JP2017192218A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2017192218A
JP2017192218A JP2016080681A JP2016080681A JP2017192218A JP 2017192218 A JP2017192218 A JP 2017192218A JP 2016080681 A JP2016080681 A JP 2016080681A JP 2016080681 A JP2016080681 A JP 2016080681A JP 2017192218 A JP2017192218 A JP 2017192218A
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
contact
transmission coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016080681A
Other languages
Japanese (ja)
Inventor
富夫 保田
Tomio Yasuda
富夫 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Original Assignee
Technova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc filed Critical Technova Inc
Priority to JP2016080681A priority Critical patent/JP2017192218A/en
Publication of JP2017192218A publication Critical patent/JP2017192218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device for supplying power to a power reception coil from one or some of a plurality of power transmission coils, the non-contact power supply device being capable of suppressing power consumption or generation of a leakage magnetic flux at a power transmission coil not participating in the power supply, with a simple configuration.SOLUTION: A high-frequency power source 80 supplies high-frequency power of a sine waveform or pseudo sine waveform to power transmission coils 71, 72. The power transmission coils 71, 72 include parallel capacitors 711, 712 connected in parallel to the power transmission coils, respectively. Values of the parallel capacitors 711, 712 are set to resonate with self-inductance of the power transmission coils 71, 72 connected in parallel to the capacitors, respectively, at a power source frequency of the high frequency power source 80. Impedance at the time of a power reception coil 81 not facing a power transmission coil 71 (or at the time of no load) is maximized, minimizing current flowing through the power transmission coil 71.SELECTED DRAWING: Figure 1

Description

本発明は、複数個の送電コイルを備え、受電コイルが、その内の一部の送電コイルから給電を受ける非接触給電装置であって、給電に関与しない送電コイルでの電力消費や漏洩磁束の発生を抑制するものである。   The present invention is a non-contact power supply device that includes a plurality of power transmission coils, and a power reception coil that receives power from some of the power transmission coils. Generation is suppressed.

本発明者等は、先に、道路を走行中の車両に対して非接触給電を行う走行中非接触給電システムを提案している(下記特許文献1)。図8は、その内の一つの非接触給電装置の実施形態を示している。
この非接触給電装置は、地上の走行路に離間して設置された複数の一次側給電トランス(送電コイル)1、2、3、4と、送電コイル1、2、3、4に高周波電圧を印加する高周波電源40と、車両に搭載される二次側給電トランス(受電コイル)20とを有し、送電コイル1、2、3、4は並列接続され、送電コイル1、2、3、4と高周波電源40と間には直列コンデンサC1が接続され、受電コイル20と整流回路51との間には直列コンデンサC2が接続されている。
The present inventors have previously proposed a traveling non-contact power feeding system that performs non-contact power feeding to a vehicle traveling on a road (Patent Document 1 below). FIG. 8 shows an embodiment of one of the contactless power feeding devices.
This non-contact power feeding device applies a high-frequency voltage to a plurality of primary power feeding transformers (power transmission coils) 1, 2, 3, 4 and power transmission coils 1, 2, 3, 4 that are spaced apart from the ground traveling path. It has a high frequency power supply 40 to be applied and a secondary power supply transformer (power receiving coil) 20 mounted on the vehicle, and the power transmission coils 1, 2, 3, 4 are connected in parallel. A series capacitor C1 is connected between the high frequency power supply 40 and the series capacitor C2 between the power receiving coil 20 and the rectifier circuit 51.

コンデンサC1、C2は、非接触給電の効率を高めるために挿入されている。図8のように、非接触給電装置の送電コイルの側に直列コンデンサC1を接続し、受電コイルの側に直列コンデンサC2を接続する方式は“SS方式”と呼ばれている。
コンデンサC1の値は、高周波電源40の電源周波数をω、各送電コイル1、2、3、4の自己インダクタンスをL1とするとき、コンデンサC1と送電コイルとが直列共振回路を構成するように
C1=1/(ω2L1) (数1)
と設定され、また、コンデンサC2の値は、受電コイル20の自己インダクタンスをL2とするとき、コンデンサC2と受電コイル20とが直列共振回路を構成するように
C2=1/(ω2L2) (数2)
と設定される。
Capacitors C1 and C2 are inserted to increase the efficiency of contactless power feeding. As shown in FIG. 8, the system in which the series capacitor C1 is connected to the power transmission coil side of the non-contact power feeding apparatus and the series capacitor C2 is connected to the power reception coil side is called “SS system”.
The value of the capacitor C1 is such that the capacitor C1 and the power transmission coil form a series resonance circuit when the power frequency of the high frequency power source 40 is ω and the self-inductance of each power transmission coil 1, 2, 3, 4 is L1. = 1 / (ω 2 L1) (Equation 1)
Further, the value of the capacitor C2 is set so that the capacitor C2 and the power receiving coil 20 form a series resonance circuit when the self-inductance of the power receiving coil 20 is L2, C2 = 1 / (ω 2 L2) ( Number 2)
Is set.

この非接触給電装置では、車両が走行し、車両の床の裏面に設置された受電コイル20が送電コイル1、2、3、4のいずれかと磁気的に結合すると、その送電コイル(図8の場合は送電コイル2)から受電コイル20への非接触給電が行われる。また、受電コイル20が送電コイル2及び送電コイル3の中間に移動すると、送電コイル2及び送電コイル3から発生する磁束で非接触給電が引き続いて行われる。そのため、走行する車両に対して非接触給電が途切れずに行われる。   In this non-contact power feeding device, when the vehicle travels and the power receiving coil 20 installed on the back surface of the floor of the vehicle is magnetically coupled to any one of the power transmitting coils 1, 2, 3, and 4, the power transmitting coil (in FIG. 8) In this case, contactless power feeding from the power transmission coil 2) to the power reception coil 20 is performed. Further, when the power receiving coil 20 moves to the middle between the power transmission coil 2 and the power transmission coil 3, non-contact power feeding is continuously performed by the magnetic flux generated from the power transmission coil 2 and the power transmission coil 3. Therefore, non-contact power feeding is performed without interruption to the traveling vehicle.

ただ、SS方式では、受電コイル20への給電に関与していない送電コイル、即ち、無負荷時の送電コイル(図8の場合は送電コイル1、3、4)にも受電コイル20への給電に関与している送電コイル(図8の場合は送電コイル2)と同等の電流が流れ、漏洩磁束が発生すると言う欠点がある。   However, in the SS system, a power transmission coil that is not involved in power supply to the power receiving coil 20, that is, a power transmission coil at the time of no load (power transmission coils 1, 3, and 4 in the case of FIG. 8) is also supplied to the power receiving coil 20. The current equivalent to that of the power transmission coil (in the case of FIG. 8, the power transmission coil 2) that is involved in the current flows and leakage flux is generated.

下記非特許文献1には、こうしたSS方式の欠点の改良を図る走行中非接触給電システムが提案されている。
このシステムの非接触給電装置では、図9に示すように、走行路に沿って送電コイルと磁気センサ61とを交互に配置し、車両側の永久磁石62の磁気を検知した磁気センサ61の前後の送電コイルだけが起動されるように構成している。
また、SS方式の送電コイルの前段にLCL共振器63を接続している。
図10は、LCL共振器63が接続された送電コイルと受電コイルの等価回路を示している。直列コンデンサC12が接続するSS方式の送電コイルL12に、インダクタL11と並列コンデンサC11とが接続されている。なお、図10において、R11、R12、R2は、それぞれインダクタL11、送電コイルL12、受電コイルL2の内部抵抗を示している。
Non-Patent Document 1 below proposes a traveling non-contact power feeding system that improves the drawbacks of the SS method.
In the non-contact power feeding device of this system, as shown in FIG. 9, power transmission coils and magnetic sensors 61 are alternately arranged along the traveling path, and before and after the magnetic sensor 61 that detects the magnetism of the permanent magnet 62 on the vehicle side. Only the power transmission coil is configured to be activated.
Further, an LCL resonator 63 is connected to the front stage of the SS type power transmission coil.
FIG. 10 shows an equivalent circuit of a power transmission coil and a power reception coil to which the LCL resonator 63 is connected. An inductor L11 and a parallel capacitor C11 are connected to an SS transmission coil L12 to which the series capacitor C12 is connected. In FIG. 10, R11, R12, and R2 indicate internal resistances of the inductor L11, the power transmission coil L12, and the power reception coil L2, respectively.

この回路は、共振周波数をω0として、次式の関係を満たすようにパラメータが設定される。
ω011=1/(ω011)=ω012−1/(ω012) (数3)
ω02=1/(ω02) (数4)
この回路の一次側の等価インピーダンスRinは、次式(数5)で表される。
送電コイルL12に受電コイルL2が対向していない無負荷時には、RLが∞、R12が略0なので、Rin=∞、i11=0となる。また、送電コイルL12に受電コイルL2が対向したときには、RL、Rinが小さくなり、i11が大きくなる。
なお、この非接触給電装置では、磁気センサ61の検知に基づいて送電コイルを起動したとき、図11に示すように、一次側電圧ν1、一次側電流i11、二次側電流i12にかなりのオーバーシュートが見られ、それが減衰するまでに800μs掛かることが報告されている。これは共振器に減衰特性が無いためだと説明されている。
In this circuit, parameters are set so that the resonance frequency is ω0 and the relationship of the following equation is satisfied.
ω 0 L 11 = 1 / (ω 0 C 11 ) = ω 0 L 12 −1 / (ω 0 C 12 ) (Equation 3)
ω 0 L 2 = 1 / (ω 0 C 2 ) (Equation 4)
The equivalent impedance Rin on the primary side of this circuit is expressed by the following equation (Equation 5).
When there is no load when the power receiving coil L2 is not opposed to the power transmitting coil L12, RL is ∞ and R12 is substantially 0, so that Rin = ∞ and i11 = 0. Further, when the power receiving coil L2 faces the power transmitting coil L12, RL and Rin are decreased and i11 is increased.
In this non-contact power feeding device, when the power transmission coil is started based on the detection of the magnetic sensor 61, as shown in FIG. 11, the primary side voltage ν1, the primary side current i11, and the secondary side current i12 are considerably exceeded. It is reported that a shoot is seen and it takes 800 μs to decay. It is explained that this is because the resonator has no attenuation characteristic.

特開2014−147160号公報JP, 2014-147160, A

Kai Song, Chunbo Zhu, Kim Ean Koh, Takehiro Imura & Yoichi Hori "Wireless Power Transfer for Running EV Powering Using Multi-Parallel Segmented Rails” { HYPERLINK "http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7127333" ,Emerging Technologies: Wireless Power (WoW), 2015 IEEE PELS Workshop}Kai Song, Chunbo Zhu, Kim Ean Koh, Takehiro Imura & Yoichi Hori "Wireless Power Transfer for Running EV Powering Using Multi-Parallel Segmented Rails" {HYPERLINK "http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber = 7127333 ", Emerging Technologies: Wireless Power (WoW), 2015 IEEE PELS Workshop}

しかし、非特許文献1に記載された非接触給電装置は、車両の検知手段や、その検知結果に基づき送電コイルを起動する手段等を有しているため、構造が複雑であり、その設置に手間が掛かる。また、送電コイル起動時に現れるオーバーシュートは、不要漏洩磁束の発生原因となるため、好ましいものではない。
複数個の送電コイルの一部を使って受電コイルに給電する形態は、車両の走行中給電に限らず、多くの分野で採用が可能であり、今後、この種の非接触給電装置は各方面で普及することが予想される。
この非接触給電装置の利用拡大を図る上からも、構成を簡単にし、管理を容易にし、また、漏洩磁束を極力抑える等、環境に配慮した対策を講じることが求められる。
However, the non-contact power feeding device described in Non-Patent Document 1 has a complicated structure because it has vehicle detection means, means for starting a power transmission coil based on the detection result, and the like. Take the trouble. Further, the overshoot that appears when the power transmission coil is started is not preferable because it causes unnecessary leakage magnetic flux.
The power feeding to the power receiving coil using a part of the plurality of power transmitting coils is not limited to power feeding while the vehicle is running, and can be used in many fields. It is expected to spread.
In order to expand the use of this non-contact power supply device, it is required to take environmentally friendly measures such as simplifying the configuration, facilitating management, and suppressing leakage magnetic flux as much as possible.

本発明は、こうした事情を考慮して創案したものであり、複数個の送電コイルの一部の送電コイルから受電コイルに非接触給電する際に、給電に関与しない送電コイルでの電力消費や漏洩磁束の発生を簡単な構成で抑制できる非接触給電装置を提供することを目的としている。   The present invention was devised in consideration of such circumstances, and when non-contact power feeding is performed from a part of the plurality of power transmission coils to the power receiving coil, power consumption and leakage in the power transmission coil not involved in power feeding are disclosed. It aims at providing the non-contact electric power feeder which can suppress generation | occurrence | production of magnetic flux by simple structure.

本発明は、並列接続された複数個の送電コイルに共通の高周波電源から高周波電力が供給され、受電コイルが複数個の内の一部の送電コイルに対向又は磁気的に結合したとき、その他の送電コイルと高周波電源との間の電気接続を遮断すること無く、一部の送電コイルから受電コイルへの非接触給電が行われる非接触給電装置であって、高周波電源は、送電コイルに正弦波形又は疑似正弦波形の高周波電力を供給し、送電コイルの各々は、送電コイルに並列接続された並列コンデンサを有し、並列コンデンサの値が、並列接続された送電コイルの自己インダクタンスと高周波電源の電源周波数で共振するように設定されていることを特徴とする。
この非接触給電装置では、送電コイルと並列コンデンサとが並列共振回路を構成しているため、送電コイルに受電コイルが対向していないとき(即ち、無負荷時)のインピーダンスが最大となり、送電コイルに流れる電流が最少になる。
In the present invention, when a plurality of power transmission coils connected in parallel are supplied with high frequency power from a common high frequency power source, and the power receiving coil is opposed or magnetically coupled to some of the plurality of power transmission coils, A non-contact power feeding device that performs non-contact power feeding from a part of the power transmission coil to the power receiving coil without interrupting the electrical connection between the power transmission coil and the high-frequency power source. Alternatively, each of the power transmission coils has a parallel capacitor connected in parallel to the power transmission coil, and the value of the parallel capacitor is equal to the self inductance of the power transmission coil connected in parallel and the power source of the high frequency power supply. It is set to resonate at a frequency.
In this non-contact power supply device, since the power transmission coil and the parallel capacitor constitute a parallel resonance circuit, the impedance when the power reception coil is not opposed to the power transmission coil (that is, when there is no load) is the maximum, and the power transmission coil The current that flows through is minimized.

また、本発明の非接触給電装置では、受電コイルは、受電コイルに直列接続された直列コンデンサを有し、直列コンデンサの値は、受電コイルと直列コンデンサが直列共振するように設定されている。   In the non-contact power feeding device of the present invention, the power receiving coil has a series capacitor connected in series with the power receiving coil, and the value of the series capacitor is set so that the power receiving coil and the series capacitor are in series resonance.

また、本発明の非接触給電装置では、送電コイルの個数は2個以上であり、受電コイルの個数は、送電コイルの個数よりも少ない数とする。
受電コイルの個数は複数でもよいが、送電コイルの個数は受電コイルを上回る。
In the non-contact power feeding device of the present invention, the number of power transmission coils is two or more, and the number of power reception coils is smaller than the number of power transmission coils.
Although the number of power receiving coils may be plural, the number of power transmitting coils exceeds the number of power receiving coils.

また、本発明の非接触給電装置では、送電コイルの巻数N1が受電コイルの巻数N2より多いことが望ましい。
送電コイルと受電コイルとの巻数比N1/N2が大きい程、送電コイルに流れる電流I1に対する受電コイルに流れる電流I2の比が大きくなり、受電コイルへの給電量が増加する。
Moreover, in the non-contact electric power feeder of this invention, it is desirable that the number of turns N1 of the power transmission coil is larger than the number of turns N2 of the power receiving coil.
As the turn ratio N1 / N2 between the power transmission coil and the power reception coil increases, the ratio of the current I2 flowing through the power reception coil to the current I1 flowing through the power transmission coil increases, and the amount of power supplied to the power reception coil increases.

また、本発明の非接触給電装置では、高周波電源は、直流電圧を交流電圧に変換する複数の単相インバータと、この複数の単相インバータから出力される交流電圧を直列に組み合わせて疑似正弦波電圧を得る絶縁トランスとで構成し、リアクトルを介して送電コイルの各々と接続することが望ましい。
この高周波電源により、多くの次数の高調波を除去した疑似正弦波を生成することができる。リアクトルは、高調波をさらに抑制するために挿入される。
In the contactless power supply device of the present invention, the high-frequency power source includes a plurality of single-phase inverters that convert a DC voltage into an AC voltage, and an AC voltage that is output from the plurality of single-phase inverters in series. It is desirable to configure with an insulating transformer that obtains a voltage, and to connect to each of the power transmission coils via a reactor.
By this high frequency power supply, a pseudo sine wave from which many orders of harmonics are removed can be generated. The reactor is inserted to further suppress harmonics.

また、本発明の非接触給電装置では、高周波電源を、PWM制御により疑似正弦波電圧を生成するフルブリッジインバータや、PWM制御により正弦波に近い電流を出力する電流形インバータで構成し、それらをリアクトルを介して送電コイルの各々と接続するようにしても良い。   Further, in the non-contact power feeding device of the present invention, the high-frequency power source is configured by a full bridge inverter that generates a pseudo sine wave voltage by PWM control or a current source inverter that outputs a current close to a sine wave by PWM control, You may make it connect with each of a power transmission coil via a reactor.

また、本発明の非接触給電装置は、複数個の送電コイルが走行可能な移動体の走行路に沿って離間して設置され、受電コイルが移動体の床の裏面に設置され、走行中の移動体の受電コイルと対向又は磁気的に結合した送電コイルから受電コイルに非接触給電が行われる走行中非接触給電システムに用いることができる。   Further, the non-contact power feeding device of the present invention is installed separately along the traveling path of the movable body in which a plurality of power transmission coils can travel, and the power receiving coil is installed on the back surface of the floor of the movable body, The present invention can be used in a traveling non-contact power feeding system in which non-contact power feeding is performed from a power transmitting coil facing or magnetically coupled to a power receiving coil of a moving body to the power receiving coil.

また、本発明の非接触給電装置は、複数個の送電コイルが走行可能な移動体の駐車場に離間して設置され、受電コイルが移動体の床の裏面に設置され、駐車した移動体の受電コイルと対向又は磁気的に結合した送電コイルから受電コイルに非接触給電が行われる駐車システムに用いることができる。   Further, the non-contact power feeding device of the present invention is installed separately from a parking lot of a moving body in which a plurality of power transmission coils can travel, and a receiving coil is installed on the back surface of the floor of the moving body, It can be used for a parking system in which contactless power feeding is performed from a power transmission coil facing or magnetically coupled to the power reception coil to the power reception coil.

また、本発明の非接触給電装置の送電コイル及び受電コイルは、家庭や事務所等に直流を配電する直流配電システムの非接触コンセントとして用いることもできる。   Moreover, the power transmission coil and the power receiving coil of the non-contact power feeding device of the present invention can also be used as a non-contact outlet of a direct current distribution system that distributes direct current to a home or office.

本発明の非接触給電装置では、受電コイルに対向する送電コイルを検出したり、起動する送電コイルを選択したりしなくても、受電コイルと、それに対向又は磁気的に結合した送電コイルとの間で効率的な非接触給電が行われ、その給電に関わらない送電コイルへの電流供給は自動的に制限される。   In the non-contact power feeding device of the present invention, the power receiving coil and the power transmitting coil opposed to or magnetically coupled to the power receiving coil can be detected without detecting the power transmitting coil facing the power receiving coil or selecting the power transmitting coil to be activated. Efficient non-contact power feeding is performed between them, and the current supply to the power transmission coil regardless of the power feeding is automatically limited.

本発明の実施形態に係る非接触給電装置を示す図The figure which shows the non-contact electric power feeder which concerns on embodiment of this invention 図1の高周波電源を示す図The figure which shows the high frequency power supply of FIG. 図2の高周波電源による疑似正弦波の発生原理を説明する図、The figure explaining the generation | occurrence | production principle of the pseudo sine wave by the high frequency power supply of FIG. シミュレーション回路における電圧・電流の測定位置を示す図Diagram showing measurement position of voltage / current in simulation circuit 送電コイル2個、受電コイル1個の回路における各測定位置での電圧・電流波形を示す図The figure which shows the voltage and electric current waveform in each measurement position in the circuit of two power transmission coils and one power reception coil リアクトルを除いた状態での各測定位置の電圧・電流波形を示す図Diagram showing voltage and current waveforms at each measurement position with the reactor removed 送電コイル3個、受電コイル2個の回路における各測定位置での電圧・電流波形を示す図The figure which shows the voltage and electric current waveform in each measurement position in the circuit of three power transmission coils and two power reception coils 従来の走行中非接触給電システムを示す図A diagram showing a conventional non-contact power feeding system during traveling 非特許文献1に記載された走行中非接触給電システムを示す図The figure which shows the non-contact electric power feeding system during driving | running | working described in the nonpatent literature 1 図9のシステムにおける等価回路Equivalent circuit in the system of FIG. 非特許文献1に記載された送電コイル起動時のオーバーシュートを示す図The figure which shows the overshoot at the time of the power transmission coil starting described in the nonpatent literature 1

図1は、本発明の実施形態に係る非接触給電装置を示している。
この装置は、並列に接続された複数(図1では2個)の送電コイル71、72と、各送電コイル71、72に並列接続された並列コンデンサ711、712と、送電コイル71、72に対して疑似正弦波形の高周波電圧を印加する高周波電源80と、高周波電源80から発生する高調波の抑制用に挿入されたリアクトル73と、一部の送電コイル72に対向又は磁気的に結合して給電を受ける受電コイル81と、受電コイル81に直列接続された直列コンデンサ811と、受電コイル81に接続された負荷812とを有している。
FIG. 1 shows a non-contact power feeding apparatus according to an embodiment of the present invention.
This device has a plurality (two in FIG. 1) of power transmission coils 71 and 72 connected in parallel, parallel capacitors 711 and 712 connected in parallel to the power transmission coils 71 and 72, and power transmission coils 71 and 72. A high-frequency power supply 80 that applies a high-frequency voltage having a pseudo sine waveform, a reactor 73 inserted to suppress harmonics generated from the high-frequency power supply 80, and a part of the power transmission coil 72 are opposed or magnetically coupled to supply power. Power receiving coil 81, a series capacitor 811 connected in series to power receiving coil 81, and a load 812 connected to power receiving coil 81.

高周波電源80は、直流電圧を交流電圧に変換する複数の単相インバータ801、802と、単相インバータ801、802の交流出力を組み合わせて疑似正弦波電圧を得る絶縁トランス803とを有し、絶縁トランス803は、単相インバータ801の交流出力が供給される一次コイル8031と、単相インバータ802の交流出力が供給される一次コイル8032と、一次コイル8031及び一次コイル8032と磁気的に結合する二次コイル8033とから成る。   The high-frequency power source 80 includes a plurality of single-phase inverters 801 and 802 that convert a DC voltage into an AC voltage, and an insulating transformer 803 that obtains a pseudo sine wave voltage by combining the AC outputs of the single-phase inverters 801 and 802. The transformer 803 is magnetically coupled to the primary coil 8031 supplied with the AC output of the single-phase inverter 801, the primary coil 8032 supplied with the AC output of the single-phase inverter 802, and the primary coil 8031 and the primary coil 8032. And the next coil 8033.

並列コンデンサ711は、高周波電源80の電源周波数で送電コイル71と並列共振回路を構成するように、その値が設定され、並列コンデンサ712は、電源周波数で送電コイル72と並列共振回路を構成するように、その値が設定される。
高周波電源80の電源周波数をω、送電コイル71及び送電コイル72の各々の自己インダクタンスをL1、並列コンデンサ711及び並列コンデンサ712の値をC1とした場合、並列コンデンサ711及び並列コンデンサ712の値は、送電コイル72に受電コイル81が対向した状態で高周波電源80の出力力率が1になるように(従って、一次側回路に印加される電圧と、流れる電流が同相になるように)設定するか、又は、
C1=1/(ω2L1) (数6)
となるように設定する。
The value of the parallel capacitor 711 is set so that the power transmission frequency of the high frequency power supply 80 forms the power transmission coil 71 and the parallel resonance circuit, and the parallel capacitor 712 configures the power transmission frequency of the power transmission coil 72 and the parallel resonance circuit. Is set to that value.
When the power frequency of the high-frequency power source 80 is ω, the self-inductance of each of the power transmission coil 71 and the power transmission coil 72 is L1, and the values of the parallel capacitor 711 and the parallel capacitor 712 are C1, the values of the parallel capacitor 711 and the parallel capacitor 712 are Whether setting is made so that the output power factor of the high-frequency power supply 80 becomes 1 with the power receiving coil 81 facing the power transmitting coil 72 (so that the voltage applied to the primary circuit and the flowing current are in phase). Or
C1 = 1 / (ω 2 L1) (Equation 6)
Set to be.

また、受電コイル81に接続する直列コンデンサ811の値は、受電コイル81の自己インダクタンスをL2、直列コンデンサ811の値をC2とした場合、
C2=1/(ω2L2) (数7)
となるように設定する。
送電コイル72に接続する並列コンデンサ712の値、及び受電コイル81に接続する直列コンデンサ811の値をこのように設定したPS共振方式の非接触給電装置は、その等価回路が理想トランスと等価になり、一次側の入力電圧をV1、入力電流をI1、二次側の負荷に出力される出力電圧をV2、出力電流をI2、送電コイルの巻き数N1と受電コイルの巻き数N2との比をa(=N1/N2)とするとき、
V1=a×V2 (数8)
I1=(1/a)×I2 (数9)
の関係が成立し、効率的な非接触給電が可能になる。また、a(=N1/N2)を大きくすることにより、出力電流I2を増やすことができる。
In addition, the value of the series capacitor 811 connected to the power receiving coil 81 is L2 as the self-inductance of the power receiving coil 81 and C2 as the value of the series capacitor 811.
C2 = 1 / (ω 2 L2) (Equation 7)
Set to be.
The PS resonance type non-contact power supply device in which the value of the parallel capacitor 712 connected to the power transmission coil 72 and the value of the series capacitor 811 connected to the power reception coil 81 are set in this way has an equivalent circuit equivalent to an ideal transformer. The input voltage on the primary side is V1, the input current is I1, the output voltage output to the secondary load is V2, the output current is I2, and the ratio of the number of turns N1 of the power transmission coil and the number of turns N2 of the power receiving coil is When a (= N1 / N2),
V1 = a × V2 (Equation 8)
I1 = (1 / a) × I2 (Equation 9)
Thus, efficient non-contact power feeding becomes possible. Further, the output current I2 can be increased by increasing a (= N1 / N2).

一方、受電コイル81に対向していない送電コイル71では、送電コイル71と並列コンデンサ711とが並列共振回路を構成しているため、無負荷時のインピーダンスが共振周波数で最大となり、送電コイル71に流れる電流が最少になる。
そのため、送電コイル71での電力消費量は僅かとなり、送電コイル71からの不要漏洩磁束の発生も抑えられる。
On the other hand, in the power transmission coil 71 not facing the power receiving coil 81, the power transmission coil 71 and the parallel capacitor 711 constitute a parallel resonance circuit. The current that flows is minimized.
Therefore, power consumption in the power transmission coil 71 is small, and generation of unnecessary leakage magnetic flux from the power transmission coil 71 is suppressed.

PS共振方式の非接触給電装置では、特許4644827号公報に記載されているように、高周波電源80として、出力波形が正弦波形である電源を使用する必要がある。
ここでは、図2に示すように、二つの単相フルブリッジインバータ801、802の出力を絶縁トランス803で直列に多重して疑似正弦波形の出力を得ている。
図3に示すように、単相フルブリッジインバータ801を制御して図3(a)に示すパルス電圧を出力させ、単相フルブリッジインバータ802を制御して、図3(a)との位相差を36°に設定した図3(b)に示すパルス電圧を出力させる。これらを絶縁トランス803で直列に接続すると、図3(c)に示す疑似正弦波が得られる。図3(d)は、絶縁トランス803に負荷を接続したときの出力電流波形を示している。
In the PS resonance type non-contact power feeding device, as described in Japanese Patent No. 4644827, it is necessary to use a power source whose output waveform is a sine waveform as the high frequency power source 80.
Here, as shown in FIG. 2, the outputs of two single-phase full-bridge inverters 801 and 802 are multiplexed in series by an insulating transformer 803 to obtain a pseudo-sine waveform output.
As shown in FIG. 3, the single-phase full-bridge inverter 801 is controlled to output the pulse voltage shown in FIG. 3A, and the single-phase full-bridge inverter 802 is controlled so that the phase difference from FIG. Is set to 36 °, and the pulse voltage shown in FIG. When these are connected in series by an insulating transformer 803, a pseudo sine wave shown in FIG. 3C is obtained. FIG. 3D shows an output current waveform when a load is connected to the isolation transformer 803.

二つの各インバータの位相シフト量を60°としてパルス幅制御した場合、出力電圧の3倍高調波が除去され、更に、二つのインバータ間の位相差を36°に設定して動作させた場合、出力電圧の5倍高調波が除去される。二つのインバータの位相シフト量及び二つのインバータ間の位相差を変えることで、打ち消す高調波を変更することができる。また、多重するインバータの台数を増して、出力電圧のレベル数を増やせば、より多くの次数の高調波を除去することが可能になる(「パワーエレクトロニクス ハンドブック」オーム社、平成22年7月20日発行)。
また、絶縁トランス803を備える高周波電源80は、送電コイル71、72の地絡事故が発生しても安全である。
When the pulse width control is performed by setting the phase shift amount of each of the two inverters to 60 °, the third harmonic of the output voltage is removed, and when the phase difference between the two inverters is set to 36 °, the operation is performed. The fifth harmonic of the output voltage is removed. By changing the phase shift amount of the two inverters and the phase difference between the two inverters, the harmonics to be canceled can be changed. Further, if the number of inverters to be multiplexed is increased and the number of levels of the output voltage is increased, it becomes possible to remove higher-order harmonics (“Power Electronics Handbook”, Ohm, July 20, 2010). Issued on the day).
Further, the high frequency power supply 80 including the insulating transformer 803 is safe even if a ground fault of the power transmission coils 71 and 72 occurs.

次に、この非接触給電装置の特性をシミュレーションした結果について説明する。このシミュレーションでは、電源として、複数の単相インバータの出力を直列に多重して3次及び5次高調波を除去した高周波電源(3次・5次除去直列単相多重インバータ)を使用した。
その等価回路を図4に示している。また、図4には、電圧及び電流の値を測定した回路位置を示している。電圧の測定位置は四角で囲んだ英字で示し、電流の測定位置は丸で囲んだ英字で示している。
Next, the result of simulating the characteristics of this non-contact power feeding device will be described. In this simulation, a high-frequency power source (third-order / fifth-removed series single-phase multiple inverter) in which the outputs of a plurality of single-phase inverters are multiplexed in series to remove the third and fifth harmonics was used.
The equivalent circuit is shown in FIG. FIG. 4 shows the circuit position where the voltage and current values were measured. The voltage measurement position is indicated by a letter enclosed in a square, and the current measurement position is indicated by a letter enclosed in a circle.

図5は、送電コイル数が2個、受電コイル数が1個の非接触給電装置の特性を示している。図5(a)はA位置及びB位置での電圧波形を示している。図5(b)はC位置での電流波形を示している。図5(c)はH位置での電圧波形を示している。図5(d)はF位置及びD位置での電流波形を示している。そして、図5(e)はE位置及びG位置での電流波形を示している。図の横軸は時間を表している。
図6は、図1の回路からリアクトル73を除き、その他は図5の場合と同じ条件で各位置での電圧又は電流を測定した結果を示している。
また、図7は、送電コイル数を3個、受電コイル数を2個に増やした場合の特性を示している。図7(a)はA位置及びB位置での電圧波形を示している。図7(b)はC位置での電流波形を示している。図7(c)は、2つの受電コイルのH位置での電圧波形を示している。図7(d)は、2つの受電コイルに対向する二つの送電コイルのF位置と、受電コイルに対向していない送電コイルのD位置での電流波形を示している。そして、図7(e)は受電コイルに対向していない送電コイルのE位置と、受電コイルに対向した二つの送電コイルのG位置での電流波形を示している。
FIG. 5 shows the characteristics of the non-contact power feeding apparatus having two power transmission coils and one power receiving coil. FIG. 5A shows voltage waveforms at the A position and the B position. FIG. 5B shows a current waveform at the C position. FIG. 5C shows a voltage waveform at the H position. FIG. 5D shows current waveforms at the F position and the D position. FIG. 5E shows current waveforms at the E position and the G position. The horizontal axis of the figure represents time.
FIG. 6 shows the results of measuring the voltage or current at each position under the same conditions as in FIG. 5 except for the reactor 73 from the circuit of FIG.
FIG. 7 shows characteristics when the number of power transmission coils is increased to three and the number of power reception coils is increased to two. FIG. 7A shows voltage waveforms at the A position and the B position. FIG. 7B shows a current waveform at the C position. FIG. 7C shows voltage waveforms at the H position of the two power receiving coils. FIG. 7D shows current waveforms at the F position of the two power transmission coils facing the two power receiving coils and the D position of the power transmission coil not facing the power receiving coil. FIG. 7E shows current waveforms at the E position of the power transmission coil not facing the power receiving coil and the G position of the two power transmission coils facing the power receiving coil.

図5(d)から、この非接触給電装置では、受電コイルに対向していない送電コイルには殆ど電流が行かず、受電コイルに対向する送電コイルにだけ電流が供給されることが分かる。
また、図6(b)(d)から、リアクトル73を除いた場合は、高調波電流が送電コイルに流れることが分かる。
また、図7(d)から、送電コイルの数が増えても、受電コイルに対向していない送電コイルには殆ど電流が行かず、受電コイルに対向する送電コイルにだけ電流が供給されることが分かる。
また、図5(b)と図7(b)の比較から、受電コイルの個数が2個に増えると、高周波電源の供給電流が2倍に増えることが分かる。そのため、複数の負荷の動作が可能であることが分かる。
このように、この非接触給電装置では、受電コイルと対向(又は磁気的に結合)する送電コイルにのみ高周波電源から電力を供給することができる。
From FIG. 5D, it can be seen that in this non-contact power feeding device, almost no current flows to the power transmission coil that does not face the power reception coil, and current is supplied only to the power transmission coil that faces the power reception coil.
Moreover, it can be seen from FIGS. 6B and 6D that when the reactor 73 is removed, harmonic current flows through the power transmission coil.
Further, from FIG. 7D, even if the number of power transmission coils increases, almost no current flows in the power transmission coils that are not opposed to the power reception coils, and current is supplied only to the power transmission coils that are opposed to the power reception coils. I understand.
Further, from the comparison between FIG. 5B and FIG. 7B, it can be seen that when the number of power receiving coils is increased to two, the supply current of the high-frequency power source is doubled. Therefore, it turns out that operation | movement of a some load is possible.
Thus, in this non-contact power feeding device, power can be supplied from the high-frequency power source only to the power transmission coil facing (or magnetically coupling) with the power receiving coil.

なお、ここでは、正弦波を発生する高周波電源として、複数の単相インバータを多重化して用いる例を示したが、その他の高周波電源を用いても良い。例えば、PWM制御により疑似正弦波電圧を生成するフルブリッジインバータや、PWM制御により正弦波に近い電流を出力する電流形インバータ等を用いても良い。   Although an example in which a plurality of single-phase inverters are multiplexed and used as a high-frequency power source that generates a sine wave is shown here, other high-frequency power sources may be used. For example, a full bridge inverter that generates a pseudo sine wave voltage by PWM control, a current source inverter that outputs a current close to a sine wave by PWM control, or the like may be used.

また、送電コイルの巻数N1を受電コイルの巻数N2より多くすることで、受電コイルへの給電量を増やすことができる。これは(数9)から明らかである。   Moreover, the power supply amount to a receiving coil can be increased by making the winding number N1 of a power transmission coil larger than the winding number N2 of a receiving coil. This is clear from (Equation 9).

本発明の非接触給電装置は、複数個の送電コイルを移動体の走行路に設置して、走行中の移動体に給電する走行中非接触給電システムに用いることができる。
また、複数個の送電コイルを駐車場に配置して駐車中の移動体に給電する駐車システムにも用いることができる。
また、家庭や事務所等に直流を配電する直流配電システムの非接触コンセントとして用いることもできる。
The non-contact power feeding device of the present invention can be used in a traveling non-contact power feeding system in which a plurality of power transmission coils are installed on a traveling path of a moving body to feed power to the traveling moving body.
It can also be used in a parking system in which a plurality of power transmission coils are arranged in a parking lot and power is supplied to a moving vehicle that is parked.
It can also be used as a non-contact outlet of a DC distribution system that distributes DC to homes and offices.

本発明の非接触給電装置は、構造が簡単で、省電力化や不要な電磁界放射の抑制を図ることができ、走行中給電システムや駐車中給電システム、直流配電システムなど各種分野で利用することができる。   The non-contact power feeding device of the present invention has a simple structure, can save power and suppress unnecessary electromagnetic field radiation, and is used in various fields such as a power feeding system during traveling, a power feeding system during parking, and a DC power distribution system. be able to.

61 磁気センサ
62 永久磁石
63 LCL共振器
71 送電コイル
72 送電コイル
73 リアクトル
80 高周波電源
81 受電コイル
711 並列コンデンサ
712 並列コンデンサ
801 単相インバータ
802 単相インバータ
803 絶縁トランス
811 直列コンデンサ
812 負荷
8031 一次コイル
8032 一次コイル
8033 二次コイル
61 Magnetic sensor 62 Permanent magnet 63 LCL resonator 71 Power transmission coil 72 Power transmission coil 73 Reactor 80 High frequency power supply 81 Power reception coil 711 Parallel capacitor 712 Parallel capacitor 801 Single phase inverter 802 Single phase inverter 803 Insulation transformer 811 Series capacitor 812 Load 8031 Primary coil 8032 Primary coil 8033 Secondary coil

Claims (10)

並列接続された複数個の送電コイルに共通の高周波電源から高周波電力が供給され、受電コイルが前記複数個の内の一部の送電コイルに対向又は磁気的に結合したとき、その他の前記送電コイルと前記高周波電源との間の電気接続を遮断すること無く、前記一部の送電コイルから前記受電コイルへの非接触給電が行われる非接触給電装置であって、
前記高周波電源は、前記送電コイルに正弦波形又は疑似正弦波形の高周波電力を供給し、
前記送電コイルの各々は、該送電コイルに並列接続された並列コンデンサを有し、
該並列コンデンサの値が、並列接続された前記送電コイルの自己インダクタンスと前記高周波電源の電源周波数で共振するか、又は、前記高周波電源の出力の力率が1になるように設定されている、
ことを特徴とする非接触給電装置。
When a plurality of power transmission coils connected in parallel are supplied with high frequency power from a common high frequency power source, and the power receiving coil is opposed to or magnetically coupled to a part of the power transmission coils, the other power transmission coils A non-contact power feeding device that performs non-contact power feeding from the part of the power transmission coil to the power receiving coil without interrupting the electrical connection between the high-frequency power source and the high-frequency power source,
The high-frequency power supply supplies high-frequency power having a sine waveform or pseudo sine waveform to the power transmission coil,
Each of the power transmission coils has a parallel capacitor connected in parallel to the power transmission coil,
The value of the parallel capacitor resonates with the self-inductance of the power transmission coil connected in parallel and the power frequency of the high frequency power source, or is set so that the power factor of the output of the high frequency power source is 1.
The non-contact electric power feeder characterized by the above-mentioned.
請求項1に記載の非接触給電装置であって、前記受電コイルは、該受電コイルに直列接続された直列コンデンサを有し、前記直列コンデンサの値が、前記受電コイルの自己インダクタンスと前記高周波電源の電源周波数で共振するように設定されていることを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein the power receiving coil includes a series capacitor connected in series to the power receiving coil, and the value of the series capacitor is determined by the self-inductance of the power receiving coil and the high frequency power source. A non-contact power feeding device that is set to resonate at a power source frequency. 請求項1に記載の非接触給電装置であって、前記送電コイルの個数は2個以上であり、前記受電コイルの個数は、前記送電コイルの個数よりも少ないことを特徴とする非接触給電装置。   2. The non-contact power feeding device according to claim 1, wherein the number of the power transmission coils is two or more, and the number of the power receiving coils is smaller than the number of the power transmission coils. . 請求項1に記載の非接触給電装置であって、前記送電コイルの巻数N1が前記受電コイルの巻数N2より多いことを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein the number N1 of turns of the power transmission coil is larger than the number N2 of turns of the power receiving coil. 請求項1に記載の非接触給電装置であって、前記高周波電源は、直流電圧を交流電圧に変換する複数の単相インバータと、前記複数の単相インバータから出力される交流電圧を直列に組み合わせて疑似正弦波電圧を得る絶縁トランスとから成り、リアクトルを介して前記送電コイルの各々と接続されることを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein the high-frequency power source combines a plurality of single-phase inverters that convert a DC voltage into an AC voltage, and an AC voltage output from the plurality of single-phase inverters in series. A non-contact power feeding device comprising: an insulating transformer that obtains a pseudo sine wave voltage and connected to each of the power transmission coils via a reactor. 請求項1に記載の非接触給電装置であって、前記高周波電源は、PWM制御により疑似正弦波電圧を生成するフルブリッジインバータから成り、リアクトルを介して前記送電コイルの各々と接続されることを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein the high-frequency power source includes a full-bridge inverter that generates a pseudo sine wave voltage by PWM control, and is connected to each of the power transmission coils via a reactor. A non-contact power feeding device. 請求項1に記載の非接触給電装置であって、前記高周波電源は、PWM制御により正弦波に近い電流を出力する電流形インバータから成り、リアクトルを介して前記送電コイルの各々と接続されることを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein the high-frequency power source includes a current source inverter that outputs a current close to a sine wave by PWM control, and is connected to each of the power transmission coils via a reactor. The non-contact electric power feeder characterized by this. 請求項1から7に記載の非接触給電装置であって、前記複数個の送電コイルが走行可能な移動体の走行路に沿って離間して設置され、前記受電コイルが前記移動体の床の裏面に設置され、走行中の前記移動体の受電コイルと対向又は磁気的に結合した前記送電コイルから前記受電コイルに非接触給電が行われることを特徴とする非接触給電装置。   The contactless power feeding device according to claim 1, wherein the plurality of power transmission coils are installed separately along a travel path of a movable body on which the plurality of power transmission coils can travel, and the power reception coil is disposed on a floor of the movable body. A non-contact power feeding device configured to perform non-contact power feeding to the power receiving coil from the power transmitting coil that is installed on the back surface and that is opposed to or magnetically coupled to the power receiving coil of the moving body that is running. 請求項1から7に記載の非接触給電装置であって、前記複数個の送電コイルが走行可能な移動体の駐車場に離間して設置され、前記受電コイルが前記移動体の床の裏面に設置され、駐車した前記移動体の受電コイルと対向又は磁気的に結合した前記送電コイルから前記受電コイルに非接触給電が行われることを特徴とする非接触給電装置。   The contactless power supply device according to claim 1, wherein the plurality of power transmission coils are installed apart from a movable parking lot, and the power reception coil is provided on a back surface of the floor of the mobile body. A non-contact power feeding apparatus in which non-contact power feeding is performed to the power receiving coil from the power transmitting coil that is installed and parked or magnetically coupled to the power receiving coil of the parked moving body. 請求項1から7に記載の非接触給電装置であって、前記複数個の送電コイル及び受電コイルが、直流を配電する直流配電システムの非接触コンセントに使用されることを特徴とする非接触給電装置。   8. The non-contact power feeding device according to claim 1, wherein the plurality of power transmission coils and power receiving coils are used in a non-contact outlet of a direct current distribution system that distributes direct current. apparatus.
JP2016080681A 2016-04-13 2016-04-13 Non-contact power supply device Pending JP2017192218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080681A JP2017192218A (en) 2016-04-13 2016-04-13 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080681A JP2017192218A (en) 2016-04-13 2016-04-13 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2017192218A true JP2017192218A (en) 2017-10-19

Family

ID=60086070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080681A Pending JP2017192218A (en) 2016-04-13 2016-04-13 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2017192218A (en)

Similar Documents

Publication Publication Date Title
US9457676B2 (en) Contactless power transfer apparatus
US20210384770A1 (en) Hybrid inductive power transfer system
JP5885837B2 (en) Contactless power transformer for moving objects
JP5592124B2 (en) Non-contact power feeding device
CN105720695B (en) Inductive wireless power transfer system
JP6299320B2 (en) Coil unit and wireless power transmission device
JP5764032B2 (en) Wireless power feeding device, power receiving device and power feeding system
US9682631B2 (en) Non-contact electricity supply device
Mi High power capacitive power transfer for electric vehicle charging applications
EP2953143A1 (en) Coil unit and wireless power transmission device
WO2015162859A1 (en) Contactless power transmission device, contactless power reception device, and contactless power transmission system
JP2011045195A (en) Non-contact power feeding device and non-contact power feeding method
US10576831B2 (en) Primary unit comprising a plurality of coil sections for inductive charging
JP5852225B2 (en) Power receiving apparatus and power receiving method
US20170117083A1 (en) Transmitting coil structure and wireless power transmitting terminal using the same
JP2019071719A (en) Wireless power supply system for mobile
JP2010040699A (en) Noncontacting feed device
KR101393580B1 (en) Wireless Power Transfer System Insensitive to Relative Positions between Transmission-side Coil and Collector-side Coil
Boys et al. IPT fact sheet series: no. 1–basic concepts
CN105720699B (en) Inductive wireless power transfer system
CN114868320A (en) Non-contact power supply device
JP2017192218A (en) Non-contact power supply device
US20220029458A1 (en) Inductive power transfer coupler array
Bobba et al. Effect of coil geometry and dimensions on the performance of wireless power transfer in AUV application
Chen et al. Near field wireless power transfer for multiple receivers by using a novel magnetic core structure