JP2017192350A - Method for lysis of mycoplasma pneumoniae and method for detection thereof - Google Patents

Method for lysis of mycoplasma pneumoniae and method for detection thereof Download PDF

Info

Publication number
JP2017192350A
JP2017192350A JP2016085166A JP2016085166A JP2017192350A JP 2017192350 A JP2017192350 A JP 2017192350A JP 2016085166 A JP2016085166 A JP 2016085166A JP 2016085166 A JP2016085166 A JP 2016085166A JP 2017192350 A JP2017192350 A JP 2017192350A
Authority
JP
Japan
Prior art keywords
mycoplasma pneumoniae
rna
nucleic acid
lysis
mycoplasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016085166A
Other languages
Japanese (ja)
Inventor
悠 塚本
Yu Tsukamoto
悠 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016085166A priority Critical patent/JP2017192350A/en
Publication of JP2017192350A publication Critical patent/JP2017192350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for lysing Mycoplasma pneumoniae from a biological sample to easily and in a short time release nucleic acids therefrom while preventing an inhibitor from eluting, even without the use of a special apparatus.SOLUTION: According to the present invention, a method comprises lysing Mycoplasma pneumoniae in sputum by coexisting Mycoplasma pneumoniae with an ionic surfactant (preferably sodium lauryl sulfate), purifying the RNA of Mycoplasma pneumoniae, and amplifying and detecting the purified RNA of Mycoplasma pneumoniae.SELECTED DRAWING: None

Description

本発明は、マイコプラズマニューモニエの溶菌方法およびそれを用いた検査方法に関する。   The present invention relates to a method for lysis of Mycoplasma pneumoniae and an inspection method using the same.

マイコプラズマニューモニエは、世界的に蔓延する細菌性疾患であり、その治療方法のみならず診断方法は極めて重要である。マイコプラズマニューモニエは人に感染すると気管支炎と肺炎(以下マイコプラズマ肺炎)といった疾患を引き起こす。異形肺炎の多くがマイコプラズマ肺炎であり、市中肺炎としての頻度も高い。日本では晩秋から早春にかけて報告数が多くなり、罹患年齢は幼児期、学童期、青年期が中心である。   Mycoplasma pneumoniae is a bacterial disease that is prevalent in the world, and not only its therapeutic method but also its diagnostic method is extremely important. Mycoplasma pneumoniae causes infections such as bronchitis and pneumonia (hereinafter called mycoplasma pneumonia) when it infects humans. Most of the variant pneumonia is mycoplasma pneumonia, and the frequency as community pneumonia is high. In Japan, the number of reports has increased from late autumn to early spring, and the affected age is mainly in early childhood, schoolchildhood, and adolescence.

マイコプラズマニューモニエのもっと確定的な診断法は培養法であるが、マイコプラズマニューモニエの増殖速度は極めて遅く、診断の遅れ、ひいては二次感染の拡大および発生につながりかねない。そこで、時間のかかる培養法と並行して、迅速に結果が得られる検査法が開発されている。なかでも注目されているのは、マイコプラズマニューモニエに特異的な核酸鎖の増幅・検出法である。この方法は、検査の対象とする菌の核酸(DNAやRNAなど)に特異的なプライマーを用い、菌の核酸鎖を増幅して検出することにより、 菌の有無を判定する方法である。   A more definitive diagnostic method for Mycoplasma pneumoniae is the culture method, but the growth rate of Mycoplasma pneumoniae is extremely slow, which can lead to delays in diagnosis, and hence the spread and development of secondary infections. Therefore, in parallel with the time-consuming culture method, a test method that can quickly obtain a result has been developed. Of particular interest are nucleic acid strand amplification and detection methods specific to Mycoplasma pneumoniae. This method is a method for determining the presence or absence of a bacterium by amplifying and detecting the nucleic acid chain of the bacterium using a primer specific for the nucleic acid (DNA, RNA, etc.) of the bacterium to be examined.

前記核酸増幅法を適用した診断法では、その前処理としてマイコプラズマニューモニエを溶菌して核酸鎖を抽出する必要がある。従来の溶菌方法としては、例えば、有機溶媒等や界面活性剤を用いた化学的方法(特許文献1)、酵素を用いる生物学的方法、および、超音波処理もしくは微粒子存在下での超音波破砕、凍結・融解の繰り返すといった物理的方法等がある。しかし、従来の方法は時間がかかり、またマイコプラズマニューモニエの含まれる生体試料が過度に分解され、生体試料由来成分によりその後の反応を阻害するなどの問題があった。   In the diagnostic method to which the nucleic acid amplification method is applied, it is necessary to extract a nucleic acid chain by lysing Mycoplasma pneumoniae as a pretreatment. Examples of conventional lysis methods include chemical methods using organic solvents and surfactants (Patent Document 1), biological methods using enzymes, and ultrasonication or ultrasonic disruption in the presence of fine particles. There are physical methods such as repeated freezing and thawing. However, the conventional method takes time, and there is a problem that a biological sample containing Mycoplasma pneumoniae is excessively decomposed and a subsequent reaction is inhibited by a component derived from the biological sample.

特開2014−97051号公報JP 2014-97051 A

本発明は、生体試料から特殊な装置を用いなくても、簡単、短時間に阻害物質の溶出を防ぎながらマイコプラズマニューモニエを溶菌する方法を提供し、さらには核酸鎖、特にRNAを損ねることを最小限として放出させる方法を提供することを、その目的とする。   The present invention provides a method for easily lysing mycoplasma pneumoniae while preventing elution of an inhibitor in a short time without using a special apparatus from a biological sample, and further minimizes damage to nucleic acid strands, particularly RNA. The object is to provide a method of release as a limit.

前記目的を達成するために、本発明者は鋭意検討した結果、本発明に到達した。即ち本発明は以下のとおりである。
(1)マイコプラズマニューモニエにイオン性界面活性剤を共存させることを特徴とする、マイコプラズマニューモニエの溶菌方法。
(2)前記イオン性界面活性剤がラウリル硫酸ナトリウムである(1)に記載の方法。
(3)喀痰中に含まれるマイコプラズマニューモニエである(1)又は(2)に記載の方法。
(4)(1)から(3)のいずれかに記載の方法によってマイコプラズマニューモニエを溶菌し、次いでマイコプラズマニューモニエのRNAを精製することを特徴とする、マイコプラズマニューモニエのRNAの精製方法。
(5)(4)に記載の方法によってマイコプラズマニューモニエのRNAを精製し、次いで精製されたマイコプラズマニューモニエのRNAを増幅し検出することを特徴とするマイコプラズマニューモニエの検出方法。
In order to achieve the above object, the present inventors have intensively studied to arrive at the present invention. That is, the present invention is as follows.
(1) A method for lysing Mycoplasma pneumoniae, wherein an ionic surfactant is allowed to coexist with Mycoplasma pneumoniae.
(2) The method according to (1), wherein the ionic surfactant is sodium lauryl sulfate.
(3) The method according to (1) or (2), which is a Mycoplasma pneumoniae contained in the soot.
(4) A method for purifying Mycoplasma pneumoniae RNA, which comprises lysing Mycoplasma pneumoniae by the method according to any one of (1) to (3) and then purifying the Mycoplasma pneumoniae RNA.
(5) A method for detecting Mycoplasma pneumoniae, comprising purifying Mycoplasma pneumoniae RNA by the method described in (4) and then amplifying and detecting the purified Mycoplasma pneumoniae RNA.

以下に本発明をさらに詳細に説明する。   The present invention is described in further detail below.

本発明はマイコプラズマニューモニエにイオン性界面活性剤を共存させ、溶菌させる。本発明においてマイコプラズマニューモニエの存在形態としては特に限定されるものではなく、例えば生体試料中に含まれるものがあげられる。前記生体試料としては、喀痰、咽頭拭い液、鼻咽頭拭い液、培養液があげられるが、本発明の一態様として、前記生体試料としては喀痰が想定される。本発明の方法は喀痰中の阻害成分をあまり可溶化せず、喀痰中のマイコプラズマニューモニエを溶菌し、かつ核酸の分解を防止することができる。   In the present invention, an ionic surfactant is allowed to coexist in Mycoplasma pneumoniae and lysed. In the present invention, the presence form of Mycoplasma pneumoniae is not particularly limited, and examples thereof include those contained in a biological sample. Examples of the biological sample include sputum, pharyngeal wiping solution, nasopharyngeal wiping solution, and culture solution. As one aspect of the present invention, sputum is assumed as the biological sample. The method of the present invention does not solubilize inhibitory components in sputum so much, can lyse mycoplasma pneumoniae in sputum, and can prevent nucleic acid degradation.

本発明に用いられるイオン性界面活性剤としては、マイコプラズマニューモニエを溶菌できるものなら特に限定されず、陽イオン性界面活性剤又は陰イオン性界面活性剤のいずれでもよい。例えばラウリル硫酸ナトリウム、コール酸ナトリウム、臭化ヘキサデシルトリメチルアンモニウム、塩化ベンザルコニウム、塩化セチルピリジニウムなどが使用でき、好ましくはラウリル硫酸ナトリウム、塩化ベンザルコニウム、塩化セチルピリジニウムであり、更に好ましくはラウリル硫酸ナトリウムである。イオン性界面活性剤の濃度には特に限定はないが、好ましくは1〜20w/v%、更に好ましくは2.5〜10w/v%である。   The ionic surfactant used in the present invention is not particularly limited as long as it can lyse Mycoplasma pneumoniae, and may be either a cationic surfactant or an anionic surfactant. For example, sodium lauryl sulfate, sodium cholate, hexadecyltrimethylammonium bromide, benzalkonium chloride, cetylpyridinium chloride, etc. can be used, preferably sodium lauryl sulfate, benzalkonium chloride, cetylpyridinium chloride, more preferably lauryl. Sodium sulfate. The concentration of the ionic surfactant is not particularly limited, but is preferably 1 to 20 w / v%, more preferably 2.5 to 10 w / v%.

本発明はこのようにして溶菌した後、さらにRNAの精製工程を含んでもよい。精製の方法としては特に限定しないが、一般的に核酸増幅に適用できるもの好ましく、たとえば、AGPC法(Chomczynski,P.,et al.(1987)Anal. Biochem.,162,156−159.)、BOOM法(特許2680462号公報)、などの方法があげられる。BOOM法の好ましい態様として検体を少なくともグアニジン塩酸塩、2−プロパノールを含む溶液に添加し、シリカを含有する固相と接触させ、シリカを含有する固相に核酸を吸着させたのち、核酸がシリカを含有する固相から解離しにくい条件下で洗浄し、グアニジン非存在下で核酸を溶出させる方法があげられる。精製されるマイコプラズマニューモニエのRNAとしては特に限定はされないが、好ましくはリボソームRNA(rRNA)をあげることができる。   The present invention may further comprise an RNA purification step after lysis in this manner. Although it does not specifically limit as a purification method, Generally what can be applied to nucleic acid amplification is preferable, for example, AGPC method (Chomczynski, P., et al. (1987) Anal. Biochem., 162, 156-159.), Examples include the BOOM method (Japanese Patent No. 2680462). As a preferred embodiment of the BOOM method, a sample is added to a solution containing at least guanidine hydrochloride and 2-propanol, brought into contact with a solid phase containing silica, adsorbed to the solid phase containing silica, and then the nucleic acid is silica. And a method of eluting the nucleic acid in the absence of guanidine by washing under conditions where it is difficult to dissociate from the solid phase containing. The RNA of Mycoplasma pneumoniae to be purified is not particularly limited, and preferably ribosomal RNA (rRNA) can be mentioned.

本発明ではこのように精製されたRNAに対して、当業者が適宜核酸増幅法を選択して、マイコプラズマニューモニエの検出が可能である。前記核酸増幅法としては特に限定されないが、PCR法、NASBA法、TMA法があげられ、好適には一定温度・一段階・リアルタイムにRNAを増幅かつ測定可能なTRC法(例えば特開2000−14400号公報、特開2001−37500号公報、特開2001−353000号公報、Ishiguro,T.,et al.(2003)Anal. Biochem.,314,1247−1252.)が使用できる。   In the present invention, a person skilled in the art can appropriately select a nucleic acid amplification method for the RNA thus purified, and detect Mycoplasma pneumoniae. The nucleic acid amplification method is not particularly limited, and examples thereof include a PCR method, a NASBA method, and a TMA method, and preferably a TRC method that can amplify and measure RNA at a constant temperature, in one step, and in real time (for example, JP 2000-14400 A). No. 1, JP-A-2001-37500, JP-A-2001-353000, Ishiguro, T., et al. (2003) Anal. Biochem., 314, 1247-1252.).

本発明により、操作者は簡単に、短時間に、マイコプラズマニューモニエを溶菌し、RNAを含む核酸を精製・抽出でき、諸検査に適用できる。   According to the present invention, an operator can lyse Mycoplasma pneumoniae in a short time, purify and extract nucleic acid containing RNA, and can be applied to various tests.

[実施例1]インターカレーター性蛍光色素で標識されたオリゴヌクレオチドの調製
下記(A)に示す、インターカレーター性蛍光色素で標識されたオリゴヌクレオチドプローブ(以下、INAFプローブと記載する)を特開2000−316587号公報で開示の方法に基づき作製した。
(A)配列番号1(GenBank No.NR_077056.1の2095番目から2112番目までの塩基配列)からなるオリゴヌクレオチドの5’末端から15番目のチミンと16番目のアデニンとの間に、リンカーを介してチアゾールオレンジを標識したもの。
[Example 1] Preparation of oligonucleotide labeled with an intercalating fluorescent dye An oligonucleotide probe labeled with an intercalating fluorescent dye (hereinafter referred to as INAF probe) shown in the following (A) It was prepared based on the method disclosed in Japanese Patent No. 316587.
(A) via a linker between the 15th thymine and the 16th adenine from the 5 ′ end of the oligonucleotide consisting of SEQ ID NO: 1 (base sequence from GenBank No. NR — 070556.1 from the 2095th position to the 2112th position) Labeled with thiazole orange.

[実施例2](イオン性界面活性剤による溶菌効率、阻害の検討)
各種イオン性界面活性剤を用いた場合のマイコプラズマニューモニエ溶菌効率、核酸増幅工程での反応阻害を検討した。終濃度1w/v%のラウリル硫酸ナトリウム、終濃度0.5w/v%コール酸ナトリウムそれぞれ350μLに対し、喀痰50μL又は水50μL、マイコプラズマニューモニエ培養液5μLを加え、15秒激しく撹拌した。撹拌後10000g、5分間の遠心分離を行い、その上清100μLを2.4M グアニジンチオシアネート、15mM クエン酸ナトリウム、60% 2−プロパノール、からなる変性試薬に添加した。その後、変性試薬をガラスフィルターと接触させ、核酸をガラスフィルターに捕捉し、ガラスフィルターを200mM 塩化カリウム、40% 2−プロパノールからなる洗浄液1で洗浄した。次に70%エタノールからなる洗浄液2でガラスフィルターを洗浄した。最後にガラスフィルターを乾燥させたのち、10mM 2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、1mM エチレンジアミン四酢酸二水素二ナトリウム二水和物、0.01% アジ化ナトリウムからなる溶出試薬50μLとガラスフィルターとを接触させ溶出液50μLを得た。得られた溶出液(以下、RNA試料とする)を下記の方法で測定した。
[Example 2] (Investigation of lysis efficiency and inhibition by ionic surfactant)
Mycoplasma pneumoniae lysis efficiency when using various ionic surfactants and reaction inhibition in the nucleic acid amplification process were examined. To 350 μL each of sodium lauryl sulfate with a final concentration of 1 w / v% and sodium cholate with a final concentration of 0.5 w / v%, 50 μL of sputum or 50 μL of water and 5 μL of Mycoplasma pneumoniae culture solution were added and vigorously stirred for 15 seconds. After stirring, centrifugation was performed at 10,000 g for 5 minutes, and 100 μL of the supernatant was added to a denaturing reagent consisting of 2.4 M guanidine thiocyanate, 15 mM sodium citrate, 60% 2-propanol. Thereafter, the denaturing reagent was brought into contact with the glass filter, the nucleic acid was captured by the glass filter, and the glass filter was washed with a washing solution 1 consisting of 200 mM potassium chloride and 40% 2-propanol. Next, the glass filter was washed with a washing solution 2 composed of 70% ethanol. Finally, after drying the glass filter, elution consisting of 10 mM 2-amino-2-hydroxymethyl-1,3-propanediol, 1 mM disodium ethylenediaminetetraacetate dihydrate, 0.01% sodium azide 50 μL of reagent was brought into contact with a glass filter to obtain 50 μL of eluate. The obtained eluate (hereinafter referred to as RNA sample) was measured by the following method.

(1)以下の組成からなる反応液を蒸発乾燥用チューブに分注し、蒸発乾燥させた。
反応液の組成:濃度は後述のようにRNA試料及び開始液を添加後(30μL中)の最終濃度
60mM Tris−HCl緩衝液(pH8.35)
300mM トレハロース
各0.48mM dATP、dCTP、dGTP、dTTP
各1.8mM ATP、CTP、UTP
1.3mM GTP
2.9mM ITP
0.2μM 第一のプライマー:配列番号2(GenBank No.NR_077056.1の2171番目から2297番目までの塩基配列の相補配列の5’末端にT7プロモーターを付加したもの)
0.2μM 第二のプライマー:配列番号3(GenBank No.NR_077056.1の1865番目から1890番目までの塩基配列)
50nM INAFプローブ(実施例1で調製したもの)
0.025mg/mL 牛血清アルブミン
142U T7 RNAポリメラーゼ
6.4U AMV逆転写酵素。
(1) A reaction solution having the following composition was dispensed into an evaporation drying tube and evaporated to dryness.
Composition of reaction solution: Concentration is as follows. Final concentration of 60 mM Tris-HCl buffer (pH 8.35) after addition of RNA sample and starting solution (in 30 μL)
300 mM trehalose 0.48 mM each dATP, dCTP, dGTP, dTTP
Each 1.8 mM ATP, CTP, UTP
1.3 mM GTP
2.9 mM ITP
0.2 μM First primer: SEQ ID NO: 2 (T7 promoter added to the 5 ′ end of the complementary sequence of the 2171st to 2297th nucleotide sequences of GenBank No. NR — 07056.1)
0.2 μM Second primer: SEQ ID NO: 3 (base sequence from 1865th position to 1890th position of GenBank No. NR — 07056.1)
50 nM INAF probe (prepared in Example 1)
0.025 mg / mL bovine serum albumin 142U T7 RNA polymerase 6.4U AMV reverse transcriptase.

(2)上記の蒸発乾燥後にRNA試料を15μL添加後、46℃で5分間保温し、その後、以下の組成からなる開始液15μLを添加し撹拌した。
開始液の組成:反応時(30μL中)の最終濃度
10.07% ジメチルスルホキシド
21mM 塩化マグネシウム
105mM 塩化カリウム。
(2) After 15 μL of RNA sample was added after the above evaporation and drying, the mixture was kept at 46 ° C. for 5 minutes, and then 15 μL of an initial solution having the following composition was added and stirred.
Composition of starting solution: final concentration at the time of reaction (in 30 μL) 10.07% dimethyl sulfoxide 21 mM magnesium chloride 105 mM potassium chloride.

(3)引き続き蒸発乾燥用チューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃で反応させると同時に反応溶液の蛍光強度を経時的に20分間測定した。開始液を加え撹拌を終えた時点を0分として、反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)が1.2を超えた場合を陽性判定とし、そのときの時間を陽性時間とした。結果を表1に示す。表1の「N.D.」は反応開始後20分後の蛍光強度比が1.2以下(陰性判定)であったことを意味する。   (3) Using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the evaporating and drying tube, the reaction solution was reacted at 46 ° C., and at the same time, the fluorescence intensity of the reaction solution was measured over time for 20 minutes. When the start solution is added and stirring is completed, the reaction time is 0 minutes, and the reaction mixture's fluorescence intensity ratio (the fluorescence intensity value of the predetermined time divided by the background fluorescence intensity ratio) exceeds 1.2. And the time at that time was defined as a positive time. The results are shown in Table 1. “ND” in Table 1 means that the fluorescence intensity ratio 20 minutes after the start of the reaction was 1.2 or less (negative determination).

Figure 2017192350
喀痰の代わりに水を加えた場合、ラウリル硫酸ナトリウム、コール酸ナトリウムのいずれも同程度の陽性時間で検出された。一方喀痰を加えた場合、コール酸ナトリウムではマイコプラズマニューモニエが検出されず、ラウリル硫酸ナトリウムのみで検出された。コール酸ナトリウムでは喀痰が過度に分解され、喀痰由来成分が核酸精製、核酸増幅を阻害したと考えられる。
Figure 2017192350
When water was added instead of sputum, both sodium lauryl sulfate and sodium cholate were detected with similar positive times. On the other hand, when soot was added, Mycoplasma pneumoniae was not detected with sodium cholate, but only with sodium lauryl sulfate. It is considered that sodium cholate excessively decomposed the soot, and the soot-derived component inhibited nucleic acid purification and nucleic acid amplification.

[実施例3](イオン性界面活性剤による溶菌効率の検討)
各種イオン性界面活性剤を用いた場合のマイコプラズマニューモニエ溶菌効率、核酸増幅工程での反応阻害を検討した。終濃度5w/v%のラウリル硫酸ナトリウム、塩化ベンザルコニウム、塩化セチルピリジニウムそれぞれ400μLに対し喀痰100μL、マイコプラズマニューモニエ培養液10μLを加え、15秒激しく撹拌した。撹拌後10000g、5分間の遠心分離を行い、その上清100μLについて、実施例2と同様の方法で測定した。
[Example 3] (Examination of lysis efficiency by ionic surfactant)
Mycoplasma pneumoniae lysis efficiency when using various ionic surfactants and reaction inhibition in the nucleic acid amplification process were examined. To 400 μL each of sodium lauryl sulfate, benzalkonium chloride, and cetylpyridinium chloride having a final concentration of 5 w / v%, 100 μL and 10 μL of Mycoplasma pneumoniae culture solution were added and vigorously stirred for 15 seconds. After stirring, the mixture was centrifuged at 10,000 g for 5 minutes, and 100 μL of the supernatant was measured in the same manner as in Example 2.

Figure 2017192350
ラウリル硫酸ナトリウムによる溶菌の効率が最も良好であることがわかる。
Figure 2017192350
It can be seen that the efficiency of lysis with sodium lauryl sulfate is the best.

[実施例4](ラウリル硫酸ナトリウム濃度の検討)
終濃度2.5w/v%、5w/v%、10w/v%のラウリル硫酸ナトリウム400μLに対し喀痰100μL、マイコプラズマニューモニエ培養液10μLを加え、15秒激しく撹拌した。撹拌後10000g、5分間の遠心分離を行い、その上清150μLについて、実施例2と同様の方法で測定した。
[Example 4] (Examination of sodium lauryl sulfate concentration)
100 μL of ナ ト リ ウ ム and 10 μL of Mycoplasma pneumoniae culture solution were added to 400 μL of sodium lauryl sulfate having a final concentration of 2.5 w / v%, 5 w / v%, and 10 w / v%, and vigorously stirred for 15 seconds. After stirring, the mixture was centrifuged at 10000 g for 5 minutes, and 150 μL of the supernatant was measured in the same manner as in Example 2.

Figure 2017192350
どの濃度でもマイコプラズマニューモニエを検出出来ていることがわかる。
Figure 2017192350
It can be seen that Mycoplasma pneumoniae can be detected at any concentration.

Claims (5)

マイコプラズマニューモニエにイオン性界面活性剤を共存させることを特徴とする、マイコプラズマニューモニエの溶菌方法。   A method for lysing Mycoplasma pneumoniae, wherein an ionic surfactant is allowed to coexist with Mycoplasma pneumoniae. 前記イオン性界面活性剤がラウリル硫酸ナトリウムである請求項1に記載の方法。   The method of claim 1, wherein the ionic surfactant is sodium lauryl sulfate. 喀痰中に含まれるマイコプラズマニューモニエである請求項1又は請求項2に記載の方法。   The method according to claim 1 or 2, which is a Mycoplasma pneumoniae contained in the cocoon. 請求項1から請求項3いずれかに記載の方法によってマイコプラズマニューモニエを溶菌し、次いでマイコプラズマニューモニエのRNAを精製することを特徴とする、マイコプラズマニューモニエのRNAの精製方法。   A method for purifying Mycoplasma pneumoniae RNA, which comprises lysing Mycoplasma pneumoniae by the method according to any one of claims 1 to 3, and then purifying the Mycoplasma pneumoniae RNA. 請求項4に記載の方法によってマイコプラズマニューモニエのRNAを精製し、次いで精製されたマイコプラズマニューモニエのRNAを増幅し検出することを特徴とするマイコプラズマニューモニエの検出方法。   A method for detecting Mycoplasma pneumoniae, comprising purifying Mycoplasma pneumoniae RNA by the method according to claim 4 and then amplifying and detecting the purified Mycoplasma pneumoniae RNA.
JP2016085166A 2016-04-21 2016-04-21 Method for lysis of mycoplasma pneumoniae and method for detection thereof Pending JP2017192350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085166A JP2017192350A (en) 2016-04-21 2016-04-21 Method for lysis of mycoplasma pneumoniae and method for detection thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085166A JP2017192350A (en) 2016-04-21 2016-04-21 Method for lysis of mycoplasma pneumoniae and method for detection thereof

Publications (1)

Publication Number Publication Date
JP2017192350A true JP2017192350A (en) 2017-10-26

Family

ID=60155806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085166A Pending JP2017192350A (en) 2016-04-21 2016-04-21 Method for lysis of mycoplasma pneumoniae and method for detection thereof

Country Status (1)

Country Link
JP (1) JP2017192350A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236193A (en) * 1988-03-23 1990-02-06 Wolfgang Bredt Purification of 168kd protein from mycoplasma newmoniae
JPH09505479A (en) * 1993-11-29 1997-06-03 ジェン−プローブ・インコーポレイテッド Nucleic acid extraction method from a wide range of organisms
JP2000505305A (en) * 1996-02-28 2000-05-09 アクゾ・ノベル・エヌ・ベー Primers and probes for amplification, detection and typing of Mycoplasma pneumoniae
JP2000316587A (en) * 1999-03-05 2000-11-21 Tosoh Corp Nucleic acid probe
JP2002526088A (en) * 1998-09-24 2002-08-20 イノジェネティックス・ナムローゼ・フェンノートシャップ Identification of microorganisms that cause acute respiratory tract infection (ARI)
JP2014097051A (en) * 2012-08-10 2014-05-29 Tosoh Corp Bacteriolytic reagent for acid-fast bacteria and method of detecting acid-fast bacteria with the same
WO2016052386A1 (en) * 2014-09-30 2016-04-07 東洋紡株式会社 Nucleic acid separation/purification method, solid carrier, device, and kit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236193A (en) * 1988-03-23 1990-02-06 Wolfgang Bredt Purification of 168kd protein from mycoplasma newmoniae
JPH09505479A (en) * 1993-11-29 1997-06-03 ジェン−プローブ・インコーポレイテッド Nucleic acid extraction method from a wide range of organisms
JP2000505305A (en) * 1996-02-28 2000-05-09 アクゾ・ノベル・エヌ・ベー Primers and probes for amplification, detection and typing of Mycoplasma pneumoniae
JP2002526088A (en) * 1998-09-24 2002-08-20 イノジェネティックス・ナムローゼ・フェンノートシャップ Identification of microorganisms that cause acute respiratory tract infection (ARI)
JP2000316587A (en) * 1999-03-05 2000-11-21 Tosoh Corp Nucleic acid probe
JP2014097051A (en) * 2012-08-10 2014-05-29 Tosoh Corp Bacteriolytic reagent for acid-fast bacteria and method of detecting acid-fast bacteria with the same
WO2016052386A1 (en) * 2014-09-30 2016-04-07 東洋紡株式会社 Nucleic acid separation/purification method, solid carrier, device, and kit

Similar Documents

Publication Publication Date Title
JP4395471B2 (en) Compositions, methods and kits for determining the presence of Mycoplasmagenitalium in a test sample
US20220098652A1 (en) Nicking and extension amplification reaction (near) of streptococcus species
CN111549176B (en) LAMP primer group and kit for detecting SARS-CoV-2
WO2017212904A1 (en) Method for rapid detection of african swine fever virus using lamp method in which multiple primer sets are combined
JP2018508225A (en) Methods and compositions for detecting bacterial nucleic acids and diagnosing bacterial vaginitis
JP2021121809A (en) Hemolytic reagent
JP6767374B2 (en) Red blood cell lysing solution
JP2023021395A (en) Methods for isolating nucleic acid from specimens in liquid based cytodiagnosis preservatives containing formaldehyde
US11634770B2 (en) Nicking and extension amplification reaction (NEAR) of respiratory syncytial virus species
JP2023518217A (en) Loop primer and loop de loop method for detecting target nucleic acid
JP2004049241A (en) Fluoresce hybridization probe lowering background
JP2008519603A (en) Composition and method for detecting group A Streptococcus
JP2017192350A (en) Method for lysis of mycoplasma pneumoniae and method for detection thereof
WO2022177842A1 (en) Composition and method for nucleic acid detection
US10422012B2 (en) Devices comprising bacteriophage PHI6 internal control compositions
JP2022501073A (en) Compositions and Methods for Amplifying or Detecting Varicella-Zoster Virus
JP2021503285A (en) Compositions and Methods for Detecting C1orf43 Nucleic Acid
CN113502341B (en) Real-time fluorescent nucleic acid isothermal amplification detection kit for treponema pallidum 16s RNA and special primer and probe thereof
JP2023516683A (en) Compositions and methods for detecting SARS-CoV-2 nucleic acids
JP2022508954A (en) Compositions and Methods for Amplifying, Detecting or Quantifying Human Polyomavirus BK Virus
CN113502341A (en) Real-time fluorescent nucleic acid isothermal amplification detection kit for treponema pallidum 16s RNA, and special primer and probe thereof
WO2007069331A1 (en) Method for detection of human immunodeficiency virus type 1
JP2021532787A (en) Compositions and Methods for Detecting Epstein-Barr Virus Nucleic Acids
JP2006136239A (en) Method for detecting conjunctivitis-related pathogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208