JP2017192382A - Blood removal method of yellowtail, manufacturing method of blood removed yellowtail, manufacturing method of yellowtail processed article, blood removal treatment method of tuna, manufacturing method of blood removed tuna and manufacturing method of tuna processed article - Google Patents
Blood removal method of yellowtail, manufacturing method of blood removed yellowtail, manufacturing method of yellowtail processed article, blood removal treatment method of tuna, manufacturing method of blood removed tuna and manufacturing method of tuna processed article Download PDFInfo
- Publication number
- JP2017192382A JP2017192382A JP2017081797A JP2017081797A JP2017192382A JP 2017192382 A JP2017192382 A JP 2017192382A JP 2017081797 A JP2017081797 A JP 2017081797A JP 2017081797 A JP2017081797 A JP 2017081797A JP 2017192382 A JP2017192382 A JP 2017192382A
- Authority
- JP
- Japan
- Prior art keywords
- blood
- yellowtail
- tuna
- blood removal
- perfusate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 209
- 239000008280 blood Substances 0.000 title claims abstract description 209
- 241001600434 Plectroglyphidodon lacrymatus Species 0.000 title claims abstract description 131
- 238000011282 treatment Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 235000020990 white meat Nutrition 0.000 claims abstract description 19
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 239000013535 sea water Substances 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 35
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- 150000002926 oxygen Chemical class 0.000 claims description 23
- 210000000278 spinal cord Anatomy 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 4
- 241000251468 Actinopterygii Species 0.000 abstract description 98
- 235000013372 meat Nutrition 0.000 abstract description 72
- 230000010412 perfusion Effects 0.000 abstract description 60
- 238000003908 quality control method Methods 0.000 abstract description 4
- 231100000676 disease causative agent Toxicity 0.000 abstract 1
- 235000019688 fish Nutrition 0.000 description 89
- 238000002835 absorbance Methods 0.000 description 29
- 239000000047 product Substances 0.000 description 27
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 22
- 210000001015 abdomen Anatomy 0.000 description 20
- 238000012360 testing method Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 102000035195 Peptidases Human genes 0.000 description 14
- 108091005804 Peptidases Proteins 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 210000003743 erythrocyte Anatomy 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 11
- 241000234314 Zingiber Species 0.000 description 11
- 235000006886 Zingiber officinale Nutrition 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 235000008397 ginger Nutrition 0.000 description 11
- 235000014655 lactic acid Nutrition 0.000 description 11
- 239000004310 lactic acid Substances 0.000 description 11
- 239000004365 Protease Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 241000276699 Seriola Species 0.000 description 9
- 238000009360 aquaculture Methods 0.000 description 9
- 244000144974 aquaculture Species 0.000 description 9
- 210000003205 muscle Anatomy 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 230000002503 metabolic effect Effects 0.000 description 8
- 238000010257 thawing Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 102000004172 Cathepsin L Human genes 0.000 description 7
- 108090000624 Cathepsin L Proteins 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 238000007710 freezing Methods 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- 102000008186 Collagen Human genes 0.000 description 6
- 108010035532 Collagen Proteins 0.000 description 6
- 208000032843 Hemorrhage Diseases 0.000 description 6
- DRBBFCLWYRJSJZ-UHFFFAOYSA-N N-phosphocreatine Chemical compound OC(=O)CN(C)C(=N)NP(O)(O)=O DRBBFCLWYRJSJZ-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- 238000009795 derivation Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000003187 abdominal effect Effects 0.000 description 5
- 208000034158 bleeding Diseases 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000306 component Substances 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000036284 oxygen consumption Effects 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 229940107700 pyruvic acid Drugs 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 102000007590 Calpain Human genes 0.000 description 3
- 108010032088 Calpain Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001282110 Pagrus major Species 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 210000001736 capillary Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000000477 gelanolytic effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 235000019629 palatability Nutrition 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001932 seasonal effect Effects 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241000277338 Oncorhynchus kisutch Species 0.000 description 2
- 241001290266 Sciaenops ocellatus Species 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 2
- 238000002266 amputation Methods 0.000 description 2
- 235000013527 bean curd Nutrition 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 210000001217 buttock Anatomy 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000003617 erythrocyte membrane Anatomy 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 235000012631 food intake Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 235000020989 red meat Nutrition 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 102000004225 Cathepsin B Human genes 0.000 description 1
- 108090000712 Cathepsin B Proteins 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 102000004178 Cathepsin E Human genes 0.000 description 1
- 108090000611 Cathepsin E Proteins 0.000 description 1
- 102000005600 Cathepsins Human genes 0.000 description 1
- 108010084457 Cathepsins Proteins 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 241001125840 Coryphaenidae Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 206010013647 Drowning Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 238000002738 Giemsa staining Methods 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 241000442132 Lactarius lactarius Species 0.000 description 1
- 241000531431 Lamprocapnos Species 0.000 description 1
- 241000123826 Lutjanus campechanus Species 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 208000035992 Postmortem Changes Diseases 0.000 description 1
- 241001396014 Priacanthus arenatus Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 101710118538 Protease Proteins 0.000 description 1
- 241000269796 Seriola quinqueradiata Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 241000269841 Thunnus albacares Species 0.000 description 1
- 241000269838 Thunnus thynnus Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241001222097 Xenocypris argentea Species 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000003130 blood coagulation factor inhibitor Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 230000012953 feeding on blood of other organism Effects 0.000 description 1
- ZNOLGFHPUIJIMJ-UHFFFAOYSA-N fenitrothion Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C(C)=C1 ZNOLGFHPUIJIMJ-UHFFFAOYSA-N 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 210000001767 medulla oblongata Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036281 parasite infection Effects 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 108020001775 protein parts Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Meat, Egg Or Seafood Products (AREA)
Abstract
Description
本発明は、ブリの脱血処理方法、脱血ブリの製造方法、ブリ加工品の製造方法、マグロの脱血処理方法、脱血マグロの製造方法並びにマグロ加工品の製造方法に関するものである。 The present invention relates to a blood removal treatment method for a yellowtail, a method for producing a blood removal yellowtail, a method for producing a yellowtail product, a blood removal treatment method for a tuna, a method for producing a blood removal tuna, and a method for producing a processed tuna product.
日本の海面魚類養殖生産量の8割以上をブリ類とマダイが占める。平成22年の魚種別生産量(魚類養殖に占める割合)は、農林統計より多い順にブリ類が139千トン(55.7%)、マダイが68千トン(27.5%)、ギンザケが15千トン(6.0%)である。生産額(魚類養殖に占める割合)は、多い順にブリ類が1,176億円(53.8%)、マダイが506億円(23.1%)、ギンザケが65億円(3.0%)である。 Yellowtail and red sea bream occupy over 80% of Japan's aquaculture production. In 2010, the production by fish type (percentage of fish culture) was 139 thousand tons (55.7%) for yellowtails, 68,000 tons (27.5%) for red sea bream, and 15,000 tons (6.0%) for coho salmon. %). The value of production (ratio of fish farming) is 117.6 billion yen (53.8%) for yellowtail, 50.6 billion yen (23.1%) for red sea bream, and 6.5 billion yen (3.0%) for coho salmon.
養殖ブリ類とはブリ、カンパチ、ヒラマサ(産業統計上少ない)の総称であり、ブリとヒラマサは日本近海で流れ藻と一緒に来遊する天然種苗を捕獲し、養殖が開始されるのに対し、カンパチはその種苗の大半は産卵場所がベトナムと中国海南島近辺であり中国よりの輸入種苗である事に違いがある。即ち、ブリは温帯魚であるのに対し、カンパチは熱帯魚であり、カンパチにヤケ肉を生ずる話は聞かない。 Cultured yellowtail is the collective name for yellowtail, amberjack, and hiramasa (there are few in industrial statistics), while yellowtail and hiramasa capture natural seedlings that flow and flow with algae in the sea near Japan, while aquaculture begins. The difference is that most of the seedlings are spawning places near Vietnam and Hainan Island in China and imported seedlings from China. In other words, yellowtail is a temperate fish, but amberjack is a tropical fish.
養殖ブリは日本で最大の養殖魚(10万トン)であり、その遊泳範囲は他の回遊魚と異なり、かなりの魚群は日本近海を回遊する事が知られ、また、産卵場所は西日本近海に限定されている所謂、国魚である。従って、今後通年したブリの取り扱いについて問題点を列挙し、可能な限り生鮮度の長期保持の解決策を講ずる事が国内は勿論の事、海外輸出を進める場合競合する魚種が存在しない事から、近年の6次化産業に向け日本より海外に販売を増大させる事は国策にも叶い、ブリは一次産業の活性化に繋がる重要な魚種といえる。 Cultured yellowtail is the largest aquaculture fish in Japan (100,000 tons), and its swimming range is different from other migratory fish, and it is known that a large group of fish migrate around the sea near Japan. It is a so-called national fish that is limited. Therefore, it is necessary to enumerate the problems of handling yellowtail throughout the year and to take solutions for long-term preservation of freshness as much as possible, as well as domestic species, because there are no competing fish species when promoting overseas exports. In recent years, increasing sales overseas from Japan toward the sixth-order industry is also a national policy, and yellowtail is an important fish species leading to the activation of the primary industry.
ブリの特性として、天然物でも養殖物でも肉質の充実した旬の時期は、初冬から春先(11月〜4月)までであり、その一定の期間に出荷消費が集中する。春先以降天然魚は自然環境よりの摂取餌より取り込まれた寄生虫が散在し、産卵時の終了以降に成長する事から、切り身にした場合に線虫やブリ糸状虫が目立つ様になり、消費者から生食材(刺身)として敬遠される。寄生虫感染の恐れの無い配合飼料を使用した養殖魚の場合でも、春先(5〜7月)の産卵期は急激に魚肉組成に変化を起こし脂質分が減少し水分増加が見られ水っぽい魚体になる事から、日本のブリは冬場を中心にその消費が定着していた。 As a characteristic of yellowtail, the season when the meat quality of both natural products and cultured products is substantial is from early winter to early spring (November to April), and shipping consumption is concentrated during that period. Since the beginning of spring, natural fish are scattered by parasites taken from the food intake from the natural environment and grow after the end of spawning, so nematodes and yellowtails become conspicuous when they are cut and consumed. As a raw ingredient (sashimi), he is shunned. Even in the case of farmed fish using mixed feed that is free of the risk of parasite infection, the spawning season in early spring (May-July) causes a sharp change in fish composition, resulting in a decrease in lipid content and an increase in water, resulting in a watery fish body. As a result, Japanese yellowtail was firmly consumed mainly in winter.
最近になり、出荷時期が旬の時期に限定される事から、官民一体で自然の産卵時期をずらせた秋期の人工産卵により通年販売出来る体制が整えられつつある。この技術により冬期の旬(11月〜4月)の時期に夏期出荷(7月〜10月)が加わり、産卵後の一時期を除きほぼ通年した生鮮魚の供給出荷が可能となった。 Recently, since the shipping time is limited to the seasonal time, a system is in place that can be sold all year round by artificial spawning in the fall, which has shifted the natural spawning time with the public and private sectors. With this technology, summer shipment (July to October) was added during the winter season (November to April), and it became possible to supply and ship fresh fish almost all year round except for one season after spawning.
即ち、上述の通り、ブリの旬の時期は11月〜3(4)月とされてきたが、近年になり日照時間と飼育水温度のコントロール、誘導ホルモン等を駆使した新採苗技術を利用した秋季に産卵させる技術がおこなわれるようになり、給餌飼料の改良等により夏場に市場サイズに合わせた夏期向け出荷養殖が多くなってきた。 In other words, as mentioned above, the season of yellowtail has been from November to March (4), but in recent years, the use of new seedling technology that makes full use of control of sunshine hours and breeding water temperature, induction hormone, etc. Techniques to lay eggs in the fall have come to be performed, and shipping aquaculture for the summer season has been increasing in line with the market size in the summer due to improvements in the feed feed.
ブリは、昭和38年頃より養殖が開始され、昭和45年に天然漁獲を上回る生産量となり、昭和56年度に16万トンに達し、これを現在まで維持しているが、出荷時期が冬期に限られている事から、夏期販売の為に一部は熱帯魚であるカンパチ養殖に置き換わっている。ブリの冷凍保管は近年になり出願人らの出願(特許文献1)によって加工品として血合色調の保持は確立されて増加しているものの、生鮮冷凍処理では失敗例が多く続き、業界では無処理ブリの冷凍は不可能であるとの認識が定着している事も理由にあり、未だ国内では広まっていない。従って、流通消費を拡大する手段として現状の生鮮品の流通形態に合致した夏ブリの安定供給が必要と考える。また、今後増加すると予想される夏ブリの鮮魚出荷におけるヤケ肉問題は出願時点でも未解決なテーマである。 The yellowtail has been aquacultured since around 1965, and production exceeded the natural catch in 1960. It reached 160,000 tons in 1981 and has been maintained so far. As a result, some of them have been replaced with amberjack aquaculture for tropical sales. In recent years, frozen storage of yellowtail has been established and increased as a processed product by the applicant's application (Patent Document 1), but there have been many cases of failure in fresh frozen processing, and no processing in the industry. It is also because the recognition that the freezing of yellowtail is impossible has taken root, and has not yet spread in the country. Therefore, as a means to increase distribution consumption, it is necessary to provide a stable supply of summer yellowtail that matches the current distribution pattern of fresh products. In addition, the burnt meat problem in the shipping of fresh fish in summer yellowtail, which is expected to increase in the future, is still an unsolved theme at the time of filing.
大凡ブリのヤケ肉現象のメカニズムは各研究機関等で解明されつつあるが、その対策に決定的なものはなく画一化された対応に留まっている。 Although the mechanism of the burnt meat phenomenon of the general yellowtail is being elucidated by each research institution, there are no definitive measures to deal with it, and it remains a uniform response.
ここで、ヤケ肉とは、夏場7〜8月の高水温期に養殖ブリ・マグロを出荷した際、氷蔵中にも関わらず、保存初期に血合い肉、白身中心肉が短時間で白濁し豆腐状となることを言う。ヤケ肉となった組織は軟弱化して異臭により商品価値は全く無くなる。このような現象は、ブリ・マグロでは通称「ヤケ肉」と呼ばれ、商品価値が無くなる原因となっているが、そのメカニズムについては明瞭に解っていない。仮説ではあるがWatsonらはヤケの原因を高温、低pHだけでは説明しきれないとし、ヤケ発生メカニズムについて以下の様な仮説を唱えている(非特許文献1)。 Here, burnt meat means that when cultured yellowtail and tuna are shipped during the high water temperature period in summer July to August, blood clotted meat and white meat become cloudy in a short time in the early storage period and become tofu. Say that it will be. The tissue that has become burnt meat becomes soft, and the commercial value is completely lost due to the off-flavor. Such a phenomenon is commonly called “Yakiniku” in yellowtail tuna and causes the loss of commercial value, but the mechanism is not clearly understood. Watson et al. Hypothesize that the cause of burns cannot be explained only by high temperature and low pH, and advocates the following hypothesis about the burn generation mechanism (Non-patent Document 1).
即ち、「過度な運動で酸素とATPが不足した組織内では細胞膜の代謝崩壊が起こり細胞内にCa2+の増加により、酵素の一種CANP(Calcium-activated neutral protease)が活性化されることでヤケドが進行する。また、漁獲時のストレスは、アドレナリン等の神経伝達物質を分泌させCANPを活性化させている」としている。 In other words, “In excessive tissue, oxygen and ATP deficient tissues cause metabolic disruption of the cell membrane, and the increase of Ca 2+ in the cell activates a type of enzyme, CANP (Calcium-activated neutral protease). “The stress at the time of fishing secretes neurotransmitters such as adrenaline and activates CANP.”
ブリ(seriola quinqueradiata)はブリ類(ブリ、カンパチ、ヒラマサ)の中で血液量が最も多く、通常の血抜き処理では完全に抜け切る事は困難であり、血抜きの程度が刺身にした場合の白身の色調に反映される。この魚肉内に残った血液は独特の風味(血生臭さ,鉄味)を持ち嗜好性が反映される所であるが、一般的には好まれない傾向が強く、その後の肉質の変化速度に影響を及ぼす事は従前より知られている所である。ここでは死後の魚肉について述べる事からHbとMbの性質は同一視して説明する。 The yellowtail (seriola quinqueradiata) has the largest blood volume among the yellowtails (yellowtail, amberjack, hiramasa), and it is difficult to completely remove it by normal blood removal treatment. Reflected in white color. The blood remaining in this fish meat has a unique flavor (bloody odor, iron taste) and is a place where palatability is reflected, but in general, it tends to be unfavorable, and the rate of change in meat quality thereafter Influencing has been known for some time. In this section, we will discuss the characteristics of Hb and Mb because we will describe post-mortem fish meat.
非特許文献2には、血抜き無し、血抜き後の普通筋中(Hb+Mb)中のMbの割合(%)が示されているが、変動幅が大きく全血の算定が難しく多くの魚種(47〜100%)平均で約80%〜90%であリ、馬、イルカ、クジラでは91%以上との大まかな記載がある。 Non-Patent Document 2 shows the percentage of Mb in normal muscle (Hb + Mb) without blood removal and after blood removal, but it is difficult to calculate whole blood because of the large fluctuation range. (47-100%) The average is about 80% -90%, and there is a rough description of 91% or more for horses, dolphins and whales.
色素蛋白質(Hb,Mb)の色調はその状態で還元型(R-Hb,Mb暗赤色)、酸素化型(O2-Hb,Mb鮮紅色)であるが、その後メト化(H2O−Hb,Mb褐変色)となる。生体中では炭酸還元酵素群によりメト化したHbは還元型Hbに戻るが、死後の炭酸還元酵素の不活化によりHbはそのままメト化の状態となる。その後、メト化及びポルフィリン崩壊の進行とともに変敗促進物質(酵素の活性に不可欠な非タンパク質性の物質は、通常タンパク質部分と共有結合などで強く結合しており、透析などで除去できないものであり、脂質、糖、金属イオン、リン酸、補酵素、色素などがある。)により同時に多種の異臭気体成分を発する様になる。 The color tone of the chromoprotein (Hb, Mb) is reduced (R-Hb, Mb dark red) and oxygenated (O2-Hb, Mb bright red) in that state, but then methified (H2O-Hb, Mb) Brown color). In the living body, Hb that has been methetinated by the carbonic reductase group returns to reduced Hb, but Hb remains in the methed state as a result of inactivation of the carbonic reductase after death. After that, with the progress of methonation and decay of porphyrin, deterioration-promoting substances (non-protein substances essential for enzyme activity are usually strongly bound to the protein part by covalent bonds and cannot be removed by dialysis etc. , Lipids, sugars, metal ions, phosphates, coenzymes, pigments, etc.), and various odorous gas components are emitted simultaneously.
例えば常温の食宴の席で並べられたブリの刺身料理は1〜2時間程度で色調が変化し独特の生臭さや、粘りを生じ食するに不都合となる。コリコリ感のある生鮮度の高いものではまだ時間の延長は可能であろうが、産地から一昼夜かけ食膳に並んだブリの刺身は、このように刺身の盛り合わせとして賞味時間は極めて短いものである。この現象は生鮮魚(ラウンド)の場合死後短時間で魚肉はほぼ体内酸素を消費し切って無酸素状態である事から赤身血合部分は還元型(R-Hb,Mb)状態(pO2は3mmHg以下)と変化し暗赤色を呈して安定する。しかし解体後空気接触する事により酸素と配位結合しブルーミング(発色現象)を生じ視覚的に好ましい鮮紅色を呈する様になる。そして更に食膳という常温下で変化は促進され短時間で褐変化(メト化)を生ずるとともに魚体内に残留するHb,Mbもメト化が進み異臭(血生臭、生臭)及び独特の粘り気を感ずる原因となる。 For example, yellowtail sashimi dishes arranged at a room temperature table change color in about 1 to 2 hours, causing a unique raw odor and stickiness, which is inconvenient for eating. Although it is still possible to extend the time with freshness with a feeling of crispy, the sashimi of yellowtails lined up in the sashimi all day and night from the production area is very short as the sashimi assortment of sashimi in this way. In the case of fresh fish (round), this phenomenon is a short time after death, and the fish meat almost consumes oxygen in the body and is in anoxic state, so the red blood clot portion is in the reduced (R-Hb, Mb) state (pO2 is less than 3 mmHg) ) And changes to a dark red color and stabilizes. However, contact with air after disassembly causes a coordinate bond with oxygen, resulting in blooming (coloring phenomenon) and a visually desirable bright red color. In addition, the change of food is promoted at room temperature, causing browning (metolation) in a short time, and Hb and Mb remaining in the fish body also become methanodized and cause a strange odor (bloody odor, raw odor) and unique stickiness It becomes.
従って、ブリは、大人数の食膳を事前に準備時間を要する食材としては充分温度と時間を勘案して取り扱われる魚種である。これはHb,Mbのメト化及び変化誘導に伴い各種の異臭気体成分を発する事が原因であり、特に夏場のブリはこれらの変化が激しい。 Therefore, yellowtail is a fish species that can be handled taking into consideration temperature and time as a food that requires preparation time in advance for a large number of meals. This is due to the generation of various off-flavor gas components in association with the transformation of Hb and Mb and the induction of changes, especially in the yellowtail in summer.
高水温時にブリに生ずる問題として以下の点がある。 Problems that occur in yellowtail at high water temperatures are as follows.
通常飼育海水域(10〜25℃)の溶存酸素量(DO)は8.75〜6.59mg/Lであるが、何らかの状況変化により2mg/Lでブリは狂奔し横転が始まり、1.7mg/Lで死亡する個体が出始める。例えば、高水温時(27〜29℃)で溶存酸素量が低下(6.39〜6.19mg/L)する中でたとえ海上設置の網生簀であっても取上げのため網を絞った高密度環境下では興奮状態となり大量の酸素消費が進み、網生け簀内において環境水の溶存酸素が比較的高い濃度で斃死を起こす事故が多々見受けられ、ヤケ肉が発生し易くなる。 The amount of dissolved oxygen (DO) in normal breeding seawater (10-25 ° C) is 8.75-6.59 mg / L, but due to some change in situation, yellowtail starts to roll over and rollover starts, and death occurs at 1.7 mg / L The individual to begin to appear. For example, when the dissolved oxygen amount decreases (6.39-6.19 mg / L) at high water temperature (27-29 ° C), even in a net ginger installed at sea, Excited, a large amount of oxygen consumption progresses, and many accidents in which the dissolved oxygen in the environmental water causes drowning at a relatively high concentration are found in the net cage, and burnt meat is likely to occur.
即ち、高温海水中では魚体の代謝準位(α)(エネルギー転換からから求めたブリの酸素要求量)が上昇しており、取上げ時の興奮によりブリの酸素要求量が急激に増大し、高温時の海水溶存酸素量(DO)の低下と相乗し酸素収支のバランス範囲が低温時に比べ狭くなり魚体内への酸素補給が間に合わなくなる。その結果魚体内では急激に嫌気状態となる事から通常とは異なる速度でATPのエネルキー原資であるクレアチン燐酸(Cr-P)が消費され、やがてクレアチン燐酸の消耗後ATPの生成は抑制される。生体内が嫌気状態に陥るとグルコースが血液から細胞内に取り込まれグルコース分解によりATPの補充は続けられるが、ピルビン酸の生成及び、乳酸の蓄積化が急速に促進され、pH低下により特定のプロテアーゼ(蛋白分解酵素)の活性が異常に促進され、高温時特有の不可逆のヤケ肉を生じ商品価値を失する事となる。即ち、ヤケ肉部位は、切り身にすると水っぽく、極端に硬度が低下して白濁した(豆腐状となった)灰色かかった色となり、食味は極めて悪くなり、ヤケ肉が生じたブリに商品価値は全く無くなる。このヤケ肉は外観では判別出来ず、流通を経て切り身にしないと判断出来ない事から、今後更に夏ブリの取り扱いが増加すれば深刻な問題になる。 In other words, in high-temperature seawater, the metabolic level (α) of the fish body (the oxygen demand of yellowtail obtained from energy conversion) has increased, and the oxygen demand of yellowtail has increased rapidly due to excitement during pick-up. Synergistically with the decrease in the amount of oxygen in the sea water (DO) at the time, the balance range of the oxygen balance becomes narrower than at low temperatures, and the oxygen supply to the fish body is not in time. As a result, the fish body rapidly becomes anaerobic, so creatine phosphate (Cr-P), which is an energy source of ATP, is consumed at a different rate than usual, and eventually the production of ATP is suppressed after consumption of creatine phosphate. When the body falls into an anaerobic state, glucose is taken into the cells from the blood and ATP supplementation continues by glucose degradation, but the production of pyruvic acid and the accumulation of lactic acid are rapidly promoted, and a specific protease is reduced by lowering the pH. The activity of (proteolytic enzyme) is promoted abnormally, resulting in irreversible burnt meat peculiar to high temperatures and loss of commercial value. In other words, the burnt meat part is watery when cut into fillets, and the hardness is extremely lowered and becomes a cloudy (tofu-like) grayish color, the taste is extremely bad, and the commercial value of the yellowtail where the burnt meat is produced is It will be completely lost. This burnt meat cannot be discriminated by appearance, and since it cannot be judged unless it is cut after distribution, it will become a serious problem if the handling of summer yellowtail increases in the future.
本発明者等は、上述のような現状に鑑み、種々検討したところ、以下の知見を得て本発明を完成した。 The inventors of the present invention have made various studies in view of the current situation as described above, and have obtained the following knowledge and completed the present invention.
即ち、コマーシャルサイズのブリは他の養殖魚種(真鯛、トラフグ)と比較し、約2.5倍の酸素消費量であり代謝準位(α)は平常状態飼育水温時(10℃)に平静状態では(α)100であるのに対し、29℃時には(α)420と大凡4倍変化するのに対し興奮時の代謝準位は従来の出荷時期に照らしても10℃〜25℃迄の資料しかない事から近似線(外挿線)を加え29℃の興奮時の代謝準位を算定した結果大凡900〜1000(α)以上の数値となり高温29℃近辺の興奮時の酸素要求量は10℃の平常飼育時に比べ10倍高い酸素要求量である事から、魚体はエネルギー獲得に必要な酸素収支面で大きな支障が起きているものと推考した(図1)。 That is, commercial size yellowtail is about 2.5 times the oxygen consumption compared to other farmed fish species (red snapper, troughfish), and the metabolic level (α) is normal at the breeding water temperature (10 ° C). (α) 100 vs. (α) 420 at 29 ° C, it changes by a factor of about 4 times, but the metabolic level at the time of excitement is only from 10 ° C to 25 ° C even in light of the conventional shipping time. As a result of adding an approximate line (extrapolated line) and calculating the metabolic level at the time of excitement at 29 ° C, it becomes a value of about 900 to 1000 (α) or more, and the oxygen demand at the time of excitement around 29 ° C is 10 ° C Since the oxygen demand is 10 times higher than that during normal breeding, it was assumed that the fish had a major obstacle in terms of oxygen balance necessary for energy acquisition (Fig. 1).
また、通常冬期に出荷されるブリには殆どヤケ肉は存在しないにもかかわらず、夏ブリ(7〜8月)のみにヤケ肉が発生する事から温度の違いと夏期のブリの肉質の違いに着目した。発明者等は過去に数ヶ年に渡りブリの締め時の頭部肩肉のpHを測定し、魚の活魚輸送方法(クーラー付)、及び輸送密度について計測した経緯から冬場の同一時期であっても輸送時間、輸送温度、輸送密度によりpH値に差を生じ、取り扱いが魚体にとってストレッサーとなり活魚の状態ですでにpHが低下する事、魚肉の季節変化として夏期よりも冬期の方が加工処理後ではpHはより低下する傾向があり、季節変化による肉組成(含有グルコース量)の違いにより乳酸の生成量がpHの低下に由来すると推測した。 In addition, although there is almost no burnt meat in the yellowtail that is usually shipped in winter, the difference in temperature and the difference in meat quality of the yellowtail in summer due to the occurrence of burnt meat only in summer yellowtail (July to August) Focused on. The inventors have measured the pH of the head and shoulder meat when tightening yellowtails for several years in the past, and the method of transporting live fish (with a cooler) and the transport density were measured at the same time in winter. There is a difference in pH value depending on the transport time, transport temperature, transport density, handling becomes a stressor for the fish body, and the pH is already lowered in the state of live fish, and the seasonal change of fish meat in the winter season after the processing The pH tended to decrease more, and it was assumed that the amount of lactic acid produced was due to the decrease in pH due to the difference in meat composition (glucose content) due to seasonal changes.
更に、一般諸説では安静時の魚肉pHは7.4前後と云われているが、現場での活魚輸送直後では即殺後6.8〜6.6、苦悶した魚肉では6.4以下程度まで低下した。その後、対策として一昼夜の安楽状態を維持した後、取り上げ場所の酸素濃度を飽和状態で即殺処理を行った結果、pHは7以上まで上昇した。 Furthermore, although it is said in the general theory that the fish pH at rest is around 7.4, immediately after live fish transportation at the site, it decreased to 6.8 to 6.6 after instant killing, and to 6.4 or less in the bitter fish. After that, as a countermeasure, after maintaining a comfortable state for a whole day and night, the oxygen concentration at the pick-up location was immediately killed with saturation, and as a result, the pH rose to 7 or higher.
即ち、安静している魚類をたも網で掬い上げる瞬間にストレッサーになると推測した。取り上げ時のバタツキによる魚体内で変化を生ずるのに要する時間は数秒から数十秒の時間で魚体内では大きな生理的変化を生じている。従って、活魚輸送直後や冬場の天然ブリの旋網による疲労魚はヤケ肉までは達していないものの流通販売時点でストレスを受けた魚体は、前述の理由でpH6以下迄低下し身持ちが悪く、スーパーでトレーに切り身販売すると保水力が低下しMbの移動(赤身部色素の白身部へのにじみ)、ドリップが流出し異臭を感ずる様になる。 In other words, it was speculated that it would become a stressor at the moment when a resting fish is scooped up by a net. It takes several seconds to several tens of seconds to change in the fish body due to flapping when picking up, and a large physiological change occurs in the fish body. Therefore, the fish that have been stressed at the time of distribution and sales have fallen to a pH of 6 or less due to the reasons mentioned above, although they have not reached the level of burnt meat immediately after transporting live fish or in the winter season. Selling fillets on trays reduces the water retention capacity, moves Mb (bleeds red pigment to the white), and the drip flows out and feels a strange odor.
また、現場では冷却水中に移動し代謝が低下した段階で、すみやかに即殺、延髄処理を行う事が推奨されているが、夏場屋外飼育の海上網生簀からの出荷では環境水のコントロールは不可能であり、屋内の温度調節可能な室内設置半流水の大型畜養水槽の水温を夏期に一昼夜コントロールする事は極めて大きな負担である。 In addition, it is recommended to immediately kill the medulla and perform medullary treatment at the stage when it is transferred to cooling water and the metabolism is reduced, but control of environmental water is not possible when shipping from marine net cages raised outdoors in summer. It is possible to control the temperature of a large livestock aquarium with indoor half-flow water that can be adjusted indoor temperature, and it is extremely burdensome to control the water temperature all day in summer.
従って、現場では高温時の取扱いとしてしっかり餌止めを行い代謝準位(α)が充分低下した状態で池上げから〆工程(血抜き)まで迅速に取扱い、早期に冷却する事程度しか対策がとれないのが実情であろう。しかし、これらの手法は夏場に特別行われているものではなく温度の低下した冬場の出荷時も同様の事が行われている事から夏場の高水温時に特化した取り扱い方法が求められている。 Therefore, at the site, the bait is stopped as a handling at high temperatures, and the measures can only be taken to cool quickly, from the pond raising to the dredging process (blood removal) with a sufficiently low metabolic level (α). There may be no actual situation. However, these methods are not specially used in the summer, but the same thing is done at the time of shipment in the winter when the temperature is low, so there is a need for a special handling method at high water temperatures in the summer. .
また、脱血処理の効果については各発表資料、成書等でその重要性は紹介されているが、具体的な確認手段が不明なためその対策と効果が明確となっていない。魚体内部の各器官は多数の酵素群によって生命体が維持されているが、現場で出来る技術としては即殺及び脱血により血液由来の広義のプロテアーゼ及び変敗物質の除去である。畜産では、この工程は屠殺法により法令化されているが、魚類ではこれらの法令は魚種や漁獲場所が大きく異なる事から、法令化には至っていない。 In addition, the importance of the blood removal treatment is introduced in each presentation document, booklet, etc., but since the specific confirmation method is unknown, the countermeasure and the effect are not clear. Each organ inside the fish body is maintained by a large number of enzyme groups, but as a technique that can be done in the field, removal of proteases and degenerated substances in a broad sense of blood by immediate killing and blood removal is possible. In livestock farming, this process is legalized by the slaughtering law, but for fish, these regulations have not been legislated because the fish species and fishing location differ greatly.
食用魚類では通常、
野〆----自然苦悶死(無脱血)
木槌等による撲殺----脳震盪
手鉤による刺殺による延髄破壊及び尾部大動脈切断による自然放血
出血を促進(活〆法)----延髄部を背動脈及び脊柱を切断し出血促進
鰓切り出血----水槽内に鰓を切断し心臓圧出血(失血症とする。)
灌流処理----動脈系に等張水生理水を注入し血液を導出
等があるが、無脱血処理から高レベル脱血処理まで周知である。しかし、いずれも脱血の方法が述べられているに過ぎず、その効果である脱血の程度の確認方法は確立していない。
Usually in edible fish
Barbara ---- Natural agony death (no blood removal)
Killing with a mallet, etc .--- Concussion Concentration of medulla by stabbing with a handcuff and spontaneous bleeding by cutting the tail aorta (promoting) ---- Promoting bleeding by cutting the medullary dorsal artery and spinal column Bleeding ---- Heart hemorrhage by cutting a sputum into the aquarium (assuming blood loss)
Perfusion treatment ---- Infusion of isotonic saline into the arterial system to derive blood, etc., is well known from non-bleeding treatment to high-level blood removal treatment. However, in each case, only a method for blood removal is described, and a method for confirming the degree of blood removal, which is the effect, has not been established.
魚類の保存性の向上についてみれば、死後変化の要因子となる血液由来の各種プロテアーゼ(蛋白質分解酵素群)を理想的には完全に排出し魚体温度の冷却をすみやかに出来ればその目的は達成出来るが、その手段は脱血処理が唯一の手段である。従って、脱血の程度を測定出来る方法の確立によりこれらの〆方法の改善や品質保持期間の延長等が進む事が期待される。 In terms of improving the storage stability of fish, the goal is achieved if blood-derived proteases (proteolytic enzymes), which are factors of postmortem changes, are ideally completely eliminated and the temperature of the fish body can be cooled quickly. Although it can, blood removal treatment is the only means. Therefore, it is expected that the improvement of these drought methods and the extension of the quality retention period will progress by establishing a method capable of measuring the degree of blood removal.
本発明は、主要養殖魚であるブリ(ハマチ)等について冬期は勿論の事、夏期の水温の高い時期に出荷する時に発生するヤケ肉を防止し、また、その原因物質である血液の除去のレベルを間接的に数値化し実用的に実施可能な品質管理手法を用いたブリの脱血処理方法、脱血ブリの製造方法、ブリ加工品の製造方法、マグロの脱血処理方法、脱血マグロの製造方法並びにマグロ加工品の製造方法を提供することを目的としている。 The present invention prevents burnt meat that occurs when the main cultured fish such as yellowtail is shipped not only in the winter but also in the summer when the water temperature is high, and also removes the causative substance blood. Yellowtail blood removal method, blood removal yellowtail manufacturing method, yellowtail processed product manufacturing method, tuna blood removal treatment method, blood removal tuna An object of the present invention is to provide a method for producing a tuna processed product and a method for producing a tuna processed product.
本発明の要旨を説明する。 The gist of the present invention will be described.
ブリの背身上部若しくは腹身上部の白身肉のL*a*b*表色系におけるL*値が50以上となるように、灌流液をブリの血管に導入して血液と置換する脱血処理を施すことを特徴とするブリの脱血処理方法に係るものである。 Blood removal by introducing perfusate into the blood vessels of the yellowtail to replace the blood so that the L * value in the L * a * b * color system of the white meat on the back or upper body of the yellowtail is 50 or more The present invention relates to a yellowtail blood removal method characterized in that the treatment is performed.
また、飽和酸素濃度以下の海水中で養生したブリを、この飽和酸素濃度以下の海水域と区画され過飽和酸素海水域とされた取り上げ水域から取り上げて脱血処理を施すことを特徴とするブリの脱血処理方法に係るものである。 In addition, the yellowtail that has been cured in seawater below the saturated oxygen concentration is taken from the picked-up water area that is separated from the seawater area below the saturated oxygen concentration and made into a supersaturated oxygen seawater area and subjected to blood removal treatment. The present invention relates to a blood removal treatment method.
また、ブリの背身上部若しくは腹身上部の白身肉のL*a*b*表色系におけるL*値が50以上となるように、灌流液をブリの血管に導入して血液と置換する脱血処理を施すことを特徴とする請求項2に記載のブリの脱血処理方法に係るものである。 In addition, the perfusate is introduced into the blood vessels of the yellowtail to replace the blood so that the L * value in the L * a * b * color system of the white meat on the back or upper body of the yellowtail is 50 or more. The blood removal treatment method according to claim 2, wherein blood removal treatment is performed.
また、ブリの脊髄を破壊した直後に、冷却灌流液をブリの血管に導入して血液と置換する脱血処理を施すことを特徴とする請求項1〜3のいずれか1項に記載のブリの脱血処理方法に係るものである。 Moreover, immediately after destroying the spinal cord of a yellowtail, the blood perfusion solution is introduced into the blood vessel of the yellowtail and subjected to a blood removal treatment for replacing the blood with the yellowtail. This relates to the blood removal treatment method.
また、酸素過飽和液体を常圧以上で平均孔径10μm以下のフィルターを通した後、前記灌流液として用いることを特徴とする請求項4記載のブリの脱血処理方法に係るものである。 5. The method according to claim 4, wherein the oxygen supersaturated liquid is used as the perfusate after passing through a filter having an average pore diameter of 10 μm or less at a pressure higher than normal pressure.
また、前記灌流液は電解水中の電解陰極水であることを特徴とする請求項4記載のブリの脱血処理方法に係るものである。 5. The yellowtail blood removal method according to claim 4, wherein the perfusate is electrolytic cathodic water in electrolytic water.
また、前記灌流液にはNaHCO3が含まれていることを特徴とする請求項4〜6のいずれか1項に記載のブリの脱血処理方法に係るものである。 7. The yellowtail blood removal method according to claim 4, wherein the perfusate contains NaHCO 3 .
また、請求項1〜7のいずれか1項に記載のブリの脱血方法を用いて脱血された脱血ブリを製造することを特徴とする脱血ブリの製造方法に係るものである。 In addition, the present invention relates to a method for producing a blood-bleeding yellowtail, which comprises producing a blood-bleeded blood yellow blood using the blood-bleaching blood removal method according to any one of claims 1 to 7.
また、請求項1〜7のいずれか1項に記載のブリの脱血方法を用いて脱血された脱血ブリを用いてブリのチルド加工品若しくはブリの冷凍加工品を製造することを特徴とするブリ加工品の製造方法に係るものである。 A chilled processed product of yellowtail or a frozen processed product of yellowtail is produced using the blood-bleeded blood removed by using the yellowtail blood removal method according to any one of claims 1 to 7. This relates to a method for manufacturing a yellowish processed product.
また、飽和酸素濃度以下の海水中で養生したマグロを、前記飽和酸素濃度以下の海水域と区画され過飽和酸素海水域とされた取り上げ水域から取り上げて脱血処理を施すことを特徴とするマグロの脱血処理方法に係るものである。 Further, the tuna cured in seawater having a saturated oxygen concentration or less is taken from a picking water area that is partitioned from the seawater region having the saturated oxygen concentration or less to be a supersaturated oxygen seawater region, and is subjected to a blood removal treatment. The present invention relates to a blood removal treatment method.
また、マグロの脊髄を破壊した直後に、冷却灌流液をマグロの血管に導入して血液と置換する脱血処理を施すことを特徴とする請求項10に記載のマグロの脱血処理方法に係るものである。 The tuna blood removal method according to claim 10, wherein a blood removal treatment is performed immediately after destroying a tuna spinal cord to introduce a cooling perfusate into a blood vessel of the tuna to replace the blood. Is.
また、酸素過飽和液体を常圧以上で平均孔径10μm以下のフィルターを通した後、前記灌流液として用いることを特徴とする請求項11記載のマグロの脱血処理方法に係るものである。 The tuna blood removal method according to claim 11, wherein the oxygen supersaturated liquid is used as the perfusate after passing through a filter having an average pore size of 10 μm or less and a pressure higher than normal pressure.
また、前記灌流液は電解水中の電解陰極水であることを特徴とする請求項11記載のマグロの脱血処理方法に係るものである。 12. The tuna blood removal treatment method according to claim 11, wherein the perfusate is electrolytic cathodic water in electrolyzed water.
また、前記灌流液にはNaHCO3が含まれていることを特徴とする請求項11〜13のいずれか1項に記載のマグロの脱血処理方法に係るものである。 The irrigated blood treatment method according to any one of claims 11 to 13, wherein the perfusate contains NaHCO 3 .
また、請求項10〜14のいずれか1項に記載のマグロの脱血方法を用いて脱血された脱血マグロを製造することを特徴とする脱血マグロの製造方法に係るものである。 In addition, the present invention relates to a method for producing blood-removed tuna, which comprises producing blood-removed tuna that has been blood-removed using the method for removing blood of tuna according to any one of claims 10 to 14.
また、請求項10〜14のいずれか1項に記載のマグロの脱血方法を用いて脱血された脱血マグロを用いてマグロのチルド加工品若しくはマグロの冷凍加工品を製造することを特徴とするマグロ加工品の製造方法に係るものである。 Further, a tuna chilled processed product or a tuna frozen processed product is manufactured using the blood-removed tuna blood that has been removed using the tuna blood removal method according to any one of claims 10 to 14. It relates to a method for manufacturing processed tuna products.
本発明は上述のようにするから、主要養殖魚であるブリ(ハマチ)等について冬期は勿論の事、夏期の水温の高い時期に出荷する時に発生するヤケ肉を防止し、また、その原因物質である血液の除去のレベルを間接的に数値化し実用的に実施可能な品質管理手法を用いたブリの脱血処理方法、脱血ブリの製造方法、ブリ加工品の製造方法、マグロの脱血処理方法、脱血マグロの製造方法並びにマグロ加工品の製造方法となる。 Since the present invention is as described above, the main cultured fish, yellowtail, etc., not only in winter but also in the winter, it prevents burnt meat that occurs when shipping at high water temperatures, and its causative substance The blood removal level of blood is indirectly quantified, and the blood removal treatment method of the yellowtail using the quality control method that can be implemented practically, the method of manufacturing the blood removal yellowtail, the method of manufacturing the processed yellowtail, the blood removal of tuna It becomes a processing method, the manufacturing method of a blood removal tuna, and the manufacturing method of a tuna processed product.
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
ブリの背身上部若しくは腹身上部の白身肉のL*a*b*表色系におけるL*値が50以上となるように、灌流液をブリの血管に導入して血液と置換する脱血処理を施す。または、飽和酸素濃度以下の海水中で養生したブリを、飽和酸素濃度以下の海水域と区画され過飽和酸素海水域とされた取り上げ水域から取り上げて灌流処理等の脱血処理を施す際、例えば、取り上げたブリの背身上部若しくは腹身上部の白身肉のL*a*b*表色系におけるL*値が50以上となるように脱血処理を施す。 Blood removal by introducing perfusate into the blood vessels of the yellowtail to replace the blood so that the L * value in the L * a * b * color system of the white meat on the back or upper body of the yellowtail is 50 or more Apply processing. Alternatively, when the yellowtail that has been cured in seawater with a saturated oxygen concentration or less is taken from a picked water area that is partitioned from a seawater region with a saturated oxygen concentration or less and is a supersaturated oxygen seawater region, Blood removal is performed so that the L * value in the L * a * b * color system of the white meat on the back or upper belly of the picked yellowtail is 50 or more.
これにより、夏期でもヤケ肉の発生を防止でき、夏期に安定して(養殖)ブリを供給することが可能となる。なお、本発明は、通常の出荷時期である冬期のブリにも適用可能である。 As a result, the occurrence of burnt meat can be prevented even in the summer, and it becomes possible to supply (cultured) yellowtail stably in the summer. The present invention can also be applied to winter yellowtail, which is a normal shipping time.
本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、ブリの背身上部(肩部)及び腹身上部(肩部)の白身肉のL*a*b*表色系におけるL*値が50以上となるようにブリに灌流処理(脱血処理)を施すブリの脱血処理方法である。 In this example, perfusion treatment was performed on the yellowtail so that the L * value in the L * a * b * color system of the white meat at the upper back (shoulder) and upper abdomen (shoulder) of the yellowtail was 50 or more. This is a blood removal method for yellowtail that is subjected to (blood removal treatment).
また、脱血処理を施す前に、ブリは生簀(水槽)等に貯めた酸素が6〜8mg/L程度溶解した飽和酸素濃度以下の海水(具体的には特に処理していない一般的な海水であり、酸素濃度は75〜100%)中で養生しておく。また、生簀(水槽)等には、飽和酸素濃度以下の海水域と区画され過飽和酸素海水からなる取り上げ水域を設ける。取り上げ水域内の海水は、海水に酸素発生器(PSA)で93%濃度の酸素を溶解させることで酸素が30mg/L以上溶解した過飽和酸素海水とする。即ち、生簀(水槽)等を、飽和酸素濃度以下の海水域である養生水域と過飽和酸素海水域である取り上げ水域とに区画する(例えば広い水槽中にズック製水槽等外部の海水が混入しない設備を用いて取り上げ水域を区画形成する。そして、養生水域において一定時間(24時間程度)養生したブリを取り上げる際には、取り上げ水域に移動させた後、取り上げ水域で取り上げる。 Before blood removal treatment, yellowtail is seawater below the saturated oxygen concentration in which oxygen stored in ginger (aquarium) etc. is dissolved by about 6-8mg / L (specifically, general seawater that is not particularly treated) And the oxygen concentration is 75-100%). In addition, the ginger (water tank) or the like is provided with a pick-up water area that is separated from a seawater area below the saturated oxygen concentration and is composed of supersaturated oxygen seawater. Seawater in the picked water area is supersaturated oxygen seawater in which oxygen is dissolved at a concentration of 30 mg / L or more by dissolving 93% oxygen in the seawater using an oxygen generator (PSA). That is, a ginger (water tank) is divided into a curing water area that is a seawater area below saturated oxygen concentration and a picking water area that is a supersaturated oxygen seawater area (for example, equipment that does not contain external seawater such as a Zuk water tank in a large water tank) Then, when picking up yellowtail that has been cured for a certain period of time (about 24 hours) in the curing water area, move it to the picking water area and then pick it up in the picking water area.
具体的には、養殖時の海水は上述のように酸素濃度は75〜100%であるが、従来の出荷時の網生簀では網が絞られるため、魚が興奮状態となり酸素消費量が増大し、網生簀内の酸素濃度は部分的に50%以下まで大きく低下する。 Specifically, seawater at the time of aquaculture has an oxygen concentration of 75 to 100% as described above. However, the net ginger at the time of conventional shipping narrows the net, so that the fish becomes excited and oxygen consumption increases. The oxygen concentration in the net ginger is greatly reduced to 50% or less.
そのため、少しの時間のズレで魚体は酸素欠乏になり、その後の品質に大きく影響する(高温時ではヤケやへい死が起きる。)。 As a result, the fish body becomes oxygen deficient after a short time shift, which greatly affects the quality thereafter (burning and death occur at high temperatures).
ブリの場合、現状の養殖現場の出荷法は海上で、活魚運搬船(酸素補給は船の進行に合わせ、船体の取り込み口から補給するが、船が停船している積み込み時、取り出し時には酸素ボンベやエアーブロア等によって酸素供給を行う。)又は養殖生簀をゆっくり曳航(3km/h)し、活魚船や網生簀から海水毎クレーンタモ網で作業台に取り上げ延髄切断(活締め処理)を行い、塩氷水中で冷却後、計量、梱包、出荷の工程を経ているが、例えば搬入ストレスを解消するため陸上水槽に1晩養生し、この陸上水槽中で区画された純酸素を供給し過飽和酸素海水域とした取り上げ水域中から取り出し加工処理を行うのが好ましい。 In the case of yellowtail, the current method of shipping at the aquaculture site is at sea, live fish carriers (oxygen replenishment will be replenished from the hull intake as the ship progresses. (Supply oxygen by air blower, etc.) Or slowly tow aquaculture ginger (3km / h), pick it up on a work table with a crane tammo net for each seawater from a live fish boat or a net ginger, and perform medullary cutting (live tightening treatment) After cooling, it goes through the steps of weighing, packing, and shipping, but for example, it is cured overnight in an onshore water tank to eliminate carry-in stress, and supplied with pure oxygen partitioned in this onshore water tank, It is preferable to take out from the picked-up water area and perform processing.
マグロについても同様であるが、マグロはブリよりもデリケートで網慣れするまでは僅かな刺激で暴走し網に衝突し傷が原因で死亡する。またブリは運搬船が使用できるが、マグロの場合は現場の養殖網生簀で活締め処理を行う。 The same is true for tuna, but tuna is more delicate than the yellowtail and runs away with a slight stimulus until it gets used to the net and hits the net and dies due to a wound. In addition, yellowtail can be used as a transport ship, but in the case of tuna, it is subjected to live-end treatment with an aquaculture net ginger.
マグロの輸送は、幼魚であれば幼魚時(ヨコワ)用網生簀をそのままゆっくり曳航(1km/h以下)できるが、成魚になった場合、網生簀が大型深底のため移動は困難である。そのため、例えば出荷時の網生簀に別途区画された取り上げ水域を設け、この部分を過飽和酸素海水域とする。 Tuna can be transported slowly (1km / h or less) for juvenile fish (Yokowa) if it is a young fish, but when it becomes an adult fish, it is difficult to move because it is a large deep bottom. Therefore, for example, a picking water area separately provided in the net ginger at the time of shipment is provided, and this portion is set as a supersaturated oxygen seawater area.
本実施例においては、生簀等から取り上げたブリは、脊髄を破壊した直後に(5分以上放置せず)、直ちに灌流液をブリの血管に導入(圧入)して血液と置換する(血液を導出する)脱血処理を施す。灌流処理は心臓組織が破裂しない程度の流量(魚のサイズによるが概ね0.25〜0.3L/min・kg)で灌流液を血管に導入して行う。 In this example, immediately after breaking the spinal cord (not left for more than 5 minutes), the yellowtail taken up from the ginger and the like immediately introduces (perfuses) the perfusate into the blood vessels of the yellowtail to replace the blood (the blood (Derived) Perform blood removal treatment. The perfusion treatment is performed by introducing the perfusate into the blood vessel at a flow rate that does not rupture the heart tissue (approximately 0.25 to 0.3 L / min · kg depending on the fish size).
具体的には、エアドリルで頭部より脳室のみを穿牙し、その穿孔部よりステンレス棒を尾部まで挿入し延髄、脊髄を破壊する(これにより血管系は傷をつけず全身の血管を閉鎖回路とすることができる。)。その後、心臓部より全身に灌流液を圧入すると、毛細血管を拡張しながら内臓部の脆弱組織(肝臓、腎臓消化器官等)から灌流液が導出される。 Specifically, only the ventricle is drilled from the head with an air drill, and a stainless steel rod is inserted from the perforated part to the tail to destroy the medulla oblongata and spinal cord. Can be.) Thereafter, when the perfusate is injected into the whole body from the heart, the perfusate is derived from the fragile tissues (liver, kidney digestive organ, etc.) of the internal organs while expanding the capillaries.
また、灌流液は電解水中の電解陰極水とする。また、灌流液として酸素過飽和液体(過飽和酸素溶解液)を常圧以上で平均孔径10μm以下のフィルターを通した後、使用しても良い。なお、電解陰極水等にNaHCO3を含有させたものを用いても良い。また、灌流液は20℃以下に冷却したものを用いる(海水温より8℃〜10℃程度低い温度。例えば海水温より9℃低い温度。)。 The perfusate is electrolytic cathodic water in electrolytic water. Further, an oxygen supersaturated liquid (supersaturated oxygen solution) may be used as a perfusate after passing through a filter having an average pore size of 10 μm or less and a normal pressure or higher. In addition, electrolytic cathode water or the like containing NaHCO 3 may be used. In addition, the perfusate is cooled to 20 ° C. or lower (a temperature lower by about 8 ° C. to 10 ° C. than the seawater temperature, for example, a temperature 9 ° C lower than the seawater temperature).
また、例えば、灌流液として、灌流処理初期(血液がまだ大分残存している状態、灌流処理開始から1〜2分)には前記酸素過飽和液体をフィルターに通したものを使用し、その後(血液がある程度導出された後)は前記電解陰極水を使用することもできる。 In addition, for example, as the perfusate, in the initial stage of the perfusion process (a state in which blood is still largely remaining, 1 to 2 minutes from the start of the perfusion process), a solution obtained by passing the oxygen supersaturated liquid through a filter is used. Can be used after a certain amount of is derived).
以上の方法により、脱血された脱血ブリを製造し、これを冷蔵し、そのまま(鮮魚のまま)流通させるか、ブリのチルド加工品若しくはブリの冷凍加工品に加工して流通させる。 According to the above method, the blood-removed bloodlet is produced and refrigerated and distributed as it is (fresh fish), or processed into a chilled processed product of a yellowtail or a frozen processed product of a yellowtail and distributed.
また、マグロについても、上述のブリに対する養生、脱血処理等と同様の処理を行うことで、ヤケ肉を防止できる。 In addition, with respect to tuna, burnt meat can be prevented by performing the same treatment as the above-described curing, blood removal treatment, and the like on the yellowtail.
以上の方法を採用した具体的な理由について以下に説明する。 The specific reason for adopting the above method will be described below.
鰓呼吸が遮断され、短時間で体内が嫌気状態に陥ると活動エネルギーであるATPは血液中から細胞内に取り込まれたグルコース分解によりATPは供給されるが、一方では嫌気環境下に於いてグルコースはピルビン酸を経て乳酸蓄積が進む。その前駆体であるピルビン酸は乳酸よりも細胞膜透過性が低いので細胞中に残存し、それが運動停止後も長時間に渡り乳酸の生成源と成りうる事を示している。これらのpHの低下により、魚肉内に存在する各種プロテアーゼの活性化が示されているが、近年の公開論文中に血液中の各種プロテアーゼについて論じており、特に注視すべきは、生鮮度(コリコリ感)の指標であるコラーゲン(細胞外マトリックス)が、生鮮度(生きの良さ)と大きく関係している点である。カテプシン群は、至適pH、阻害剤との相互作用、基質特異性及び分子量の違いから、それぞれ分類されている。その中でも強いエンドプロテアーゼ活性を有するのはカテプシンL(EC 3.4.22.15)である。生体内では同酵素は細胞内へのグルコースの取り込み調整機能として作用するが、死後は蛋白質分解酵素として最も重要であると考えられている。特に魚類においては、畜肉に比べてかなりの早さで筋蛋白質が自己消化することが知られており、これらのリソゾーマルシステインプロテアーゼの働きや発現調節機構等は哺乳動物と異なっているものと思われる。更に作用するプロテアーゼとして、コラゲナーゼ、並びにゼラチン分解酵素(G1,G2,G3,G4等)が挙げられる。コラーゲン自体は安定した蛋白質であるがカテプシンL等のプロテアーゼも含んでいる事から、魚肉体内から完全分離は不可能である。 鰓 If the body's breathing is interrupted and the body falls into an anaerobic state in a short time, ATP, which is the energy of activity, is supplied by the degradation of glucose taken into the cells from the blood, but on the other hand, glucose is lost in an anaerobic environment. Lactic acid accumulation proceeds via pyruvic acid. Its precursor, pyruvic acid, has lower cell membrane permeability than lactic acid, so it remains in the cells, indicating that it can be a source of lactic acid for a long time after cessation of movement. These reductions in pH indicate activation of various proteases present in fish meat, but various proteases in blood have been discussed in recent published papers. Collagen (extracellular matrix) which is an index of feeling is greatly related to freshness (goodness of life). The cathepsin group is classified according to differences in optimum pH, interaction with inhibitors, substrate specificity and molecular weight. Among them, cathepsin L (EC 3.4.22.15) has a strong endoprotease activity. In vivo, the enzyme acts as a function of regulating glucose uptake into cells, but is considered to be most important as a proteolytic enzyme after death. Especially in fish, muscle proteins are known to self-digest much faster than livestock meat, and the functions and expression regulation mechanisms of these lysosomal cysteine proteases differ from mammals. Seem. Examples of proteases that further act include collagenase and gelatinolytic enzymes (G1, G2, G3, G4, etc.). Collagen itself is a stable protein, but also contains proteases such as cathepsin L, so complete separation from the fish meat is impossible.
コラーゲンは加熱処理する事によりゼラチンに変成することは周知であり、温度、pH等の条件が揃えばゼラチン構造となる。この魚肉のゼラチン変性温度は低く構造体は一般コラーゲン組織の熱変成により発生するが、魚類筋肉の軟弱化と大きく関係があると思われる。牛肉の霜降り肉は安定しているが、ブリやマグロの霜降り肉は時間経過とともに消失する事実は、目視上脂質とコラーゲン組織の変化を見ている事になるかもしれないが詳細は不明である。血液はバクテリアによる腐敗の開始前から酵素群の活性過程で特異の血生臭い、生臭い等の気体成分(臭気)を発生する事が知られ、これらの主因は血液中のプロテアーゼ(カテプシンL)の活性化が主因と考えられ更にコラゲナーゼ及びゼラチン分解酵素により筋肉の軟弱化が進み臭気も発生すると考えられる。 It is well known that collagen is transformed into gelatin by heat treatment. If conditions such as temperature and pH are met, a gelatin structure is obtained. The gelatin denaturation temperature of this fish meat is low, and the structure is generated by thermal denaturation of general collagen tissue, but it seems to have a large relationship with the weakening of fish muscle. The fact that marbles of beef are stable, but the marbles of yellowtail and tuna disappear over time, the changes in lipid and collagen tissue may be visually observed, but details are unknown . It is known that blood has a unique bloody odor, odor and other gas components (odor) in the process of the enzyme group before the start of rot by bacteria, the main cause of which is the activity of protease (cathepsin L) in the blood It is thought that the main reason is that the muscles are weakened by collagenase and gelatinolytic enzyme, and odor is also generated.
ヤケ肉の発生防止を主題とした場合、キハダマグロを例に取ると、赤道下の高温水域の巻き網漁法で苦悶死したマグロの断面を観察したところ、時間経過とともに脊柱近辺の血合い肉からヤケ肉が発生し、血合い部を超えて骨格筋にヤケ肉が広がって行く事を確認している。見地としては、時間の経過により先ず変化を起こすのは色調の変化ではなく、魚肉表面に虹色の皮膜を生ずる様になる。ヤケ肉の判断は古くから生産地市場ではストロー状の刺し棒を背鰭より脊柱に挿入し脊柱近辺の筋肉組織を採取し,ヤケ肉の判断を行っている。 In the case of yellowfin tuna as an example, the cross-section of the tuna that suffered from the seine fishing method in the hot water area below the equator was observed. It has been confirmed that burnt meat spreads to the skeletal muscle beyond the bloody part. From a viewpoint, it is not a change in color that first changes with the passage of time, but a rainbow-colored film is formed on the surface of the fish meat. Judgment of burnt meat has long been done in the production area market by inserting a straw-like stab stick into the spinal column from the dorsal fin and collecting muscle tissue near the spine to judge burnt meat.
市販のマグロの表面を見ると虹色膜を発生している場合があり、業者間では「レインボウ」といわれ乳酸を含む漏出液膜である。食する時にやや酸っぱみを感ずることもあるが、乳酸生成によりpH6以下になると保水力が急激に減少しドリップが流出し、水っぽい事から良品質とは評価されない。産地市場ではpH6.3以上は「SA」、5.9〜6.2は「A」及び5.8以下を「B」として取引される所も有る。これはマグロが大量にグルコースを含有する為に、pHの変動が大きい事から行われる品質の確認方法である。 When looking at the surface of commercially available tuna, there may be a iridescent film, which is called a “rainbow” among traders and is a leaking liquid film containing lactic acid. When eating, you may feel a little sour, but when the pH drops below 6 due to lactic acid formation, the water holding capacity decreases sharply and the drip flows out, and it is not evaluated as good quality because it is watery. In the local market, there are places where pH 6.3 or higher is traded as “SA”, 5.9 to 6.2 as “A” and 5.8 or lower as “B”. This is a quality confirmation method that is performed because the tuna contains a large amount of glucose and thus the pH fluctuates greatly.
また、近年漁獲高が増加傾向にある巻き網漁法で漁獲された天然ブリの切り身を見るとこの「レインボウ」が見られる場合がある。ヤケ肉の場合は更にこれらの状態が進んだものと考えられ、ブリのヤケ肉、マグロのヤケ肉等原因は同一のものとした場合、原因はエネルギー代謝の異常状態(ATP、グルコースの分解、各種蛋白質分解酵素群)であり、自然生体内では発生しない変化が高体温時において魚体の興奮とともに急激に起きている事は容易に推測出来る。従来の文献等にもカテプシンL,B,E,Dが魚肉変化促進として述べられていたが、その活性度から死後の乳酸蓄積により弱酸性化で活性化が進むカテプシンLが最も変成を引き起こす事は知られている。 In addition, when you look at the fillets of natural yellowtail that have been caught by the purse seine method, where the catch has been increasing in recent years, this “rainbow” may be seen. In the case of burnt meat, these states are considered to have further advanced, and if the cause is the same such as yellowtail meat and tuna burnt meat, the cause is an abnormal state of energy metabolism (ATP, glucose decomposition, It can be easily estimated that changes that do not occur in the natural body and occur suddenly with the excitement of the fish at high body temperature. Cathepsin L, B, E, and D have been described as promoting fish change in the previous literature, but cathepsin L, which is activated by weak acidification due to lactic acid accumulation after death, causes the most metamorphosis due to its activity. Is known.
夏期ブリの品質劣化の進行は肉質の季節性、高温時の興奮状態、溶存酸素量の減少等の要因によりATPの急激な脱リン酸によるプロトンの生成によるpHの低下、同時に進む体内の酸素不足により生ずる嫌気状態におけるグルコースの急速分解によるピルビン酸への移行と貯留、その後細胞膜から乳酸の流出生成によりpHの弱酸性化による。 The deterioration of quality of summer yellowtail is due to seasonality of meat quality, excitement state at high temperature, decrease in dissolved oxygen amount, etc., pH decrease due to proton generation by rapid dephosphorylation of ATP, and oxygen deficiency in the body progressing simultaneously Due to the rapid degradation of glucose in the anaerobic state caused by the transfer and storage of pyruvic acid, followed by the weak acidification of pH by the production of lactic acid outflow from the cell membrane.
本発明者等は、蛋白質分解酵素の活性化により、コラーゲン組織の急速な崩壊と高温のため、一部ゼラチンに変化するが更にゼラチン分解酵素が作用し、魚肉の軟弱化変成を促進し不可逆なヤケ肉を生ずるとの可能性を示していると仮定した。 Due to the rapid disintegration of the collagen tissue and the high temperature due to the activation of the proteolytic enzyme, the present inventors partially change to gelatin, but the gelatinolytic enzyme further acts to promote softening and denaturation of fish meat, which is irreversible. It was assumed that it showed the possibility of producing burnt meat.
ブリヤケ肉を観察すると本来血抜き後でも白身部位に残留する色素蛋白質であるHbの赤色が全く消失して豆腐状の色調及び急激な軟化を生ずる事を考察した場合、赤色色素であるHbを大量に含む赤血球が消失したのではなく、異常なpHや酵素反応によりHbが変性し、ポルフィリン環の遊離及び酸化が促進され黄色及び透明化した事から異常な白色を呈するものと考えた。従って、ヤケ肉状態では酵素活性が続き、その範囲は強く活性化された酵素群により体液、血液を介して拡大する。 When observing briachake meat, it is considered that the red color of Hb, which is a chromoprotein that remains in the white part even after blood removal, disappears completely, resulting in a tofu-like color tone and rapid softening. It was considered that the red blood cells contained in the sample were not disappeared, but Hb was denatured by an abnormal pH or enzymatic reaction, and the release and oxidation of the porphyrin ring was promoted to make it yellow and transparent. Therefore, the enzyme activity continues in the burnt meat state, and the range is expanded through body fluids and blood by the strongly activated enzyme group.
従って、加工処理後白身の色調変化は、血液の色調変化と併せて変化する事から、灌流処理区後脱血された白身色調と血液の残留している色調の明るさを示すL*値は時間経過にあわせほぼ賞味時間内(大凡15時間)は僅か低下するのに対し、一般血抜きで血液が残留している場合、処理後複雑に2〜6時間程度上昇し、その後低下に転ずるが、L*値は最大で<50である。しかしヤケ肉が発生した場合、〆直後L*値は40〜45となり、2〜6時間では豆腐色となりL*値は60を超える。 Therefore, since the change in the color tone of the white after processing changes in conjunction with the change in the color tone of the blood, the L * value indicating the brightness of the white color tone after blood removal after the perfusion treatment and the color tone of the remaining blood is As the time elapses, there is a slight decrease within the best-tasting time (approximately 15 hours), but if blood remains after general blood removal, it rises in a complex 2-6 hours after treatment, and then begins to decline. The L * value is <50 at maximum. However, when burnt meat is generated, the L * value is 40-45 immediately after cooking, and it becomes tofu in 2-6 hours, and the L * value exceeds 60.
高温時の取り扱い処理法として、海上高温水域内で現実に実行出来る項目を列挙すると以下の通りである。前提条件として夏期の高水温度期(28〜29℃)であっても、摂食量は減少するものの正常に活動する事から、安静時であれば代謝系は適正範囲内であるが、取り上げ時の興奮により体内で異常代謝状態に陥るのではないかと推定した。従って、海上作業で困難な水温を低下させる事を除外し、その対策は下記の条件を満たす事となる。 The following are the items that can be actually executed in high-temperature sea water as handling methods at high temperatures. As a precondition, even during the summer high water temperature period (28-29 ° C), although the amount of food intake decreases, it operates normally, so the metabolic system is within the appropriate range at rest, but at the time of picking up It was presumed that the excitement of the body would cause an abnormal metabolic state in the body. Therefore, excluding the reduction of water temperature, which is difficult at sea work, the countermeasures satisfy the following conditions.
1)魚体の(α)が最大となり興奮する取り上げ高温海水域を部分的に区画し純酸素の微
細泡海水とし過飽和酸素水濃度状態とする。
2)取り上げ後は最短の時間で脊髄破壊処理し仮死状態(不動状態)にする。
3)すみやかに海水温より低温(度差9℃程度)の過飽和酸素溶解冷却灌流液にてヤケ
の発生部分の毛細血管を集中して冷却し同時に脱血する。
4)灌流処理以降に細胞外への滲出乳酸の処理のため、陰極電解水、pH調整剤(NaH
CO3)を使用してpHの低下を抑制する。
5)処理の確認としてブリ背身(上部)及び腹身(上部)の白身肉で断頭部分から大凡5cm
前後の赤身肉(Mb)を含まない部分(図2)のL*a*b*値を測定し、脱血の程度をL*値とし
て管理基準化する。
6)マグロについては全身赤身魚(Hb,Mb)である事から、ブリの様に単純にL*値のみで
は判断できない。魚体重量、及び毎分灌流液量を勘案すれば、灌流液量で間接的な脱
血率は換算出来と考えるが、天然マグロの場合、キハダ、メバチ、クロマグロ、イン
ドマグロ等と種類が有る事から個々に、個体差も含め検討しなければならない。
1) Partially divide the hot high-temperature seawater area where (α) of the fish body is excited and excite it, and make it into fine oxygen seawater with a pure oxygen, and a supersaturated oxygen water concentration state.
2) After picking up, destroy the spinal cord in the shortest possible time and make it asphyxia (immobility).
3) Immediately cool the blood vessels at the temperature of the seawater with a supersaturated oxygen-dissolved cooling perfusate (degree difference of about 9 ° C) to cool down the blood at the same time.
4) Cathodic electrolyzed water, pH adjuster (NaH) for treatment of exudate lactic acid outside the cells after perfusion treatment
CO 3 ) is used to suppress the pH drop.
5) As a confirmation of treatment, white meat of yellowtail (upper) and belly (upper) is roughly 5cm from the decapitation.
Measure the L * a * b * value of the part (Figure 2) that does not contain the front and rear red meat (Mb), and standardize the degree of blood removal as the L * value.
6) Since tuna is a whole body red fish (Hb, Mb), it cannot be judged by L * value as simple as yellowtail. Considering the weight of the fish and the amount of perfusate per minute, it is considered that the indirect blood removal rate can be converted by the amount of perfusate. However, natural tuna has various types such as yellowfin, bigeye, bluefin tuna, and Indian tuna. Therefore, individual differences must be considered.
以下、ブリの具体的な脱血度の求め方について述べる。 The following describes how to determine the specific blood removal degree of yellowtail.
本実施例では実用面を含め、所定時間間隔で灌流導出液中のHbを分光測定し、吸収帯(ABS)の減少度を確定し毛細血管が散在する魚肉の白身肉(赤身肉Mbを含まない)部位の色差度(L*a*b*)中の(L*値)との相関表を作成し、脱血の程度を換算するものである。 In this example, including practical aspects, Hb in the perfusion derivation solution is spectroscopically measured at predetermined time intervals, the degree of absorption band (ABS) reduction is determined, and fish white meat (including red meat Mb) is scattered. No) A correlation table with the (L * value) in the color difference degree (L * a * b *) of the part is created, and the degree of blood removal is converted.
・分光計によるHbの特定と現場における測定法の選択
赤血球は魚種毎に吸光帯に僅差があるがMbの第6配位座に配位子が配位結合している魚類、ほ乳類とも新鮮な状態では536〜540nm及び568〜582nmの2バンドのピークを形成する事が知られている。また、配位子が離脱した還元型(R-Hb)の場合は中間帯555〜557nmに1バンドのピークになる事が知られている。しかし、時間経過とともにこのバンドは体外ではHb,Mb共に不可逆な変化を示し、メト化が進行し同様に色調も変化する。時間が経過するとHbはMbの4畳体で中心核はFe++でありメト化(褐変化)を起こすとFe+++となる事が知られている(配位子はH2Oとなる。)。新鮮なHb,Mbは配位子を放出し還元型Mbになると2バンドの中間にピークが1つになることから、Mb,Hbの配位子の有無に関わらず配位状態は把握出来る。既知のHb,Mbの配位子はO2,CO,NO,CN,H2S,等)但しH2Sは緑色の別系統色になる。
・ Speciation of Hb by spectrometer and selection of on-site measurement method Erythrocytes have a slight difference in absorption band for each fish species, but fish and mammals with ligands coordinated to the 6th coordination site of Mb are fresh. In such a state, it is known to form peaks of two bands of 536 to 540 nm and 568 to 582 nm. Further, it is known that in the case of the reduced form (R-Hb) from which the ligand is detached, a peak of one band is observed in the intermediate band 555 to 557 nm. However, as time passes, this band shows irreversible changes in both Hb and Mb outside the body, and the coloration changes in the same way as metation progresses. It is known that over time, Hb is an Mb tatami mat, the central core is Fe ++, and when it undergoes methation (browning), it becomes Fe +++ (the ligand is H 2 O). When fresh Hb and Mb release the ligand and become reduced Mb, there is one peak in the middle of the two bands, so the coordination state can be grasped regardless of the presence or absence of the ligands of Mb and Hb. (Known ligands of Hb and Mb are O 2 , CO, NO, CN, H 2 S, etc.) However, H 2 S has a different color of green.
魚肉のHbの存在は魚種により異なる事からここではブリについて灌流導出液の吸光度(ABS)のピーク波長を基準とした。 Since the presence of Hb in the fish meat differs depending on the fish species, the peak wavelength of the absorbance (ABS) of the perfusion derivation solution was used here for the yellowtail.
Hb,Mbの判別はHPLC(高速液体クロマトグラフィ)では時間軸に差を生じ分離出来るが、簡易な分光計では同じ吸収バンドである事から、現場で多数の品質管理にはMbと重畳しない為にMb色素蛋白を含まない白身肉に限定し、直接又は間接的画像処理で色差計によりL*a*b*値を測定し、(ABS)値と対比出来る様にすれば、迅速に脱血の程度が把握できる。 Hb and Mb can be separated by HPLC (High Performance Liquid Chromatography) with a difference in the time axis, but a simple spectrometer has the same absorption band, so it does not overlap with Mb for many quality controls in the field. By limiting the white meat without Mb chromoprotein and measuring the L * a * b * value with a color difference meter by direct or indirect image processing so that it can be compared with the (ABS) value, rapid blood removal can be achieved. I can understand the degree.
本件ではくん液処理の場合も含む事から、配位する分子は酸素だけではないため、従来法とした。 In this case, it includes the case of the liquid treatment, so oxygen is not the only coordinated molecule, so the conventional method has been adopted.
・脱血の程度を数値化する意義とその範囲
ほ乳類、魚肉中の動静脈及び毛細血管を含む全血を見積もる事は、生理水による灌流法(direct method)、色素(infusion method)、一酸化炭素(inhalation method)、アイソトープ法(radioisotope method)等の方法は存在するが、完全に全血採取する方法は未だ確立されていない。灌流法(direct method)以外の方法は特定マーカーの魚体内希釈度により全血量を推算する手法である。灌流実験として血液凝固阻止剤を含む生理水による灌流法の場合には魚体重の10倍〜30倍の灌流液により全血を回収する。また、処理部位はシリンジで鰓下部心室膜を穿牙し心臓球より注入する手法となっている事から、処理時間は長時間を要すると考えられる。血液量は魚種によって大きく異なるが大凡魚体中の1/20〜1/30と言われている。
・ Significance and range of quantification of degree of blood removal Estimating whole blood including arteries and veins and capillaries in mammals and fish meat is based on the perfusion method using physiological water (infusion method), pigment (infusion method), and monoxide. Methods such as carbon (inhalation method) and isotope method (radioisotope method) exist, but a method for completely collecting whole blood has not yet been established. Methods other than the direct method are methods for estimating the whole blood volume based on the dilution of a specific marker in the fish. In the case of a perfusion method using physiological water containing a blood coagulation inhibitor as a perfusion experiment, whole blood is collected with a perfusate 10 to 30 times the weight of the fish. In addition, since the treatment site is a technique in which the lower ventricular membrane is punched with a syringe and injected from the heart ball, the treatment time is considered to require a long time. The blood volume varies greatly depending on the fish species, but it is said to be about 1/20 to 1/30 of the fish body.
今回の灌流法による導出血液測定の目的は、血液中のプロテアーゼ、細胞組織から放出された乳酸等の老廃物を実用可能な範囲で排出し、魚肉の品質保持、保存性の有効性が確認達成出来る範囲が前提となる。従って、前述の全血液量測定法と灌流処理による全血導出量とは意味を異にする。 The purpose of the derived blood measurement by this perfusion method is to discharge the wastes such as protease in the blood and lactic acid released from the cell tissue within the practical range, and confirm the effectiveness of maintaining the quality and preservation of the fish meat A possible range is assumed. Therefore, the above-mentioned whole blood volume measurement method and the whole blood derivation amount by perfusion processing are different in meaning.
・測定器具類
温度測定器
体表測温:レーザーポインター付赤外線測温器 Raytek-minTempFS
魚肉中心測温及び腹腔内温度:刺し棒型温度計 DRETEC
分光計:SIMADZU UV1240mini
光学顕微鏡:OLIMPUS BH-2
色差計:MINOLUTA CR-13
・ Measurement instruments Temperature measuring instrument Body surface temperature measurement: Infrared thermometer with laser pointer Raytek-minTempFS
Fish center temperature measurement and intraperitoneal temperature: stab stick thermometer DRETEC
Spectrometer: SIMADZU UV1240mini
Optical microscope: OLIMPUS BH-2
Color difference meter: MINOLUTA CR-13
・事前の血液成分を指標とした脱血指標について
血液の成分としては血漿(55〜60%、内訳として水分90,蛋白質8,脂質1,糖類0.1その他0.9),血球(40〜45%、内訳として赤血球96,白血球3,血小板1)であり、分光測定はあらかじめ、別途に導出くん液灌流血液を採取し、導出初期原液および希釈液(血液濃度の高い初期導出液はクエン酸Na液で10倍希釈し測定値を10倍とした)を190〜1100nmまであらかじめ分光計でスペクトルを計測した結果、主ピークが536,569,418nmでありは配位子が結合している赤血球Hbバンドは536,569nmである事を確認し、更に60分間灌流導出液の吸光度(ABS)を測定した結果、赤血球の存在を示す536,569nmのピークは認められなかった事から、実用的な灌流処理条件を模索した結果、大凡10分以内で、赤血球の存在は60分処理と比較し些少となる事から10分処理を基準とした。更に、同時間処理した処理魚の背身上部,腹身上部白身肉を10倍蒸留水希釈後ホモジナイズし10μmフィルター濾過し、分光計で測定し、いずれも血液由来の吸収バンドが存在しなかった。
・ Blood removal index using blood component as an indicator Blood components are plasma (55-60%, including water 90, protein 8, lipid 1, saccharide 0.1 and other 0.9), blood cells (40-45%, breakdown) As for red blood cells 96, leukocytes 3, and platelets 1), the spectroscopic measurement was carried out by separately collecting the derived perfusate-perfused blood in advance, and the derived initial stock solution and diluted solution (the initial derived solution with high blood concentration was 10% Na citrate solution). As a result of measuring the spectrum from 190 to 1100 nm in advance with a spectrometer, the main peak is 536,569,418 nm and the erythrocyte Hb band to which the ligand is bound is 536,569 nm As a result of measuring the absorbance (ABS) of the perfusion derivation solution for another 60 minutes, the peak at 536,569 nm indicating the presence of red blood cells was not found. Within 10 minutes, the presence of red blood cells is insignificant compared to 60 minutes treatment. Based on minute processing. Furthermore, the upper and lower abdominal meats of the treated fish treated for the same time were diluted with 10-fold distilled water, homogenized, filtered through a 10 μm filter, and measured with a spectrometer. None of the blood-derived absorption bands were present.
・脱血度合い
脱血の程度を数値化出来れば、品質管理面で有効な管理基準となりうる事から、新たな用語として脱血度を想定した。灌流処理により測定出来る濃度迄灌流処理を定間隔で導出液濃度を分光計により測定し、初期濃度T1以降1分後毎をT2,T3,T4〜T10…T60ステージを測定し赤血球の分光計により吸収バンド(536,569nm)が検知できない段階Tn迄測定し、(T1+T2+T3+…Tn)までの累計を全血指数(W)とし、各ステージ迄の吸収度(ABS)の積算値を全血指数(W)で除すことにより脱血度合いを脱血度として数値化した。
・ Blood removal degree If the degree of blood removal can be quantified, it can be an effective management standard in terms of quality control, so we assumed blood removal degree as a new term. Measure perfusion treatment at regular intervals to a concentration that can be measured by perfusion treatment, measure the concentration of the solution with a spectrometer, measure the T2, T3, T4 to T10 ... T60 stages every minute after the initial concentration T1, and use the red blood cell spectrometer Measure to Tn where absorption band (536,569nm) cannot be detected, and add up to (T1 + T2 + T3 + ... Tn) as whole blood index (W), and total integrated value of absorbance (ABS) up to each stage The degree of blood removal was quantified as the degree of blood removal by dividing by the blood index (W).
例 任意T3時点に於ける脱血程度の算式
脱血度=(T1+T2+T3)/(T1+T2+T3+T4+…Tn)×100 (式1)
=(T1+T2+T3)/(W)×100
上記の脱血度のT1は原血であり吸光度が大きく(ABS)値で56.3を示し、以降急激に吸光度は低下し10分以上で些少となる数値の積算である事から、(56.3〜100)としているが、相関式の切片は0ではない事から、必要に於いて数値加工を行えば切片0〜100%の脱血率としても良い。
Example Formula of blood removal degree at arbitrary T3 point Blood removal degree = (T1 + T2 + T3) / (T1 + T2 + T3 + T4 +… Tn) × 100 (Equation 1)
= (T1 + T2 + T3) / (W) × 100
T1 of the above-mentioned blood removal degree is original blood, and the absorbance is large (ABS) value shows 56.3, and thereafter the absorbance rapidly decreases and is an accumulation of numerical values that become insignificant in 10 minutes or more, (56.3 to 100 However, since the intercept of the correlation equation is not 0, the blood removal rate may be from 0 to 100% by performing numerical processing if necessary.
・試験1(冷水灌流効果時間と導出血液の吸光度(ABS値)、及び魚体温度(℃)の関係及び脱血時の白身部の色調(L*a*b*値))
方法:
餌止め3日後の5尾ブリ(5.5〜5.8kg)を500L容器内に一夜かけて純酸素をエアーストーンで常時飽和状態以上を維持するように溶解しながら水温を22℃から29℃(ヤケ肉発生条件温度帯)まで容器内で昇温し、1尾を魚体温度測定用、2尾を血液回収用とした。
・ Test 1 (Relationship between cold water perfusion effect time, derived blood absorbance (ABS value), fish body temperature (° C), and white color at the time of blood removal (L * a * b * value))
Method:
The water temperature was changed from 22 ° C to 29 ° C (discolored meat) while dissolving 5 pieces of yellowtail (5.5 to 5.8 kg) 3 days after feeding stopped in a 500 L container overnight with pure air to maintain saturation or higher with air stone. The temperature was raised in the container until the temperature range of occurrence condition), one for fish temperature measurement and two for blood collection.
灌流は灌流処理可能量とし、ポリ袋氷塊で大凡20℃に調整した海水及び水道水を混合した混合液により灌流処理を行い、0〜10分間の魚体各部位の温度と採取した導出灌流血液90ccにクエン酸Na10%液10ccを混合し撹拌後検体サンプルとし3℃保存とし、418,536,569nm吸光度(ABS)測定に供した。 Perfusion is the amount that can be perfused, and perfusion treatment is performed with a mixture of sea water and tap water adjusted to approximately 20 ° C with a plastic bag ice block, and the temperature of each part of the fish body for 0 to 10 minutes and the extracted perfused blood 90 cc The sample was mixed with 10 cc of a 10% Na citrate solution, stirred, stored at 3 ° C. and subjected to 418,536,569 nm absorbance (ABS) measurement.
また、2尾をそれぞれ完全脱血を前提とし、60分間長時間灌流処理を行い、色調L*a*b*値を測定、終了時の灌流導出液をビーカーに採取し光を通し目視で観察した。 Moreover, on the premise of complete blood removal for each of the two tails, perform perfusion treatment for 60 minutes for a long time, measure the color tone L * a * b * value, collect the perfusion derivation solution at the end in a beaker, and observe visually through light did.
結果:
1)循環系動脈系にカテーテルを挿入し、20℃の灌流冷却水を灌流処理限度量で注入し
、10分間に渡り時間経過と共に体表背身頭部、体表背身腹部、体表背身尻部、背身肩
部(上部)中心肉、背身腹肉(中部)中心部、背身尻肉(下部)中心部および腹腔内
を肉内穿孔及び表面測温した。結果を図3に示した。
result:
1) Insert a catheter into the circulatory arterial system and inject 20 ° C perfusion cooling water at the perfusion treatment limit. Over the course of 10 minutes, the head and back of the body, the back and abdomen, and the back of the body Meat perforation and surface temperature measurement were conducted at the center of the buttocks, the shoulders of the back and shoulders (upper), the center of the back and stomach (middle), the center of the back of the hip (lower) and the abdominal cavity. The results are shown in FIG.
2)灌流処理開始0分から1分毎に導出液を10分間採取し計11検体の536,569nm及び418nm
の吸光度(ABS)を測定した。結果を図4,5に示した。灌流処理による脱血の程度とし
て式(1)を用いて図6の脱血度とした。
2) Derive fluid was collected every 10 minutes from the start of perfusion treatment for 10 minutes and a total of 11 samples of 536, 569 nm and 418 nm
The absorbance (ABS) of was measured. The results are shown in FIGS. As the degree of blood removal by perfusion treatment, the degree of blood removal shown in FIG.
3)導出される灌流液中の赤血球の存在は分光計により把握出来る事から、最大脱血状
態を導くため長時間大量灌流処理(60min・120L)を行った結果、導出灌流液からHbの
存在を示す(536,569nm)バンドは検出されなかった。
3) Since the presence of red blood cells in the derived perfusate can be grasped by a spectrometer, a large amount of perfusion treatment (60 min / 120 L) was performed for a long time to induce the maximum blood removal state. No band (536,569 nm) indicating the presence was detected.
この時のL*a*b*測定結果でL*値は背身上部61.5〜64.1、腹身上部66.8〜67.1であり
、更に終了時の導出液の目視による色調を他の測定結果と併記した(図6,7)。
L * values in the L * a * b * measurement results at this time are the upper back 61.5-64.1, the upper abdomen 66.8-67.1, and the visual color of the derived liquid at the end is also shown along with other measurement results (Figs. 6 and 7).
検討:
1)同試験では5尾処理を所定条件で処理したがヤケ肉は発生しなかった(但し、灌流処
理後は通常の7℃冷却殺菌槽にて冷却)。
Consideration:
1) In the same test, 5 fish were processed under the prescribed conditions, but no burnt meat was generated (however, after perfusion treatment, cooling in a normal 7 ° C cooling sterilization tank).
2)魚肉中心部と灌流液温度の差は一般に生体ショック(痙攣等)を起こさない温度範囲
(9℃差)で問題無く灌流処理は行われた。
2) The difference between the temperature of the fish center and the perfusate is generally the temperature range that does not cause body shock (convulsions, etc.)
The perfusion treatment was performed without any problem (9 ° C difference).
3)ヤケ肉の発生部位である血合い肉を含む背身肩部中心肉、背身腹肉中心部は大凡、
6分間で通常初冬、早春の23℃程度の出荷時期の温度まで低下させる事が出来た。背
身尻肉中心部はやや遅れて低下した。
3) The main body of the back and shoulders, including bloody meat that is the occurrence of burnt meat, the center of the back and belly is roughly
In 6 minutes, it was possible to reduce the temperature to the shipping time of about 23 ℃ in normal early winter and early spring. The center of the dorsal buttocks fell slightly later.
4)腹腔内部(肝臓)は最も速く22℃まで冷却が進み、3分後以降は灌流液温と近似とな
り安定化した。
4) The inside of the abdominal cavity (liver) cooled most rapidly to 22 ° C, and after 3 minutes it became similar to the perfusate temperature and stabilized.
5)完全に灌流処理により導血されたと思われる肉色のL*値は背身上部(61.5〜64.1)、
腹身上部(66.8〜67.1)の範囲と思われる。
5) The flesh-colored L * value that seems to have been completely introduced by perfusion treatment is the upper back (61.5-64.1),
It seems to be in the upper abdomen (66.8-67.1) range.
・試験2(短時間灌流処理による魚肉白身の色調)
方法:
試験1の結果(灌流導出液の経時毎の吸光度(ABS)で3分間で大半の血液が導出されている事から1,2,3,6分毎の灌流処理を実施し背身上部の白身肉、腹身上部の白身肉のL*a*b*値を測定した。並びに、各経時毎の導出液をビーカーに採取し目視で評価した。
・ Test 2 (color of fish white meat by short-time perfusion treatment)
Method:
Results of Test 1 (Because most of the blood was derived in 3 minutes with the absorbance of the perfusion solution (ABS) over time, perfusion treatment was performed every 1, 2, 3 and 6 minutes, and the upper body white The L * a * b * values of the meat and the white meat of the upper abdomen were measured, and the derived solution for each time was collected in a beaker and visually evaluated.
結果:
1,2,3分処理と6分処理で赤色差(a*)は目視で明瞭に判別出来るが、L*値は1min処理区以上で>50となった。
result:
The red difference (a *) can be clearly discerned visually by 1, 2, 3 minute treatment and 6 minute treatment, but the L * value was> 50 in the 1 min treatment area and above.
また、6分処理区,10分処理区及び60分区では目視で判別が困難であった。 Further, it was difficult to visually discriminate in the 6-minute treatment zone, the 10-minute treatment zone and the 60-minute treatment zone.
L*値の測定値と導出液の目視による評価を図6,図7に示す。 The measured value of L * value and visual evaluation of the derived liquid are shown in FIGS.
・試験3(多数の灌流処理に於けるL*a*b*の分布)
方法:
試験2の結果より灌流時間を6分以上とし、背身上部の白身肉及び腹身上部の白身肉(個体誤差を勘案し、各10尾について,背、腹各部位について10回ずつ測定し平均値として集計)のL*a*b*値を生産者及び日付けを変えて4回測定した。
・ Test 3 (L * a * b * distribution in multiple perfusion treatments)
Method:
Based on the results of Test 2, the perfusion time was 6 minutes or more, and white meat at the top of the back and white meat at the top of the abdomen (considering individual errors, measured 10 times for each back and abdomen for each 10 fishes, averaged L * a * b * values were counted four times with different producers and dates.
結果:
灌流処理の場合背身のヤケ肉指標L*>55と比較した場合、背身上部ではL*値は52.4〜65.7、腹身上部ではL*値は58.4〜72.1であった。L*値測定結果を図6,図7に示す。
result:
In the case of perfusion treatment, the L * value was 52.4-65.7 for the upper back and 58.4-72.1 for the upper abdomen when compared with the back burn index L *> 55. The L * value measurement results are shown in FIGS.
この値を示す色調は明らかに通常ブリには見られないヤケ肉の色調レベルであるが、明瞭に血抜きの効果である事は観察出来、一見で従来のブリ肉とは異なる色調となったが色調には不自然さは無く、目視レベルでは極めて白いが、視感で感ずる明るさと、ヤケ肉の明るさを示すL*値の数値とは異なる事が判明しつつ自然な白さとなった。 The color tone showing this value is clearly the color tone level of burnt meat that is not normally seen in yellowtail, but it can be clearly observed that it is a blood-bleeding effect, and at first glance it became a color tone different from conventional yellowtail meat However, although there is no unnaturalness in the color tone, it is extremely white at the visual level, but it became natural white while it turned out that the brightness felt by the visual sense and the L * value indicating the brightness of the burnt meat were different .
野〆区と灌流処理区の比較写真を(図8)に示す。 A comparative photograph of the Nobi Ward and the perfusion treatment is shown in FIG.
検討:
長時間処理を行ったL*値と同試験の背身腹身白身部との色調差はL*値a*値b*値ともに差を生じたが、検体の中にはa*,b*値でも差を生じているが交差する測定値も散見した。これは脱血の程度と言うよりも多数の測定結果による個体差と推した。
Consideration:
The color difference between the L * value treated for a long time and the back, stomach and white of the same test showed a difference in both the L * value, a * value, and b * value. Although there was a difference in the values, there were some crossing measurements. This was estimated to be an individual difference due to a large number of measurement results rather than the degree of blood removal.
測定値の数値から見るとL*値のみ灌流処理群と一般的な血抜き区で明らかな違いを生じ、大半の検体がヤケ肉と言われるL*値55以上になった。即ち、L*値上はヤケ肉を示しているが、本発明は脱血処理により意図的に当該L*値としたもので、本発明を適用したブリはL*値上ではヤケ肉の指標を満たしていてもヤケ肉ではない。 In terms of the measured values, only the L * value was clearly different between the perfusion treatment group and the general blood removal group, and most of the samples had an L * value of 55 or more, which is called burnt meat. That is, although the L * value indicates burnt meat, the present invention intentionally sets the L * value by blood removal treatment, and the yellowtail that has been applied to the present invention is an index of burnt meat on the L * value. Even if it meets, it is not burnt meat.
・試験4(脱血レベル測定)
方法:
脱血の程度が従来示されていない事から、灌流導血による赤血球の存在を示す吸光度(ABSレンジ0〜3)と、簡易測定法である色差計の(L*a*b*値)の相関を調べた。
・ Test 4 (Blood removal level measurement)
Method:
Since the degree of blood removal has not been shown in the past, the absorbance (ABS range 0 to 3) indicating the presence of red blood cells by perfusion and the color difference meter (L * a * b * value) which is a simple measurement method The correlation was examined.
結果:
血液導出灌流液排液の分光計吸収度(ABS)のHbバンドである536,569nmピークはいずれも処理3分迄急激に低下し、魚体内の血液が体外に排出され減少している事を示した。
result:
The 536,569nm peak, which is the Hb band of spectrometer absorbance (ABS) of blood drained perfusate drainage, suddenly decreased until 3 minutes of treatment, indicating that the blood in the fish body is drained out of the body and decreased. It was.
血液由来の418nmピークバンドは2分程遅れの5分後に濃度は低下した。 The concentration of the blood-derived 418 nm peak band decreased after 5 minutes with a delay of about 2 minutes.
確認として無処理区(野締め)の背肉上部の白身部を蒸留水10倍希釈ホモジナイズし、10μmフィルター濾過液を分光計400〜650nmで計測してもHbに配位子が結合した赤血球の存在を示す(536,569nm)帯及び血液由来の418nmの3バンドは418nmを最大として検出されたのに対し、灌流処理群の背身白身肉を蒸留水10倍希釈ホモジナイズし、10μmフィルター濾過液を分光計400〜650nmで計測してもHbに配位子が結合した赤血球の存在を示す(536,569nm)帯及び血液由来の418nmの3バンドは検出しなかった事から灌流液処理による脱血の効果が確認された。 As a confirmation, the white part of the upper part of the untreated area (Nosame) was homogenized by diluting 10 times with distilled water, and even if the 10 μm filter filtrate was measured with a spectrometer 400 to 650 nm, The band (536, 569 nm) indicating the presence and three bands of 418 nm derived from blood were detected with 418 nm as the maximum, whereas the white meat of the perfusion treatment group was diluted 10 times with distilled water and homogenized, and the 10 μm filter filtrate was added. Even when measured with a spectrometer of 400 to 650 nm, the band (536, 569 nm) showing the presence of Hb-ligand-bound erythrocytes and 3 bands of 418 nm derived from blood were not detected. The effect was confirmed.
同様のサンプルは時間経過とともに(536,569nm)バンドのバランス変化を起こし、血球膜の崩壊と一致する結果となった。従って、光学的手法、分光計による測定としては加工処理時の新鮮灌流液及び魚肉を使用する事は必須である。 A similar sample changed the balance of the band over time (536,569 nm), which was consistent with the disruption of the blood cell membrane. Therefore, it is indispensable to use fresh perfusate and fish meat at the time of processing as an optical method and measurement by a spectrometer.
検討:
光学的手法として、肉片をスライドグラスにスンプし(押しつけ)、ギムザ染色後赤血球の存在の有無を試みた結果、血抜き(延髄切断)処理したものは赤血球は確認出来るが不純物が多いため、判定に熟度が必要で定量するには不向きであると判断した。光学的手法として導出灌流液中の血液はギムザ染色塗抹標本で3分経過時迄確認出来たが5分経過後では確認出来なかった。また、サンプル液は15℃保管とし、更に経過観察を続けたが各区とも、翌日に溶血が進み赤血球膜が崩壊し観察は困難となった。
Consideration:
As an optical method, a piece of meat is squeezed (pressed) onto a slide glass, and the presence or absence of red blood cells after Giemsa staining was attempted. Therefore, it was judged that it was not suitable for quantification. As an optical method, blood in the derived perfusate was confirmed by Giemsa-stained smear until 3 minutes, but not after 5 minutes. Further, the sample solution was stored at 15 ° C., and the follow-up observation was continued. However, in each section, hemolysis progressed the next day and the erythrocyte membrane collapsed, making observation difficult.
肩肉の上部にある背肉の赤いMb色素を含む背身肉をホモジナイズし自然沈降させた検体は、536nmに僅かなピークを形成するが、Hbのバンドとは大きく異なり測定部位の特定するにあたり影響は与えないが、尾部や血合い肉というMb蛋白色素を多く含む部位ではHbと同吸収バンドが出現する事から、背身、腹身とも上部(図2参照)という条件は必須である。 The specimen of homogenized and spontaneously precipitated back meat containing red Mb pigment in the upper part of the shoulder meat forms a slight peak at 536 nm, which is very different from the Hb band and is used to identify the measurement site. Although there is no effect, the same upper band (see Fig. 2) is essential for the back and abdomen because the same absorption band as Hb appears in the part containing many Mb protein pigments such as tail and blood.
・各処理区の分光計吸収度(ABS)と色差計(L*a*b*)との関係
導出灌流液の測定は2つのHbピーク値の平均値として0min(吐出開始時)から1min毎10min及び、60minまで安定している536nmピーク値の吸光度を測定し、60分で完全に脱血が終了した前提で、各分毎のABS値の累計値を脱血度とした。
・ Relationship between spectrometer absorbance (ABS) and color difference meter (L * a * b *) in each treatment zone Measurement of the derived perfusate is the average of the two Hb peak values from 0 min (at the start of discharge) to every 1 min Absorbance at the peak value of 536 nm, which was stable for 10 min and 60 min, was measured, and on the assumption that blood removal was completed completely in 60 minutes, the cumulative value of the ABS value for each minute was taken as the blood removal degree.
脱血は導出鰓血管より脊動脈を経て各臓器及び、筋肉内の毛細血管を経て導出される事から、筋肉の脱血のみと脱血度は一致しない。従って、初期の脱血度は内臓器官から導出される事が考えられ、筋肉の脱血には時間がかかるものと推察し、灌流処理時間1,2,3,6,10,60分の脱血度、及び対応するL*値(背身、腹身いずれも上部)及び目視による導出灌流液色調を図6に併記した。 Since blood removal is derived from each derived blood vessel through the spinal artery and each organ and capillary in the muscle, only the blood removal from the muscle does not match the degree of blood removal. Therefore, it is considered that the initial degree of blood removal may be derived from internal organs, and it is assumed that it takes time to remove blood from the muscles, and the perfusion treatment time is 1, 2, 3, 6, 10, 60 minutes. FIG. 6 shows the blood level, the corresponding L * value (both the back and the abdomen), and the visually derived perfusate color tone.
・灌流処理と活け締めの閾値
脱血度は導出灌流液の吸光度(ABS)を導出初期より累計した事から、野〆区の脱血度はそのままの吸光度である。従って、この数値を0に置換して脱血率を算定する事も可能である。本試験の結果は野〆区を56.4とし60分処理区を100として記載した。
-Threshold of perfusion treatment and squeezing The degree of blood removal is the accumulated absorbance of the derived perfusate (ABS) from the beginning of the derivation. Therefore, it is possible to calculate the blood removal rate by substituting this value with 0. The results of this test are shown as Nobi Ward as 56.4 and 60 min treatment as 100.
灌流処理はその原理から内循環系の血液を導出する効果は他の脱血処理と比べ極めてその効果は高い。しかし、反面消費者からは、味覚上、色調上の観点から、脱血の程度を下げて欲しいとの意見もあることは、完全な嗜好の分野である事から、実用上灌流処理時間は任意に調整出来る。 Perfusion treatment is extremely effective in deriving blood from the internal circulation system from the principle compared to other blood removal treatments. On the other hand, however, there is an opinion from consumers that the degree of blood removal should be reduced from the viewpoint of taste and color. Can be adjusted.
ヤケ肉指標としての基準であると言われるL*値を基準とし検体での導出灌流液には魚肉に残留しているHbは大凡(図4)に示した時間内(1min〜10min)で血液成分中の赤血球は82.9〜99.17%は魚体から除去される事が示された。 Based on the L * value, which is said to be the standard for burnt meat, the Hb remaining in the fish meat in the derived perfusate in the sample is blood within the time (1 min to 10 min) shown in Fig. 4 It was shown that 82.9-99.17% of red blood cells in the components were removed from fish.
1)野〆区
無処理の野締め区処理品は背身部L*値32.4〜35.3及び腹身部L*値35.6〜37.4を得た。
1) Nobuchi Ward Untreated Nosame Ward products gave back L * values of 32.4 to 35.3 and abdominal body L * values of 35.6 to 37.4.
2)丁寧な脱血
延髄切断血絞り区:背身部L*値40.1〜44.6、腹身部L*値44.3〜46.2
鰓切遊泳放血後30min吊下:背肉L*値44.3〜46.3腹肉L*42.4〜47.6
を得た。
2) Careful blood removal The medullary amputated blood squeezed section: Back L * value 40.1 ~ 44.6, Abdominal L * value 44.3 ~ 46.2
Suspension for 30 min after blood drainage: Back meat L * value 44.3-36.3 Belly meat L * 42.4-47.6
Got.
3)灌流処理区(1min〜10min)
背身部L*値52.4〜57.5、腹身部L*値58.4〜72.1を得た。
3) Perfusion treatment section (1-10min)
Back L * values 52.4-57.5 and abdominal L * values 58.4-72.1 were obtained.
色素蛋白質であるHbは色調に及ぼす影響は大きく、僅か1分以上の灌流処理でL*値は50を超えるが、肉色調では淡血色を呈している。この時のa*値(赤⇔緑)は0〜1まで低下するが、更に2分経過時にはL*値の変化よりもa*値の方が明瞭に低下し大凡-2前後を示す様になる。更に6分経過後では背身L*値は55〜60、腹身L*値は60〜65を示す様になり、血抜きの効果が顕著となる。 Hb, a chromoprotein, has a large effect on color tone, and the L * value exceeds 50 after a perfusion treatment of only 1 minute or more. At this time, the a * value (red green) decreases from 0 to 1, but after 2 minutes, the a * value is clearly lower than the change in the L * value, indicating roughly around -2. Become. Furthermore, after 6 minutes, the back L * value is 55-60, and the abdominal L * value is 60-65, and the blood removal effect becomes remarkable.
図4より(式1)により求められた脱血度と10分処理区を100%に補正した白身部位L*値の説明率は背身上部R2=0.98732、腹身上部R2=0.98761と強い相関が認められた(図9)。 Figure 4 than described ratio of white portions L * value of de tides and 10 minutes treatment group obtained was corrected to 100% by (Equation 1) Semi-top R 2 = 0.98732, a skirt steak upper R 2 = .98761 A strong correlation was observed (Figure 9).
相関式は背身上部はy=0.6928X-6.0454、腹身上部はy=0.7009x-3.2438である。 The correlation equation is y = 0.6928X-6.0454 for the upper back and y = 0.7009x-3.2438 for the upper abdomen.
また、いずれの区も背身肉よりも腹身肉の方がL*は上回る結果となった。 In addition, L * exceeded the abdomen meat in all wards than the back meat.
効果1:
内循環系である血管を利用して冷却する方法は魚体内部より冷却が可能なため、短時間で魚体をヤケ肉発生部位から冷却出来る極めて有効な手段である。
Effect 1:
The method of cooling using the blood vessels that are the internal circulation system is an extremely effective means that can cool the fish body from the burnt meat generation site in a short time because it can be cooled from inside the fish body.
脱血の程度は筋肉中の血液色調が抜ける事を意味し、筋肉軟化原因のプロテアーゼ(カテプシンL)が赤血球膜に多量に存在するとした場合、現場管理用としては間接的な手段として血抜きの程度はブリでは白身肉の背身上部、腹身上部の色調L*a*b*値中L*値a*が有効である。 The degree of blood removal means that the color tone of the blood in the muscles is lost, and if there is a large amount of protease (cathepsin L) that causes muscle softening in the erythrocyte membrane, blood removal is an indirect means for on-site management. For yellowtail, the L * value a * of the L * a * b * values of the white upper back and the upper abdomen is effective.
L*a*b*値の測定は,間接的に画像解析が可能である事から、測定位置を定義すれば、製造加工ラインに組み込み、品質のバラツキをコントロールする事が可能である。 Measurement of L * a * b * values can be indirectly analyzed, so if you define the measurement position, you can incorporate it into the production line and control the quality variation.
灌流処理されたブリの白身肉は従来市場に存在しない透明度の高い脱血された色調に変化した(図8)。 The white meat of yellowtail that had been perfused changed to a highly transparent blood-bleeded color that did not exist in the market (FIG. 8).
一般血抜き(延髄切断脊髄破壊、及び鰓切遊泳放血)では脱血の程度は不明であるが相関式より白身肉のL*値より脱血度を推算すると68〜71となった(図7)。 In general blood removal (medullary amputation spinal cord destruction and phlebotomy swimming blood release), the degree of blood removal is unknown, but the degree of blood removal was estimated to be 68 to 71 from the L * value of white meat from the correlation equation (FIG. 7). ).
血抜きの手段として丁寧な一般血抜きは初期L*値は40〜45であるのに対し、灌流処理は1min,2.2L/min以上の処理で脱血度80を越え、背身上部及び腹身上部の白身部のL*値が50以上であり本発明に至った。 Careful general blood removal as a means of blood removal has an initial L * value of 40 to 45, while perfusion treatment has a blood removal level of 80 min with treatment of 1 min, 2.2 L / min or more, and the upper back and abdomen. The L * value of the white part of the upper body was 50 or more, which led to the present invention.
・食味試験
検体作成手順:
検体1,2を除いて冷凍処理は所定の処理後フィレー加工処理後マイナス35℃のブライン凍結処理を行い、マイナス18℃冷凍庫で9日間保管後、+3℃インキュベータで各検体を5,6及び3,4を8時間ずらし真空パック毎12時間の緩慢解凍を行い試食試験に供した。以下に検体処理後の取り扱いを示す。
・ Taste test Sample preparation procedure:
Except for specimens 1 and 2, the freezing process is the prescribed post-processing, fillet processing, and minus 35 ° C brine freezing treatment. After storage for 9 days in a minus 18 ° C freezer, each specimen is stored in a + 3 ° C incubator for 5, 6 and 3 , 4 were shifted for 8 hours and slowly thawed for 12 hours every vacuum pack for a tasting test. The following shows the handling after specimen processing.
1)冷凍解凍8時間経過区(検体5,6)
検体は5灌流区、6一般血抜区として冷凍解凍後を背身腹身とも上部、中部をスライス
し作製後ラップで保湿して6℃で保管時間(冷凍解凍8時間後)とした。
1) 8 hours after freezing and thawing (Sample 5,6)
The specimens were 5 perfusion groups and 6 general blood-free sections. After freezing and thawing, the upper and middle parts of the back and abdomen were sliced, moisturized with wraps and stored at 6 ° C. (8 hours after freezing and thawing).
2)冷凍解凍直後区(検体3,4)
検体は3灌流区、4一般血抜区として解凍済の冷凍品を背身腹身とも上部、中部をスラ
イスとして大凡30分後に試食に供した。
2) Immediately after freezing and thawing (Sample 3, 4)
The specimens were sampled approximately 30 minutes later, with thawed frozen upper and lower half of the back and belly in three perfusion and four general blood-free sections.
3)活魚区(検体1,2)
検体は1灌流区、2一般血抜区として活魚を灌流処理直後、及び、延髄切断血抜き処理
直後、背身腹身とも上部、中部をスライスとして試食に供した。
3) Live fish area (Sample 1, 2)
The specimens were sampled as 1 perfusion group and 2 general blood withdrawal groups immediately after the perfusion treatment of live fish and immediately after the medullary amputation blood removal treatment, and the upper and middle parts of the back and stomach were sliced.
以上の6検体は明らかに色調差がある事から灌流区をA列(1,3,5)、一般血抜処理区をB列(2,4,6)として同一のテーブルに準備し試食パネラーに特殊血抜処理と一般血抜の2種である事のみを事前に説明し、感想内容の下記の留意点を示し、
1 外観(色調)
2 臭気(生臭味、血生臭み)
3 食味(旨さ、硬さ)
を5段階で評価(優良5,良4,可3,可否2,不可1)することと各自のコメントを依頼した。
The above 6 specimens have clear color difference, so prepare perfusion panel in the same table as perfusion group A column (1, 3, 5) and general blood removal group B column (2, 4, 6). Explain in advance that there are two types of special blood removal treatment and general blood removal, and indicate the following points to consider
1 Appearance (color tone)
2 Odor (raw odor, bloody odor)
3 Taste (taste, hardness)
Was evaluated in 5 stages (excellent 5, good 4, acceptable 3, acceptable 2, impossible 1) and requested their own comments.
結果(養殖業者、ブリを扱う調理人及び加工処理者による意見)を図10に示す。 FIG. 10 shows the results (opinions by farmers, cooks who handle yellowtail, and processors).
図10より、パネラーの代表的意見は、
1 1,3,5(灌流品)はブリとしてはあり得ないくらい白身が白い。
2 1,3,5(灌流品)は全く臭いがない、生臭味がない。
3 5は少し軟らかいが6に比べ断然硬さがある。
4 4,6(一般血抜き)は色が悪く食べたくない。
From Fig. 10, the panelists' representative opinions are:
1 1,3,5 (perfusion product) is white as white as impossible for yellowtail.
2 1,3,5 (perfusion product) has no odor and no odor.
3 5 is slightly softer, but it is much harder than 6.
4 4,6 (general blood-free) is bad in color and does not want to eat.
一方嗜好性として
1 2(無処理生鮮品)が普段から食べ慣れている味である。
2 3(灌流処理区解凍品)は食べた時、魚の旨味がすぐ解る。旨い。
3 1,3,5(灌流処理)はブリの味(血液味)、臭いがしない。
4 4,6は軟らかすぎるし色が悪い。
5 6は生臭味が強い。
On the other hand, as palatability
1 2 (unprocessed perishables) is a taste that is usually used to eating.
2 3 (perfused thawing product), the taste of fish is immediately understood when eaten. delicious.
3 1, 3, 5 (perfusion treatment) does not taste yellowtail (blood taste) or smell.
4 4 and 6 are too soft and the color is bad.
5 6 has a strong odor.
10人のパネラー総合評価点から見た順位として
ランク 評点 検体明細
1 (55点) 生鮮灌流処理品
2,3 (49,49点) 灌流冷凍品解凍後及び生鮮一般血抜き直後
4 (45点) 灌流冷凍品解凍後8時間経過品
5 (24点) 生鮮一般血抜き冷凍品解凍直後
6 (19点) 生鮮一般血抜き冷凍品解凍8時間経過品
更に通常のブリでは常温数時間経過にともない血生臭味を生ずるのに対し、所定の灌流処理したブリは全く臭気が感じられない製品となった反面、「ブリの味(血の味)がしない、白すぎる」との否定的な意見もあったが色調も変化しにくく、硬度も維持される事はパネラーの一致した意見であった。
Rank as seen from the overall panel score of 10 people Rank Score Sample Details
1 (55 points) Fresh perfusion processed products
2,3 (49,49 points) After thawing perfusion frozen products and immediately after deflating fresh blood
4 (45 points) Perfused frozen product 8 hours after thawing
5 (24 points) Fresh general blood-free frozen product immediately after thawing
6 (19 points) Fresh and general blood-free frozen product thawed after 8 hours In addition, normal yellowtail produces a bloody odor with a few hours of normal temperature, whereas the yellowtail does not feel odor at all. Although it was a product, there was a negative opinion that "the taste of the yellowtail (the taste of blood) is not white, too white", but the panelists agreed that the color tone is difficult to change and the hardness is maintained. there were.
この血生臭さは、嗜好性の分野であるが、女性及び子供に試食させた時の反応は極めて敏感に感ずるようであり、野〆の天然魚を従来より食べ慣れた人からするかなり違和感を感ずるくらい明瞭に差を生じた。 This bloody smell is an area of palatability, but it seems that the response when the sample is given to women and children seems to be extremely sensitive, which makes the wild fish of wild samurai more disgusting than those who are accustomed to eating. The difference was as clear as it felt.
従って灌流処理によりほぼ完全に体内の血液が導出されている事を意味し、血液由来の酵素群の除去により品質劣化の遅延が起き、硬度が保たれたたものと推定した。 Therefore, it was estimated that blood in the body was almost completely derived by perfusion treatment, and that the deterioration of quality occurred due to the removal of blood-derived enzyme groups, and the hardness was maintained.
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016082837 | 2016-04-18 | ||
JP2016082837 | 2016-04-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017192382A true JP2017192382A (en) | 2017-10-26 |
JP6678622B2 JP6678622B2 (en) | 2020-04-08 |
Family
ID=60155763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017081797A Active JP6678622B2 (en) | 2016-04-18 | 2017-04-18 | Method for blood removal of yellowtail, method for manufacturing bloody yellowtail, method for blood removal of tuna, and method for manufacturing bloodless tuna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6678622B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020099230A (en) * | 2018-12-21 | 2020-07-02 | 和也 高城 | Fish blood removal processing method |
WO2020149378A1 (en) * | 2019-01-16 | 2020-07-23 | 学校法人福岡大学 | Method for preserving freshness of edible meat |
WO2021019795A1 (en) * | 2019-07-29 | 2021-02-04 | 有限会社ハマスイ | Blood removal treatment method for fish and whole fish |
WO2021173535A1 (en) * | 2020-02-26 | 2021-09-02 | Finless Foods Inc. | Systems and methods for live fish tissue preservation |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06169730A (en) * | 1991-10-16 | 1994-06-21 | Koikuni:Kk | Carbonylation of meat pigment of fresh fish slice and cut meat and apparatus therefor |
JPH08294357A (en) * | 1995-03-02 | 1996-11-12 | Onsui:Kk | Smoked product of yellowtail or amberjack and production of smoked and frozen product of yellowtail or amberjack |
JPH10179016A (en) * | 1996-12-24 | 1998-07-07 | Onsui:Kk | Perfusion system |
JP2004081048A (en) * | 2002-08-23 | 2004-03-18 | Kanemitsu Yamaoka | Method for preserving and treating round tuna |
JP2005295820A (en) * | 2004-04-07 | 2005-10-27 | Yanmar Co Ltd | Method for purifying bivalve, method for evaluating purification of bivalve, and device for purifying bivalve |
JP2008054559A (en) * | 2006-08-30 | 2008-03-13 | Hayashikane Sangyo Kk | Method for anesthetizing fish and anesthetizing device |
JP2008109906A (en) * | 2006-10-31 | 2008-05-15 | Kohei Oda | Method for keeping tuna freshness, and freshness keeping device |
JP2009178075A (en) * | 2008-01-30 | 2009-08-13 | Univ Nihon | New gene involved in transformation of hepatocyte to fibroblast-like cell |
JP2009278909A (en) * | 2008-05-22 | 2009-12-03 | Nippon Suisan Kaisha Ltd | Method for landing fish |
JP2010104356A (en) * | 2008-09-30 | 2010-05-13 | Onsui:Kk | Method for retaining freshness of fish |
-
2017
- 2017-04-18 JP JP2017081797A patent/JP6678622B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06169730A (en) * | 1991-10-16 | 1994-06-21 | Koikuni:Kk | Carbonylation of meat pigment of fresh fish slice and cut meat and apparatus therefor |
JPH08294357A (en) * | 1995-03-02 | 1996-11-12 | Onsui:Kk | Smoked product of yellowtail or amberjack and production of smoked and frozen product of yellowtail or amberjack |
JPH10179016A (en) * | 1996-12-24 | 1998-07-07 | Onsui:Kk | Perfusion system |
JP2004081048A (en) * | 2002-08-23 | 2004-03-18 | Kanemitsu Yamaoka | Method for preserving and treating round tuna |
JP2005295820A (en) * | 2004-04-07 | 2005-10-27 | Yanmar Co Ltd | Method for purifying bivalve, method for evaluating purification of bivalve, and device for purifying bivalve |
JP2008054559A (en) * | 2006-08-30 | 2008-03-13 | Hayashikane Sangyo Kk | Method for anesthetizing fish and anesthetizing device |
JP2008109906A (en) * | 2006-10-31 | 2008-05-15 | Kohei Oda | Method for keeping tuna freshness, and freshness keeping device |
JP2009178075A (en) * | 2008-01-30 | 2009-08-13 | Univ Nihon | New gene involved in transformation of hepatocyte to fibroblast-like cell |
JP2009278909A (en) * | 2008-05-22 | 2009-12-03 | Nippon Suisan Kaisha Ltd | Method for landing fish |
JP2010104356A (en) * | 2008-09-30 | 2010-05-13 | Onsui:Kk | Method for retaining freshness of fish |
Non-Patent Citations (1)
Title |
---|
J. FOOD SCI. (2014) VOL.79, NO.5, P.E881-E886, JPN6019030237, ISSN: 0004219229 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020099230A (en) * | 2018-12-21 | 2020-07-02 | 和也 高城 | Fish blood removal processing method |
WO2020149378A1 (en) * | 2019-01-16 | 2020-07-23 | 学校法人福岡大学 | Method for preserving freshness of edible meat |
WO2021019795A1 (en) * | 2019-07-29 | 2021-02-04 | 有限会社ハマスイ | Blood removal treatment method for fish and whole fish |
JPWO2021019795A1 (en) * | 2019-07-29 | 2021-09-13 | 有限会社ハマスイ | How to remove blood from fish and round fish |
WO2021173535A1 (en) * | 2020-02-26 | 2021-09-02 | Finless Foods Inc. | Systems and methods for live fish tissue preservation |
Also Published As
Publication number | Publication date |
---|---|
JP6678622B2 (en) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abraha et al. | Effect of processing methods on nutritional and physico-chemical composition of fish: a review | |
JP6678622B2 (en) | Method for blood removal of yellowtail, method for manufacturing bloody yellowtail, method for blood removal of tuna, and method for manufacturing bloodless tuna | |
Gokoglu et al. | Seafood chilling, refrigeration and freezing: science and technology | |
Lazo et al. | Sensory characterization, physico-chemical properties and somatic yields of five emerging fish species | |
Hui et al. | Biochemistry of seafood processing | |
Rotabakk et al. | Quality assessment of Atlantic cod (Gadus morhua) caught by longlining and trawling at the same time and location | |
Erikson et al. | Effects of perimortem stress on farmed Atlantic cod product quality: A baseline study | |
CN108185328A (en) | A kind of processing method of chilled fish | |
Hafez et al. | Effect of salting process on fish quality | |
Mahmoud et al. | Effect of freezing preservation period on some sensory characteristics of three Iraqi local fish species | |
KR101342092B1 (en) | Method for preparing smoked duck products with natural materials | |
Latifi et al. | Effect of preservative of Anarijeh (Froriepia subpinnata) extract on shelf life of silver carp fish (Hypophthalmichthys molitrix) at superchilling temperature (-3 C) | |
Nielsen et al. | Quality of frozen fish | |
Calder | The use of polyphosphates to maintain yield and quality of whole cooked, cryogenically frozen lobster (Homarus americanus) and the use of sorbitol and tocopherol to maintain quality of whole cooked, cryogenically frozen crab (Cancer irroratus) | |
Doré | The new fresh seafood buyer’s guide: A manual for distributors, restaurants and retailers | |
Gonçalves et al. | Quality of frozen fish | |
KR100694793B1 (en) | Manufacturing Method of Salted Fish | |
CN109444358B (en) | Model analysis method for distinguishing frozen freshwater fish meat quality degradation influence factors and application | |
Johnson | Texture Analyses of Catfish: A Genetics Approach | |
Rahman et al. | Effect of different salting methods on the nutritional and sensory characteristics of hilsa (Hilsa ilisha) | |
Odoli | Optimal storage conditions for fresh farmed tilapia (Oreochromis niloticus) fillets | |
KR100909278B1 (en) | Dried anchovy contained the ingredients of ginseng and manufacturing method of it | |
JP2004093111A (en) | Ice for storing perishable food | |
Bayantassova et al. | Veterinary-sanitary inspection of poultry, fish, beekeeping and plant products | |
Kitanovski et al. | Alternations in quality parameters of rainbow trout (Oncorhynchus mykiss) compared to albino golden rainbow trout stored at 0 to 4◦ C |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6678622 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |