JP2017194184A - Exhaust gas treatment equipment and exhaust gas treatment method - Google Patents

Exhaust gas treatment equipment and exhaust gas treatment method Download PDF

Info

Publication number
JP2017194184A
JP2017194184A JP2016082950A JP2016082950A JP2017194184A JP 2017194184 A JP2017194184 A JP 2017194184A JP 2016082950 A JP2016082950 A JP 2016082950A JP 2016082950 A JP2016082950 A JP 2016082950A JP 2017194184 A JP2017194184 A JP 2017194184A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
chimney
heat exchanger
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016082950A
Other languages
Japanese (ja)
Other versions
JP6593245B2 (en
Inventor
憲巨 池田
Kengo Ikeda
憲巨 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016082950A priority Critical patent/JP6593245B2/en
Publication of JP2017194184A publication Critical patent/JP2017194184A/en
Application granted granted Critical
Publication of JP6593245B2 publication Critical patent/JP6593245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect an element inside a heat exchanger and also a liner of a chimney against corrosion by sulfur oxide while effectively utilizing heat of exhaust gas.SOLUTION: There are provided an exhaust gas flow passage 1 for guiding exhaust gas to a chimney 12; an air flow passage 2 where combustion air passes; a heat exchanger 4 for heat exchanging between the exhaust gas flow passage 1 and the air flow passage 2; a flowing-in air flow rate adjustment part for adjusting a flow rate of combustion air heat exchanged by the heat exchanger 4 through the air flow passage 2; a first temperature sensor 9 for detecting an exhaust gas outlet side temperature GT; a second temperature sensor 10 for detecting a chimney temperature CT; and a flowing-in air flow rate adjustment part 11 for adjusting a flow rate of combustion air heat exchanged by the heat exchanger 4 through the flowing-in air flow rate adjustment part in such a way that the exhaust gas outlet side temperature GT may become or more than an exhaust gas outlet side temperature control lower limit value TL2 and the chimney temperature CT may become or more than a chimney temperature control lower limit value TL1 on the basis of the detected temperatures of the first and second temperature sensors 9, 10.SELECTED DRAWING: Figure 1

Description

本発明は、溶鉱炉付属設備である熱風炉やボイラ等から発生する高温の排ガスを煙突から放散する前に、排ガスの熱を燃焼用空気の予熱として有効利用する排ガス処理の技術に関する。   The present invention relates to an exhaust gas treatment technique that effectively uses the heat of exhaust gas as preheating of combustion air before dissipating high-temperature exhaust gas generated from a hot blast furnace, a boiler, or the like, which is a blast furnace auxiliary equipment, from a chimney.

特許文献1には、熱交換器を用いて、排ガスの熱で燃焼用空気の予熱することが記載されている。
ここで、特許文献1にも記載されているように、熱風炉等で燃焼された排ガス中には硫黄酸化物が多量に含まれており、排ガス温度がある温度以下になると気体であった硫黄酸化物が液体硫酸になって熱交換器の内部エレメントを腐食させることが懸念される。
Patent Document 1 describes preheating the combustion air with the heat of exhaust gas using a heat exchanger.
Here, as described in Patent Document 1, a large amount of sulfur oxide is contained in exhaust gas burned in a hot stove or the like, and sulfur that is a gas when the exhaust gas temperature falls below a certain temperature. There is concern that the oxide becomes liquid sulfuric acid and corrodes the internal elements of the heat exchanger.

したがって、排ガス温度を一定温度以上に保つ必要があり、エレメントを通過する排ガス温度を熱交換する流体の制限によって調節することでエレメントを保護する必要がある。
この課題に対し、特許文献1には、熱交換器出側での排ガス出側温度を検知しバイパス路を利用して熱交換量を制御することでは所期の性能が発揮されないとの見解から、熱交換器に流入する空気を別途ヒータで予熱制御することが記載されている。
Therefore, it is necessary to keep the exhaust gas temperature above a certain temperature, and it is necessary to protect the element by adjusting the exhaust gas temperature passing through the element by the restriction of the fluid that exchanges heat.
In view of this problem, Patent Document 1 discloses that the desired performance cannot be achieved by detecting the exhaust gas outlet temperature on the outlet side of the heat exchanger and controlling the amount of heat exchange using the bypass. In addition, it is described that preheating control of the air flowing into the heat exchanger is separately performed with a heater.

特開昭54−6165号公報(例えば第1頁)Japanese Patent Laid-Open No. 54-6165 (for example, page 1)

発明者らは、排ガスに含まれる硫黄酸化物による腐食から熱交換器のエレメントを保護すると同様に、煙突のライナーも、排ガスに含まれる硫黄酸化物による腐食から保護することが好ましいとの知見を得た。
本発明は、上記のような点に着目してなされたもので、排ガスの熱を有効利用しつつ、熱交換器内部のエレメントと共に煙突のライナーも硫黄酸化物による腐食から保護することを目的とする。
The inventors have found that it is preferable to protect the chimney liner from corrosion caused by sulfur oxide contained in the exhaust gas as well as protect the element of the heat exchanger from corrosion caused by sulfur oxide contained in the exhaust gas. Obtained.
The present invention has been made paying attention to the above points, and aims to protect the liner of the chimney together with the elements inside the heat exchanger from corrosion by sulfur oxide while effectively utilizing the heat of the exhaust gas. To do.

課題を解決するために、本発明の一態様である排ガス処理装置は、排ガスを煙突に誘導する排ガス流路と、燃焼用空気が通過する空気流路と、上記排ガス流路と上記空気流路との間で熱交換して上記排ガス流路を流れる排ガスの温度を低下させると共に上記空気流路を流れる燃焼用空気の温度を上昇させる熱交換器と、上記空気流路を通じて上記熱交換器で熱交換される燃焼用空気の流量を調整する流入空気流量調整部と、上記排ガス流路を流れる排ガスの上記熱交換器出側での温度である排ガス出側温度を検出する第1の温度センサと、上記煙突内の温度である煙突温度を検出する第2の温度センサと、上記第1の温度センサの検出温度および上記第2の温度センサの検出温度に基づき、上記排ガス出側温度が予め設定した排ガス出側温度制御下限値以上、且つ上記煙突温度が予め設定した煙突温度制御下限値以上となるように、上記流入空気流量調整部を介して、上記熱交換器で熱交換される燃焼用空気の流量を調整する空気流量制御手段と、を備える。   In order to solve the problem, an exhaust gas treatment apparatus according to an aspect of the present invention includes an exhaust gas channel that guides exhaust gas to a chimney, an air channel through which combustion air passes, the exhaust gas channel, and the air channel. A heat exchanger that lowers the temperature of the exhaust gas flowing through the exhaust gas flow path by exchanging heat with the air flow path and increases the temperature of the combustion air flowing through the air flow path, and the heat exchanger through the air flow path An inflow air flow rate adjustment unit that adjusts the flow rate of combustion air to be heat-exchanged, and a first temperature sensor that detects an exhaust gas outlet side temperature that is a temperature at the outlet side of the heat exchanger of the exhaust gas flowing through the exhaust gas passage And the second temperature sensor for detecting the chimney temperature, which is the temperature in the chimney, the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor, and Set exhaust gas outlet temperature Adjust the flow rate of the combustion air heat exchanged by the heat exchanger via the inflow air flow rate adjustment unit so that the chimney temperature is equal to or higher than the lower limit value and the chimney temperature is higher than the preset chimney temperature control lower limit value. Air flow rate control means.

本発明の態様によれば、排ガスの熱を有効利用しつつ、熱交換器内部のエレメントと共に煙突のライナーも硫黄酸化物による腐食から保護することが可能となる。
ここで、熱交換器出側の排ガス温度と煙突温度とは、定常状態ではほぼ追従した温度推移になると推定されるが、諸所の外乱によって追従性が悪くなったりする場合が想定される。
According to the aspect of the present invention, it is possible to protect the chimney liner as well as the elements inside the heat exchanger from corrosion by sulfur oxide while effectively using the heat of the exhaust gas.
Here, the exhaust gas temperature and the chimney temperature on the outlet side of the heat exchanger are estimated to have a temperature transition that substantially follows in a steady state, but it is assumed that the followability may deteriorate due to disturbances at various places.

そして、熱交換器出側での排ガス温度に対する排ガス出側温度制御下限値を高めに設定することで、煙突のライナーを硫黄酸化物による腐食から保護をしようとすると、排ガスの熱利用効率がその分、低くなる。
同様に、熱交換器出側での排ガス温度の代わりに、煙突温度だけで熱交換器への空気流入量を調整して、熱交換器内部のエレメントと共に煙突のライナーも硫黄酸化物による腐食から保護する場合も、熱交換器出側での排ガス温度が高くなり、排ガスの熱利用効率が低くなる。
And by setting the exhaust gas outlet side temperature control lower limit to the exhaust gas temperature at the heat exchanger outlet side to be higher, if you try to protect the chimney liner from corrosion by sulfur oxides, the heat utilization efficiency of the exhaust gas will be Min, lower.
Similarly, instead of the exhaust gas temperature at the outlet side of the heat exchanger, the air flow rate into the heat exchanger is adjusted only by the chimney temperature, and the chimney liner as well as the elements inside the heat exchanger are protected from corrosion by sulfur oxides. Even in the case of protection, the exhaust gas temperature on the outlet side of the heat exchanger becomes high, and the heat utilization efficiency of the exhaust gas becomes low.

本発明に基づく実施形態に係る設備構成を示す概念図である。It is a conceptual diagram which shows the equipment structure which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る流入空気流量調整部の構成を説明する図である。It is a figure explaining the structure of the inflow air flow volume adjustment part which concerns on embodiment based on this invention. 排ガス温度制御部の処理例を説明する図である。It is a figure explaining the example of a process of an exhaust gas temperature control part. 煙突温度制御部の処理例を説明する図である。It is a figure explaining the process example of a chimney temperature control part. 排ガス温度制御例の時間推移の一例を示す図である。It is a figure which shows an example of the time transition of the example of exhaust gas temperature control.

次に、本発明の実施形態について図面を参照しつつ説明する。
本実施形態では、熱風炉で燃焼された排ガスを例に説明するが、他の設備から発生した排ガスであっても、腐食性の流体が含まれる排ガスであれば、本発明は適用可能である。
(構成)
本実施形態の排ガス処理装置は、概念図である図1に示すように、各熱風炉で発生した排ガス20が、適宜、排ガス流路1を通じて煙突12に供給される。ここで、複数の熱風炉から適宜選択された1の熱風炉からの排ガス20が排ガス流路1に供給されるようになっている。
Next, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the exhaust gas burned in the hot stove will be described as an example, but the present invention can be applied to exhaust gas generated from other equipment as long as it contains corrosive fluid. .
(Constitution)
In the exhaust gas treatment apparatus of the present embodiment, as shown in FIG. 1 which is a conceptual diagram, the exhaust gas 20 generated in each hot stove is appropriately supplied to the chimney 12 through the exhaust gas passage 1. Here, the exhaust gas 20 from one hot air furnace appropriately selected from a plurality of hot air furnaces is supplied to the exhaust gas passage 1.

また、空気流路2を通じて、熱風炉の燃焼室21用の燃焼バーナーに対して燃焼用空気を供給可能となっている。
空気流路2の上流部には、送風機などの空気供給装置3が設けられ、空気供給装置3によって空気流路2へ空気が圧送される。空気供給装置3は、熱風炉の燃焼室21での燃焼に必要な空気量指令値に基づき、当該空気量指令値の供給空気量を空気流路2に圧送する。
Further, combustion air can be supplied to the combustion burner for the combustion chamber 21 of the hot stove through the air flow path 2.
An air supply device 3 such as a blower is provided upstream of the air flow path 2, and air is pumped to the air flow path 2 by the air supply device 3. The air supply device 3 pumps the supply air amount of the air amount command value to the air flow path 2 based on the air amount command value necessary for combustion in the combustion chamber 21 of the hot stove.

排ガス流路1の途中位置と空気流路2の途中位置に熱交換器4が介装されていて、排ガス流路1と空気流路2との間で熱交換が行われる。すなわち、排ガス流路1を流れる排ガスの温度を低下させると共に空気流路2を流れる燃焼用空気の温度を上昇するように熱交換が行われるように構成されている。
また、空気流路2における、熱交換器4位置よりも上流側(入側)と下流側(出側)とを連通する空気用バイパス路5を有し、その空気用バイパス路5に空気用バイパス弁6(空気用開閉弁)が設けられている。空気用バイパス弁6は、流量制御弁や圧力調整弁などから構成される。空気用バイパス弁6の開度は、例えば全閉を初期値とする。
A heat exchanger 4 is interposed in the middle of the exhaust gas channel 1 and in the middle of the air channel 2, and heat exchange is performed between the exhaust gas channel 1 and the air channel 2. That is, heat exchange is performed so that the temperature of the exhaust gas flowing through the exhaust gas flow path 1 is lowered and the temperature of the combustion air flowing through the air flow path 2 is increased.
The air flow path 2 has an air bypass path 5 that communicates the upstream side (incoming side) and the downstream side (outside side) of the heat exchanger 4 position, and the air bypass path 5 has an air A bypass valve 6 (air open / close valve) is provided. The air bypass valve 6 includes a flow control valve, a pressure adjustment valve, and the like. The opening degree of the air bypass valve 6 is, for example, fully closed as an initial value.

この空気用バイパス路5及び空気用バイパス弁6によって、燃焼室のバーナーへの空気供給量を変化させることなく、熱交換器4への流入空気量が調整可能となっている。
この空気用バイパス路5及び空気用バイパス弁6が流入空気流量調整部を構成する。
また、排ガス流路1における、熱交換器4よりも上流側(入側)と下流側(出側)とを連通する排ガス用バイパス路7を有し、その排ガス用バイパス路7に排ガス用バイパス弁8(排ガス用開閉弁)が設けられている。排ガス用バイパス弁8の初期値は全閉である。
The amount of air flowing into the heat exchanger 4 can be adjusted by the air bypass passage 5 and the air bypass valve 6 without changing the amount of air supplied to the burner of the combustion chamber.
The air bypass path 5 and the air bypass valve 6 constitute an inflow air flow rate adjustment unit.
Further, the exhaust gas passage 1 has an exhaust gas bypass passage 7 that communicates the upstream side (incoming side) and the downstream side (outside side) of the heat exchanger 4, and the exhaust gas bypass passage 7 is connected to the exhaust gas bypass passage 7. A valve 8 (exhaust gas on-off valve) is provided. The initial value of the exhaust gas bypass valve 8 is fully closed.

また、排ガス流路1を流れる排ガスの上記熱交換器4出側での温度である排ガス出側温度GTを検出する第1の温度センサ9と、煙突12内の温度である煙突温度CTを検出する第2の温度センサ10とを有する。各温度センサ9,10はそれぞれ、検出温度に応じた検出信号を流入空気流量調整部11に供給する。
また、熱交換器4への空気流入量を調整する流入空気流量調整部11を備える。
Further, a first temperature sensor 9 for detecting the exhaust gas outlet side temperature GT, which is the temperature of the exhaust gas flowing through the exhaust gas passage 1 on the outlet side of the heat exchanger 4, and a chimney temperature CT, which is the temperature in the chimney 12, are detected. Second temperature sensor 10. Each of the temperature sensors 9 and 10 supplies a detection signal corresponding to the detected temperature to the inflow air flow rate adjusting unit 11.
Moreover, the inflow air flow volume adjustment part 11 which adjusts the air inflow amount to the heat exchanger 4 is provided.

流入空気流量調整部11は、第1の温度センサ9の検出温度および第2の温度センサ10の検出温度に基づき、排ガス出側温度GTが予め設定した排ガス出側温度制御下限値TL2以上となると共に、煙突温度CTが予め設定した煙突温度制御下限値TL1以上となるように、空気用バイパス弁6を調整して、熱交換器4で熱交換される燃焼用空気の流量を調整する。   The inflow air flow rate adjusting unit 11 has an exhaust gas outlet side temperature GT equal to or higher than a preset exhaust gas outlet side temperature control lower limit TL2 based on the detected temperature of the first temperature sensor 9 and the detected temperature of the second temperature sensor 10. At the same time, the air bypass valve 6 is adjusted so that the chimney temperature CT becomes equal to or higher than the preset chimney temperature control lower limit value TL1, and the flow rate of the combustion air exchanged by the heat exchanger 4 is adjusted.

ここで、煙突温度制御下限値TL1は、排ガス出側温度制御下限値TL2よりも低い値に設定されている。また、後述の設定切替温度TL4は、煙突温度制御下限値TL1より高く且つ排ガス出側温度制御下限値TL2よりも低い設定値に設定されている。尚、煙突温度制御下限値TL1および排ガス出側温度制御下限値TL2は、硫黄酸化物の露点温度(約120℃)よりも高い温度に設定される。   Here, the chimney temperature control lower limit value TL1 is set to a value lower than the exhaust gas outlet side temperature control lower limit value TL2. Further, a setting switching temperature TL4 described later is set to a setting value that is higher than the chimney temperature control lower limit value TL1 and lower than the exhaust gas outlet side temperature control lower limit value TL2. The chimney temperature control lower limit value TL1 and the exhaust gas outlet side temperature control lower limit value TL2 are set to a temperature higher than the dew point temperature of sulfur oxide (about 120 ° C.).

本実施形態の流入空気流量調整部11は、図2に示すように、排ガス温度制御部11A、及び煙突温度制御部11Bの2つ制御部を備え、後述のように、煙突温度CTに応じて排ガス温度制御部11Aによる制御と煙突温度制御部11Bによる制御とが選択されて切り替わることで、排ガス温度制御部11Aと煙突温度制御部11Bの両方によって、熱交換器4に流入する空気流量を調整する。流入空気流量調整部11は、所定のサンプリング時間毎に作動する。   As shown in FIG. 2, the inflow air flow rate adjustment unit 11 of the present embodiment includes two control units, an exhaust gas temperature control unit 11A and a chimney temperature control unit 11B, according to the chimney temperature CT as described later. By switching between the control by the exhaust gas temperature control unit 11A and the control by the chimney temperature control unit 11B, the flow rate of air flowing into the heat exchanger 4 is adjusted by both the exhaust gas temperature control unit 11A and the chimney temperature control unit 11B. To do. The inflow air flow rate adjusting unit 11 operates every predetermined sampling time.

排ガス温度制御部11Aは、排ガス出側温度GTが排ガス出側温度制御下限値TL2以上となるように、空気用バイパス弁6の開度を調整することで、熱交換器4で熱交換される燃焼用空気の流量を調整する。
排ガス温度制御部11Aの処理例について、図3を参照して説明する。
排ガス温度制御部11Aは、まずステップS10にて、煙突温度CTが煙突温度制御下限値TL1以下か否かを判定する。煙突温度CTが煙突温度制御下限値TL1以下と判定した場合には、煙突温度制御部11Bの処理に移行する。一方、煙突温度CTが煙突温度制御下限値TL1よりも高いと判定したら、排ガス出側温度GTに基づく流量制御としてステップS20に移行する。
The exhaust gas temperature control unit 11A exchanges heat with the heat exchanger 4 by adjusting the opening degree of the air bypass valve 6 so that the exhaust gas outlet side temperature GT becomes equal to or higher than the exhaust gas outlet side temperature control lower limit TL2. Adjust the flow rate of combustion air.
A processing example of the exhaust gas temperature control unit 11A will be described with reference to FIG.
First, in step S10, the exhaust gas temperature control unit 11A determines whether or not the chimney temperature CT is equal to or lower than the chimney temperature control lower limit value TL1. When it is determined that the chimney temperature CT is equal to or lower than the chimney temperature control lower limit TL1, the process proceeds to the process of the chimney temperature control unit 11B. On the other hand, if it determines with the chimney temperature CT being higher than the chimney temperature control lower limit TL1, it will transfer to step S20 as flow control based on exhaust gas exit side temperature GT.

ステップS20では、排ガス出側温度GTが排ガス出側温度制御下限値TL2以下か否かを判定する。排ガス出側温度GTが排ガス出側温度制御下限値TL2以下と判定したらステップS30に移行する。一方、排ガス出側温度GTが排ガス出側温度制御下限値TL2よりも高いと以下と判定したら、ステップS50に移行する。
ステップS30では、空気用バイパス弁6の開度を所定開度だけ開方向に変更する。すなわち、空気用バイパス路5を流れる空気量を増加して、処理を終了してステップS10に復帰する。
In step S20, it is determined whether or not the exhaust gas outlet side temperature GT is equal to or lower than the exhaust gas outlet side temperature control lower limit value TL2. If it determines with exhaust gas exit side temperature GT being below exhaust gas exit side temperature control lower limit TL2, it will transfer to step S30. On the other hand, if it is determined that the exhaust gas outlet side temperature GT is higher than the exhaust gas outlet side temperature control lower limit TL2, the process proceeds to step S50.
In step S30, the opening degree of the air bypass valve 6 is changed in the opening direction by a predetermined opening degree. That is, the amount of air flowing through the air bypass 5 is increased, the process is terminated, and the process returns to step S10.

ステップS50では、排ガス出側温度GTが、排ガス出側温度制御上限値TL3以上か判定する。排ガス出側温度GTが排ガス出側温度制御上限値TL3以上の場合には、ステップS60に移行する。一方、排ガス出側温度GTが排ガス出側温度制御上限値TL3未満の場合は、そのまま終了してステップS10に復帰する。ここで、排ガス出側温度制御上限値TL3は、排ガス出側温度制御下限値TL2よりも予め設定温度だけ高い温度に設定する。   In step S50, it is determined whether the exhaust gas outlet temperature GT is equal to or higher than the exhaust gas outlet temperature control upper limit value TL3. When the exhaust gas outlet side temperature GT is equal to or higher than the exhaust gas outlet side temperature control upper limit value TL3, the process proceeds to step S60. On the other hand, when the exhaust gas outlet side temperature GT is less than the exhaust gas outlet side temperature control upper limit TL3, the process ends and returns to step S10. Here, the exhaust gas outlet side temperature control upper limit value TL3 is set to a temperature higher than the exhaust gas outlet side temperature control lower limit value TL2 in advance by a set temperature.

ステップS60では、空気用バイパス弁6の開度を所定開度だけ閉方向に変更して、空気用バイパス路5を流れる空気量を減少する。
次に、煙突温度制御部11Bの処理例について図4を参照して説明する。
煙突温度制御部11Bは、煙突温度CTが煙突温度制御下限値TL1以上となるように、空気用バイパス弁6の開度を調整することで、熱交換器4で熱交換される燃焼用空気の流量を制御する。
In step S60, the opening degree of the air bypass valve 6 is changed in the closing direction by a predetermined opening degree, and the amount of air flowing through the air bypass path 5 is reduced.
Next, a processing example of the chimney temperature control unit 11B will be described with reference to FIG.
The chimney temperature control unit 11B adjusts the opening degree of the air bypass valve 6 so that the chimney temperature CT becomes equal to or higher than the chimney temperature control lower limit value TL1, so that the heat of the combustion air exchanged by the heat exchanger 4 is adjusted. Control the flow rate.

煙突温度制御部11Bは、まずステップS100にて、煙突温度CTが上記煙突温度制御下限値TL1よりも高い設定切替温度TL4以上か否かを判定する。煙突温度CTが設定切替温度TL4以上と判定した場合には、排ガス温度制御部11Aの処理に移行する。一方、煙突温度CTが設定切替温度TL4未満と判定した場合には、ステップS110に移行する。   First, in step S100, the chimney temperature control unit 11B determines whether or not the chimney temperature CT is equal to or higher than a set switching temperature TL4 that is higher than the chimney temperature control lower limit value TL1. When it is determined that the chimney temperature CT is equal to or higher than the set switching temperature TL4, the process proceeds to the process of the exhaust gas temperature control unit 11A. On the other hand, when it is determined that the chimney temperature CT is lower than the setting switching temperature TL4, the process proceeds to step S110.

ステップS110では、空気用バイパス弁6の開度を所定開度だけ開方向に変更して、空気用バイパス路5を流れる空気量を増加する。その後、処理を終了してステップS100に移行する。
また、排ガス用バイパス弁8は、配管からのガスリークや熱交換器4の劣化、排ガス流路1に流入する排ガスの量の変動に応じて、適宜開度を変更して、熱交換器4に供給する排ガス量を調整する。
In step S110, the opening degree of the air bypass valve 6 is changed in the opening direction by a predetermined opening degree, and the amount of air flowing through the air bypass path 5 is increased. Thereafter, the process ends and the process proceeds to step S100.
The exhaust gas bypass valve 8 changes the opening degree appropriately according to the gas leak from the piping, the deterioration of the heat exchanger 4, and the fluctuation of the amount of the exhaust gas flowing into the exhaust gas passage 1. Adjust the amount of exhaust gas to be supplied.

(動作その他)
熱風炉では発生した高温の排ガスを煙突12から放散する前に、熱交換器4で排ガスと燃焼用空気と熱交換を行って、排熱の有効利用をする。
但し、排ガスには硫黄酸化物が混在しているので、熱交換器4のエレメント保護の観点から、熱交換後の排ガス温度を、硫黄酸化物の露点温度(約120℃)より高い温度に制御する必要がある。
(Operation other)
In the hot stove, before the generated high-temperature exhaust gas is dissipated from the chimney 12, the heat exchanger 4 performs heat exchange between the exhaust gas and the combustion air to effectively use the exhaust heat.
However, since sulfur oxides are mixed in the exhaust gas, from the viewpoint of protecting the elements of the heat exchanger 4, the exhaust gas temperature after heat exchange is controlled to a temperature higher than the dew point temperature of sulfur oxide (about 120 ° C). There is a need to.

このため、本実施形態の流入空気流量調整部11が、熱交換器4出側での排ガス温度に基づき、排ガス出側温度GTが排ガス出側温度制御下限値TL2以上となるように、上記熱交換器4に流入する上記燃焼用空気の流量を調整するように空気用バイパス弁6の開度を制御する。
更に、発明者らの煙突12のライナーについても硫黄酸化物から保護する必要があるとの知見を得て、煙突温度CTが煙突温度制御下限値TL1と判定したら、排ガス出側温度GTに基づく熱交換器4への空気流入量の調整から、煙突温度CTに基づく熱交換器4への空気流入量の調整に切り替えて、熱交換器4のエレメントと煙突12のライナーとの両方を硫黄酸化物により腐食から保護するようにする。
For this reason, the inflow air flow rate adjustment unit 11 of the present embodiment is based on the exhaust gas temperature on the outlet side of the heat exchanger 4 so that the exhaust gas outlet side temperature GT becomes equal to or higher than the exhaust gas outlet side temperature control lower limit TL2. The opening degree of the air bypass valve 6 is controlled so as to adjust the flow rate of the combustion air flowing into the exchanger 4.
Further, when the inventors have obtained knowledge that the liner of the chimney 12 needs to be protected from sulfur oxides and the chimney temperature CT is determined to be the chimney temperature control lower limit value TL1, heat based on the exhaust gas outlet side temperature GT is obtained. Switching from adjustment of the air inflow amount to the exchanger 4 to adjustment of the air inflow amount to the heat exchanger 4 based on the chimney temperature CT, both the element of the heat exchanger 4 and the liner of the chimney 12 are sulfur oxides. To protect against corrosion.

但し、排ガス出側温度GTに基づく空気流入量の調整よりも、煙突温度CTに基づく空気流入量の調整の方が、熱交換器4での熱交換の効率が悪くなるので、煙突温度CTが煙突温度制御下限値TL1よりも高い設定切替温度TL4以上と判定したら、排ガス出側温度GTに基づく空気流入量の調整に復帰する。
このように、本実施形態によれば、排ガスと燃焼空気との熱交換の効率低下を抑えつつ、熱交換器4内部のエレメントと共に煙突12のライナーも硫黄酸化物による腐食から保護することが可能となる。
However, the adjustment of the air inflow amount based on the chimney temperature CT is less efficient in the heat exchange in the heat exchanger 4 than the adjustment of the air inflow amount based on the exhaust gas outlet side temperature GT. If it determines with more than setting switching temperature TL4 higher than the chimney temperature control lower limit TL1, it will return to adjustment of the air inflow amount based on exhaust gas exit side temperature GT.
As described above, according to the present embodiment, it is possible to protect the liner of the chimney 12 together with the elements inside the heat exchanger 4 from corrosion due to sulfur oxides while suppressing a decrease in the efficiency of heat exchange between the exhaust gas and the combustion air. It becomes.

ここで、熱交換器4が老朽化して、熱交換器4の排ガスと燃焼空気の流路のシール材が経年により劣化すると、排ガス側に低温空気が混入し、排ガス出側温度GTが低下して、煙突温度CTを低下させる要因となりうる。そういったことに対応して、所定条件で一時的に煙突温度CTによる流量制御を行うことで、煙突温度CTも許容下限値以上が維持できるようになる。   Here, when the heat exchanger 4 is aged and the exhaust gas of the heat exchanger 4 and the sealing material of the flow path of the combustion air are deteriorated over time, low temperature air is mixed into the exhaust gas side, and the exhaust gas outlet temperature GT is lowered. Thus, the chimney temperature CT can be reduced. In response to such a situation, the chimney temperature CT can be maintained at the allowable lower limit value or more by temporarily performing flow rate control based on the chimney temperature CT under a predetermined condition.

図5に、本実施形態に基づき排ガス温度を制御した場合の時間推移の例を示す。
図5の例では、煙突温度制御下限値TL1を140℃、排ガス出側温度制御下限値TL2を150℃、排ガス出側温度制御上限値TL3を160℃、設定切替温度TL4を142℃に設定した場合に例である。煙突温度制御下限値TL1や排ガス出側温度制御下限値TL2は、硫黄酸化物の露点温度(約120℃)より高い温度に設定すればよい。
FIG. 5 shows an example of a time transition when the exhaust gas temperature is controlled based on this embodiment.
In the example of FIG. 5, the chimney temperature control lower limit value TL1 is set to 140 ° C., the exhaust gas outlet side temperature control lower limit value TL2 is set to 150 ° C., the exhaust gas outlet side temperature control upper limit value TL3 is set to 160 ° C., and the setting switching temperature TL4 is set to 142 ° C. An example in case. The chimney temperature control lower limit value TL1 and the exhaust gas outlet side temperature control lower limit value TL2 may be set to a temperature higher than the dew point temperature of sulfur oxide (about 120 ° C.).

図5のように、排ガス出側温度GTを150℃以上にして、煙突温度CTを140度以上にした後、煙突温度CTが許容温度以下になっても空気流入量が自動制御によって減少して、排ガス出側温度GTが上昇し、煙突温度CTも許容温度以上に速やかに復帰することができる。すなわち、本発明に基づく排ガスの温度処理を行うことで、熱交換器4内部のエレメントと共に煙突12のライナーも硫黄酸化物による腐食から保護出来る。   As shown in FIG. 5, after the exhaust gas outlet temperature GT is set to 150 ° C. or higher and the chimney temperature CT is set to 140 ° C. or higher, the air inflow amount is reduced by automatic control even if the chimney temperature CT becomes lower than the allowable temperature. The exhaust gas outlet temperature GT rises, and the chimney temperature CT can also quickly return to the allowable temperature or higher. That is, by performing the temperature treatment of the exhaust gas according to the present invention, the liner of the chimney 12 as well as the elements inside the heat exchanger 4 can be protected from corrosion by sulfur oxides.

また、煙突温度CTも参照して燃焼空気の流入量を調整することで、排ガス出側温度制御下限値TL2を従来よりも下げることが可能となり、熱交換器4による熱効率も従来よりも高くすることが可能となる。
ここで、煙突温度制御下限値TL1と設定切替温度TL4との温度差よりも、煙突温度制御下限値TL1と排ガス出側温度制御下限値TL2の温度差の方が大きいことが、煙突温度CTによる制御時間を短く設定出来て好ましい。
Further, by adjusting the inflow amount of the combustion air with reference to the chimney temperature CT, the exhaust gas outlet side temperature control lower limit value TL2 can be lowered than before, and the heat efficiency by the heat exchanger 4 is also made higher than before. It becomes possible.
Here, the temperature difference between the chimney temperature control lower limit value TL1 and the exhaust gas outlet side temperature control lower limit value TL2 is larger than the temperature difference between the chimney temperature control lower limit value TL1 and the setting switching temperature TL4. It is preferable because the control time can be set short.

1 排ガス流路
2 空気流路
3 空気供給装置
4 熱交換器
5 空気用バイパス路
6 空気用バイパス弁
7 排ガス用バイパス路
8 排ガス用バイパス弁
9 第1の温度センサ
10 第2の温度センサ
11 流入空気流量調整部
11A 排ガス温度制御部
11B 煙突温度制御部
12 煙突
20 排ガス
21 燃焼室
CT 煙突温度
GT 排ガス出側温度
TL1 煙突温度制御下限値
TL2 排ガス出側温度制御下限値
TL3 排ガス出側温度制御上限値
TL4 設定切替温度
DESCRIPTION OF SYMBOLS 1 Exhaust gas flow path 2 Air flow path 3 Air supply apparatus 4 Heat exchanger 5 Air bypass path 6 Air bypass valve 7 Exhaust gas bypass path 8 Exhaust gas bypass valve 9 1st temperature sensor 10 2nd temperature sensor 11 Inflow Air flow rate adjusting unit 11A Exhaust gas temperature control unit 11B Chimney temperature control unit 12 Chimney 20 Exhaust gas 21 Combustion chamber CT Chimney temperature GT Exhaust gas outlet side temperature TL1 Chimney temperature control lower limit value TL2 Exhaust gas outlet side temperature control lower limit value TL3 Exhaust gas outlet side temperature control upper limit Value TL4 Setting switching temperature

Claims (6)

排ガスを煙突に誘導する排ガス流路と、
燃焼用空気が通過する空気流路と、
上記排ガス流路と上記空気流路との間で熱交換して上記排ガス流路を流れる排ガスの温度を低下させると共に上記空気流路を流れる燃焼用空気の温度を上昇させる熱交換器と、
上記空気流路を通じて上記熱交換器で熱交換される燃焼用空気の流量を調整する流入空気流量調整部と、
上記排ガス流路を流れる排ガスの上記熱交換器出側での温度である排ガス出側温度を検出する第1の温度センサと、
上記煙突内の温度である煙突温度を検出する第2の温度センサと、
上記第1の温度センサの検出温度および上記第2の温度センサの検出温度に基づき、上記排ガス出側温度が予め設定した排ガス出側温度制御下限値以上、且つ上記煙突温度が予め設定した煙突温度制御下限値以上となるように、上記流入空気流量調整部を介して、上記熱交換器で熱交換される燃焼用空気の流量を調整する空気流量制御手段と、
を備えることを特徴とする排ガス処理装置。
An exhaust gas flow path for guiding the exhaust gas to the chimney;
An air flow path through which combustion air passes;
A heat exchanger that reduces the temperature of the exhaust gas flowing through the exhaust gas flow path by exchanging heat between the exhaust gas flow path and the air flow path and increases the temperature of combustion air flowing through the air flow path;
An inflow air flow rate adjusting unit that adjusts the flow rate of combustion air heat-exchanged by the heat exchanger through the air flow path;
A first temperature sensor for detecting an exhaust gas outlet side temperature which is a temperature of the exhaust gas flowing through the exhaust gas passage at the outlet side of the heat exchanger;
A second temperature sensor for detecting a chimney temperature which is a temperature in the chimney;
Based on the detected temperature of the first temperature sensor and the detected temperature of the second temperature sensor, the exhaust gas outlet side temperature is equal to or higher than the preset exhaust gas outlet side temperature control lower limit value, and the chimney temperature is preset. An air flow rate control means for adjusting the flow rate of combustion air heat-exchanged by the heat exchanger via the inflow air flow rate adjustment unit so as to be equal to or higher than a control lower limit value;
An exhaust gas treatment apparatus comprising:
上記煙突温度制御下限値は、上記排ガス出側温度制御下限値よりも低く設定され、
上記流入空気流量制御手段は、上記煙突温度が上記煙突温度制御下限値よりも高いと判定した場合には、上記排ガス出側温度が上記排ガス出側温度制御下限値以上となるように、上記流入空気流量調整部を介して、上記熱交換器で熱交換される燃焼用空気の流量を調整し、上記煙突温度が上記煙突温度制御下限値以下と判定すると、上記煙突温度が上記煙突温度制御下限値よりも高い設定切替温度となるまで、上記煙突温度が上記煙突温度制御下限値以上となるように、上記流入空気流量調整部を介して、上記熱交換器で熱交換される燃焼用空気の流量を調整することを特徴とする請求項1に記載した排ガス処理装置。
The chimney temperature control lower limit value is set lower than the exhaust gas outlet side temperature control lower limit value,
When it is determined that the chimney temperature is higher than the chimney temperature control lower limit value, the inflow air flow rate control means is configured so that the exhaust gas outlet side temperature is equal to or higher than the exhaust gas outlet side temperature control lower limit value. Adjusting the flow rate of the combustion air heat exchanged by the heat exchanger via the air flow rate adjusting unit, and determining that the chimney temperature is equal to or lower than the chimney temperature control lower limit value, the chimney temperature is lower than the chimney temperature control lower limit value. Until the set switching temperature is higher than the value, the combustion air to be heat-exchanged by the heat exchanger via the inflow air flow rate adjustment unit so that the chimney temperature becomes equal to or higher than the chimney temperature control lower limit value. The exhaust gas treatment apparatus according to claim 1, wherein the flow rate is adjusted.
上記流入空気流量調整部は、上記空気流路における上記熱交換器の入側と出側とを連通して当該熱交換器をバイパスする空気用バイパス路と、その空気用バイパス路に設けられた空気用開閉弁と、を有することを特徴とする請求項1又は請求項2に記載した排ガス処理装置。   The inflow air flow rate adjustment unit is provided in an air bypass path that communicates an inlet side and an outlet side of the heat exchanger in the air flow path to bypass the heat exchanger, and the air bypass path. The exhaust gas treatment apparatus according to claim 1, further comprising an air on-off valve. 上記排ガス流路における上記熱交換器の入側と出側とを連通して当該熱交換器をバイパスする排ガス用バイパス路と、その排ガス用バイパス路に設けられた排ガス用開閉弁と、を有する請求項1〜請求項3のいずれか1項に記載した排ガス処理装置。   An exhaust gas bypass passage that bypasses the heat exchanger by connecting an inlet side and an outlet side of the heat exchanger in the exhaust gas passage; and an exhaust gas on-off valve provided in the exhaust gas bypass passage. The exhaust gas treatment apparatus according to any one of claims 1 to 3. 高温の排ガスを熱交換器で燃焼用空気と熱交換を行った後に煙突から排出し、
上記熱交換器出側での排ガス温度である排ガス出側温度が予め設定した排ガス出側温度制御下限値以上となるように、上記熱交換器に流入する上記燃焼用空気の流量を調整し、
上記煙突内の温度が予め設定した煙突温度制御下限値以下と判定したら、上記排ガス出側温度に基づく上記流量調整の代わりに、上記煙突内の温度が上記煙突温度制御下限値以上となるように上記熱交換器に流入する上記燃焼用空気の流量を調整することを特徴とする排ガス処理方法。
After exchanging high-temperature exhaust gas with combustion air with a heat exchanger, it is discharged from the chimney,
Adjusting the flow rate of the combustion air flowing into the heat exchanger so that the exhaust gas outlet temperature which is the exhaust gas temperature on the outlet side of the heat exchanger is equal to or higher than a preset exhaust gas outlet temperature control lower limit value,
When it is determined that the temperature in the chimney is equal to or lower than a preset chimney temperature control lower limit value, the temperature in the chimney is equal to or higher than the lower limit value of the chimney temperature control instead of the flow rate adjustment based on the exhaust gas outlet temperature. An exhaust gas treatment method comprising adjusting a flow rate of the combustion air flowing into the heat exchanger.
上記煙突内の温度が上記煙突温度制御下限値よりも高い設定切替温度以上と判定したら、上記煙突内の温度に基づく上記流量調整から、上記排ガス出側温度が予め設定した排ガス出側温度制御下限値以上となるように、上記排ガス出側温度に基づく上記流量調整に切り替えることを特徴とする請求項5に記載した排ガス処理方法。   If it is determined that the temperature in the chimney is equal to or higher than the set switching temperature higher than the chimney temperature control lower limit value, the exhaust gas outlet side temperature control lower limit that the exhaust gas outlet side temperature is preset from the flow rate adjustment based on the temperature in the chimney 6. The exhaust gas treatment method according to claim 5, wherein the flow rate adjustment based on the exhaust gas outlet side temperature is switched so as to be equal to or higher than a value.
JP2016082950A 2016-04-18 2016-04-18 Exhaust gas treatment apparatus and exhaust gas treatment method Active JP6593245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082950A JP6593245B2 (en) 2016-04-18 2016-04-18 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082950A JP6593245B2 (en) 2016-04-18 2016-04-18 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2017194184A true JP2017194184A (en) 2017-10-26
JP6593245B2 JP6593245B2 (en) 2019-10-23

Family

ID=60154744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082950A Active JP6593245B2 (en) 2016-04-18 2016-04-18 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP6593245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973068B1 (en) * 2018-08-27 2019-04-26 박광시 Apparatus for removing plume

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782627U (en) * 1980-10-31 1982-05-21
JPS5860194A (en) * 1981-10-05 1983-04-09 Sumitomo Metal Ind Ltd Recovery method of low temperature waste heat
US20090095440A1 (en) * 2006-02-25 2009-04-16 Manfred Gietz Method for optimised operation of an air preheater and air preheater
JP2013204969A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Air preheater and method for controlling air preheater
JP2014206329A (en) * 2013-04-12 2014-10-30 中国電力株式会社 Exhaust gas treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782627U (en) * 1980-10-31 1982-05-21
JPS5860194A (en) * 1981-10-05 1983-04-09 Sumitomo Metal Ind Ltd Recovery method of low temperature waste heat
US20090095440A1 (en) * 2006-02-25 2009-04-16 Manfred Gietz Method for optimised operation of an air preheater and air preheater
JP2013204969A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Air preheater and method for controlling air preheater
JP2014206329A (en) * 2013-04-12 2014-10-30 中国電力株式会社 Exhaust gas treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973068B1 (en) * 2018-08-27 2019-04-26 박광시 Apparatus for removing plume

Also Published As

Publication number Publication date
JP6593245B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
US9970682B2 (en) Hot water supply system
JP6376390B2 (en) Hot water storage hot water system
JP6946822B2 (en) Heating and hot water supply device
JP4801185B2 (en) Thermal storage combustion device
JP6593245B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
KR102043025B1 (en) Apparatus for recovering waste heat of exhust gas
JP7455352B2 (en) Water heater
JP2011214760A (en) Hot water supply device
US9416961B2 (en) Boiler connection system
JP2019095160A (en) Water heater
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP5200748B2 (en) Water heater
JP2020180719A (en) Heat pipe type exhaust heat recovery facility and hot stove facility equipped therewith
JPH11264535A (en) Method and device for controlling air temperature of steam air heater
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
JP2008256271A (en) Forced air supply type combustion device
JP5841931B2 (en) Engine driven heat pump
JP6735572B2 (en) Water heater
JP6268984B2 (en) Heat source machine
KR102175427B1 (en) Apparatus for recovering waste heat
JP7353125B2 (en) heat source machine
JP4233507B2 (en) Hot water heating system and operation method thereof
JP2004292889A (en) Heating furnace and method for cooling heating furnace
JP6040707B2 (en) Dilution blower control device and dilution blower control method
JP2009210150A (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250