JP2017191667A - Active material coating solution - Google Patents

Active material coating solution Download PDF

Info

Publication number
JP2017191667A
JP2017191667A JP2016079422A JP2016079422A JP2017191667A JP 2017191667 A JP2017191667 A JP 2017191667A JP 2016079422 A JP2016079422 A JP 2016079422A JP 2016079422 A JP2016079422 A JP 2016079422A JP 2017191667 A JP2017191667 A JP 2017191667A
Authority
JP
Japan
Prior art keywords
active material
material coating
coating solution
acid
comparative examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016079422A
Other languages
Japanese (ja)
Other versions
JP6504099B2 (en
Inventor
内山 貴之
Takayuki Uchiyama
貴之 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016079422A priority Critical patent/JP6504099B2/en
Publication of JP2017191667A publication Critical patent/JP2017191667A/en
Application granted granted Critical
Publication of JP6504099B2 publication Critical patent/JP6504099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active material coating solution that has more excellent storage stability as compared with the case where a small amount of citric acid is added.SOLUTION: An active material coating solution contains lithium, a peroxo complex of niobate, and phosphate ions. The phosphate ions are (PO), (HPO), (HPO), or (PO). The concentration of the phosphate ions contained in the active material coating solution is 0.02 or more and 3.01 or less in a molar ratio to niobium.SELECTED DRAWING: None

Description

本発明は、活物質被覆用溶液に関する。   The present invention relates to an active material coating solution.

全固体電池の分野において、従来から、固体電解質と電極活物質の界面に着目し、電極活物質の表面に固体電解質を被覆することにより、界面抵抗を低減し、電池の性能の向上を図る試みがある。
例えば、特許文献1には、正極活物質であるコバルト酸リチウムの表面をニオブ酸リチウムによって被覆することにより界面抵抗を低減し、電池の性能の向上を図るための、リチウムと、ニオブ酸のペルオキソ錯体と、クエン酸を含有する活物質被覆用溶液が開示されている。
In the field of all-solid-state batteries, an attempt to reduce the interfacial resistance and improve battery performance by focusing on the interface between the solid electrolyte and electrode active material and coating the surface of the electrode active material with the solid electrolyte There is.
For example, Patent Document 1 discloses that lithium and niobate peroxo are used to reduce the interfacial resistance by covering the surface of lithium cobaltate, which is a positive electrode active material, with lithium niobate and to improve battery performance. An active material coating solution containing a complex and citric acid is disclosed.

特開2015−103321号公報JP2015-103321A

しかし、特許文献1に開示されているような活物質被覆用溶液では、ニオブ酸のペルオキソ錯体は不安定で沈殿しやすいため、ニオブ酸のペルオキソ錯体の安定性を確保し、生産効率を向上させるために、安定化剤として多量のクエン酸を添加する必要がある。そのため、活物質の熱処理後に、炭化したクエン酸によるLiイオン移動阻害が生じ、ニオブ酸リチウム被覆処理後の活物質のLiイオン伝導率が不十分であるという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、クエン酸を少量添加するよりも保存安定性に優れる活物質被覆用溶液を提供することである。
However, in the active material coating solution as disclosed in Patent Document 1, since the niobic acid peroxo complex is unstable and easily precipitates, the stability of the niobic acid peroxo complex is secured and the production efficiency is improved. Therefore, it is necessary to add a large amount of citric acid as a stabilizer. Therefore, after the heat treatment of the active material, there is a problem that Li ion migration is inhibited by the carbonized citric acid, and the Li ion conductivity of the active material after the lithium niobate coating treatment is insufficient.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a solution for coating an active material that is superior in storage stability to the addition of a small amount of citric acid.

本発明の活物質被覆用溶液は、リチウムと、ニオブ酸のペルオキソ錯体と、リン酸系イオンと、を含む、活物質被覆用溶液であって、
前記リン酸系イオンは、(PO3−、(HPO、(HPO2−、(P4−であり、
前記活物質被覆用溶液に含まれるリン酸系イオン濃度は、ニオブに対するモル比で0.02以上3.01以下であることを特徴とする。
The active material coating solution of the present invention is an active material coating solution containing lithium, a peroxo complex of niobic acid, and a phosphate ion,
The phosphate ions are (PO 4 ) 3− , (H 2 PO 4 ) , (HPO 4 ) 2− , (P 2 O 7 ) 4− ,
The phosphate ion concentration contained in the active material coating solution is 0.02 to 3.01 in terms of a molar ratio to niobium.

本発明によれば、クエン酸を少量添加するよりも保存安定性に優れる活物質被覆用溶液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solution for active material coating | cover which is excellent in storage stability rather than adding a small amount of citric acid can be provided.

本発明の活物質被覆用溶液は、リチウムと、ニオブ酸のペルオキソ錯体と、リン酸系イオンと、を含む、活物質被覆用溶液であって、
前記リン酸系イオンは、(PO3−、(HPO、(HPO2−、(P4−であり、
前記活物質被覆用溶液に含まれるリン酸系イオン濃度は、ニオブに対するモル比で0.02以上3.01以下であることを特徴とする。
The active material coating solution of the present invention is an active material coating solution containing lithium, a peroxo complex of niobic acid, and a phosphate ion,
The phosphate ions are (PO 4 ) 3− , (H 2 PO 4 ) , (HPO 4 ) 2− , (P 2 O 7 ) 4− ,
The phosphate ion concentration contained in the active material coating solution is 0.02 to 3.01 in terms of a molar ratio to niobium.

本発明者は、活物質被覆用溶液に、安定化剤として、リン酸系イオンを添加することによって、クエン酸を少量添加するよりも保存安定性に優れることを見出した。
なお、本発明において「クエン酸を少量添加する」とは、活物質被覆用溶液に含まれるクエン酸濃度がニオブに対するモル比で0.79以下となるように、後述する錯体溶液にクエン酸を添加することをいう(比較例2〜4参照)。
The present inventor has found that by adding a phosphoric acid ion as a stabilizer to the active material coating solution, the storage stability is superior to adding a small amount of citric acid.
In the present invention, “adding a small amount of citric acid” means that citric acid is added to a complex solution described later so that the concentration of citric acid contained in the active material coating solution is 0.79 or less in terms of a molar ratio to niobium. It means adding (see Comparative Examples 2 to 4).

ニオブ酸のペルオキソ錯体([Nb(O3−)は、特許文献1に記載されているような従来公知の方法で得ることができ、例えば、過酸化水素水へ、ニオブ酸(Nb・nH2O)を添加して混合し、得られた懸濁液へ、アンモニア水等のアルカリを添加し、混合することにより透明なニオブ酸のペルオキソ錯体を得ることができる。
ここで、当該混合の際、ニオブ酸1モルに対して、過酸化水素が8モル以上となるようにすることが好ましく、過酸化水素が反応中に分解する可能性があることを考慮すると、ニオブ酸1モルに対して、過酸化水素が10モル以上となるようにすることが更に好ましい。
また、当該懸濁液へ、アルカリとしてアンモニア水を添加する場合、ニオブ酸1モルに対して、アンモニアが1モル以上となるように添加することが好ましく、アンモニアが反応中に揮発することを考慮すると、ニオブ酸1モルに対して、アンモニアが2モル以上となるように添加することが、さらに好ましい。
さらに、当該アンモニア水に代えて、アルカリ性溶液を添加することもできる。この場合、アルカリ性溶液の添加量は、添加後の溶液のpH値が10以上、好ましくは、11以上となる量とする。当該アルカリ性溶液として、水酸化リチウム溶液を添加することもできる。
A peroxo complex of niobic acid ([Nb (O 2 ) 4 ] 3− ) can be obtained by a conventionally known method as described in Patent Document 1, for example, niobic acid ( Nb 2 O 5 .nH 2 O) is added and mixed, and an alkali such as aqueous ammonia is added to and mixed with the obtained suspension, whereby a transparent peroxo complex of niobic acid can be obtained.
Here, at the time of the mixing, it is preferable that hydrogen peroxide is 8 moles or more with respect to 1 mole of niobic acid, and considering that hydrogen peroxide may be decomposed during the reaction, More preferably, the hydrogen peroxide is 10 moles or more per mole of niobic acid.
Moreover, when adding aqueous ammonia as an alkali to the suspension, it is preferable to add ammonia so that the amount of ammonia is 1 mol or more with respect to 1 mol of niobic acid, considering that ammonia volatilizes during the reaction. Then, it is more preferable to add so that ammonia may be 2 mol or more with respect to 1 mol of niobic acid.
Furthermore, instead of the ammonia water, an alkaline solution can be added. In this case, the addition amount of the alkaline solution is such that the pH value of the solution after the addition is 10 or more, preferably 11 or more. A lithium hydroxide solution can also be added as the alkaline solution.

そして、得られたニオブ酸のペルオキソ錯体を含有する水溶液に、リチウム化合物を添加することにより、リチウムとニオブ酸のペルオキソ錯体とを含有する溶液を得ることができる。添加するリチウム化合物のリチウムのモル数は、前記水溶液中に含まれるニオブ酸のペルオキソ錯体のニオブのモル数に対して、任意に設定することが出来る。添加するリチウム化合物のリチウムのモル数は、前記水溶液中に含まれるニオブ錯体のニオブのモル数に対して、任意に設定することができ、ニオブ1モルに対してリチウムが1以上、1.3モル以下であることが好ましい。
リチウム化合物としては、水酸化リチウム(LiOH)、硝酸リチウム(LiNO)、硫酸リチウム(LiSO)等が挙げられる。
A solution containing lithium and a niobic acid peroxo complex can be obtained by adding a lithium compound to the aqueous solution containing the niobic acid peroxo complex. The number of moles of lithium in the lithium compound to be added can be arbitrarily set with respect to the number of moles of niobium in the peroxo complex of niobic acid contained in the aqueous solution. The number of moles of lithium in the lithium compound to be added can be arbitrarily set with respect to the number of moles of niobium in the niobium complex contained in the aqueous solution. It is preferably less than or equal to a mole.
Examples of the lithium compound include lithium hydroxide (LiOH), lithium nitrate (LiNO 3 ), and lithium sulfate (Li 2 SO 4 ).

活物質被覆用溶液に、含まれるリン酸系イオンは、(PO3−、(HPO、(HPO2−、(P4−である。
上記リチウムとニオブ酸のペルオキソ錯体とを含有する溶液に安定化剤として添加するリン酸系化合物としては、例えば、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、ピロリン酸四ナトリウム等が挙げられる。
活物質被覆用溶液に含まれるリン酸系イオン濃度は、下限値は、ニオブに対するモル比で0.02以上であり、上限値は、ニオブに対するモル比で3.01以下であり、1.00以下が好ましく、0.71以下がより好ましい。
Phosphate ions contained in the active material coating solution are (PO 4 ) 3− , (H 2 PO 4 ) , (HPO 4 ) 2− , (P 2 O 7 ) 4− .
Examples of the phosphate compound added as a stabilizer to the solution containing the lithium and niobic acid peroxo complex include phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and tetrasodium pyrophosphate. Can be mentioned.
As for the phosphate ion concentration contained in the active material coating solution, the lower limit is 0.02 or more in terms of the molar ratio to niobium, and the upper limit is 3.01 or less in terms of the molar ratio to niobium. The following is preferable, and 0.71 or less is more preferable.

(実施例1)
[ペルオキソ錯体溶液の調製]
濃度30質量%の過酸化水素水43.5gへ、イオン交換水49.5g、ニオブ酸(Nb・nHO(Nb含有率77%))2.08gを添加した。
次に、濃度28質量%のアンモニア水4.4gを添加し、十分に攪拌して透明溶液を得た。
得られた透明溶液に水酸化リチウム・1水和物(LiOH・HO)0.5gを加えて、リチウムとニオブ錯体とを含有する水溶液を得た。
得られた錯体溶液のLi、Nbのモル濃度は各0.12mol/kgであった。
Example 1
[Preparation of peroxo complex solution]
49.5 g of ion-exchanged water and 2.08 g of niobic acid (Nb 2 O 5 .nH 2 O (Nb 2 O 5 content 77%)) were added to 43.5 g of hydrogen peroxide water having a concentration of 30% by mass.
Next, 4.4 g of ammonia water having a concentration of 28% by mass was added and sufficiently stirred to obtain a transparent solution.
To the obtained transparent solution, 0.5 g of lithium hydroxide monohydrate (LiOH.H 2 O) was added to obtain an aqueous solution containing lithium and a niobium complex.
The molar concentration of Li and Nb in the obtained complex solution was 0.12 mol / kg.

[安定化剤の添加]
上記錯体溶液に安定化剤としてリン酸を添加し混合し、活物質被覆用溶液を得た。
リン酸の添加量はニオブに対するモル比で0.02とした。
[Addition of stabilizer]
Phosphoric acid as a stabilizer was added to the complex solution and mixed to obtain an active material coating solution.
The amount of phosphoric acid added was 0.02 in terms of a molar ratio to niobium.

[吸光度、pHの測定]
得られた活物質被覆用溶液を室温にて静置した。
そして、吸光度、及び、pHの変化を記録した。結果を表1に示す。
吸光度、及び、pHは以下の装置を用いて測定した。
吸光度:分光光度計(UV−3600、島津製作所社製)。420〜780nmにおける最大吸光度を吸光度とした。
pH:pHメーター(D−72、堀場製作所社製)。
[Measurement of absorbance and pH]
The obtained active material coating solution was allowed to stand at room temperature.
Then, changes in absorbance and pH were recorded. The results are shown in Table 1.
Absorbance and pH were measured using the following apparatus.
Absorbance: spectrophotometer (UV-3600, manufactured by Shimadzu Corporation). The maximum absorbance at 420 to 780 nm was defined as absorbance.
pH: pH meter (D-72, manufactured by Horiba, Ltd.).

[Liイオン伝導率測定]
上記活物質被覆用溶液をホットプレート上で乾燥後(120℃)、熱処理(大気雰囲気、200℃、5h)を加えることでLiNbO粉体を得た。
内径断面積1cmの筒状セラミックスに、得られたLiNbO粉体100mgを入れ、平滑にし、4.3tonで1分プレスし、ペレット化した後、ステンレス棒を両極に入れ、1tonで拘束して、Liイオン伝導率測定セルとした。
ナイキストプロットにより得られた円弧をイオン移動抵抗とし、ペレット厚みよりLiNbOのLiイオン伝導率を計算した。結果を表1に示す。
[Li ion conductivity measurement]
The above active material coating solution was dried on a hot plate (120 ° C.) and then heat-treated (atmospheric atmosphere, 200 ° C., 5 h) to obtain LiNbO 3 powder.
Put 100 mg of the obtained LiNbO 3 powder into cylindrical ceramics with an inner diameter cross-sectional area of 1 cm 2 , smooth, press at 4.3 ton for 1 minute, pelletize, put stainless steel rod into both poles and restrain at 1 ton. Thus, a Li ion conductivity measuring cell was obtained.
The arc obtained by the Nyquist plot was used as the ion migration resistance, and the Li ion conductivity of LiNbO 3 was calculated from the pellet thickness. The results are shown in Table 1.

(実施例2〜9、参考例10、実施例11〜25)
上記錯体溶液に、安定化剤として、リン酸(実施例2〜9、参考例10)、リン酸二水素アンモニウム(実施例11〜16)、リン酸水素二アンモニウム(実施例17〜21)、ピロリン酸四ナトリウム(実施例22〜26)を、表1〜4に示すニオブに対するモル比になる量を添加し、混合したこと以外は、実施例1と同様に活物質被覆用溶液を得た。
そして、実施例1と同様に吸光度、pH、Liイオン伝導率を測定した。結果を表1(実施例2〜9、参考例10)、表2(実施例11〜16)、表3(実施例17〜21)、表4(実施例22〜26)に示す。
(Examples 2-9, Reference Example 10, Examples 11-25)
In the complex solution, phosphoric acid (Examples 2 to 9, Reference Example 10), ammonium dihydrogen phosphate (Examples 11 to 16), diammonium hydrogen phosphate (Examples 17 to 21) as stabilizers, An active material coating solution was obtained in the same manner as in Example 1 except that tetrasodium pyrophosphate (Examples 22 to 26) was added and mixed in an amount to give a molar ratio to niobium shown in Tables 1 to 4. .
Then, the absorbance, pH, and Li ion conductivity were measured in the same manner as in Example 1. The results are shown in Table 1 (Examples 2 to 9, Reference Example 10), Table 2 (Examples 11 to 16), Table 3 (Examples 17 to 21), and Table 4 (Examples 22 to 26).

(比較例1)
上記錯体溶液に、安定化剤として、リン酸を添加しなかったこと以外は、実施例1と同様に活物質被覆用溶液を得た。
そして、実施例1と同様に吸光度、pH、Liイオン伝導率を測定した。結果を表5に示す。
(Comparative Example 1)
An active material coating solution was obtained in the same manner as in Example 1 except that phosphoric acid was not added as a stabilizer to the complex solution.
Then, the absorbance, pH, and Li ion conductivity were measured in the same manner as in Example 1. The results are shown in Table 5.

(比較例2〜47)
上記錯体溶液に、安定化剤として、クエン酸(比較例2〜6)、アセトアニリド(比較例7〜11)、尿酸(比較例12〜16)、塩酸(比較例17〜22)、ホウ酸(比較例23〜27)、硫酸(比較例28〜32)、硝酸(比較例33〜37)、ホスホン酸(比較例38〜42)、ホスフィン酸(比較例43〜47)を、表6〜14に示すニオブに対するモル比になる量を添加し、混合したこと以外は、実施例1と同様に活物質被覆用溶液を得た。
そして、実施例1と同様に吸光度、pH、Liイオン伝導率を測定した。結果を表6(比較例2〜6)、表7(比較例7〜11)、表8(比較例12〜16)、表9(比較例17〜22)、表10(比較例23〜27)、表11(比較例28〜32)、表12(比較例33〜37)、表13(比較例38〜42)、表14(比較例43〜47)に示す。
(Comparative Examples 2-47)
In the complex solution, citric acid (Comparative Examples 2 to 6), acetanilide (Comparative Examples 7 to 11), uric acid (Comparative Examples 12 to 16), hydrochloric acid (Comparative Examples 17 to 22), boric acid (as a stabilizer) Comparative Examples 23-27), sulfuric acid (Comparative Examples 28-32), nitric acid (Comparative Examples 33-37), phosphonic acid (Comparative Examples 38-42), and phosphinic acid (Comparative Examples 43-47) are shown in Tables 6-14. An active material coating solution was obtained in the same manner as in Example 1 except that an amount corresponding to the molar ratio with respect to niobium was added and mixed.
Then, the absorbance, pH, and Li ion conductivity were measured in the same manner as in Example 1. The results are shown in Table 6 (Comparative Examples 2 to 6), Table 7 (Comparative Examples 7 to 11), Table 8 (Comparative Examples 12 to 16), Table 9 (Comparative Examples 17 to 22), and Table 10 (Comparative Examples 23 to 27). ), Table 11 (Comparative Examples 28 to 32), Table 12 (Comparative Examples 33 to 37), Table 13 (Comparative Examples 38 to 42), and Table 14 (Comparative Examples 43 to 47).

表1〜4の実施例で示すようにリン酸系イオンを添加することで、表6に示すクエン酸を少量添加した比較例2〜4に対して沈殿までの時間が大幅に延長されることがわかった。すなわち、少量のクエン酸(比較例2〜4)では、14時間以上の保存安定性効果は得られないが、実施例1〜9、11〜26では、14時間以上の保存安定性効果が得られ、さらに、実施例1〜9、11〜20、22〜26では、77時間以上の保存安定性効果が得られることがわかる。
一方、表1〜4で示すようにリン酸系イオンの添加量の増加に伴いLiイオン伝導率は低下することがわかる。しかし、実施例1〜7、11〜13、15、17〜21では、比較例2よりもLiイオン伝導率が高いことがわかる。
表7〜8で示すようにアセトアニリド(比較例7〜11)、尿酸(12〜16)の結果より、アセトアニリドでは77時間以上の保存安定性効果は得られず、尿酸では保存安定性効果は得られないことがわかる。したがって、過酸化水素安定剤の全てに優れた保存安定性効果があるわけではないことがわかる。
表9〜12で示すように塩酸(比較例17〜22)、ホウ酸(比較例23〜27)、硫酸(比較例28〜32)、硝酸(比較例33〜37)の結果より、塩酸では75時間以上の保存安定性効果は得られず、ホウ酸、硫酸、及び、硝酸では69時間以上の保存安定性効果は得られないことがわかる。したがって、無機酸の全てに優れた保存安定性効果があるわけではないことがわかる。
表13〜14で示すようにホスホン酸(比較例38〜42)、ホスフィン酸(比較例43〜47)の結果より、ホスホン酸、及び、ホスフィン酸では69時間以上の保存安定性効果は得られないことがわかる。したがって、リン化合物の全てに優れた保存安定性効果があるわけではないことがわかる。
以上の結果から、詳細メカニズムは不明だが、リン酸(イオン)が部分配位等、ニオブ酸のペルオキソ錯体に対して何らかの安定化効果をもつため、少量添加で溶液の保存安定性が向上したと推定される。
As shown in the examples of Tables 1 to 4, by adding phosphoric acid ions, the time until precipitation is greatly extended compared to Comparative Examples 2 to 4 in which a small amount of citric acid shown in Table 6 is added. I understood. That is, with a small amount of citric acid (Comparative Examples 2 to 4), a storage stability effect of 14 hours or more cannot be obtained, but in Examples 1 to 9, 11 to 26, a storage stability effect of 14 hours or more was obtained. Furthermore, in Examples 1-9, 11-20, 22-26, it turns out that the storage stability effect of 77 hours or more is acquired.
On the other hand, as shown in Tables 1 to 4, it can be seen that the Li ion conductivity decreases as the amount of phosphate ions added increases. However, in Examples 1-7, 11-13, 15, 17-17, it turns out that Li ion conductivity is higher than Comparative Example 2.
As shown in Tables 7 to 8, from the results of acetanilide (Comparative Examples 7 to 11) and uric acid (12 to 16), acetanilide does not provide a storage stability effect of 77 hours or more, and uric acid provides a storage stability effect. I can't understand. Thus, it can be seen that not all hydrogen peroxide stabilizers have an excellent storage stability effect.
As shown in Tables 9 to 12, from the results of hydrochloric acid (Comparative Examples 17 to 22), boric acid (Comparative Examples 23 to 27), sulfuric acid (Comparative Examples 28 to 32), and nitric acid (Comparative Examples 33 to 37), It can be seen that the storage stability effect of 75 hours or more cannot be obtained, and the storage stability effect of 69 hours or more cannot be obtained with boric acid, sulfuric acid and nitric acid. Therefore, it can be seen that not all inorganic acids have an excellent storage stability effect.
As shown in Tables 13 to 14, from the results of phosphonic acid (Comparative Examples 38 to 42) and phosphinic acid (Comparative Examples 43 to 47), phosphonic acid and phosphinic acid have a storage stability effect of 69 hours or more. I understand that there is no. Therefore, it can be seen that not all phosphorus compounds have an excellent storage stability effect.
Although the detailed mechanism is unknown from the above results, phosphoric acid (ion) has some stabilizing effect on the peroxo complex of niobic acid, such as partial distribution position, so that the storage stability of the solution was improved by adding a small amount Presumed.

Claims (1)

リチウムと、ニオブ酸のペルオキソ錯体と、リン酸系イオンと、を含む、活物質被覆用溶液であって、
前記リン酸系イオンは、(PO3−、(HPO、(HPO2−、(P4−であり、
前記活物質被覆用溶液に含まれるリン酸系イオン濃度は、ニオブに対するモル比で0.02以上3.01以下であることを特徴とする活物質被覆用溶液。
An active material coating solution containing lithium, a peroxo complex of niobic acid, and a phosphate ion,
The phosphate ions are (PO 4 ) 3− , (H 2 PO 4 ) , (HPO 4 ) 2− , (P 2 O 7 ) 4− ,
The active material coating solution is characterized in that the phosphate ion concentration contained in the active material coating solution is 0.02 or more and 3.01 or less in molar ratio to niobium.
JP2016079422A 2016-04-12 2016-04-12 Active material coating solution Active JP6504099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079422A JP6504099B2 (en) 2016-04-12 2016-04-12 Active material coating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079422A JP6504099B2 (en) 2016-04-12 2016-04-12 Active material coating solution

Publications (2)

Publication Number Publication Date
JP2017191667A true JP2017191667A (en) 2017-10-19
JP6504099B2 JP6504099B2 (en) 2019-04-24

Family

ID=60084925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079422A Active JP6504099B2 (en) 2016-04-12 2016-04-12 Active material coating solution

Country Status (1)

Country Link
JP (1) JP6504099B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428122A4 (en) * 2016-03-09 2019-11-06 Dowa Electronics Materials Co., Ltd. Solution and method for manufacturing same, and method for manufacturing active material for secondary cell
EP3476806A4 (en) * 2016-06-28 2020-03-18 Dowa Electronics Materials Co., Ltd. Solution, method for producing same, and method for producing secondary battery active substance
JP2020181638A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Coating positive electrode active material
US11502294B2 (en) 2016-03-09 2022-11-15 Dowa Electronics Materials Co., Ltd. Solution and method for producing the same, and a method for producing active material, for secondary battery
WO2024096056A1 (en) * 2022-11-02 2024-05-10 住友化学株式会社 Aqueous solution and method for producing positive electrode active substance for lithium secondary battery
WO2024204115A1 (en) * 2023-03-27 2024-10-03 Dowaホールディングス株式会社 Aqueous solution containing niobium polyacid ions, lithium ions, and phosphate ions, production method therefor, and method for producing active material for lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203752A (en) * 2001-01-05 2002-07-19 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor using the same
JP2010053355A (en) * 2008-07-28 2010-03-11 Sumitomo Chemical Co Ltd Precursor liquid for forming transparent conductive film and use of the same
JP2014210701A (en) * 2013-04-02 2014-11-13 Dowaホールディングス株式会社 Solution containing lithium and niobium complex, and method of producing the same
JP2015103321A (en) * 2013-11-21 2015-06-04 Dowaホールディングス株式会社 Solution containing lithium and niobium complex, method for producing the same, and lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203752A (en) * 2001-01-05 2002-07-19 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor using the same
JP2010053355A (en) * 2008-07-28 2010-03-11 Sumitomo Chemical Co Ltd Precursor liquid for forming transparent conductive film and use of the same
JP2014210701A (en) * 2013-04-02 2014-11-13 Dowaホールディングス株式会社 Solution containing lithium and niobium complex, and method of producing the same
JP2015103321A (en) * 2013-11-21 2015-06-04 Dowaホールディングス株式会社 Solution containing lithium and niobium complex, method for producing the same, and lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428122A4 (en) * 2016-03-09 2019-11-06 Dowa Electronics Materials Co., Ltd. Solution and method for manufacturing same, and method for manufacturing active material for secondary cell
US11502294B2 (en) 2016-03-09 2022-11-15 Dowa Electronics Materials Co., Ltd. Solution and method for producing the same, and a method for producing active material, for secondary battery
EP3476806A4 (en) * 2016-06-28 2020-03-18 Dowa Electronics Materials Co., Ltd. Solution, method for producing same, and method for producing secondary battery active substance
US11228030B2 (en) 2016-06-28 2022-01-18 Dowa Electronics Materials Co., Ltd. Solution and method for producing the same, and a method for producing active material for secondary battery
JP2020181638A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Coating positive electrode active material
WO2024096056A1 (en) * 2022-11-02 2024-05-10 住友化学株式会社 Aqueous solution and method for producing positive electrode active substance for lithium secondary battery
WO2024204115A1 (en) * 2023-03-27 2024-10-03 Dowaホールディングス株式会社 Aqueous solution containing niobium polyacid ions, lithium ions, and phosphate ions, production method therefor, and method for producing active material for lithium secondary battery

Also Published As

Publication number Publication date
JP6504099B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6504099B2 (en) Active material coating solution
CN108046231B (en) Sodium ion battery positive electrode material and preparation method thereof
KR101788904B1 (en) Lithium-transition metal oxide powder, method for producing same, positive electrode active material for lithium ion battery, and lithium ion secondary battery
CN100413781C (en) Process for synthesizing LiFePO4 as positive electrode materials of lithium ion cell
CN105742629B (en) A kind of in-situ preparation method of lithium ion battery anode material lithium iron phosphate/graphene complex
CN109193063B (en) Method for reprocessing positive active material of waste lithium ion battery
CN101675548A (en) The single-phase embedding of the room temperature of in lithium-base battery, using/take off lithium material
JP6309808B2 (en) Solution containing lithium and niobic acid peroxo complex, and method for producing the same
CN106848213B (en) The manufacturing method of active agent complex
CN106711447A (en) Preparation method of compound graphene lithium battery positive electrode material
TWI821195B (en) Improved synthesis of olivine lithium metal phosphate cathode materials
WO2016207827A1 (en) A sol-gel route for nano sized lifepo4/c for high performance lithium ion batteries
RU2017105824A (en) APPLICATIONS OF TUNGSTEN-CONTAINING MATERIAL
JPS58131662A (en) Fuel cell
CN109980186A (en) Modified metal pyrophosphate doped positive electrode material
CN105152155A (en) Multiple ions co-doped lithium iron phosphate material and preparation method thereof
US20150259208A1 (en) Method of Making Active Materials for Use in Secondary Electrochemical Cells
CN104681783A (en) Coating modification method of lithium ion battery cathode material
JP2020009560A5 (en) Positive electrode active material, positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material
CN107799754A (en) A kind of preparation method of fluorophosphoric acid vanadium lithium/fluorinated graphene composite positive pole
US20170369317A1 (en) Preparation method of battery composite material and precursor thereof
JP6236956B2 (en) Positive electrode active material, positive electrode, lithium ion secondary battery and sodium ion secondary battery
CN102544490B (en) Method for preparing spherical composite anode material fluorine lithium vanadium phosphate-lithium vanadium phosphate of lithium ion battery
JP2017508707A (en) Manufacturing process of nanometer-sized crystalline lithium transition metal phosphate
CN102738443A (en) Preparation technology for positive material of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6504099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151