JP2017194356A - Expansive coefficient measurement method of expansive mortar - Google Patents

Expansive coefficient measurement method of expansive mortar Download PDF

Info

Publication number
JP2017194356A
JP2017194356A JP2016084806A JP2016084806A JP2017194356A JP 2017194356 A JP2017194356 A JP 2017194356A JP 2016084806 A JP2016084806 A JP 2016084806A JP 2016084806 A JP2016084806 A JP 2016084806A JP 2017194356 A JP2017194356 A JP 2017194356A
Authority
JP
Japan
Prior art keywords
mortar
container
water
expansion
expansive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084806A
Other languages
Japanese (ja)
Inventor
哲 村田
Satoru Murata
哲 村田
武田 均
Hitoshi Takeda
均 武田
唯堅 趙
Iken Cho
唯堅 趙
三馨 鈴木
Mika Suzuki
三馨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016084806A priority Critical patent/JP2017194356A/en
Publication of JP2017194356A publication Critical patent/JP2017194356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expansive coefficient measurement method of an expansive mortar capable of simply and accurately measuring an expansive coefficient of an expansive mortar without being limited in measurement location.SOLUTION: An expansive coefficient measurement method includes: a casting step of casting an expansive mortar inside a mold form 2 whose top surface is opened; and a measurement step of obtaining an expansive coefficient of the expansive mortar M. The casting step includes: a mold form setting work for installing the mold form 2 inside a container 3; a water injection work for injecting water W into the container 3; and a sealing work for sealing the container 3. A narrow tube 5 is disposed extending above the top surface of the container 3 from the inside of the container 3. In the water injection work, the water is injected until a water level inside the container 3 becomes higher than the top surface of the mold form 2 and the lower end of the narrow tube 5. In a water sealing work, the container 3 is sealed except for the narrow tube 5 only. In the measurement step, a change Δh of the water level of the small tube 5 is measured.SELECTED DRAWING: Figure 3

Description

本発明は、膨張モルタルの膨張率計測方法に関する。   The present invention relates to a method for measuring an expansion rate of expanded mortar.

後施工によりせん断補強部材を設置する場合や後施工アンカー等の補強工事では、既設構造物に補強部材挿入孔を削孔した後、この補強部材挿入孔内に補強部材とともに膨張モルタルを充填する場合がある。膨張モルタルは、未充填箇所が形成されることがないように充填する必要があるため、膨張モルタルを使用する場合には、膨張モルタルの膨張率を予め把握しておく必要がある。そのため、膨張モルタルの膨張率計測方法が、多数提案されている。   In the case of installing a shear reinforcement member by post-installation, or in the reinforcement work of post-installation anchors, etc., after drilling a reinforcement member insertion hole in an existing structure, this expansion member insertion hole is filled with expansion mortar together with the reinforcement member There is. Since it is necessary to fill the expansion mortar so that an unfilled portion is not formed, when the expansion mortar is used, it is necessary to grasp the expansion rate of the expansion mortar in advance. Therefore, many methods for measuring the expansion rate of expanded mortar have been proposed.

例えば、いわゆるASTM方法(ASTM C827−01a「Standard Test Method for Change in Height at Early Ages of Cylindrical Specimens of Cementitious Mixtures」)は、型枠の上面までモルタルを詰めた後、モルタルの上面にインジケーターボールを半分埋めた状態で、このインジケーターボールに光を照射して数m離れたチャート紙に拡大投影することで、膨張量を計測する方法である。
また、いわゆる建築学会法(JASS 5T−701)は、1000ccメスシリンダーにモルタルを800cc投入し、モルタルの上面およびブリーディング水の水面を測定する方法である。
さらに、非特許文献1には、モルタルを型枠の中に投入した後、モルタルの上面にシリコン油を注ぎ、深測用マイクロメーターによってシリコン油上面までの距離を測定することでモルタルの膨張を計測する方法が開示されている。
For example, the so-called ASTM method (ASTM C827-01a “Standard Test Method for Change in Height at Early Ages of Cylindrical Spectral Mice” This is a method of measuring the amount of expansion by irradiating the indicator ball with light in an embedded state and projecting it on a chart paper several meters away.
The so-called Architectural Institute method (JASS 5T-701) is a method in which 800 cc of mortar is put into a 1000 cc graduated cylinder and the upper surface of the mortar and the water level of bleeding water are measured.
Further, in Non-Patent Document 1, after the mortar is put into the mold, silicon oil is poured onto the upper surface of the mortar, and the distance to the upper surface of the silicon oil is measured by a depth measuring micrometer to expand the mortar. A method of measuring is disclosed.

末永龍夫、外3名、「初期のモルタル膨張計測法の提案」、コンクリート工学年次講演会公演論文集(2)、公益社団法人日本コンクリート工学会、1980年、p.145−p.148Tatsuo Suenaga and three others, "Proposal of an early mortar expansion measurement method", Proceedings of the annual lecture on concrete engineering (2), Japan Concrete Institute, 1980, p. 145-p. 148

ASTM方法は、インジケーターボールが振動等により沈下すると、計測結果に影響が及ぶ。また、現場での作業は困難であるとともに、インジケーターボールを拡大投影するためのスペース(距離)を確保する必要がある。さらに、インジケーターボールは、供試体の硬化の過程で移動するため、焦点を合わせるのに手間がかかる。
また、建築学会法は、モルタルの表面高さおよびブリーディング水の水面高さを直接計測するため、小さな膨張量を計測するのは困難であった。
さらに、非特許文献1の方法も、シリコン油の表面を直接測定するため、小さな膨張量を計測するのが困難であった。
このような観点から、本発明は、広いスペースを必要とせず、簡易かつ高精度に膨張モルタルの膨張率を計測することを可能とした、膨張モルタルの膨張率計測方法を提案することを課題とする。
The ASTM method affects the measurement result when the indicator ball sinks due to vibration or the like. In addition, it is difficult to work on site, and it is necessary to secure a space (distance) for enlarging and projecting the indicator ball. Furthermore, since the indicator ball moves in the process of hardening the specimen, it takes time to focus.
In addition, the Architectural Institute method directly measures the surface height of mortar and the water surface height of bleeding water, so it was difficult to measure a small amount of expansion.
Furthermore, since the method of Non-Patent Document 1 also directly measures the surface of silicon oil, it is difficult to measure a small amount of expansion.
From such a point of view, the present invention has an object to propose a method for measuring the expansion rate of an expanded mortar that does not require a wide space and enables the expansion rate of the expanded mortar to be easily and accurately measured. To do.

前記課題を解決するために、本発明は、上面が開口した型枠内に膨張モルタルを打設する打設工程と、前記膨張モルタルの膨張率を求める計測工程とを備える膨張モルタルの膨張率計測方法であって、前記打設工程は、前記型枠を容器内に設置する型枠設置作業と、前記容器内に水を注水する注水作業と、前記容器を密閉する密閉作業とを備えていて、前記容器の内部から当該容器の上面よりも上方に延びる細管が配管されていて、前記注水作業では前記型枠の上面および前記細管の下端よりも容器内の水位が高くなるまで注水し、前記密閉作業では細管のみを除いて容器を密閉し、前記計測工程では前記細管の水位の変化を計測することを特徴としている。
かかる膨張モルタルの膨張率計測方法によれば、モルタルの膨張量を細管で増幅させた水位の変化により簡易的に計測するため、膨張率が小さい場合であっても高精度に計測することができる。また、簡易な器具により測定することができるので、広いスペースを必要とせず、現場での計測も可能である。また、打込み直後のモルタルの膨張率を測定することも可能なため、打込み直後から所定期間経過後の変位を高精度に測定することができる。
In order to solve the above-mentioned problems, the present invention provides an expansion rate measurement of an expanded mortar comprising a placing step of placing an expanded mortar in a mold having an open upper surface, and a measuring step for obtaining an expansion rate of the expanded mortar. In the method, the placing step includes a mold installation operation for installing the mold in a container, a water injection operation for injecting water into the container, and a sealing operation for sealing the container. A thin tube extending upward from the upper surface of the container from the inside of the container is piped, and in the water injection operation, water is poured until the water level in the container is higher than the upper surface of the mold and the lower end of the thin tube, In the sealing operation, the container is sealed except for only the thin tube, and in the measurement step, the change in the water level of the thin tube is measured.
According to the method for measuring the expansion rate of the expanded mortar, since the amount of expansion of the mortar is simply measured by the change in the water level amplified by the thin tube, it can be measured with high accuracy even when the expansion rate is small. . Moreover, since it can measure with a simple instrument, it does not require a large space and can be measured on site. In addition, since the expansion rate of the mortar immediately after driving can be measured, the displacement after the elapse of a predetermined period from immediately after driving can be measured with high accuracy.

なお、前記計測工程では、式1を利用して膨張率を算出すればよい。
α=(Δh×A)/V×100 ・・・ 式1
α :膨張率(%)
Δh:水位の変化量
A :細管の内空断面積
V :モルタルの体積
また、打設工程において、前記細管内の水面を非水溶性で、かつ、液比重が1よりも小さい液体で覆えば、水の蒸発が防止され、より高精度な測定が可能となる。
In the measurement step, the expansion coefficient may be calculated using Equation 1.
α = (Δh × A) / V × 100 Equation 1
α: Expansion rate (%)
Δh: Amount of change in water level A: Inner hollow cross-sectional area of capillary tube V: Volume of mortar Further, in the placing step, if the water surface in the capillary tube is water-insoluble and liquid specific gravity is less than 1, Water evaporation is prevented, and more accurate measurement is possible.

本発明の膨張モルタルの膨張率計測方法によれば、計測箇所に限定されることなく、簡易かつ高精度に膨張モルタルの膨張率を計測することが可能である。   According to the method for measuring the expansion rate of the expansion mortar of the present invention, the expansion rate of the expansion mortar can be measured easily and accurately without being limited to the measurement location.

本発明の実施形態に係る膨張モルタルの膨張率計測方法を示すフローチャートである。It is a flowchart which shows the expansion coefficient measuring method of the expansion mortar which concerns on embodiment of this invention. 膨張モルタルの膨張率計測方法に使用する膨張率計測装置の一例を示す模式図である。It is a schematic diagram which shows an example of the expansion coefficient measuring apparatus used for the expansion coefficient measuring method of expansion mortar. 所定時間経過後の膨張率計測装置を示す模式図である。It is a schematic diagram which shows the expansion coefficient measuring apparatus after predetermined time progress.

本実施形態では、既設構造物に対して、後施工によりせん断補強部材を設置する場合に使用する膨張モルタルの膨張率計測方法について説明する。
せん断補強部材は、既設構造物に形成された補強部材挿入孔に挿入する。補強部材挿入孔には、せん断補強部材とともにモルタルを充填する。
モルタルには、補強部材挿入孔内に空隙が形成されることがないように、膨張モルタルを使用する。なお、膨張モルタルの配合等は、適宜決定する。
本実施形態では、膨張モルタルの膨張率を確認することで、現場環境における品質の変動の有無を確認する。
In the present embodiment, a method for measuring an expansion rate of an expanded mortar used when a shear reinforcement member is installed by post-installation on an existing structure will be described.
The shear reinforcement member is inserted into a reinforcement member insertion hole formed in the existing structure. The reinforcing member insertion hole is filled with mortar together with the shear reinforcing member.
As the mortar, an expanded mortar is used so that no void is formed in the reinforcing member insertion hole. The composition of the expanded mortar is appropriately determined.
In this embodiment, the presence or absence of quality fluctuations in the field environment is confirmed by confirming the expansion rate of the expanded mortar.

膨張モルタルの膨張率の確認は、現場にて膨張モルタルの膨張率計測方法を実施することにより行う。本実施形態の膨張モルタルの膨張率計測方法は、図1に示すように、打設工程S1と、計測工程S2とを備えている。
本実施形態では、膨張率計測装置1を使用して、膨張モルタルMの膨張率を計測する。膨張率計測装置1は、図2に示すように、膨張モルタルを打設する型枠2と、型枠2を収容する容器3と、容器3の上面を遮蔽する蓋材4と、蓋材4に設けられた細管5および注水管6とを備えている。なお、膨張率計測装置1の構成は限定されるものではない。
膨張率計測装置1は、打設工程を行う前に、半日以上、好ましくは1日以上現場で保管しておくことで、実施工時と同じ温度環境を確保する。
The expansion rate of the expanded mortar is confirmed by carrying out the expansion rate measurement method for the expanded mortar on site. As shown in FIG. 1, the expansion mortar expansion rate measuring method of the present embodiment includes a placing step S1 and a measuring step S2.
In this embodiment, the expansion coefficient of the expansion mortar M is measured using the expansion coefficient measuring device 1. As shown in FIG. 2, the expansion coefficient measuring apparatus 1 includes a mold 2 for placing an expansion mortar, a container 3 for housing the mold 2, a lid member 4 for shielding the upper surface of the container 3, and a lid member 4. Are provided with a thin tube 5 and a water injection tube 6. In addition, the structure of the expansion coefficient measuring apparatus 1 is not limited.
The expansion rate measuring device 1 ensures the same temperature environment as that at the time of construction by storing it at the site for half a day or more, preferably for one day or more before performing the placing process.

打設工程S1は、型枠2内に膨張モルタルMを打設する工程である(図2参照)。
打設工程S1は、打設作業S11、型枠設置作業S12、注水作業S13、密閉作業S14および水頭被覆作業S15を備えている。
打設作業S11では、容積が既知の型枠2内に膨張モルタルMを打設する。型枠2には、図2に示すように、上面が開口しているものを使用する。また、型枠2は、内面(膨張モルタルとの当接面)がなめらかなものを使用する。さらに、型枠2は、膨張モルタルMの膨張および収縮を過度に拘束することがないような形状(例えば円筒状)に形成されている。なお、型枠2は、計測感度を高める観点から、なるべく容積が大きいものが望ましい。
本実施形態では、型枠2の上端と打設直後の膨張モルタルMの上面とが面一になるように膨張モルタルMを打設する。
The placing step S1 is a step for placing the expanded mortar M in the mold 2 (see FIG. 2).
The placement step S1 includes a placement operation S11, a formwork installation operation S12, a water injection operation S13, a sealing operation S14, and a water head covering operation S15.
In the placement operation S11, the expansion mortar M is placed in the mold 2 having a known volume. As the mold 2, as shown in FIG. 2, one having an open upper surface is used. In addition, the mold 2 has a smooth inner surface (a contact surface with the expansion mortar). Furthermore, the mold 2 is formed in a shape (for example, a cylindrical shape) that does not excessively restrain the expansion and contraction of the expansion mortar M. The mold 2 is preferably as large as possible from the viewpoint of increasing measurement sensitivity.
In the present embodiment, the expansion mortar M is placed so that the upper end of the mold 2 and the upper surface of the expansion mortar M immediately after placement are flush with each other.

型枠設置作業S12では、図2に示すように、容器3内に型枠2を設置する。
容器3には、型枠2を収容することが可能な形状で、かつ、蓋材4による密閉が可能なものを使用する。なお、打設作業S11と型枠設置作業S12との順序は限定されるものではない。すなわち、膨張モルタルMが打設された型枠2を容器3内に設置してもよいし、空の型枠2を容器3内に設置し、容器3内の型枠2に膨張モルタルMを打設してもよい。
膨張モルタルMが打設された型枠2を容器3内に設置したら、容器3の上面を蓋材4により覆う。蓋材4の周縁は、容器3の周縁に密着させる。
In the mold installation operation S12, the mold 2 is installed in the container 3 as shown in FIG.
A container 3 having a shape capable of accommodating the mold 2 and capable of being sealed with the lid member 4 is used. The order of the placement work S11 and the formwork installation work S12 is not limited. That is, the mold 2 on which the expansion mortar M is placed may be installed in the container 3, or the empty mold 2 is installed in the container 3, and the expansion mortar M is placed on the mold 2 in the container 3. You may cast it.
When the mold 2 on which the expanded mortar M is placed is placed in the container 3, the upper surface of the container 3 is covered with the lid material 4. The periphery of the lid 4 is brought into close contact with the periphery of the container 3.

注水作業S13では、容器3内に水Wを注水する。
容器3内への水Wの注水は、注水管6を利用して、容器3の底部から行う。注水管6は、蓋材4を貫通している。注水管6の注水口(下端)は、型枠2と容器3との間で、かつ、容器3の底部の近傍に配置されている。また、注水管6の他端(注水口と反対側の端部)は、貯水タンク7に接続されている。さらに、注水管6には、貯水タンク7と蓋材4との間に開閉弁8が設けられている。本実施形態の貯水タンク7は、貯水タンク7内の水面が常に容器3の上端よりも高い位置になるように配設されている。なお、水Wの水温は、気温と同じ温度とする。
In the water injection operation S13, water W is injected into the container 3.
The water W is poured into the container 3 from the bottom of the container 3 using the water injection pipe 6. The water injection pipe 6 penetrates the lid member 4. The water inlet (lower end) of the water injection pipe 6 is disposed between the mold 2 and the container 3 and in the vicinity of the bottom of the container 3. The other end of the water injection pipe 6 (the end opposite to the water injection port) is connected to the water storage tank 7. Further, the water injection pipe 6 is provided with an on-off valve 8 between the water storage tank 7 and the lid member 4. The water storage tank 7 of the present embodiment is disposed so that the water level in the water storage tank 7 is always higher than the upper end of the container 3. The water temperature of the water W is the same as the air temperature.

容器3内へ水Wを注水する場合には、開閉弁8を開いて貯水タンク7内の水を流し込む。注水管6の注水口が容器3の底部の近傍に配置されているため、注水管6から排出された水Wの流れにより膨張モルタルMが乱されることはない。なお、注水管6の注水口の位置は、型枠2の上端(膨張モルタルM)から十分に離れた位置または十分に低い位置であれば限定されない。
水Wの注水は、膨張モルタルMが打設された型枠2の上面および細管5の下端よりも水位が高くなるまで行う。
なお、細管5は、蓋材4を貫通した断面が一定の直管であって、下端が容器3内に位置しているとともに上端が貯水タンク7の水面(容器2の上面)よりも高い位置になるように配管されている。
When water W is poured into the container 3, the on-off valve 8 is opened and the water in the water storage tank 7 is poured. Since the water injection port of the water injection pipe 6 is disposed near the bottom of the container 3, the expansion mortar M is not disturbed by the flow of the water W discharged from the water injection pipe 6. In addition, the position of the water injection port of the water injection pipe 6 is not limited as long as it is a position sufficiently away from the upper end (expansion mortar M) of the mold 2 or a sufficiently low position.
The water W is poured until the water level becomes higher than the upper surface of the mold 2 on which the expansion mortar M is placed and the lower end of the thin tube 5.
The thin tube 5 is a straight tube having a constant cross section penetrating the lid member 4, the lower end is located in the container 3, and the upper end is higher than the water surface of the water storage tank 7 (the upper surface of the container 2). It is piped to become.

密閉作業S14では、細管5を除いて容器3を密閉する。
本実施形態では、開閉弁8を閉じることにより、容器3を密閉する。このとき、細管5の水面と貯水タンク7の水面は高さが一致している。
In the sealing operation S14, the container 3 is sealed except for the thin tube 5.
In this embodiment, the container 3 is sealed by closing the on-off valve 8. At this time, the height of the water surface of the narrow tube 5 and the water surface of the water storage tank 7 are the same.

水頭被覆作業S15では、細管5の上端から非水溶性で、かつ、液比重が1よりも小さく、なおかつ、不揮発性の液体を注入し、細管5内の水面を当該液体で覆う。なお、液体は限定されるものではないが、本実施形態ではケロシンを使用する。また、液体として、着色されたものを使用してもよい。
なお、水頭被覆作業S15は、密閉作業S14の前に実施してもよいし、密閉作業S14の後に実施してもよい。
In the water head covering operation S15, a non-water-soluble and liquid specific gravity smaller than 1 is injected from the upper end of the thin tube 5 and a non-volatile liquid is injected to cover the water surface in the thin tube 5 with the liquid. The liquid is not limited, but kerosene is used in this embodiment. Further, a colored liquid may be used.
The water head covering operation S15 may be performed before the sealing operation S14, or may be performed after the sealing operation S14.

計測工程S2は、膨張モルタルMの膨張率を求める工程である。
本実施形態の計測工程S2は、図1に示すように、水位計測作業S21と、膨張率算出作業S22とを備えている。
水位計測作業S21では、経過時間毎の細管5の水位の変化量を計測する。本実施形態では、所定の時間毎に、材齢7日まで水位の計測を行う。なお、水位の計測は、測定者が目視により行ってもよいし、ビデオカメラやデータロガーにより自動的に行ってもよい。
The measurement step S2 is a step for obtaining the expansion coefficient of the expanded mortar M.
As shown in FIG. 1, the measurement step S2 of the present embodiment includes a water level measurement operation S21 and an expansion rate calculation operation S22.
In the water level measurement operation S21, the amount of change in the water level of the narrow tube 5 for each elapsed time is measured. In the present embodiment, the water level is measured until a material age of 7 days every predetermined time. The water level may be measured visually by a measurer or automatically by a video camera or a data logger.

まず、密閉作業S14の直後に水位(初期値)を計測する。細管5として、目盛が付されたものを使用する場合には、初期値として目盛を読めばよい。一方、細管に目盛が付されていない場合には、初期値として、細管に印をつける。次に、所定時間が経過した後、初期値に対する水位の変化を計測し、経過時間毎の水位の変化量Δhを記録する。
膨張モルタルMが膨張すると、図3に示すように、型枠2から膨張モルタルMがはみ出す。これに伴い、容器3内の水位が上昇するが、容器3が密閉されているため、容器内の空気圧により、容器3内での水位の上昇が妨げられる。その結果、細管5内の水位が上昇する。
First, the water level (initial value) is measured immediately after the sealing operation S14. When using a thin tube 5 with a scale, the scale may be read as an initial value. On the other hand, when the fine tube is not graduated, the thin tube is marked as an initial value. Next, after a predetermined time has elapsed, the change in the water level relative to the initial value is measured, and the amount of change Δh in the water level for each elapsed time is recorded.
When the expanded mortar M expands, the expanded mortar M protrudes from the mold 2 as shown in FIG. Accordingly, the water level in the container 3 rises. However, since the container 3 is sealed, the air pressure in the container prevents the water level from rising in the container 3. As a result, the water level in the narrow tube 5 rises.

膨張率算出作業S22では、水位の変化量Δhの計測結果により、膨張モルタルMの膨張率αを算出する。
本実施形態では、式1を利用して膨張率を算出する。
α=(Δh×A)/V×100 ・・・ 式1
A=π×φ÷4
α :膨張率(%)
Δh:水位の変化量
A :細管の内空断面積
V :モルタルの体積
φ :細管の内径
In the expansion rate calculating operation S22, the expansion rate α of the expanded mortar M is calculated based on the measurement result of the change amount Δh of the water level.
In the present embodiment, the expansion coefficient is calculated using Equation 1.
α = (Δh × A) / V × 100 Equation 1
A = π × φ 2 ÷ 4
α: Expansion rate (%)
Δh: Amount of change in water level A: Inner hollow cross-sectional area of capillary tube V: Volume of mortar φ: Inner diameter of capillary tube

本実施形態の膨張モルタルの膨張率計測方法によれば、容器3よりも内径が小さい細管5の水位を計測するため、水位変動が増幅され、したがって、膨張率が小さい場合であっても、高精度に水位の変化を計測することができる。
また、簡易な構成の膨張率計測装置1を利用しているため、装置や器具が精度に及ぼす影響(測定誤差)が小さい。また、膨張率計測装置1は、経済的であるため、一般的に活用することが期待できる。また、計測者による測定誤差も小さい。
According to the method for measuring the expansion rate of the expansion mortar of the present embodiment, the water level fluctuation is amplified because the water level of the narrow tube 5 having an inner diameter smaller than that of the container 3 is measured. Changes in water level can be accurately measured.
Moreover, since the expansion coefficient measuring apparatus 1 having a simple configuration is used, the influence (measurement error) exerted on the accuracy by the apparatus or the instrument is small. Moreover, since the expansion coefficient measuring apparatus 1 is economical, it can be expected to be used generally. Also, the measurement error by the measurer is small.

また、本施工に利用するモルタルと同じ環境温度によりモルタルの膨張率を計測することができるため、信頼性の高い施工が可能となる。
細管5の水面に非水溶性で、かつ、液比重が1よりも小さく、なおかつ、不揮発性の液体を注入しているため、細管5内において水が蒸発することがない。また、液体として着色されたものを使用すれば、より水位を計測しやすくなる。
膨張モルタルMの打設、容器3内への水Wの注水および開閉弁8の操作のみにより、計測を開始することが可能なため、打込み直後のモルタルMの膨張率を計測することができる。
また、容器3の容積と、細管5の内径により計測感度を調節できる。モルタルの体積(型枠2の容積)Vに対して、細管5の内径が小さいほど、水位の上昇が増幅されるため、より計測しやすくなる。
Moreover, since the expansion rate of a mortar can be measured by the same environmental temperature as the mortar utilized for this construction, construction with high reliability is possible.
Since the non-water-soluble and liquid specific gravity is smaller than 1 and a non-volatile liquid is injected into the water surface of the thin tube 5, water does not evaporate in the thin tube 5. Moreover, if a colored liquid is used, the water level can be measured more easily.
Since the measurement can be started only by placing the expansion mortar M, pouring water W into the container 3 and operating the on-off valve 8, the expansion rate of the mortar M immediately after the injection can be measured.
Further, the measurement sensitivity can be adjusted by the volume of the container 3 and the inner diameter of the thin tube 5. The smaller the inner diameter of the narrow tube 5 with respect to the mortar volume (volume of the mold 2) V, the higher the water level is amplified, so that measurement becomes easier.

なお、膨張率の計測精度βと、モルタルの体積(型枠2の容積)Vに応じた細管5の内径φは、式2により算出することができる。なお、細管5の内径φの決定方法は、限定されるものではない。
表1に式2で算出した計測精度βを0.01%、水位の変化量Δhを1mm(定規の最小目盛り)とした場合の、型枠2の容積と細管5の内径φとの関係を示す。
In addition, the measurement accuracy β of the expansion coefficient and the inner diameter φ of the thin tube 5 corresponding to the volume of the mortar (volume of the mold 2) V can be calculated by Equation 2. The method for determining the inner diameter φ of the thin tube 5 is not limited.
Table 1 shows the relationship between the volume of the mold 2 and the inner diameter φ of the narrow tube 5 when the measurement accuracy β calculated by Equation 2 is 0.01% and the amount of change Δh in the water level is 1 mm (the minimum scale of the ruler). Show.

Figure 2017194356
Figure 2017194356

Figure 2017194356
Figure 2017194356

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
前記実施形態では、既設構造物にせん断補強部材を設置する際に使用する膨張モルタルの膨張率を計測する場合について説明したが、膨張モルタルの用途は限定されるものではなく、例えば、後施工アンカーの施工に使用してもよい。
なお、細管5の長さ(上端の位置)および初期水位は、細管5の上端から漏水することがないように、予測される膨張率に応じて適宜決定する。例えば、計測精度0.01%(膨張率0.01%の時に1mm水位が上昇する)の場合において、材齢7日の膨張率が0.38%の場合には、細管5の目盛38mm確保する必要がある。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
In the above embodiment, the case of measuring the expansion rate of the expansion mortar used when installing the shear reinforcement member in the existing structure has been described. However, the use of the expansion mortar is not limited. It may be used for construction.
Note that the length (upper end position) and the initial water level of the narrow tube 5 are appropriately determined according to the expected expansion rate so as not to leak from the upper end of the narrow tube 5. For example, when the measurement accuracy is 0.01% (the 1 mm water level rises when the expansion rate is 0.01%), and the expansion rate at the age of 7 days is 0.38%, a scale of 38 mm is secured for the thin tube 5. There is a need to.

1 膨張率計測装置
2 型枠
3 容器
4 蓋材
5 細管
6 注水管
7 貯水タンク
8 開閉弁
M 膨張モルタル
W 水
S1 打設工程
S11 打設作業
S12 型枠設置作業
S13 注水作業
S14 密閉作業
S15 水頭被覆作業
S2 計測工程
S21 水位計測作業
S22 膨張率算出作業
DESCRIPTION OF SYMBOLS 1 Expansion coefficient measuring device 2 Form 3 Container 4 Cover material 5 Narrow pipe 6 Water injection pipe 7 Water storage tank 8 On-off valve M Expansion mortar W Water S1 Placing process S11 Placing work S12 Forming work S13 Water filling work S14 Sealing work S15 Water head Covering operation S2 Measuring process S21 Water level measuring operation S22 Expansion rate calculating operation

Claims (3)

上面が開口した型枠内に膨張モルタルを打設する打設工程と、前記膨張モルタルの膨張率を求める計測工程と、を備える膨張モルタルの膨張率計測方法であって、
前記打設工程は、
前記型枠を容器内に設置する型枠設置作業と、
前記容器内に水を注水する注水作業と、
前記容器を密閉する密閉作業と、を備えていて、
前記容器の内部から当該容器の上面よりも上方に延びる細管が配管されていて、
前記注水作業では、前記型枠の上面および前記細管の下端よりも容器内の水位が高くなるまで注水し、
前記密閉作業では、前記細管のみを除いて容器を密閉し、
前記計測工程では、前記細管の水位の変化を計測することを特徴とする、膨張モルタルの膨張率計測方法。
An expansion rate measurement method for an expansion mortar comprising: a placing step of placing an expansion mortar in a mold having an open upper surface; and a measurement step for obtaining an expansion rate of the expansion mortar,
The placing process includes
Formwork installation work for installing the formwork in a container;
A water injection operation for injecting water into the container;
A sealing operation for sealing the container,
A thin tube extending upward from the upper surface of the container from the inside of the container is piped,
In the water pouring operation, water is poured until the water level in the container is higher than the upper surface of the mold and the lower end of the narrow tube,
In the sealing operation, the container is sealed except for only the thin tube,
In the measurement step, the expansion rate measurement method for the expanded mortar, wherein the change in the water level of the capillary tube is measured.
前記計測工程では、式1を利用して膨張率を算出することを特徴とする、請求項1に記載の膨張モルタルの膨張率計測方法。
α=(Δh×A)/V×100 ・・・ 式1
α :膨張率(%)
Δh:水位の変化量
A :細管の内空断面積
V :モルタルの体積
2. The method for measuring an expansion rate of an expanded mortar according to claim 1, wherein the expansion rate is calculated using Equation 1 in the measurement step.
α = (Δh × A) / V × 100 Equation 1
α: Expansion rate (%)
Δh: Amount of change in water level A: Inner hollow cross-sectional area of capillary tube V: Volume of mortar
前記打設工程では、前記細管内の水面を、非水溶性で、かつ、液比重が1よりも小さい液体で覆う作業を行うことを特徴とする、請求項1または請求項2に記載の膨張モルタルの膨張率計測方法。   3. The expansion according to claim 1, wherein in the placing step, an operation of covering the water surface in the narrow tube with a liquid that is insoluble in water and has a liquid specific gravity of less than 1 is performed. Method for measuring expansion rate of mortar.
JP2016084806A 2016-04-20 2016-04-20 Expansive coefficient measurement method of expansive mortar Pending JP2017194356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084806A JP2017194356A (en) 2016-04-20 2016-04-20 Expansive coefficient measurement method of expansive mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084806A JP2017194356A (en) 2016-04-20 2016-04-20 Expansive coefficient measurement method of expansive mortar

Publications (1)

Publication Number Publication Date
JP2017194356A true JP2017194356A (en) 2017-10-26

Family

ID=60154710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084806A Pending JP2017194356A (en) 2016-04-20 2016-04-20 Expansive coefficient measurement method of expansive mortar

Country Status (1)

Country Link
JP (1) JP2017194356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572124A (en) * 2018-07-19 2018-09-25 郑州大学 High polymer slurries self-expanding characteristic test device and its test method
CN110501375A (en) * 2019-09-26 2019-11-26 郑州大学 The experimental rig and test method of high polymer free wxpansion cubing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572124A (en) * 2018-07-19 2018-09-25 郑州大学 High polymer slurries self-expanding characteristic test device and its test method
CN108572124B (en) * 2018-07-19 2023-10-24 郑州大学 Device and method for testing self-expansion characteristic of high polymer slurry
CN110501375A (en) * 2019-09-26 2019-11-26 郑州大学 The experimental rig and test method of high polymer free wxpansion cubing

Similar Documents

Publication Publication Date Title
US6527438B2 (en) Aggregate dilatometer device and methods of testing
Péron et al. An improved volume measurement for determining soil water retention curves
CN104007135B (en) Earth working material change in volume method of testing
CN106018740B (en) Hole pressure touching methods demarcate can system
JP2005291862A (en) Consolidation and water permeability test apparatus and test method
RU2597665C2 (en) Probe permeameter
CN203824621U (en) Device for detecting and testing nested static force water level balanced type measuring weir water gauge
CN107014975B (en) The measurable unsaturated water force characteristic measuring device and measuring method of axis/radial deformation
JP2017194356A (en) Expansive coefficient measurement method of expansive mortar
US20160076987A1 (en) Apparatus for measuring saturated hydraulic conductivity of unsaturated porous media
KR100620361B1 (en) Field penetrability test method using floating tester
CN104155433A (en) Device and method for determining self-shrinkage of cement-based material
US3945247A (en) Percolation gauge
JP2013007725A (en) Ground infiltration test device and ground infiltration testing method
JP5270650B2 (en) Permeability test equipment
WO2017046623A1 (en) Method for analysing liquid samples
RU2534377C1 (en) Fluid batchbox
Nor et al. An improved ring method for calibration of hydrometers
Standing The development of unsaturated soil mechanics at Imperial College, London
KR101100561B1 (en) Test apparatus of the immersion expansion in water of the iron and steel slag
CN105424887A (en) Method for measuring expansion rate of inorganic water shutoff agent and device thereof
SU810942A1 (en) Device for measuring the volume variations of hardening compositions
CN208223340U (en) Discrete material laying depth special detection tool
JP2012150090A (en) Air purge type viscosity, specific gravity and liquid level gauge
JP2001289767A (en) Viscosity-measuring method for viscous fluid