JP2017191922A - Photovoltaic power generation accompanying hydrogen generation - Google Patents

Photovoltaic power generation accompanying hydrogen generation Download PDF

Info

Publication number
JP2017191922A
JP2017191922A JP2016089860A JP2016089860A JP2017191922A JP 2017191922 A JP2017191922 A JP 2017191922A JP 2016089860 A JP2016089860 A JP 2016089860A JP 2016089860 A JP2016089860 A JP 2016089860A JP 2017191922 A JP2017191922 A JP 2017191922A
Authority
JP
Japan
Prior art keywords
hydrogen
light
electrons
photosynthesis
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016089860A
Other languages
Japanese (ja)
Inventor
峯男 葛城
Mineo Katsuragi
峯男 葛城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016089860A priority Critical patent/JP2017191922A/en
Publication of JP2017191922A publication Critical patent/JP2017191922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to contribute reduction in CO2 by using electricity made from the sunlight, natural light, or natural energy and using ultraviolet light/infrared LED light to generate electricity (electrons) and hydrogen to be energy sources, in order to suppress consumption of fossil fuel including petroleum and coal as much as possible because a high content of CO2 in the atmosphere caused by occurrence of environmental destruction would result in weather modification causing many disasters, the CO2 being more greatly generated by greater consumption of the fossil fuel.SOLUTION: A method for generating electricity (electrons) and hydrogen (of an oxygen generation type) using photosynthesis of plants is invented. An oxide semiconductor is immersed in iodide solution using iodine contained in sea weed to generate iodide for generating electricity (electrons) and hydrogen (of the oxygen generation type) while using photosynthesis. The method also can use ultraviolet light, infrared light, etc. included in the sunlight.SELECTED DRAWING: Figure 1

Description

本発明は、上面は透明のガラス、下面に強化ガラス等反射物(板)を設置した容器に酸化物半導体(酸化亜鉛、二酸化スズ、酸化インジウム、ITOや酸化銅、酸化銀など)とヨウ素を含む水溶液を入れ太陽光を照射する。光合成を通じて電子の発生を生じさせる装置である。
ヨウ素を含む水溶液とは海藻、藍藻、アオコ、イシクラゲ、キクラゲなど利用した水溶液も含む。 反応を良くするためこの装置は薄平たくする。
また電極は、陰極(カソード)は接地極から取り、陽極(アノード)は容器の中に電極を設置する。
In the present invention, an oxide semiconductor (zinc oxide, tin dioxide, indium oxide, ITO, copper oxide, silver oxide, etc.) and iodine are placed in a container having a transparent glass on the upper surface and a reflector (plate) such as tempered glass on the lower surface. Put the aqueous solution containing it and irradiate it with sunlight. It is a device that generates electrons through photosynthesis.
The aqueous solution containing iodine includes aqueous solutions using seaweed, cyanobacteria, blue-green algae, medusa jellyfish, and jellyfish. The device is flattened for better reaction.
In addition, as for the electrode, the cathode (cathode) is taken from the ground electrode, and the anode (anode) is placed in the container.

現在大気中のCO2の増加で温暖化が進み気候の変調が来されていると考えられている。 そのためCO2の削減が急務で、特に化石燃料を使う発電や装置・機器などからのCO2の排出が大きい。 そこで、自然エネルギーである太陽光を利用して発電し、装置・機器の動力源とする。
太陽光発電(太陽電池)は環境にやさしいエネルギー利用方法であり、CO2の削減に貢献する。
It is thought that climate change has been brought about by the increase of CO2 in the atmosphere. For this reason, reduction of CO2 is an urgent issue, and in particular, CO2 emissions from power generation, devices and equipment using fossil fuels are large. Therefore, solar power, which is natural energy, is used to generate power and use it as a power source for devices and equipment.
Photovoltaic power generation (solar cell) is an environmentally friendly energy utilization method and contributes to CO2 reduction.

現在のところ太陽電池は各社から多く作られている。 しかし、酸化物半導体とヨウ素を含む水溶液に光合成を組み合わせた太陽電池は初めてである。今までは太陽光を利用して化学反応と電気分解等を用いて太陽電池を作っていた。光合成である2He(ジプロトン)を利用していないため複雑な過程をしている。At present, many solar cells are made by various companies. However, this is the first solar cell that combines photosynthesis with an aqueous solution containing an oxide semiconductor and iodine. Until now, solar cells were made using chemical reaction and electrolysis using sunlight. Since 2He (diproton), which is photosynthesis, is not used, the process is complicated.

(イ) 化石燃料から電気を作る場合はCO2が多く発生する。CO2の削減にならない。
(ロ) 自然エネルギーである太陽光での太陽電池は、CO2は発生いしない。
(ハ) ドイツのチームは高純度のヒドロゲナーゼの結晶水素分子を燃料電池応用に期待している。 また、LEDに使われる半導体の化合物を触媒にして燃料(メタン)を光合成で作っている。
(ニ) 現在の太陽電池は電気のみ取り出しているため、効率が悪い。
(ホ) 化学反応と電気分解等であるため効率の割に高価につく。
(B) When electricity is generated from fossil fuel, a large amount of CO2 is generated. It does not reduce CO2.
(B) Solar cells with sunlight, which is natural energy, do not generate CO2.
(C) The German team expects high-purity hydrogenase crystalline hydrogen molecules for fuel cell applications. In addition, fuel (methane) is made by photosynthesis using semiconductor compounds used in LEDs as catalysts.
(D) Current solar cells are not efficient because they only extract electricity.
(E) It is expensive for efficiency because of chemical reaction and electrolysis.

太陽光を、酸化物半導体(酸化亜鉛など)を浸したヨウ素を含む水溶液に照射する。水溶液を入れる容器は、上面は透明ガラスで下面(底面)は太陽光を反射する強化ガラスを使う。残り4面は鉄板製でも良いが黒色ペンキ仕上げとする。水溶液を入れる容器は薄平たくする。
(イ)透明ガラスを鉄板製箱体の上部に取り付け、箱体の下面(底面)に強化ガラスを設置する。下面は鉄板製としてその上に強化ガラスを敷いても良い。 厚さは内寸法で10mm位にする。
(ロ)あらかじめ海藻を入れて充分浸していた水溶液を上記の箱体入れる。
(ハ)粉末にしてある酸化亜鉛をその水溶液の中にいれる。
(ニ)箱体には架台が必要で太陽光の一番受けやすい角度に設置する。
箱体に設置してある電極と接地極とを蓄電池に接続する。
水素取出用パイプから水素を低圧ボンベに貯める。
(ヘ)蓄電池は使用者が選んで設置する。また水素の貯蔵もバルブ以降は用途に応じて水素の貯め方を使用者が決める。
低圧タンク(10気圧以下)や水素吸蔵合金などに貯める。
本発明は陽極と陰極のリード線までで第3種アースや蓄電池は含まない。 また低圧タンクや水素吸蔵合金も含まない。
なお本発明で発生する電子はミュー粒子(μ)であるため、長時間かけて蓄電池に貯めなくてはならない。
Sunlight is irradiated to an aqueous solution containing iodine soaked with an oxide semiconductor (such as zinc oxide). The container containing the aqueous solution uses transparent glass on the top and tempered glass that reflects sunlight on the bottom (bottom). The remaining four surfaces may be made of iron plate, but with black paint finish. Thin the container containing the aqueous solution.
(A) A transparent glass is attached to the upper part of an iron plate box, and tempered glass is installed on the lower surface (bottom surface) of the box. The lower surface may be made of an iron plate and tempered glass may be laid thereon. The thickness is about 10 mm in internal dimensions.
(B) The above-mentioned box is filled with an aqueous solution that has been previously immersed in seaweed.
(C) Zinc oxide in powder form is put into the aqueous solution.
(D) The box requires a stand and is installed at an angle that is most susceptible to sunlight.
The electrode installed in the box and the ground electrode are connected to the storage battery.
Hydrogen is stored in a low-pressure cylinder from the hydrogen extraction pipe.
(F) The storage battery is selected and installed by the user. In addition, for the storage of hydrogen, after the valve, the user decides how to store hydrogen according to the application.
Store in a low-pressure tank (10 atm or less) or hydrogen storage alloy.
The present invention extends to the anode and cathode lead wires and does not include the third type earth or storage battery. Also does not include low pressure tanks or hydrogen storage alloys.
Since the electrons generated in the present invention are mu particles (μ ), they must be stored in the storage battery over a long period of time.

(イ)CO2の削減に貢献できる。
(ロ)いろいろな装置や機器にも電源として使用できる。
(ハ)安全に気を付けてするならば、個人の家庭でも小型で安く簡単に使用できる。
(ニ)家庭用太陽電池と自動車の動力にも使用できる。
(ホ)電気機器や小型機器類の電気補充に便利である。
(ヘ)発電に伴って水素も発生するのでその利用もできる。
(A) It can contribute to CO2 reduction.
(B) It can be used as a power source for various devices and equipment.
(C) If you are careful about safety, it can be used easily and cheaply even in a private home.
(D) It can also be used for household solar cells and automobile power.
(E) Convenient for replenishing electrical equipment and small equipment.
(F) Hydrogen is also generated with power generation and can be used.

本発明の斜視図である。It is a perspective view of the present invention. 本発明の一部を切り欠いた側面図である。It is the side view which notched a part of this invention. 本発明の他の実施例を示した斜視図である。It is the perspective view which showed the other Example of this invention.

物理的に光子の衝突から短時間ではあるが2He(ジプトロン)が発生している。 2Heで発生する電子は先にも述べたがミュー粒子(μ)で電気分解で発生するほど発生しない。 微細な反応であるため、長時間掛かる。 しかし、簡単な反応であるため各自個人的に使用できる。
酸化物半導体に酸化亜鉛を水溶液に海藻(ヨウ素を含んだ)を浸した水を使用する。 なお酸化亜鉛を粉末にすると効率が上がる。

Figure 2017191922
HI(ヨウ化水素)は強い刺激臭を持つ無色の気体で劇物(毒物)に該当する。 そこで、太陽光を照射して反射した光と光合成し、2He(ジプロトン)を発生させて分解する。
Figure 2017191922
このように太陽光の光合成によってHIが分解されヨウ化イオンになり再びヨウ素Iと結合してI となり酸化亜鉛と反応する。
上記の反応が繰り返される。
酸素ができるのは植物の光合成の特徴である。光合成細菌も同じである。
なおヨウ化亜鉛ZnIは放射線の遮蔽等に使えるらしいが吸湿性と特異臭があり、光や空気と反応する。 不燃性であるが加熱により有害なものを生じるので注意が必要である。
以下、本発明の実施の形態を説明する。
(イ)海藻を浸していた水(水溶液)を(1)上面透明ガラス容器に入れそこに(2)酸化亜鉛粉末を入れよくかき混ぜる。
(ロ)容器の上面を太陽光が当たる方向に容器を設置する。
予め(3)容器設置架台を作っておく。
(ハ)容器には(4)水位計を取り付けておき、水溶液の確認をする。
(ニ)酸化亜鉛粉末は一度に多量入れないで、容量に応じて少しづつ入れる。
容器には(5)水溶液入れ口 (6)酸化亜鉛粉末投入口 (7)水素取出用パイプ(末端にはバルブを取り付けておく) (8)陽極とリード線 などが付いている。
また容器の厚さは10〜20mmにして光の衝突エネルギーを確保する。
(ホ)(9)陰極、(8)陽極のリード線を別途蓄電池に繋ぐ。
(ヘ)別途低圧タンクあるいは水素吸蔵合金にパイプ接続する。
本発明は以上のような構造である。Physically, 2He (diptron) is generated from the collision of photons in a short time. As described above, electrons generated by 2He are not generated as much as they are generated by electrolysis of mu particles (μ ). Because it is a fine reaction, it takes a long time. However, since it is a simple reaction, it can be used individually.
Water in which zinc oxide is immersed in an oxide semiconductor and seaweed (containing iodine) in an aqueous solution is used. If zinc oxide is powdered, the efficiency will increase.
Figure 2017191922
HI (hydrogen iodide) is a colorless gas with a strong irritating odor and corresponds to a deleterious substance (poisonous substance). Then, it synthesize | combines with the light reflected and irradiated with sunlight, 2He (diproton) is generated, and it decomposes | disassembles.
Figure 2017191922
In this way, HI is decomposed by photosynthesis of sunlight and becomes iodide ions, which are combined with iodine I 2 again to become I 3 and react with zinc oxide.
The above reaction is repeated.
Oxygen is a characteristic of plant photosynthesis. The same is true for photosynthetic bacteria.
Zinc iodide ZnI 2 seems to be usable for shielding radiation, but has hygroscopicity and a specific odor, and reacts with light and air. Care must be taken because it is nonflammable but produces harmful substances by heating.
Embodiments of the present invention will be described below.
(I) Water (aqueous solution) dipped in seaweed is placed in (1) an upper transparent glass container, and (2) zinc oxide powder is put therein and mixed well.
(B) Install the container in the direction in which sunlight hits the upper surface of the container.
(3) Make a container installation stand in advance.
(C) A water level gauge is attached to the container, and the aqueous solution is checked.
(D) Do not add a large amount of zinc oxide powder at once, but add it little by little according to the capacity.
(5) Aqueous solution inlet (6) Zinc oxide powder inlet (7) Hydrogen extraction pipe (a valve is attached to the end) (8) Anode, lead wire, etc.
The thickness of the container is 10 to 20 mm to ensure light collision energy.
(E) Connect the lead wire of (9) the cathode and (8) the anode separately to the storage battery.
(F) Connect a pipe to a low pressure tank or hydrogen storage alloy separately.
The present invention has the above structure.

本発明を使用するときは水溶液入れ口(5)の蓋を開け、水溶液を入れる。
水位計(4)を確認しながら満タンになれば入れ終える。
蓋(5)を締めた後酸化亜鉛粉末投入口(2)から粉末を入れ、投入口の蓋をする。 (8)陽極のリード線(9)陰極のリード線を蓄電池に接続する。陰極のリード線は(10)第3種アース線に接続する。
必ず通電する前に、低圧タンクあるいは水素吸蔵合金に水素取出用パイプが繋がっていること、またバルブが開いていることを確認する。
反応が微細なので長時間掛けて発生するので、水位計を見ながら通電する。
水位計で水溶液が少なくなっていると発生が行われている。 別途低圧タンクあるいは水素吸蔵合金などに水素を貯めた後、水素取出用パイプに取り付けてあるバルブを閉める。
蓄電池への充電は8〜10時間位を目安とする。
When using the present invention, the lid of the aqueous solution inlet (5) is opened and the aqueous solution is charged.
When the tank is full while checking the water level gauge (4), finish filling.
After closing the lid (5), the powder is charged from the zinc oxide powder inlet (2) and the inlet is covered. (8) Anode lead wire (9) Connect the cathode lead wire to the storage battery. The cathode lead wire is connected to the (10) type 3 ground wire.
Before energizing, make sure that the hydrogen extraction pipe is connected to the low-pressure tank or hydrogen storage alloy and that the valve is open.
Since the reaction is fine, it takes a long time, so energize while looking at the water level gauge.
Occurrence occurs when water level is low in the water level gauge. Separately store hydrogen in a low-pressure tank or hydrogen storage alloy, and then close the valve attached to the hydrogen extraction pipe.
Charging the storage battery is about 8 to 10 hours.

1.透明ガラス容器(上面透明ガラス、下面強化ガラス)
箱体は鉄板製(透明ガラス面以外5面、下面の強化ガラスは鉄板の上に張り付ける。)
2.酸化亜鉛粉末
3.容器設置架台
4.水位計
5.水溶液入れ口
6.酸化亜鉛粉末投入口
7.水素取出用パイプ(バルブ止め)
8.陽極とリード線
9.陰極とリード線
10.第3種アース
1. Transparent glass container (upper transparent glass, lower tempered glass)
The box is made of iron plate (5 surfaces other than the transparent glass surface, and the tempered glass on the lower surface is pasted on the iron plate)
2. 2. Zinc oxide powder Container installation stand 4. Water level indicator 5. 5. Aqueous solution inlet 6. Zinc oxide powder inlet Hydrogen extraction pipe (valve stop)
8). 8. Anode and lead wire Cathode and lead wire10. Type 3 earth

Claims (4)

太陽光を光源にして、酸化物半導体が入っているヨウ素を含む水溶液に太陽光が照射し、その反射光と光合成して電気(電子)を発生する装置。
同時に水素も発生させる両機能を持った太陽光電池
An apparatus that uses sunlight as a light source to irradiate an aqueous solution containing iodine containing an oxide semiconductor, and generates light (electrons) by photosynthesis with the reflected light.
Solar cell with both functions to generate hydrogen at the same time
紫外線・赤外線LEDを光源にして、酸化物半導体が入っているヨウ素を含む水溶液に光を照射し、光合成を通じて電気(電子)及び水素等を発生させる両機能を持った装置。A device that has both functions of generating electricity (electrons), hydrogen, and the like through photosynthesis by irradiating light to an aqueous solution containing iodine containing an oxide semiconductor using an ultraviolet / infrared LED as a light source. 赤外線LED(波長400〜2,500nm)を光源にして、酸化物半導体が入っているヨウ素を含む水溶液に光を照射し、光合成を通じて電気(電子)及び水素等を発生させる両機能を持った装置。A device that has both functions of generating light (electrons) and hydrogen through photosynthesis by irradiating an aqueous solution containing iodine containing an oxide semiconductor with an infrared LED (wavelength 400 to 2,500 nm) as a light source . 赤外線LEDはシーシーエス株式会社のアグリバイオ用照明、最大光量約1,000μmol−2−1以上の赤外線LEDを使用して、酸化物半導体あるいはその粉末が入っているヨウ素を含む水溶液に光を照射し、光合成を通じて電気(電子)及び水素等を発生させる両機能を持った装置。Infrared LED uses CCS Co., Ltd. agribio illumination, infrared LED with maximum light intensity of about 1,000 μmol - m −2 s −1 or more, and light to iodine-containing aqueous solution containing oxide semiconductor or its powder With both functions to generate electricity (electrons) and hydrogen through photosynthesis.
JP2016089860A 2016-04-11 2016-04-11 Photovoltaic power generation accompanying hydrogen generation Pending JP2017191922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089860A JP2017191922A (en) 2016-04-11 2016-04-11 Photovoltaic power generation accompanying hydrogen generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089860A JP2017191922A (en) 2016-04-11 2016-04-11 Photovoltaic power generation accompanying hydrogen generation

Publications (1)

Publication Number Publication Date
JP2017191922A true JP2017191922A (en) 2017-10-19

Family

ID=60086032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089860A Pending JP2017191922A (en) 2016-04-11 2016-04-11 Photovoltaic power generation accompanying hydrogen generation

Country Status (1)

Country Link
JP (1) JP2017191922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167750A3 (en) * 2018-06-13 2019-04-25 Universidad Técnica Particular De Loja Semi-autonomous lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167750A3 (en) * 2018-06-13 2019-04-25 Universidad Técnica Particular De Loja Semi-autonomous lighting device

Similar Documents

Publication Publication Date Title
Zhou et al. Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode
Züttel et al. Hydrogen: the future energy carrier
Armaroli et al. Solar electricity and solar fuels: status and perspectives in the context of the energy transition
Bockris Hydrogen economy in the future
Abbasi et al. ‘Renewable’hydrogen: prospects and challenges
US11952273B2 (en) Clean green fuel technology
CN104466207B (en) Seawater power generation system
Hassan et al. Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review
WO2014196481A1 (en) Method for recycling of carbon dioxide
Qi et al. A new strategy for solar‐to‐hydrogen energy conversion: Photothermal‐promoted electrocatalytic water splitting
JP2017191922A (en) Photovoltaic power generation accompanying hydrogen generation
ES2877454T3 (en) Ionic Power Station
ES2775234T3 (en) Procedure to provide electrical energy for a consumer
Wang et al. Nature‐Inspired Design of Artificial Solar‐to‐Fuel Conversion Systems based on Copper Phosphate Microflowers
Bedoya-Lora et al. En route to a unified model for photoelectrochemical reactor optimization. II–Geometric optimization of perforated photoelectrodes
Harriman Photo‐Oxidation of Water under Ambient Conditions–The Search for Effective Oxygen‐Evolving Catalysts
DeepanPrakash et al. Harnessing power from sea water using nano material as photocatalyst and solar energy as light source: the role of hydrocarbon as dual agent
JP2017186219A (en) Hydrogen generation device by photosynthesis
US11492713B2 (en) Energy storage system for metal upcycling
KR20140112644A (en) Dual Type Generation System And Method For Ship Or Offshore Platform
Jun Introduction to nanomaterials in energy devices
CN104478033B (en) A kind of based on solar energy with the photoelectrocatalysidevice device of powered by wave energy
Ruth et al. An overview of photoelectrochemical cells (PEC): Mimicking nature to produce hydrogen for fuel cells
Regalado Reinventing the leaf
Alasali et al. A review of hydrogen production and storage materials for efficient integrated hydrogen energy systems