JP2017193996A - Wind power generation system - Google Patents

Wind power generation system Download PDF

Info

Publication number
JP2017193996A
JP2017193996A JP2016084189A JP2016084189A JP2017193996A JP 2017193996 A JP2017193996 A JP 2017193996A JP 2016084189 A JP2016084189 A JP 2016084189A JP 2016084189 A JP2016084189 A JP 2016084189A JP 2017193996 A JP2017193996 A JP 2017193996A
Authority
JP
Japan
Prior art keywords
power generation
wind power
generation system
wear
oil film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084189A
Other languages
Japanese (ja)
Inventor
小山田 具永
Tomonaga Oyamada
具永 小山田
貴彦 佐野
Takahiko Sano
貴彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016084189A priority Critical patent/JP2017193996A/en
Publication of JP2017193996A publication Critical patent/JP2017193996A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind power generation system that can calculate an amount of wear of a sliding bearing by a simple method.SOLUTION: A wind power generation system comprises: a rotor that includes blades 1 for receiving wind, and rotates; a rotating shaft 5 that rotates in association with rotation of the rotor; a wind turbine that includes a sliding bearing 21 provided via an oil film with respect to the rotating shaft 5; rotational speed measurement means 12 that directly or indirectly determines a rotational speed of the rotating shaft 5; oil film temperature measurement means 9 that directly or indirectly determines a temperature of the oil film; and a wear amount calculation device 13 that calculates an amount of wear of the sliding bearing 21 in a predetermined period by using the rotational speed and the temperature of the oil film.SELECTED DRAWING: Figure 2

Description

本発明は風力発電システムに関するものであり、特にすべり軸受の摩耗量等の算出を行う装置に関するものである。   The present invention relates to a wind power generation system, and more particularly to an apparatus for calculating a wear amount of a sliding bearing.

風力発電システムは、再生可能エネルギーの柱として広く導入が進んでいる。風力発電システムでは、ブレードを支持するハブの回転動力を発電機に伝達し、発電機ロータを回転させて発電運転を行う。   Wind power generation systems are widely introduced as a pillar of renewable energy. In the wind power generation system, the rotational power of the hub that supports the blades is transmitted to the generator, and the generator rotor is rotated to perform the power generation operation.

従来の風力発電システムとして、例えば特許文献1に記載されたものがある。該特許文献1では、遊星ピンを回転軸とする遊星歯車がすべり軸受を介して回転する遊星歯車増速機を備えており、軸受は潤滑油により潤滑される。   As a conventional wind power generation system, there is one described in Patent Document 1, for example. In this patent document 1, a planetary gear having a planetary pin as a rotating shaft is provided with a planetary gear speed increasing device that rotates via a slide bearing, and the bearing is lubricated with lubricating oil.

また、摩耗検知装置を備える風力発電システムとして、例えば特許文献2に記載されたものがある。該特許文献2では、増速機の出力軸を非回転状態に固定するブレーキ装置と、増速機の入力側の軸の回転角を検出する回転角センサと、ブレードによる受風状態を変えることにより軸の回転方向を反転させる制御部とを備え、前記ブレーキを作動させた状態で入力軸の回転する角度からギヤおよび歯車の摩耗の有無を判定する。   Moreover, there exists a thing described in patent document 2, for example as a wind power generation system provided with an abrasion detection apparatus. In Patent Document 2, the brake device that fixes the output shaft of the gearbox in a non-rotating state, the rotation angle sensor that detects the rotation angle of the shaft on the input side of the gearbox, and the wind receiving state by the blade are changed. And a controller for reversing the rotation direction of the shaft, and determining whether the gear and the gear are worn or not from the rotation angle of the input shaft in a state where the brake is operated.

特開2012−132333号JP 2012-132333 A 特開2011−208635号JP2011-208635A

風力発電システムにおいては、風況と制御条件によりハブや回転軸の回転動力、回転速度が変化する。特許文献1に記載される様にすべり軸受けを用いる場合、回転軸とすべり軸受との隙間に形成される油膜厚さは回転軸の回転速度や支持荷重、潤滑油粘度により変化し、例えば回転軸が極低速で回転すると油膜厚さが減少する。それにより、部分的に油膜切れを生じて、回転軸とすべり軸受との直接接触、更には、それに伴う摩耗が生じやすくなる。また、風力発電システムにおいて、増速機等の回転動力伝達機構は高所に設置されるため、作業員によりすべり軸受の摩耗状態を点検することは時間とコストを要する。したがって、風力発電システムは、運用者がすべり軸受の接触状態および摩耗の進行状態を常時把握できる機能を有することが望ましい。   In a wind power generation system, the rotational power and rotational speed of a hub and a rotating shaft vary depending on the wind conditions and control conditions. When a sliding bearing is used as described in Patent Document 1, the oil film thickness formed in the gap between the rotating shaft and the sliding bearing varies depending on the rotating speed, supporting load, and lubricating oil viscosity of the rotating shaft. When the oil rotates at a very low speed, the oil film thickness decreases. As a result, the oil film is partially cut, and the direct contact between the rotating shaft and the slide bearing, and further, the wear associated therewith tends to occur. Further, in a wind power generation system, a rotational power transmission mechanism such as a speed increaser is installed at a high place, so it takes time and cost to check the wear state of a slide bearing by an operator. Therefore, it is desirable that the wind power generation system has a function that allows the operator to always grasp the contact state of the slide bearing and the progress state of wear.

一方で、特許文献2に記載の風力発電システムにおいては、検知をするために発電運転の停止、および特別な検査用運転の実施を要する。   On the other hand, in the wind power generation system described in Patent Document 2, it is necessary to stop the power generation operation and perform a special inspection operation in order to detect the wind power generation system.

そこで、本発明では簡易な手法ですべり軸受の摩耗量を算出可能な風力発電システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a wind power generation system that can calculate the amount of wear of a plain bearing by a simple method.

上記の課題を解決するために、本発明に係る風力発電システムでは、風を受けるブレードを有して回転するロータと、前記ロータの回転に伴って回転する回転軸と、前記回転軸に対して油膜を介して設けられるすべり軸受を備える風車と、前記回転軸の回転速度を直接または間接に求める回転速度計測手段と、前記油膜の温度を直接または間接に求める油膜温度計測手段と、前記回転速度および前記油膜の温度を用いて、前記すべり軸受の所定期間内における摩耗量を演算する摩耗量演算装置を備えることを特徴とする   In order to solve the above problems, in a wind power generation system according to the present invention, a rotor that rotates with a blade that receives wind, a rotating shaft that rotates with the rotation of the rotor, and the rotating shaft A wind turbine provided with a slide bearing provided via an oil film; a rotational speed measuring means for directly or indirectly obtaining a rotational speed of the rotary shaft; an oil film temperature measuring means for directly or indirectly obtaining a temperature of the oil film; and the rotational speed. And a wear amount calculating device that calculates the wear amount of the slide bearing within a predetermined period using the temperature of the oil film.

本発明によれば、簡易な手法ですべり軸受の摩耗量を算出可能な風力発電システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wind power generation system which can calculate the abrasion loss of a plain bearing with a simple method can be provided.

風力発電システムの外観を示す全体図である。1 is an overall view showing an external appearance of a wind power generation system. 実施例1に係る風力発電システムのうち、ハブ、回転主軸、増速機および発電機の構成と、各種計測手段、摩耗量演算装置、表示装置、データ伝送装置の接続を示す図である。It is a figure which shows the structure of a hub, a rotation main shaft, a gearbox, and a generator among the wind power generation systems which concern on Example 1, and the connection of various measuring means, an abrasion amount calculating apparatus, a display apparatus, and a data transmission apparatus. 実施例1に係る風力発電システムのうち、増速機内における回転軸、すべり軸受近傍の詳細を示す図である。It is a figure which shows the detail of the rotating shaft in a step-up gear, and a slide bearing vicinity among the wind power generation systems which concern on Example 1. FIG. 実施例1に係る風力発電システムのうち、各装置、手段の接続関係を示すブロック図である。It is a block diagram which shows the connection relation of each apparatus and a means among the wind power generation systems which concern on Example 1. FIG. 実施例1に係る風力発電システムにおいて、摩耗量の算出と表示を行うフローチャート図である。It is a flowchart figure which calculates and displays the amount of wear in the wind power generation system concerning Example 1. 実施例1に係る風力発電システムのうち、摩耗量演算装置での演算に用いられる潤滑油情報の一例である。It is an example of the lubricating oil information used for the calculation in an abrasion amount calculating apparatus among the wind power generation systems which concern on Example 1. FIG. 実施例1に係る風力発電システムのうち、摩耗量演算装置での演算に用いられる軸受接触荷重情報の一例である。It is an example of the bearing contact load information used for the calculation in an abrasion amount calculating apparatus among the wind power generation systems which concern on Example 1. FIG. 実施例1に係る風力発電システムのうち、摩耗量演算装置での演算に用いられる摩耗速度情報の一例である。It is an example of the wear speed information used for the calculation in a wear amount calculating apparatus among the wind power generation systems which concern on Example 1. FIG. 実施例1に係る風力発電システムのうち、摩耗量演算装置で演算される摩耗量、総摩耗量、余寿命摩耗量情報の一例である。It is an example of the wear amount calculated by the wear amount calculating apparatus, the total wear amount, and the remaining life wear amount information in the wind power generation system according to the first embodiment. 実施例1に係る風力発電システムのうち、データ伝送装置をナセル内部に、摩耗量演算装置と表示装置をナセル外部に配置した変形例を示す図である。It is a figure which shows the modification which arrange | positioned the data transmission apparatus inside a nacelle and the wear amount calculating apparatus and the display apparatus outside the nacelle among the wind power generation systems concerning Example 1. FIG.

以下、上記した本発明を実施する上で好適な実施の形態について図面を用いて説明する。下記はあくまでも実施例に過ぎず、発明内容が係る特定の態様に限定して解釈されることを意図する趣旨ではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. The following are merely examples and are not intended to be construed as limiting the invention content to specific embodiments.

実施例1について図1から図10を用いて説明する。図1に示すように、風力発電システムは、風を受けるブレード1やハブ4を有し、回転するロータと、ブレード1の荷重を支持するナセル2と、ナセル2を支持するタワー3とから概略構成される。ナセル2はタワー3に対して概略水平面内で回転可能に支持されており、風向きに応じて向きを変えることができる。   A first embodiment will be described with reference to FIGS. As shown in FIG. 1, the wind power generation system includes a blade 1 that receives wind and a hub 4, and includes a rotating rotor, a nacelle 2 that supports the load of the blade 1, and a tower 3 that supports the nacelle 2. Composed. The nacelle 2 is supported so as to be rotatable in a substantially horizontal plane with respect to the tower 3, and can change the direction according to the wind direction.

図2は、ハブから後段の増速機および発電機への回転動力伝達機構、並びに回転軸とすべり軸受との接触状態および摩耗量を算出して表示させるための各種手段、装置の接続関係を説明する図である。図1において破線で囲んだ部位に相当する。該図に示すように、本実施例における風力発電システムは、ブレード1を搭載するハブ4と、ハブ4に接続されるとともにハブ4の回転に伴う回転動力を伝達する回転主軸5と、回転主軸5に接続して後段の出力軸の回転速度を増加させる増速機6と、発電機7と、増速機6に潤滑油を供給する給油装置8と、給油される潤滑油の温度を計測する給油温度計測手段9と、給油される潤滑油の圧力を計測する給油圧力計測手段10と、油中粒子計測手段11と、回転速度計測手段12と、摩耗量演算装置13と、表示装置14と、データ伝送装置15とを有している。   FIG. 2 shows the rotational power transmission mechanism from the hub to the subsequent speed increaser and the generator, the contact state between the rotating shaft and the slide bearing, and various means for calculating and displaying the amount of wear and the connection relationship of the devices. It is a figure explaining. This corresponds to a part surrounded by a broken line in FIG. As shown in the figure, the wind power generation system according to the present embodiment includes a hub 4 on which a blade 1 is mounted, a rotating main shaft 5 that is connected to the hub 4 and transmits rotational power associated with the rotation of the hub 4, and a rotating main shaft. The speed increaser 6 connected to the speed increaser 6 to increase the rotational speed of the output shaft at the subsequent stage, the generator 7, the oil supply device 8 for supplying the oil to the speed increaser 6, and the temperature of the lubricating oil to be supplied are measured. An oil supply temperature measuring means 9, an oil supply pressure measuring means 10 for measuring the pressure of lubricating oil to be supplied, an oil particle measuring means 11, a rotational speed measuring means 12, a wear amount calculating device 13, and a display device 14. And a data transmission device 15.

ブレード1に風を受けてハブ4が回転すると、その回転トルクは回転主軸5を介して増速機6に伝達される。増速機6により回転速度を増加させた回転動力は増速機6の出力軸に接続する発電機7に伝達され、発電機7の回転子を駆動させ、発電運転が行われる。   When the hub 4 rotates by receiving wind from the blade 1, the rotational torque is transmitted to the speed increaser 6 via the rotation main shaft 5. The rotational power whose rotational speed has been increased by the speed increaser 6 is transmitted to the generator 7 connected to the output shaft of the speed increaser 6, and the rotor of the power generator 7 is driven to perform power generation operation.

増速機6と給油装置8は給油配管および排油配管で接続されており、給油装置8に内蔵されたポンプにより増速機6内の軸受および歯車等に潤滑油が供給される。また、増速機6内の軸受および歯車を通過した潤滑油は排油配管を通じて再び給油装置8に回収される。給油装置8あるいは給油配管の途中に、給油温度計測手段9と、給油圧力計測手段10が設置され、給油装置8の給油側と排油側に油中粒子計測手段11が設置されている。回転速度計測手段12はハブ4、回転主軸5、増速機6、発電機7あるいはこれらの接続部のいずれかに設けられ、摩耗量を算出するすべり軸受と摺動する回転軸の回転速度を、直接あるいは間接的に計測する。図4にて詳述しているが、摩耗量演算装置13の入力部には、給油温度計測手段9と、給油圧力計測手段10と、油中粒子計測手段11と、回転速度計測手段12と、図2には図示していないが、油膜温度計測手段と、ブレード角度計測手段と、風速計測手段と、発電機制御装置と設定入力装置とが接続される。また、摩耗量演算装置13の出力部には、表示装置14と、データ伝送装置15が接続される。   The speed increaser 6 and the oil supply device 8 are connected by an oil supply pipe and an oil discharge pipe, and lubricating oil is supplied to bearings, gears, and the like in the speed increaser 6 by a pump built in the oil supply device 8. Further, the lubricating oil that has passed through the bearings and gears in the speed increaser 6 is again collected by the oil supply device 8 through the oil drain pipe. An oil supply temperature measurement means 9 and an oil supply pressure measurement means 10 are installed in the middle of the oil supply device 8 or the oil supply pipe, and oil-in-particle measurement means 11 are installed on the oil supply side and the oil discharge side of the oil supply device 8. The rotational speed measuring means 12 is provided in any of the hub 4, the rotating main shaft 5, the speed increaser 6, the generator 7, or a connecting portion thereof, and determines the rotational speed of the rotating shaft that slides with the slide bearing for calculating the wear amount. Measure directly or indirectly. As described in detail in FIG. 4, the input portion of the wear amount calculation device 13 includes an oil supply temperature measuring unit 9, an oil supply pressure measuring unit 10, an oil particle measuring unit 11, and a rotation speed measuring unit 12. Although not shown in FIG. 2, the oil film temperature measuring means, the blade angle measuring means, the wind speed measuring means, the generator control device, and the setting input device are connected. Further, a display device 14 and a data transmission device 15 are connected to the output part of the wear amount calculation device 13.

図3は、増速機6内における評価対象の軸受近傍の構造を示す。図2において破線4aで囲んだ部位に相当する。回転軸20はすべり軸受21を貫通し、油膜22を介してすべり軸受21により回転可能に支持されている。すべり軸受21には給油装置8からの給油配管に接続した給油通路23が設けられ、ここから潤滑油が回転軸20とすべり軸受21との隙間に流入し、前記隙間の軸方向端部より流出する。油膜温度計測手段24a、24bは、油膜22あるいはその近傍、例えば給油通路23、すべり軸受21の表面あるいは内部、前記隙間の軸方向端部付近に設置され、油膜22の温度を直接的あるいは間接的に計測する。排油温度計測手段25はすべり軸受21の外部に設置され、回転軸20とすべり軸受21との隙間を通じて流出した油の温度を計測する。排油温度計測手段25をすべり軸受21の端部、すなわち回転軸20とすべり軸受21との隙間の開口部に近接設置し、油膜温度計測手段24を兼ねることも可能である。   FIG. 3 shows a structure in the vicinity of the bearing to be evaluated in the speed increaser 6. In FIG. 2, it corresponds to a portion surrounded by a broken line 4a. The rotary shaft 20 passes through the slide bearing 21 and is rotatably supported by the slide bearing 21 via an oil film 22. The slide bearing 21 is provided with an oil supply passage 23 connected to an oil supply pipe from the oil supply device 8, from which lubricating oil flows into the gap between the rotary shaft 20 and the slide bearing 21, and flows out from the axial end of the gap. To do. The oil film temperature measuring means 24a and 24b are installed on the oil film 22 or in the vicinity thereof, for example, on the surface or inside of the oil supply passage 23 and the slide bearing 21 and in the vicinity of the end in the axial direction of the gap, and directly or indirectly control the temperature of the oil film 22. To measure. The oil discharge temperature measuring means 25 is installed outside the slide bearing 21 and measures the temperature of the oil flowing out through the gap between the rotary shaft 20 and the slide bearing 21. It is also possible to install the oil discharge temperature measuring means 25 close to the end of the slide bearing 21, that is, the opening of the gap between the rotary shaft 20 and the slide bearing 21, and also serve as the oil film temperature measuring means 24.

図4は、摩耗量演算装置13に関連する各装置および各手段の接続関係を示す。また、図5は摩耗量の算出と表示を行うフローを示す。   FIG. 4 shows a connection relationship between each device and each means related to the wear amount calculation device 13. FIG. 5 shows a flow for calculating and displaying the wear amount.

はじめに、設定入力装置を通じて、各風力発電システムに関する個体情報、潤滑油情報、評価時間Tを入力する。前記個体情報は、回転軸20の直径、すべり軸受21の内径、幅、回転軸20とすべり軸受21との隙間等に代表される寸法情報、摺動面における表面粗さ、ハブ4に対する回転軸20の回転速度比、風速および運転状態に応じた軸受荷重の情報を含む。前記の潤滑油情報は図6に例示する温度と粘度との関係を含む。設定入力装置に入力された情報は摩耗量演算装置13に伝達される。   First, individual information, lubricating oil information, and evaluation time T regarding each wind power generation system are input through the setting input device. The individual information includes the diameter of the rotary shaft 20, the inner diameter and width of the slide bearing 21, dimensional information represented by the gap between the rotary shaft 20 and the slide bearing 21, surface roughness on the sliding surface, and the rotary shaft for the hub 4. The bearing load information according to the rotational speed ratio, the wind speed, and the operating state is included. The lubricating oil information includes the relationship between temperature and viscosity exemplified in FIG. Information input to the setting input device is transmitted to the wear amount calculation device 13.

続いて、各種計測手段による計測値を摩耗量演算装置13に入力する。計測値は評価時間Tを代表する値とし、例えば評価時間Tの全体あるいは一部の時間における平均値が用いられる。同様に発電機制御装置の制御情報も摩耗量演算装置13に入力する。   Subsequently, values measured by various measuring means are input to the wear amount calculation device 13. The measured value is a value representing the evaluation time T, and for example, an average value of the evaluation time T in whole or in part is used. Similarly, the control information of the generator control device is also input to the wear amount calculation device 13.

設定入力装置、各計測手段、並びに発電機制御装置からの入力情報を用い、摩耗量演算装置13における演算のフローを図5を用いて以下に説明する。   A calculation flow in the wear amount calculation device 13 using input information from the setting input device, each measuring unit, and the generator control device will be described below with reference to FIG.

油膜温度計測手段24、あるいは給油温度計測手段9と排油温度計測手段25により直接的あるいは間接的に計測された油膜温度と、図6に例示するような使用油における温度に対する粘度の変化特性から粘度ηを算出する。また、回転速度計測手段12と個体情報として入力された速度比から回転軸20の回転速度Nを算出する。また、ブレードのピッチ角度、風速、発電機の制御情報、および各部寸法からすべり軸受21における軸受荷重Pを算出し、軸受荷重を軸受の内径と幅で除して平均軸受荷重Paveを算出する。回転軸20の外径D、すべり軸受21の内径とDとの差をcとし、下記(1)の式で定義されるゾンマフェルト数Sを算出する。   From the oil film temperature measured by the oil film temperature measuring means 24, or the oil supply temperature measuring means 9 and the drained oil temperature measuring means 25, and the change characteristic of the viscosity with respect to the temperature in the oil used as illustrated in FIG. Viscosity η is calculated. Further, the rotational speed N of the rotary shaft 20 is calculated from the rotational speed measuring means 12 and the speed ratio input as the individual information. Further, the bearing load P in the slide bearing 21 is calculated from the pitch angle of the blade, the wind speed, the control information of the generator, and the dimensions of each part, and the average bearing load Pave is calculated by dividing the bearing load by the inner diameter and the width of the bearing. The difference between the outer diameter D of the rotating shaft 20 and the inner diameter of the slide bearing 21 and D is c, and the Sommerfeld number S defined by the following equation (1) is calculated.

S=(ηN/Pave)(D/c) ・・・(1)
一般に、粘度ηや回転速度Nの減少、あるいは平均軸受荷重Paveの増加等によりSが小さくなるとすべり軸受の最小油膜厚さが減少しやすいことが知られている。油膜が薄くなり、部分的に油膜が切れて回転軸20とすべり軸受21の表面同士が直接接触を生じる場合、軸受荷重Pは、油膜による支持荷重である油膜荷重Pfと直接接触による支持荷重である接触荷重Pcとの下記(2)の関係で支持される。
S = (ηN / Pave) (D / c) 2 (1)
In general, it is known that the minimum oil film thickness of a slide bearing is likely to decrease when S decreases due to a decrease in viscosity η, rotational speed N, or an increase in average bearing load Pave. When the oil film becomes thin and the oil film is partially cut and the surfaces of the rotary shaft 20 and the slide bearing 21 are brought into direct contact with each other, the bearing load P is the oil film load Pf that is the support load by the oil film and the support load by the direct contact. It is supported by the relationship of the following (2) with a certain contact load Pc.

P=Pf+Pc ・・・(2)
摩耗量演算装置13は式(1)の各パラメータ、給油圧力、および摺動面における表面粗さを用いて、あるいは図7に例示するゾンマフェルト数Sと接触荷重比Pc/Pとの関係を用いて接触荷重Pcを算出する。
P = Pf + Pc (2)
The wear amount calculation device 13 uses the parameters of formula (1), the oil supply pressure, and the surface roughness on the sliding surface, or uses the relationship between the Sommerfeld number S and the contact load ratio Pc / P illustrated in FIG. The contact load Pc is calculated.

摩耗量演算装置13には、図8に例示する接触荷重Pcと摩耗速度Wsとの関係が評価対象の各軸受について記録されている。接触荷重Pcと摩耗速度Wsとの関係は給油装置8の給油側の油中粒子計測手段11で評価された潤滑油の清浄度等級により補正され、清浄度等級が大きく、単位油量あたりの粒子数が多い場合は接触荷重Pcに対して摩耗速度Wsがより大きく補正される。潤滑油の清浄度等級は例えばISO4406に記載の等級が用いられる。評価時間Tにおける摩耗量Wtは、下記(3)の式で算出される。   In the wear amount calculation device 13, the relationship between the contact load Pc and the wear speed Ws illustrated in FIG. 8 is recorded for each bearing to be evaluated. The relationship between the contact load Pc and the wear rate Ws is corrected by the cleanliness grade of the lubricating oil evaluated by the oil-in-oil particle measuring means 11 on the oil supply side of the oil supply device 8, the cleanliness grade is large, and the particles per unit oil amount When the number is large, the wear speed Ws is corrected to be larger with respect to the contact load Pc. For example, a grade described in ISO 4406 is used as the cleanliness grade of the lubricating oil. The wear amount Wt at the evaluation time T is calculated by the following equation (3).

Wt=TNWs ・・・(3)
摩耗量演算装置13は、過去から評価時点までに複数回算出した各評価時間Tにおける摩耗量Wtを積算し、総摩耗量Wを算出する。あらかじめ摩耗量の規定値Wdを設定しておき、余寿命摩耗量ΔWrは下記(4)の式で算出される。
Wt = TNWs (3)
The wear amount calculation device 13 calculates the total wear amount W by integrating the wear amount Wt at each evaluation time T calculated a plurality of times from the past to the evaluation time point. A prescribed value Wd of the wear amount is set in advance, and the remaining life wear amount ΔWr is calculated by the following equation (4).

ΔWr=Wd−W ・・・(4)
余寿命の出力としては、余寿命摩耗量ΔWrをそのまま用いるか、あるいは総摩耗量Wの時間変化でΔWrを除した余寿命時間を用いる。
ΔWr = Wd−W (4)
As the remaining life output, the remaining life wear amount ΔWr is used as it is, or the remaining life time obtained by dividing ΔWr by the time change of the total wear amount W is used.

摩耗量演算装置13は、接触荷重Pcが0あるいはばらつきを考慮したしきい値より大きい値を示した際に、回転軸20とすべり軸受21との間の油膜が切れて部分的に表面同士の直接接触が生じていると判断し、表示装置14においてインジケータを表示させる。また、接触荷重Pcを表示させる。   When the contact load Pc shows 0 or a value larger than the threshold value considering the variation, the wear amount calculation device 13 breaks the oil film between the rotary shaft 20 and the slide bearing 21 and causes a partial surface contact. It is determined that direct contact has occurred, and an indicator is displayed on the display device 14. Further, the contact load Pc is displayed.

また、摩耗量演算装置13は、評価時間Tにおける摩耗量Wt、総摩耗量W、余寿命の全てあるいはいずれかを表示装置14に伝達し、表示装置14はその全てあるいはいずれかを表示する。同様に、摩耗量演算装置13は、回転軸20とすべり軸受21との直接接触の判断情報、Pc、Wt、W、余寿命をデータ伝送装置15に伝達し、データ伝送装置15はその全てあるいはいずれかをナセルの内外の表示装置、記録装置、制御装置、あるいは端末等に向けて有線あるいは無線の通信手段により伝達する。   The wear amount calculation device 13 transmits all or any of the wear amount Wt, the total wear amount W, and the remaining life at the evaluation time T to the display device 14, and the display device 14 displays all or any of them. Similarly, the wear amount calculation device 13 transmits judgment information, Pc, Wt, W, and remaining life of the direct contact between the rotary shaft 20 and the slide bearing 21 to the data transmission device 15, and the data transmission device 15 is all or Either is transmitted to a display device, a recording device, a control device, a terminal, or the like inside or outside the nacelle by a wired or wireless communication means.

本実施例によれば、運用者は各風力発電システムが回転軸とすべり軸受との間の油膜切れや直接接触を生じうる運転状態にあるかどうかをリアルタイムに知ることができる。また、評価時間Tにおける接触荷重Pc、摩耗量Wtの推定値から回転軸とすべり軸受で生じうる直接接触状態および摩耗状態を定量的に把握することができる。したがって、運用者はこれらの情報をもとに、すべり軸受の損傷を回避するための運転操作、例えば回転速度の増加、油温度の低減、発電負荷の低減など、油膜厚さの増加を促進する対応が可能となる。あるいは、回転速度の増加が困難な場合などは、回転軸を静止固定して回転軸と軸受との摺動を回避することにより、摩耗防止の対策をすることが可能となる。これらの対応や対策は運用者による判断によって、あるいは制御装置等の自動判断により例えば摩耗量に応じて、或いは余寿命を考慮して実施される。運転条件の変更等を通じて寿命の延長を図ることにより信頼性の高い風力発電システムの運用が可能となる。制御装置による制御態様としては回転数を必要に応じて減少させる様に、風からの入力エネルギーを減少させるべくピッチ角をフェザー側に制御することや、発電機トルクを変えることなどが考えられる。   According to the present embodiment, the operator can know in real time whether or not each wind power generation system is in an operating state that can cause oil film breakage or direct contact between the rotating shaft and the slide bearing. Further, it is possible to quantitatively grasp the direct contact state and the wear state that can occur between the rotating shaft and the slide bearing from the estimated values of the contact load Pc and the wear amount Wt at the evaluation time T. Therefore, the operator promotes an increase in oil film thickness based on this information, such as an operation for avoiding damage to the slide bearing, for example, an increase in rotational speed, a decrease in oil temperature, a decrease in power generation load, etc. Correspondence becomes possible. Alternatively, when it is difficult to increase the rotational speed, it is possible to prevent wear by preventing the sliding between the rotating shaft and the bearing by stationaryly fixing the rotating shaft. These countermeasures and countermeasures are implemented by the operator's judgment or by the automatic judgment of the control device or the like, for example, depending on the amount of wear or considering the remaining life. It is possible to operate a highly reliable wind power generation system by extending the service life through changes in operating conditions. As a control mode by the control device, it is conceivable to control the pitch angle to the feather side or change the generator torque so as to reduce the input energy from the wind so as to reduce the rotational speed as necessary.

また、運用者は各風力発電システムにおけるその時点までの総摩耗量W、および余寿命摩耗量ΔWrの推定値を知ることができるので、メンテナンスや設備交換の計画が容易となるほか、個々の風力発電システムの設置場所や個体特性に適切な運転条件および運用計画を適用し、長寿命化を図ることが可能となる。   In addition, since the operator can know the estimated value of the total wear amount W and the remaining life wear amount ΔWr up to that point in each wind power generation system, it is easy to plan for maintenance and equipment replacement, and also for each wind power generation system. It is possible to extend the service life by applying appropriate operating conditions and operation plans to the installation location and individual characteristics of the power generation system.

更に、上述の例によれば、特別な運転動作を必要とせず、汎用のセンサで構成し、低コストに摩耗量演算機能を提供できる。   Furthermore, according to the above-described example, it is possible to provide a wear amount calculation function at a low cost by using a general-purpose sensor without requiring a special driving operation.

尚、図2において、摩耗量演算装置13と表示装置14は風車のナセル2の内部に設置されているが、これらをナセル2の外部や遠隔地に設置しても良い。また、図10に示すように、各種計測手段をデータ伝送装置15に接続し、データ伝送装置15が有線あるいは無線の通信手段により各種計測情報をナセル2の外部にある摩耗量演算装置13に入力する構成としても図2および図4に示す構成と同様の機能を得ることができる。図10のような構成とした場合、摩耗量演算装置13をナセル2の外部あるいは遠隔地に設置する、あるいは持ち運び可能することができるほか、複数の風力発電システムで装置を共用し、設備の削減が可能となる。   In FIG. 2, the wear amount calculation device 13 and the display device 14 are installed in the nacelle 2 of the windmill, but they may be installed outside the nacelle 2 or in a remote place. Also, as shown in FIG. 10, various measurement means are connected to the data transmission device 15, and the data transmission device 15 inputs various measurement information to the wear amount calculation device 13 outside the nacelle 2 by wired or wireless communication means. The same function as the configuration shown in FIGS. 2 and 4 can be obtained as the configuration. In the configuration as shown in FIG. 10, the wear amount calculation device 13 can be installed outside the nacelle 2 or in a remote place, or can be carried, and the devices can be shared by a plurality of wind power generation systems, thereby reducing the equipment. Is possible.

また、本発明はすべり軸受の摺動面材料が錫、銅、黄銅、青銅あるいはこれらを主成分とする混合材料である場合に最も好適である。これらの材料は主にスチール製の回転軸に対して硬さが小さく、図8に例示した接触荷重Pcと摩耗速度Wsの関係が変動しにくいため、摩耗量Wtや総摩耗量Wの値を高精度に推定することが可能となる。   Further, the present invention is most suitable when the sliding surface material of the slide bearing is tin, copper, brass, bronze or a mixed material containing these as a main component. Since these materials are mainly hard with respect to the rotating shaft made of steel and the relationship between the contact load Pc and the wear speed Ws illustrated in FIG. 8 is not easily changed, the values of the wear amount Wt and the total wear amount W are set. It is possible to estimate with high accuracy.

1 ブレード
2 ナセル
3 タワー
4 ハブ
5 回転主軸
6 増速機
7 発電機
8 給油装置
9 給油温度計測手段
10 給油圧力計測手段
11 油中粒子計測手段
12 回転速度計測手段
13 摩耗量演算装置
14 表示装置
15 データ伝送装置
20 回転軸
21 すべり軸受
22 油膜
23 給油通路
24 油膜温度計測手段
25 排油温度計測手段
1 blade
2 Nacelle 3 Tower 4 Hub 5 Rotating spindle 6 Speed increaser 7 Generator 8 Lubricating device 9 Lubricating temperature measuring means 10 Lubricating pressure measuring means 11 Oil particle measuring means 12 Rotational speed measuring means 13 Abrasion amount calculating device 14 Display device 15 Data Transmission device 20 Rotating shaft 21 Slide bearing 22 Oil film 23 Oil supply passage 24 Oil film temperature measuring means 25 Waste oil temperature measuring means

Claims (11)

風を受けるブレードを有して回転するロータと、
前記ロータの回転に伴って回転する回転軸と、
前記回転軸に対して油膜を介して設けられるすべり軸受を備える風車と、
前記回転軸の回転速度を直接または間接に求める回転速度計測手段と、
前記油膜の温度を直接または間接に求める油膜温度計測手段と、
前記回転速度および前記油膜の温度を用いて、前記すべり軸受の所定期間内における摩耗量を演算する摩耗量演算装置を備えることを特徴とする風力発電システム
A rotor rotating with blades for receiving wind;
A rotating shaft that rotates as the rotor rotates;
A windmill including a sliding bearing provided via an oil film with respect to the rotating shaft;
Rotational speed measuring means for directly or indirectly obtaining the rotational speed of the rotary shaft;
Oil film temperature measuring means for directly or indirectly determining the temperature of the oil film;
A wind power generation system comprising a wear amount calculation device that calculates a wear amount of the slide bearing within a predetermined period using the rotation speed and the temperature of the oil film.
請求項1に記載の風力発電システムであって、所定期間内における前記摩耗量を積算することを特徴とする風力発電システム   The wind power generation system according to claim 1, wherein the amount of wear within a predetermined period is integrated. 請求項2に記載の風力発電システムであって、積算した前記摩耗量を用いて前記すべり軸受の余寿命を算出することを特徴とする風力発電システム   The wind power generation system according to claim 2, wherein the remaining life of the slide bearing is calculated using the accumulated wear amount. 請求項1ないし3のいずれか1項に記載の風力発電システムであって、前記油膜の温度を用いて計測時点における前記油膜の粘度を算出することを特徴とする風力発電システム   The wind power generation system according to any one of claims 1 to 3, wherein the viscosity of the oil film at the time of measurement is calculated using the temperature of the oil film. 請求項4に記載の風力発電システムであって、風速及び風力発電システムにおける機器の寸法を用いて前記すべり軸受に加わる平均荷重を算出し、
前記回転速度、前記油膜の温度及び前記平均荷重を用いてゾンマフェルト数を算出することを特徴とする風力発電システム
The wind power generation system according to claim 4, wherein an average load applied to the slide bearing is calculated using a wind speed and a size of the device in the wind power generation system,
A wind power generation system that calculates a Sommerfeld number using the rotation speed, the temperature of the oil film, and the average load
請求項5に記載の風力発電システムであって、前記ゾンマフェルト数及び軸受荷重と直接接触に伴う接触荷重の比である接触荷重比を用いて前記接触荷重を算出することを特徴とする風力発電システム   6. The wind power generation system according to claim 5, wherein the contact load is calculated using a contact load ratio which is a ratio of the Sommerfeld number and a bearing load to a contact load due to direct contact. 請求項6に記載の風力発電システムであって、前記摩耗量演算装置には、前記接触荷重と摩耗速度の関係が格納されており、前記すべり軸受に供給される潤滑油の清浄度を用いて前記接触荷重に対する前記摩耗速度を補正することを特徴とする風力発電システム   7. The wind power generation system according to claim 6, wherein the wear amount calculation device stores a relationship between the contact load and a wear speed, and uses the cleanliness of the lubricating oil supplied to the slide bearing. A wind power generation system that corrects the wear rate with respect to the contact load 請求項7に記載の風力発電システムであって、補正した前記摩耗速度及び前記回転速度を用いて所定期間内における前記摩耗量を算出することを特徴とする風力発電システム   The wind power generation system according to claim 7, wherein the amount of wear within a predetermined period is calculated using the corrected wear speed and the rotation speed. 請求項1ないし8のいずれか1項に記載の風力発電システムであって、前記摩耗量、積算された総摩耗量または前記すべり軸受の余寿命の少なくともいずれかが表示される表示装置を備えることを特徴とする風力発電システム   The wind power generation system according to any one of claims 1 to 8, further comprising a display device that displays at least one of the wear amount, the accumulated total wear amount, or the remaining life of the slide bearing. Wind power generation system characterized by 請求項9に記載の風力発電システムであって、前記油膜に用いられる油の清浄度を入力する入力手段を備えることを特徴とする風力発電システム   10. The wind power generation system according to claim 9, further comprising an input unit that inputs a cleanliness level of oil used in the oil film. 請求項1ないし10のいずれか1項に記載の風力発電システムであって、
前記風車を制御する制御装置を備え、
前記すべり軸受の摩耗量又は余寿命に応じて前記すべり軸受の摩耗を低減する制御を行うことを特徴とする風力発電システム
The wind power generation system according to any one of claims 1 to 10,
A control device for controlling the windmill,
A wind power generation system that performs control to reduce wear of the slide bearing in accordance with the wear amount or remaining life of the slide bearing
JP2016084189A 2016-04-20 2016-04-20 Wind power generation system Pending JP2017193996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084189A JP2017193996A (en) 2016-04-20 2016-04-20 Wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084189A JP2017193996A (en) 2016-04-20 2016-04-20 Wind power generation system

Publications (1)

Publication Number Publication Date
JP2017193996A true JP2017193996A (en) 2017-10-26

Family

ID=60154796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084189A Pending JP2017193996A (en) 2016-04-20 2016-04-20 Wind power generation system

Country Status (1)

Country Link
JP (1) JP2017193996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653608A (en) * 2021-08-30 2021-11-16 华能威宁风力发电有限公司 Temperature fault diagnosis method for main bearing of wind turbine generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286612A (en) * 2007-05-17 2008-11-27 Hitachi Zosen Corp Method for determining lifetime of sliding bearing
JP2011058535A (en) * 2009-09-08 2011-03-24 Nippon Steel Corp Cooling method of lubricating oil fed to reduction roll bearing
JP2011127451A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Transmission for wind turbine generator system and wind turbine generator
JP2011208635A (en) * 2010-03-12 2011-10-20 Ntn Corp Abrasion detector, wind turbine generator provided with the same, and method for detecting abrasion
JP2012132333A (en) * 2010-12-20 2012-07-12 Mitsubishi Heavy Ind Ltd Bearing oil supply structure for wind power generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286612A (en) * 2007-05-17 2008-11-27 Hitachi Zosen Corp Method for determining lifetime of sliding bearing
JP2011058535A (en) * 2009-09-08 2011-03-24 Nippon Steel Corp Cooling method of lubricating oil fed to reduction roll bearing
JP2011127451A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Transmission for wind turbine generator system and wind turbine generator
JP2011208635A (en) * 2010-03-12 2011-10-20 Ntn Corp Abrasion detector, wind turbine generator provided with the same, and method for detecting abrasion
JP2012132333A (en) * 2010-12-20 2012-07-12 Mitsubishi Heavy Ind Ltd Bearing oil supply structure for wind power generation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653608A (en) * 2021-08-30 2021-11-16 华能威宁风力发电有限公司 Temperature fault diagnosis method for main bearing of wind turbine generator

Similar Documents

Publication Publication Date Title
US9915585B2 (en) Wear-monitoring of a gearbox in a power station
DK177922B1 (en) Method and system for monitoring wind turbine
EP2484900B1 (en) Method for lubricating at least one blade pitch bearing of a wind turbine
AU2011201900C1 (en) Control method of automatic lubrication system of variable-pitch bearing used for wind turbine generator system
US20120025526A1 (en) System and method for monitoring wind turbine gearbox health and performance
US20140363290A1 (en) Method And System For Monitoring A Gearbox Of A Wind Energy Installation And Corresponding Wind Energy Installation
Abu-Zeid et al. Bearing problems’ effects on the dynamic performance of pumping stations
TWI656282B (en) Monitoring system and method for grease of wind turbine
WO2021095436A1 (en) Diagnostic system for lubricating oil and diagnostic method for lubricating oil
EP2317131A2 (en) System and method for wind friction monitoring
US11300106B2 (en) System and method for utilizing wear debris sensor to reduce damage and extend remaining useful life of gearboxes
TW202006248A (en) Wind drive generator diagnostic system and method, and wind drive generator diagnostic device characterized by accurately and quickly determining whether there is a need for an analysis associated with the taking of lubricant oil and whether there is a need for maintenance work such as lubricant oil replacement, parts replacement, etc.
WO2018173832A1 (en) Condition monitoring device
Wiggelinkhuizen et al. CONMOW: Condition monitoring for offshore wind farms
JP2017193996A (en) Wind power generation system
Nielsen et al. Analysis of pitch system data for condition monitoring
WO2023286437A1 (en) Diagnosis method for lubricating oil, diagnosis device for lubricating oil, and diagnosis system for lubricating oil
EP3584438B1 (en) System and method for determining water contamination in oil of a wind turbine gearbox
JP2011127723A (en) Oil level meter and wind power generator using the same
CN108533726A (en) Gear-box quickly follows lubricating and cooling system and lubrication control method
CN118320934A (en) Online monitoring device and method for health of grinding roller
KR101369968B1 (en) Apparatus for monitoring bearing and wind power generator including the same
JP7252737B2 (en) Wind turbine grease monitoring system and method
JP2022117273A (en) Method for diagnosis of lubricating oil, device and system
King Thrust monitoring of boiler feed pump equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519