分として相互作用関数を求めて測定対象ガスの熱伝導率を算出すると、算出された熱伝導率の差と測定された電位差との間に良好な相関関係が得られる。特に、従来法(3成分で計算)によれば、算出された熱伝導率の差と測定された電位差との間の関係(傾き)が、測定対象ガス中の水蒸気の濃度の変化に伴って変化するが、本実施形態の方法(2成分で計算)によれば、測定対象ガス中の水蒸気の濃度の変化に影響を受けることなく、算出された熱伝導率の差と測定された電位差との間に良好な相関関係(傾きがほぼ一致)を得ることができる。したがって、水蒸気、乾燥空気および水素ガスの3成分を、空気と水素ガスとの2成分として取り扱い、水素ガスの濃度を変数とする測定対象ガスの熱伝導率関数を求めれば、その熱伝導率関数から、電位差(信号強度)と水素ガスの濃度との間の対応を示す、より正確な相関関数を得ることができる。そして、その相関関数を用いることにより、測定対象ガス中の水素ガスを精度よく検知することができる。特に、空気中に水蒸気が高濃度で存在する場合には、測定対象ガスの熱伝導率が、双極子モーメントを有する水蒸気の影響をより大きく受けるため、従来法では検知誤差がより大きくなってしまう。たとえば、東日本大震災時の福島第一原子力発電所での事故では、原子炉格納容器内において、冷却水が蒸発して大量の水蒸気が発生したが、このように大量の水蒸気が発生した場合であっても、本実施形態のガス検知装置およびガス検知方法によれば、測定対象ガス中の水蒸気の濃度の変化に影響を受けることなく、水素ガスを精度よく検知することができる。   As can be seen from the above-described Examples and Comparative Examples, even if the interaction function is obtained as the three components of water vapor, dry air, and hydrogen gas and the thermal conductivity of the measurement target gas is calculated, the difference in the calculated thermal conductivity is calculated. Is not obtained, but when calculating the thermal conductivity of the gas to be measured by calculating the interaction function as two components of water and hydrogen gas including water vapor and dry air A good correlation is obtained between the calculated difference in thermal conductivity and the measured potential difference. In particular, according to the conventional method (calculated with three components), the relationship (slope) between the calculated difference in thermal conductivity and the measured potential difference is accompanied by a change in the concentration of water vapor in the measurement target gas. Although it changes, according to the method of this embodiment (calculated with two components), the difference between the calculated thermal conductivity and the measured potential difference are not affected by the change in the concentration of water vapor in the measurement target gas. A good correlation (slopes are almost the same) can be obtained. Therefore, if the three components of water vapor, dry air, and hydrogen gas are handled as two components of air and hydrogen gas, and the thermal conductivity function of the gas to be measured with the concentration of hydrogen gas as a variable is obtained, the thermal conductivity function is obtained. Thus, a more accurate correlation function showing the correspondence between the potential difference (signal intensity) and the concentration of hydrogen gas can be obtained. And by using the correlation function, the hydrogen gas in the measurement target gas can be detected with high accuracy. In particular, when water vapor is present in a high concentration in the air, the thermal conductivity of the gas to be measured is more affected by water vapor having a dipole moment, and thus the detection error becomes larger in the conventional method. . For example, in the accident at the Fukushima Daiichi Nuclear Power Station during the Great East Japan Earthquake, cooling water evaporated in the reactor containment vessel and a large amount of water vapor was generated. However, according to the gas detection device and the gas detection method of the present embodiment, it is possible to accurately detect hydrogen gas without being affected by a change in the concentration of water vapor in the measurement target gas.

1 気体熱伝導式ガス検知装置
2 信号強度検出部
3 検知対象ガス検知部
4 検知回路
41 検知素子
41a 第1変動抵抗体
41b 検知用容器
42 補償素子
42a 第2変動抵抗体
42b 補償用容器
43 第1固定抵抗
44 第2固定抵抗
5 直流電圧源
6 電位差計
DESCRIPTION OF SYMBOLS 1 Gas heat conduction type gas detection apparatus 2 Signal intensity detection part 3 Detection target gas detection part 4 Detection circuit 41 Detection element 41a 1st fluctuation resistor 41b Detection container 42 Compensation element 42a 2nd fluctuation resistor 42b Compensation container 43 1st 1 fixed resistor 44 2nd fixed resistor 5 DC voltage source 6 potentiometer

Claims (7)

水蒸気および乾燥空気を含む空気に検知対象ガスが含まれる測定対象ガスにおける前記検知対象ガスを検知するためのガス検知装置であって、
前記測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出部と、
前記信号強度に基づいて前記検知対象ガスを検知する検知対象ガス検知部とを備え、
前記検知対象ガス検知部が、
前記信号強度と前記検知対象ガスの濃度との間の対応を示す相関関数、および、前記信号強度検出部により得られた信号強度から、前記検知対象ガスを検知するように構成され、
前記相関関数が、
i)前記水蒸気および前記乾燥空気を1成分とした前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とに基づいた、前記空気と前記検知対象ガスとの間の相互作用を考慮した相互作用関数、および
ii)前記空気の熱伝導率および前記検知対象ガスの熱伝導率
により求められる、前記測定対象ガス中の前記検知対象ガスの濃度を変数とする前記測定対象ガスの熱伝導率関数から得られることを特徴とする
ガス検知装置。
A gas detection device for detecting the detection target gas in a measurement target gas in which the detection target gas is contained in air containing water vapor and dry air,
A signal intensity detector for detecting a signal intensity related to the thermal conductivity of the measurement object gas;
A detection target gas detection unit that detects the detection target gas based on the signal intensity,
The detection target gas detection unit,
A correlation function indicating a correspondence between the signal intensity and the concentration of the detection target gas, and a signal intensity obtained by the signal intensity detection unit are configured to detect the detection target gas,
The correlation function is
i) Considering the interaction between the air and the gas to be detected based on the viscosity and molecular weight of the air with the water vapor and the dry air as one component and the viscosity and molecular weight of the gas to be detected Interaction function, and ii) the thermal conductivity of the measurement target gas obtained from the thermal conductivity of the air and the thermal conductivity of the detection target gas, with the concentration of the detection target gas in the measurement target gas as a variable A gas detection device obtained from a function.
前記測定対象ガスの熱伝導率関数が、前記相互作用関数と、前記空気の熱伝導率および前記検知対象ガスの熱伝導率とを用いて、以下の[数式1]から求められることを特徴とする請求項1記載のガス検知装置。
Figure 2017194391
λm:混合ガスの気体熱伝導率
λi:成分iの気体熱伝導率
i、xj:成分iおよび成分jのモル分率
ij:相互作用を考慮した相互作用関数(Aii=1)
The thermal conductivity function of the measurement target gas is obtained from the following [Equation 1] using the interaction function, the thermal conductivity of the air, and the thermal conductivity of the detection target gas. The gas detection device according to claim 1.
Figure 2017194391
λ m : gas thermal conductivity of mixed gas λ i : gas thermal conductivity of component i x i , x j : mole fraction of component i and component j A ij : interaction function considering interaction (A ii = 1)
前記相互作用関数が、前記水蒸気および前記乾燥空気を含む前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とを用いて、以下の[数式2]から求められることを特徴とする請求項1または2記載のガス検知装置。
Figure 2017194391
i、Mj:成分iおよび成分jの分子量
λtri、λtrj:成分iおよび成分jの気体熱伝導率
γ:相互作用パラメータ
Figure 2017194391
ηi、ηj:成分iおよび成分jの粘度
The interaction function is obtained from the following [Equation 2] using the viscosity and molecular weight of the air including the water vapor and the dry air and the viscosity and molecular weight of the detection target gas. Item 3. The gas detection device according to Item 1 or 2.
Figure 2017194391
M i , M j : molecular weight of component i and component j λ tri , λ trj : gas thermal conductivity of component i and component j γ: interaction parameter
Figure 2017194391
η i , η j : viscosity of component i and component j
前記空気の粘度が、前記水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度と、前記乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度とを用いて求められることを特徴とする請求項1〜3のいずれか1項に記載のガス検知装置。 The viscosity of the air includes the molecular weight, dipole moment, critical pressure, critical temperature and concentration in the air of the water vapor, and the molecular weight, dipole moment, critical pressure, critical temperature and concentration in the air of the dry air. The gas detection device according to claim 1, wherein the gas detection device is obtained by using a gas detector. 前記空気の粘度が、前記水蒸気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度と、前記乾燥空気の分子量、双極子モーメント、臨界圧力、臨界温度および前記空気中の濃度とを用いて、以下の[数式3]から求められることを特徴とする請求項1〜4のいずれか1項に記載のガス検知装置。
Figure 2017194391
ηm:混合ガスの粘度
i、Mj、Mk:成分i、成分jおよび成分kの分子量
i、xk:成分iおよび成分kのモル分率
ηi:成分iの粘度
rij:対臨界温度(reduced temperature)
Figure 2017194391
ci、Tcj:成分i、成分jの臨界温度
Figure 2017194391
μ:双極子モーメント
c:臨界圧力
c:臨界温度
The viscosity of the air includes the molecular weight, dipole moment, critical pressure, critical temperature and concentration in the air of the water vapor, and the molecular weight, dipole moment, critical pressure, critical temperature and concentration in the air of the dry air. The gas detection device according to claim 1, wherein the gas detection device is obtained from the following [Equation 3].
Figure 2017194391
η m : viscosity of mixed gas M i , M j , M k : molecular weight of component i, component j and component k xi , x k : molar fraction of component i and component k η i : viscosity of component i T rij : Reduced temperature
Figure 2017194391
T ci and T cj : critical temperatures of component i and component j
Figure 2017194391
μ: Dipole moment P c : Critical pressure T c : Critical temperature
前記相関関数が、前記水蒸気の前記空気中の濃度および前記検知対象ガスの濃度が異なる複数の状態にある測定対象ガスから得られる複数の信号強度と、前記測定対象ガスの熱伝導率関数とをフィッティングさせることにより得られることを特徴とする請求項1〜5のいずれか1項に記載のガス検知装置。 The correlation function includes a plurality of signal intensities obtained from measurement target gases in a plurality of states in which the concentration of the water vapor in the air and the concentration of the detection target gas are different, and a thermal conductivity function of the measurement target gas. The gas detection device according to claim 1, wherein the gas detection device is obtained by fitting. 水蒸気および乾燥空気を含む空気に検知対象ガスが含まれる測定対象ガスにおける前記検知対象ガスを検知するガス検知方法であって、
前記測定対象ガスの熱伝導率に関連した信号強度を検出する信号強度検出工程と、
前記信号強度に基づいて、前記検知対象ガスを検知する検知対象ガス検知工程とを含み、
前記検知対象ガス検知工程が、
前記信号強度と前記検知対象ガスの濃度との間の対応を示す相関関数、および、前記信号強度検出工程において得られた信号強度から、前記検知対象ガスを検知し、
前記相関関数が、
i)前記水蒸気および前記乾燥空気を1成分とした前記空気の粘度および分子量と、前記検知対象ガスの粘度および分子量とに基づいた、前記空気と前記検知対象ガスとの間の相互作用を考慮した相互作用関数、および
ii)前記空気の熱伝導率および前記検知対象ガスの熱伝導率
により求められる、前記測定対象ガス中の前記検知対象ガスの濃度を変数とする前記測定対象ガスの熱伝導率関数から得られることを特徴とする
ガス検知方法。
A gas detection method for detecting the detection target gas in a measurement target gas in which the detection target gas is contained in air containing water vapor and dry air,
A signal intensity detection step of detecting a signal intensity related to the thermal conductivity of the measurement target gas;
A detection target gas detection step of detecting the detection target gas based on the signal intensity,
The detection target gas detection step includes
From the correlation function indicating the correspondence between the signal intensity and the concentration of the detection target gas, and the signal intensity obtained in the signal intensity detection step, the detection target gas is detected,
The correlation function is
i) Considering the interaction between the air and the gas to be detected based on the viscosity and molecular weight of the air with the water vapor and the dry air as one component and the viscosity and molecular weight of the gas to be detected Interaction function, and ii) the thermal conductivity of the measurement target gas obtained from the thermal conductivity of the air and the thermal conductivity of the detection target gas, with the concentration of the detection target gas in the measurement target gas as a variable A gas detection method obtained from a function.
JP2016085619A 2016-04-21 2016-04-21 Gas detection device and gas detection method Active JP6305459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085619A JP6305459B2 (en) 2016-04-21 2016-04-21 Gas detection device and gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085619A JP6305459B2 (en) 2016-04-21 2016-04-21 Gas detection device and gas detection method

Publications (2)

Publication Number Publication Date
JP2017194391A true JP2017194391A (en) 2017-10-26
JP6305459B2 JP6305459B2 (en) 2018-04-04

Family

ID=60154835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085619A Active JP6305459B2 (en) 2016-04-21 2016-04-21 Gas detection device and gas detection method

Country Status (1)

Country Link
JP (1) JP6305459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505061A (en) * 2019-01-31 2020-08-07 日本特殊陶业株式会社 Gas sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638651U (en) * 1986-07-04 1988-01-20
JP2001242114A (en) * 2000-02-29 2001-09-07 New Cosmos Electric Corp Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
JP2002062288A (en) * 2000-08-16 2002-02-28 Horiba Ltd On-vehicle analyzer
JP2003344326A (en) * 2002-05-28 2003-12-03 Jfe Steel Kk Method of measuring hydrogen gas concentration in exhaust gas
JP2005300452A (en) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using the same, and automobile using the same
JP2006010670A (en) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd Combustible gas detecting device and combustible gas detecting method
JP2010008165A (en) * 2008-06-25 2010-01-14 Tokyo Gas Co Ltd Device and method for measuring component of mixed gas
US20160025694A1 (en) * 2013-04-05 2016-01-28 Chemec Gmbh Device for measuring the thermal conductivity of gas components of a gas mixture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638651U (en) * 1986-07-04 1988-01-20
JP2001242114A (en) * 2000-02-29 2001-09-07 New Cosmos Electric Corp Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
JP2002062288A (en) * 2000-08-16 2002-02-28 Horiba Ltd On-vehicle analyzer
JP2003344326A (en) * 2002-05-28 2003-12-03 Jfe Steel Kk Method of measuring hydrogen gas concentration in exhaust gas
JP2005300452A (en) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using the same, and automobile using the same
JP2006010670A (en) * 2004-05-27 2006-01-12 Ngk Spark Plug Co Ltd Combustible gas detecting device and combustible gas detecting method
JP2010008165A (en) * 2008-06-25 2010-01-14 Tokyo Gas Co Ltd Device and method for measuring component of mixed gas
US20160025694A1 (en) * 2013-04-05 2016-01-28 Chemec Gmbh Device for measuring the thermal conductivity of gas components of a gas mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505061A (en) * 2019-01-31 2020-08-07 日本特殊陶业株式会社 Gas sensor

Also Published As

Publication number Publication date
JP6305459B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6305458B2 (en) Gas detection method and gas detection device
Berndt et al. MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications
Ahadi et al. An improved transient plane source method for measuring thermal conductivity of thin films: Deconvoluting thermal contact resistance
Braun et al. On the steady-state temperature rise during laser heating of multilayer thin films in optical pump–probe techniques
Fossa Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows
Li et al. Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al 2 O 3∕ Water Nanofluids
Azarfar et al. Low cost and new design of transient hot-wire technique for the thermal conductivity measurement of fluids
JP2002534676A (en) Differential temperature analysis sensor
EP2762867A1 (en) Gas sensor with temperature control
US20110079074A1 (en) Hydrogen chlorine level detector
Gauthier et al. Gas thermal conductivity measurement using the three-omega method
Páramo et al. New batch cells adapted to measure saturated heat capacities of liquids
US11467110B2 (en) Method for operating a sensor device
Yin et al. Asymmetric criticality of the osmotic compressibility in binary mixtures
Vatani et al. A miniaturized transient hot-wire device for measuring thermal conductivity of non-conductive fluids
Weyer et al. Application of an extended Tool–Narayanaswamy–Moynihan model. Part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC
CN104849302B (en) Gas concentration sensor with suspension structure
JP6305459B2 (en) Gas detection device and gas detection method
Müller et al. Use of thermistors in precise measurement of small temperature differences
Phinney et al. Raman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 Torr to 625 Torr
Bernhardsgrütter et al. Towards a robust thin film sensor for distinguishing fluids using the 3ω-method
JP6378457B2 (en) Gas detection method and gas detection device
Kapić et al. Uncertainty analysis of polymer-based capacitive relative humidity sensor at negative temperatures and low humidity levels
Sekimoto et al. Error factors in precise thermal conductivity measurement using 3 ω method for wire samples
JP2018100980A (en) Gas detection method and gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171215

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6305459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250