JP2017191082A - Bright-spot image acquisition apparatus and bright-spot image acquisition method - Google Patents

Bright-spot image acquisition apparatus and bright-spot image acquisition method Download PDF

Info

Publication number
JP2017191082A
JP2017191082A JP2016094126A JP2016094126A JP2017191082A JP 2017191082 A JP2017191082 A JP 2017191082A JP 2016094126 A JP2016094126 A JP 2016094126A JP 2016094126 A JP2016094126 A JP 2016094126A JP 2017191082 A JP2017191082 A JP 2017191082A
Authority
JP
Japan
Prior art keywords
bright spot
image
bright
camera
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016094126A
Other languages
Japanese (ja)
Inventor
西澤 眞人
Masato Nishizawa
眞人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ideaquest Inc
Original Assignee
Ideaquest Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideaquest Inc filed Critical Ideaquest Inc
Priority to JP2016094126A priority Critical patent/JP2017191082A/en
Publication of JP2017191082A publication Critical patent/JP2017191082A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an imaging apparatus capable of easily acquiring a bright-spot image of an entire measuring object even when there are portions with different reflectance ratios on a surface of a measuring object as a subject or strong light enters only a part of the surface of the measuring object.SOLUTION: A bright-spot image acquisition apparatus includes: a background light projector that projects uniform light to a measuring object at timing different from that of a bright-spot projector; and a controller for controlling the projection timings of the bright-spot projector and the background light projector. The bright-spot acquisition apparatus composes the bright-spot image and background image acquired and output by a camera and corrects differences in brightness of the bright-spot image caused by difference in reflectance ratios of the surface of the measuring object.SELECTED DRAWING: Figure 1

Description

本発明は,対象物体の3次元計測を行う技術に関する。  The present invention relates to a technique for performing three-dimensional measurement of a target object.

本発明は、赤外線等の光線を複数に分割して被測定物に投光し、該被測定物から反射される輝点群を撮影した画像から被測定物の形状に関する3次元距離情報を取得する装置における、輝点画像取得装置および輝点画像取得方法に関する。このような装置としては日本特許第3764949号に示される状態解析装置がある。(特許文献1)  The present invention divides a light beam such as infrared rays into a plurality of light beams, projects the light onto the object to be measured, and acquires three-dimensional distance information related to the shape of the object to be measured from an image obtained by photographing a bright spot group reflected from the object to be measured. The present invention relates to a bright spot image acquisition device and a bright spot image acquisition method. As such an apparatus, there is a state analysis apparatus disclosed in Japanese Patent No. 3764949. (Patent Document 1)

この装置では光源として赤外線レーザー光が使用され、ファイバーグレーティングを使用して、輝点投光器から被測定物に複数の輝点アレイであるパターン光が投影される。このような輝点投光器からの光線は被測定物で反射され、その画像がカメラで撮像される。カメラで撮像された画像の輝点の情報を使って被測定物の3次元距離情報が取得される。  In this apparatus, infrared laser light is used as a light source, and pattern light, which is a plurality of bright spot arrays, is projected from the bright spot projector onto the object to be measured using a fiber grating. The light beam from such a bright spot projector is reflected by the object to be measured, and the image is captured by the camera. Three-dimensional distance information of the object to be measured is acquired using information on the bright spot of the image captured by the camera.

しかしながら、被写体や被測定物の表面が、投光する光線に対する反射率が一様ではなく、部分的に異なる場合には、輝点画像が上手く抽出できなかったり、輝点群を抽出するための処理が複雑になったりすることがある。これは反射率が極端に異なる生地が分布しているような洋服を着用している人物を撮像したような場合に生じる。  However, if the surface of the object or the object to be measured is not uniform and partially different in the light rays to be projected, the bright spot image cannot be extracted well or the bright spot group is extracted. Processing may be complicated. This occurs when an image of a person wearing clothes in which fabrics with extremely different reflectances are distributed.

又、表面の一部分にのみ自然光や外部光が当たっているような被測定物を測定する場合にも同様な問題が生じる。  The same problem arises when measuring an object to be measured in which natural light or external light is applied to only a part of the surface.

このような場合に、従来は、より正確に測定する為に、画像をブロックに分けて各ブロック毎の閾値を計算する方法が使われていた。(特許文献2)。しかし、この場合には、輝点画像の演算処理が重くなり、信号処理に時間がかかる為、結果として被対象物を監視するような用途では、実時間で演算処理することが難しくなっていた。  In such a case, conventionally, in order to measure more accurately, a method of dividing an image into blocks and calculating a threshold value for each block has been used. (Patent Document 2). However, in this case, the calculation processing of the bright spot image becomes heavy, and it takes time for signal processing. As a result, it is difficult to perform the calculation processing in real time in applications such as monitoring an object. .

日本特許第3764949号Japanese Patent No. 3764949 日本特許第3465226号Japanese Patent No. 3465226

本発明の課題は、被写体である被測定物の表面に、反射率が異なる部分があっても、輝点撮像装置が被測定物全体の画像を容易に取得可能とするものである。反射率の異なる被測定物であっても容易に個々の輝点を抽出することができる輝点画像取得装置および輝点画像取得方法を提供するものである。又、被測定物の表面の一部分にのみ強い光が入射するような場合であっても、被測定物全体の輝点画像を取得可能にするものである。  An object of the present invention is to enable a bright spot imaging device to easily acquire an image of an entire object to be measured even if there is a portion having a different reflectance on the surface of the object to be measured that is a subject. A bright spot image acquiring apparatus and a bright spot image acquiring method capable of easily extracting individual bright spots even with objects to be measured having different reflectivities. Further, even when strong light is incident only on a part of the surface of the object to be measured, a bright spot image of the entire object to be measured can be acquired.

本発明は、被測定物に輝点パターンを投光する輝点投光器と、該輝点投光器から離れた位置に配置され、前記被測定物からの輝点投光の反射光から輝点画像を取得・出力するカメラと、該カメラの出力信号を演算処理して3次元距離情報を取得する装置において、更に、前記輝点投光器とは異なるタイミングで一様光を前記被測定物に投光する背景光投光器、および、前記2個の投光器の投光タイミングを制御する制御器を設け、前記カメラが取得・出力する輝点画像と背景画像を合成して、前記被測定物の表面の反射率の違いによる輝点画像の明るさの違いを補正する画像処理部を有する輝点画像取得装置である。  The present invention provides a bright spot projector for projecting a bright spot pattern on an object to be measured, and a bright spot image that is arranged at a position away from the bright spot projector and reflected from the bright spot projected light from the object to be measured. In a camera that acquires and outputs and an apparatus that obtains three-dimensional distance information by processing an output signal of the camera, and further projects uniform light onto the object to be measured at a timing different from that of the bright spot projector. A background light projector and a controller for controlling the light projection timing of the two projectors are provided, and a bright spot image acquired and output by the camera and a background image are synthesized, and the reflectance of the surface of the object to be measured This is a bright spot image acquisition device having an image processing unit that corrects a brightness difference of a bright spot image due to a difference in brightness.

本発明は、一様光を被測定物に投光する背景光投光時に被測定物を撮影するカメラから取得した背景画像と、前記被測定物に輝点パターンを投光した時にカメラから取得した輝点画像を用い、前記背景画像の輝度の逆数を用いた補正係数マップ画像を作成し、補正係数マップ画像の補正係数を前期輝点画像に掛け算することにより輝点画像の輝度を補正する輝点画像取得方法を採用する。  The present invention obtains a background image acquired from a camera that shoots the object to be measured at the time of background light projection, which projects uniform light on the object to be measured, and a camera when a bright spot pattern is projected on the object to be measured. A correction coefficient map image using the reciprocal of the luminance of the background image is created using the bright spot image, and the luminance of the bright spot image is corrected by multiplying the correction coefficient of the correction coefficient map image by the previous bright spot image. A bright spot image acquisition method is adopted.

本発明は被測定物全体を一様に照明する投光器を増設することで、反射率の異なる被測定物であっても容易に輝点群全体を抽出することができる輝点画像取得装置および輝点画像取得方法である。  The present invention provides a bright spot image acquiring apparatus and a bright spot image acquisition device that can easily extract the entire bright spot group even if the target is different in reflectance by adding a projector that uniformly illuminates the entire target object. This is a point image acquisition method.

本発明の他の変形では、背景光投光時にカメラから取得した前記背景画像信号と、輝点を投光した時にカメラから取得した前記輝点画像信号を用い、これら2種類の画像信号を相互に減算する2個の減算器と、一方の減算器の出力をローパスフィルタを通した低域成分と、他方の減算器の出力を合成してにより輝点画像の明るさの違いを補正する輝点画像取得装置である。  In another modification of the present invention, the background image signal acquired from the camera at the time of background light projection and the bright spot image signal acquired from the camera when the bright spot is projected are used. A subtractor that subtracts the brightness of the bright spot image by synthesizing the output of one subtractor, the low-pass component through the low-pass filter, and the output of the other subtractor. It is a point image acquisition device.

本発明は前記輝点投光器と前記背景光投光器を、異なるタイミングで投光する投光器制御部を有し、輝点を投光した前記輝点画像と、前記背景光を投光した背景画像をカメラから取得する輝点画像取得装置である。  The present invention includes a projector control unit that projects the bright spot projector and the background light projector at different timings, and the bright spot image projected with the bright spot and the background image projected with the background light are captured by the camera. It is the bright spot image acquisition apparatus acquired from (1).

本発明によれば、被測定物の表面が、部分的に反射率の異なるものであっても、輝点の画像を正確に抽出し、この輝点画像を演算処理して得られる3次元形状をより短い演算時間で取得することができる。  According to the present invention, even when the surface of the object to be measured has a partially different reflectance, a three-dimensional shape obtained by accurately extracting a bright spot image and calculating the bright spot image. Can be acquired in a shorter calculation time.

は本発明の第1の実施例の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a first exemplary embodiment of the present invention. は被測定物の配置を示す平面図である。FIG. 3 is a plan view showing the arrangement of objects to be measured. は第1の実施例の制御信号の例を示す、タイミング波形図である。FIG. 3 is a timing waveform chart showing an example of a control signal of the first embodiment. は第1の実施例の輝点画像輝度補正手段10の内部を更に詳細に図示したブロック図である。FIG. 3 is a block diagram illustrating in more detail the inside of the bright spot image luminance correction means 10 of the first embodiment. は第2の実施例の追加部分の構成を示すブロック図である。These are block diagrams which show the structure of the additional part of a 2nd Example. は第2の実施例の構成の各部の信号波形を示す説明図である。These are explanatory drawings showing signal waveforms of respective parts of the configuration of the second embodiment.

以下、本発明に係る一実施例の実施形態について、図面を参照して説明する。実施例は動作の説明が容易なようにハードウェアを並べたもので説明するが、制御部等はコンピュータのソフトウェア処理でも同様に実施できる。  Hereinafter, an embodiment of an embodiment according to the present invention will be described with reference to the drawings. The embodiment will be described by arranging hardware so that the operation can be easily described. However, the control unit and the like can be similarly implemented by computer software processing.

図1は本発明の一実施例の構成を示すブロック図である。
本発明の輝点画像取得装置では、図1に示すように、被測定物13に赤外線の輝点31を投光する輝点投光器2および輝点投光器2を駆動する輝点投光器駆動回路1に加え、同じ被測定物13に別に、パターン光とは異なる一様な赤外線32を投光する背景光投光器4および背景光投光器4を駆動する背景光投光器駆動回路3を有する。光源は赤外線レーザーでも赤外線LEDでも良い。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
In the bright spot image acquisition device of the present invention, as shown in FIG. 1, the bright spot projector 2 that projects an infrared bright spot 31 onto the object 13 and the bright spot projector drive circuit 1 that drives the bright spot projector 2 are provided. In addition, a separate background light projector 4 that projects a uniform infrared ray 32 different from the pattern light and a background light projector drive circuit 3 that drives the background light projector 4 are separately provided on the same object to be measured 13. The light source may be an infrared laser or an infrared LED.

輝点投光器駆動回路1および背景光投光器駆動回路3は画像処理部7内の投光器制御部6に接続され、投光器制御部6の出力信号である輝点投光器制御信号14および背景投光器制御信号15により制御される。本実施例では輝点投光器駆動回路1、背景光投光器駆動回路3および投光器制御部6を独立した構成としたが、これらは全体又は一部を合体してより個数の少ない制御部とすることも可能であり、それぞれの制御信号を出力できるものであれば良い。投光器制御部は後述のカメラ5、輝点画像受信部8や背景画像受信部9の動作タイミングを制御する制御信号も供給する。  The bright spot projector driving circuit 1 and the background light projector driving circuit 3 are connected to a projector control section 6 in the image processing section 7, and are output by a bright spot projector control signal 14 and a background projector control signal 15 which are output signals of the projector control section 6. Be controlled. In this embodiment, the bright spot projector driving circuit 1, the background light projector driving circuit 3, and the projector control unit 6 are configured independently. However, the whole or a part of them may be combined into a control unit having a smaller number. Any device that can output each control signal is possible. The projector control unit also supplies control signals for controlling operation timings of a camera 5, a bright spot image receiving unit 8 and a background image receiving unit 9 which will be described later.

被測定物13で反射された赤外線31および赤外線32はカメラ5で撮像される。カメラ5の出力である映像信号16は輝点画像受信部8および背景画像受信部9に導入される。  The infrared rays 31 and the infrared rays 32 reflected by the object to be measured 13 are imaged by the camera 5. The video signal 16 that is the output of the camera 5 is introduced into the bright spot image receiving unit 8 and the background image receiving unit 9.

輝点画像受信部8および背景画像受信部9の出力信号は輝点画像輝度補正手段10に取り込まれ本発明による輝度補正処理が実行される。輝点補正手段10の出力は従来例と同じく、距離計測手段11に導出され、距離画像処理部12で演算処理され、3次元距離情報が得られる。  The output signals of the bright spot image receiving unit 8 and the background image receiving unit 9 are taken into the bright spot image luminance correction means 10 and the luminance correction processing according to the present invention is executed. The output of the bright spot correcting means 10 is derived to the distance measuring means 11 and is processed by the distance image processing unit 12 to obtain three-dimensional distance information, as in the conventional example.

まず、本発明の特徴である、輝度の補正について説明する。被測定物13として、図2a〜図2cに示すような、布製の生地A101の上に、生地Aとは反射率が異なる生地B102および生地Aおよび生地Bとも反射率が異なる生地C103が置かれているものとする。図2は被測定物の配置を示す平面図である。  First, luminance correction, which is a feature of the present invention, will be described. 2B to 2C, a fabric B102 having a reflectance different from that of the fabric A and a fabric C103 having a reflectance different from that of the fabric A and the fabric B are placed on the fabric A101. It shall be. FIG. 2 is a plan view showing the arrangement of the object to be measured.

図2aは可視光が投光された場合の反射光による画像20を示し、図2bは赤外線が投光された場合の反射光による画像22を示す。図2cはカメラ5の出力である輝点画像21を示す。2a shows an image 20 by reflected light when visible light is projected, and FIG. 2b shows an image 22 by reflected light when infrared light is projected. FIG. 2 c shows a bright spot image 21 that is the output of the camera 5.

ここで被測定物の例として、101で示す生地Aと102で示す生地Bおよび103で示す生地Cが比較の為に配置されている。投光される光線に依存する反射率の違いにより、画像20と画像22に示されるような被測定物をカメラで撮像した場合には異なる画像が得られる。この反射率の相違による影響は、同じ被測定物に輝点赤外線を投光した場合のカメラの輝点画像でも同様に影響を受ける。このように生地の反射率の違いによる画像の違いは、人体そのものの姿勢や位置情報を得ようとする場合や、人体を着衣のまま測定して呼吸波形を測定する場合に現れて問題となる。  Here, as an example of the object to be measured, a fabric A indicated by 101, a fabric B indicated by 102, and a fabric C indicated by 103 are arranged for comparison. Due to the difference in reflectance depending on the projected light, different images are obtained when the object to be measured as shown in the image 20 and the image 22 is imaged by the camera. The influence of this difference in reflectance is similarly affected by the bright spot image of the camera when bright spot infrared rays are projected onto the same object to be measured. As described above, the difference in the image due to the difference in the reflectance of the fabric appears as a problem when trying to obtain posture and position information of the human body itself, or when measuring the respiratory waveform while measuring the human body while wearing the body. .

被写体・被測定物によって反射率が異なるので、画面全体の輝点画像を得ようとすると、部分的に明るくなって輝点間の区別がつかない場合や、部分的に暗く沈んでしまって、やはり輝点の区別がつかなくなったり、輝点情報の取得に時間がかかってしまうという不都合が生じる。輝点を抽出するための閾値が異なる、輝点情報の演算時間が増えたり、輝点が上手く抽出できないことがある。  Since the reflectance varies depending on the subject and the object to be measured, when trying to obtain a bright spot image of the entire screen, it may be partially bright and indistinguishable between bright spots, or it may be partially dark. As a result, there are inconveniences that it becomes impossible to distinguish the bright spots and that it takes time to acquire the bright spot information. There are cases where the thresholds for extracting the bright spots are different, the calculation time of the bright spot information increases, and the bright spots cannot be extracted well.

図3は投光器制御部6が出力する制御信号の例を示す、タイミング波形図である。図3aで27が輝点投光制御信号であり、図3bで26が背景投光制御信号である。図3cで、波形信号26、27の下部に、各タイミングにおけるカメラ5からの出力である、背景画像22、輝度画像21の概略を示す。  FIG. 3 is a timing waveform diagram showing an example of a control signal output by the projector control unit 6. In FIG. 3a, 27 is a bright spot projection control signal, and in FIG. 3b, 26 is a background projection control signal. In FIG. 3 c, the outline of the background image 22 and the luminance image 21 that are outputs from the camera 5 at each timing is shown below the waveform signals 26 and 27.

輝点投光器2と背景光投光器4は、相互に異なるタイミング(図3a、b)で被測定物13を投光し、カメラ5にはそれぞれ、輝点画像21、背景光画像22が取り込まれる。  The bright spot projector 2 and the background light projector 4 project the object 13 to be measured at different timings (FIGS. 3A and 3B), and the bright spot image 21 and the background light image 22 are captured by the camera 5, respectively.

輝点投光器2が投光する赤外線31の波長と、背景光投光器4が投光する赤外線32の波長は同じ波長であるのが望ましいが、これらの波長が多少異なり、例えば、輝点投光器2の波長が808nmで背景光投光器4の波長が810nmまたは850nmであっても、ほぼ問題なく実施可能である。  Although it is desirable that the wavelength of the infrared ray 31 projected by the bright spot projector 2 and the wavelength of the infrared ray 32 projected by the background light projector 4 are the same wavelength, these wavelengths are somewhat different. For example, the wavelength of the bright spot projector 2 Even if the wavelength is 808 nm and the wavelength of the background light projector 4 is 810 nm or 850 nm, the present invention can be implemented with almost no problem.

図4は第1図に示した輝点画像輝度補正手段10の内部を更に詳細に図示したブロック図である。  FIG. 4 is a block diagram showing in more detail the inside of the bright spot image luminance correction means 10 shown in FIG.

輝度画像受信部8の出力信号である輝度画像21は正規化手段19に導入される。背景画像受信部9の出力信号である背景画像22は補正係数演算手段17に導入される。  A luminance image 21 that is an output signal of the luminance image receiving unit 8 is introduced into the normalizing means 19. A background image 22 that is an output signal of the background image receiving unit 9 is introduced into the correction coefficient calculation means 17.

背景画像22から被写体である被測定物表面についてカメラ5の出力画像1画素毎の位置の輝度を求める。100%の反射率の被写体が存在した時の輝度は未知だが、それぞれの位置の輝度はその位置の反射率に比例した輝度が求まる。  From the background image 22, the luminance of the position of each pixel of the output image of the camera 5 on the surface of the object to be measured that is the subject is obtained. The luminance when an object having a reflectance of 100% is unknown is unknown, but the luminance at each position is determined in proportion to the reflectance at that position.

生地A101の部分の反射率が80%、生地B102の部分の反射率が20%、生地C103の部分の反射率が40%とした場合、8ビットの出力が得られるカメラ5で、反射率100%の被写体の映像出力を255とした場合、生地A101の部分では204、生地B102の部分では61、生地C103の部分では102の出力値が得られる。  When the reflectance of the portion of the fabric A101 is 80%, the reflectance of the portion of the fabric B102 is 20%, and the reflectance of the portion of the fabric C103 is 40%, the camera 5 can obtain an 8-bit output. When the video output of the% subject is 255, an output value of 204 is obtained for the portion of the fabric A101, 61 for the portion of the fabric B102, and 102 for the portion of the fabric C103.

カメラ5のシャッター速度、背景光の照射強度が変わって、反射率100%の被写体での出力が100であるときには、生地A101の部分は80、生地B102の部分は20、生地C103の部分は40の出力となる。  When the shutter speed of the camera 5 and the irradiation intensity of the background light are changed and the output of a subject with 100% reflectance is 100, the fabric A101 portion is 80, the fabric B102 portion is 20, and the fabric C103 portion is 40. Output.

いずれの場合も、生地C103の部分の出力は生地A101の部分の半分であり、生地B102の部分の出力は生地A101の部分の出力の1/4である。  In any case, the output of the portion of the fabric C103 is half of the portion of the fabric A101, and the output of the portion of the fabric B102 is 1/4 of the output of the portion of the fabric A101.

補正係数演算手段17では、例えばカメラの最大出力255に各生地の部分が正規化されるように、「255/各生地の部分の出力」を補正係数として求めることが出来る。  The correction coefficient calculation means 17 can obtain “255 / output of each fabric portion” as the correction coefficient so that each fabric portion is normalized to the maximum output 255 of the camera, for example.

最初の例では、生地A101の補正係数は255/204、生地B102の補正係数は255/61、生地C103の補正係数は255/102となる。
2番目の例では、生地A101の補正係数は255/80、生地B102の補正係数は255/20、生地C103の補正係数は255/40となる。
このようにして、カメラ5の出力画像1画素毎に補正係数を求めたものが、補正係数マップ画像23となる。このカメラ5では1画面が640×480の画素で構成されている。
In the first example, the correction coefficient of the fabric A101 is 255/204, the correction coefficient of the fabric B102 is 255/61, and the correction coefficient of the fabric C103 is 255/102.
In the second example, the correction coefficient of the fabric A101 is 255/80, the correction coefficient of the fabric B102 is 255/20, and the correction coefficient of the fabric C103 is 255/40.
Thus, the correction coefficient map image 23 is obtained by obtaining the correction coefficient for each pixel of the output image of the camera 5. In this camera 5, one screen is composed of 640 × 480 pixels.

更に一番小さい補正係数が1になるように、補正係数の最小値で各画素の補正係数を割った値を各画素の正規化補正係数とし求めたものが、正規化補正係数マップ画像24として補正係数正規化手段18から導出される。  A value obtained by dividing the correction coefficient of each pixel by the minimum value of the correction coefficient so that the smallest correction coefficient is 1 is obtained as a normalized correction coefficient of each pixel, and is referred to as a normalized correction coefficient map image 24. It is derived from the correction coefficient normalizing means 18.

カメラ5で得られた輝点投光器2からの信号は輝度画像受信部8で輝点画像信号21として出力される。当然、各輝点の輝度は、被測定物13のどの生地の部分に当たっているかで、異なる。  A signal from the bright spot projector 2 obtained by the camera 5 is output as a bright spot image signal 21 by the luminance image receiver 8. Of course, the brightness of each bright spot differs depending on which fabric portion of the object 13 to be measured.

正規化手段19内で、輝点画像の各画素に、補正係数正規化手段18が導出する正規化補正係数マップ画像の各画素の正規化補正係数を掛けることにより、各生地の部分の輝点の輝度の最大値が一様となるように補正され、正規化輝点画像25として導出される。  In the normalizing means 19, each pixel of the luminescent spot image is multiplied by the normalization correction coefficient of each pixel of the normalized correction coefficient map image derived by the correction coefficient normalizing means 18 to each pixel of the bright spot image. Is corrected so as to be uniform and is derived as a normalized bright spot image 25.

以上の補正により、被写体の一部が反射率の異なるものであっても、輝点の最大値が一様となり、輝点を抽出する二値化閾値が画面全体で求められるので、演算処理が高速化できる。また、輝点の白飛びや輝点が暗く沈みことによる輝点の未抽出が減り、結果として画面全体に精度の高い3次元計測が出来こととなる。  With the above correction, even if a part of the subject has a different reflectance, the maximum value of the bright spot becomes uniform, and the binarization threshold value for extracting the bright spot is obtained over the entire screen. Speed can be increased. Further, bright spots are not extracted, and bright spots are not extracted due to dark spots and dark spots. As a result, highly accurate three-dimensional measurement can be performed on the entire screen.

輝点画像補正手段10の出力は従来例と同様に処理され、被測定物の3次元距離情報が計測される。  The output of the bright spot image correcting means 10 is processed in the same manner as in the conventional example, and the three-dimensional distance information of the object to be measured is measured.

次に、被測定物の一部にのみ太陽光や室内光等の外光が入射して、被測定物の表面の明るさが極端に異なる場合の補正の例を第2の実施例として図5、図6に示す。図5は第2の実施例の構成を示すブロック図である。図6は第2の実施例の構成の各部の信号波形を示す説明図である。  Next, an example of correction in the case where external light such as sunlight or room light is incident only on a part of the object to be measured and the brightness of the surface of the object to be measured is extremely different is shown as a second example. 5 and FIG. FIG. 5 is a block diagram showing the configuration of the second embodiment. FIG. 6 is an explanatory diagram showing signal waveforms at various parts in the configuration of the second embodiment.

図5は図1で示した実施例のうち、輝点画像受信部8および背景画像受信部9と、輝点画像輝度補正手段10の間に、減算器A26および減算器B28とローパスフィルタ27を増設したものである。その他の構成は図1に示す実施例と同様であるので、同じ参照符号を付して説明を省略する。  FIG. 5 shows that in the embodiment shown in FIG. 1, a subtractor A 26, a subtracter B 28, and a low-pass filter 27 are provided between the bright spot image receiver 8 and the background image receiver 9 and the bright spot image luminance correction means 10. It is an expansion. Since other configurations are the same as those of the embodiment shown in FIG. 1, the same reference numerals are given and description thereof is omitted.

図5、図6における輝点画像21および背景画像22では被測定物の表面の一部に強い外光を受けている為、画像下部に外光の影響が表れている。このような状況では取得した画像の処理が難しくなるため、本実施例による補正を行う。  Since the bright spot image 21 and the background image 22 in FIGS. 5 and 6 receive strong external light on a part of the surface of the object to be measured, the influence of external light appears in the lower part of the image. In such a situation, it becomes difficult to process the acquired image, so correction according to this embodiment is performed.

図6で30は背景光による明るさに対応する部分を示し、31は外光による明るさに対応する部分を示す。32は輝点による明るさに対応する部分である。ここでは図示を容易にする為、生地A101の反射率を75%、生地B102の反射率を25%、生地C103の反射率を50%として図示した。  In FIG. 6, 30 indicates a portion corresponding to the brightness by the background light, and 31 indicates a portion corresponding to the brightness by the external light. Reference numeral 32 denotes a portion corresponding to the brightness of the bright spot. Here, for ease of illustration, the reflectance of the fabric A101 is 75%, the reflectance of the fabric B102 is 25%, and the reflectance of the fabric C103 is 50%.

輝度画像受信部8の出力信号である外光有り輝点画像図6Bおよび背景画像受信部9の出力信号である外光有り背景画像図6Aはそれぞれ減算器A26および減算器B28に導入される。減算器A26では外光有り背景画像Aから外光有り輝点画像Bを減算し、正の値のみを計算すると、輝点の部分が黒く沈んだ画像信号が得られる。図6C。  The bright image with external light FIG. 6B, which is an output signal of the luminance image receiving unit 8, and the background image with external light, FIG. 6A, which is an output signal of the background image receiving unit 9, are introduced into a subtracter A26 and a subtractor B28, respectively. When the subtractor A26 subtracts the bright spot image B with external light from the background image A with external light and calculates only a positive value, an image signal in which the bright spot portion sinks black is obtained. FIG. 6C.

この信号を2次元のLPF27を通過させて、低域成分のみを通すことにより、仮想背景画像が得られる。図6D。 同様に、減算器B28で外光あり輝点画像Bから外光有り背景画像Aを減算し、正の値のみを計算すると、輝点のみの仮想輝点画像図6Eが得られる。この仮想背景画像Dと仮想輝点画像Eを輝点画像輝度補正手段10に導入し、演算(補正係数の掛算)することで、外光の影響を無くした、正規化輝点画像図6Fを得る。
ここで得られる輝点の位置情報より、距離計測手段11で被測定物の形状に関する3次元距離情報が得られる。
By passing this signal through the two-dimensional LPF 27 and passing only the low-frequency component, a virtual background image is obtained. FIG. 6D. Similarly, when the background image A with external light is subtracted from the bright image B with external light by the subtractor B28 and only a positive value is calculated, a virtual bright image with only a bright point, FIG. 6E, is obtained. By introducing the virtual background image D and the virtual bright spot image E into the bright spot image luminance correction means 10 and calculating (multiplying the correction coefficient), the normalized bright spot image FIG. obtain.
From the bright spot position information obtained here, the distance measuring means 11 can obtain three-dimensional distance information related to the shape of the object to be measured.

以上の説明では3次元距離情報の取得にドット状のパターン光を使って説明したが、本発明はドット状に限定されるものでは無く、他のパターンを使用した場合にも適用が可能である。  In the above description, the dot-shaped pattern light is used to acquire the three-dimensional distance information. However, the present invention is not limited to the dot shape, and can be applied when other patterns are used. .

以上説明したとおり、本発明によれば、被測定物の表面が、部分的に反射率の異なるものであっても、輝点の画像を正確に抽出し、この輝点画像を演算処理して得られる3次元形状をより短い演算時間で取得することができる。  As described above, according to the present invention, even when the surface of the object to be measured has a partially different reflectance, an image of a bright spot is accurately extracted, and the bright spot image is processed. The obtained three-dimensional shape can be acquired in a shorter calculation time.

本発明によれば,従来装置では計測困難だった,撮影光について極端に異なる反射率を有する被測定物の反射輝点画像を画面全体に亘って比例的に取得可能となり、距離画像測定の範囲の増大や、測定処理の時間短縮に有用であるため、従来はできなかった新たな分野での利用も促進するものである。  According to the present invention, it is possible to proportionally obtain a reflected bright spot image of an object to be measured having an extremely different reflectance with respect to photographing light, which is difficult to measure with a conventional apparatus, and a range of distance image measurement. It is useful for increasing the number of samples and shortening the measurement processing time, and therefore promotes the use in new fields that have not been possible in the past.

1 輝点投光器駆動回路
2 輝点投光器
3 背景光投光器駆動回路
4 背景光投光器
5 カメラ
6 投光器制御部
7 画像処理部
8 輝点画像受信部
9 背景画像受信部
10 輝点画像補正手段
11 距離計測手段
12 距離画像処理部
13 被測定物
14 輝点投光器制御信号
15 背景投光器制御信号
16 映像信号
20 可視光が投光された場合の反射光による画像
21 赤外線が投光された場合の反射光による画像
22 輝点画像
23 補正係数マップ画像
24 正規化補正係数マップ画像
25 正規化輝点画像
26、28 減算器
27 LPF
31 赤外線の輝点投光
32 一様な赤外線
101 生地A
102 生地B
103 生地C
DESCRIPTION OF SYMBOLS 1 Bright spot projector drive circuit 2 Bright spot projector 3 Background light projector drive circuit 4 Background light projector 5 Camera 6 Projector control part 7 Image processing part 8 Bright point image receiving part 9 Background image receiving part 10 Bright point image correction means 11 Distance measurement Means 12 Distance image processing unit 13 Measured object 14 Bright spot projector control signal 15 Background projector control signal 16 Image signal 20 Image 21 by reflected light when visible light is projected By reflected light when infrared light is projected Image 22 Bright spot image 23 Correction coefficient map image 24 Normalized correction coefficient map image 25 Normalized bright spot images 26 and 28 Subtractor 27 LPF
31 Infrared bright spot projection 32 Uniform infrared 101 Fabric A
102 Dough B
103 Fabric C

Claims (4)

被測定物に輝点パターンを投光する輝点投光器と、該輝点投光器から離れた位置に配置され、前記被測定物からの輝点投光の反射光から輝点画像を取得・出力するカメラと該カメラの出力信号を演算処理して3次元距離情報を取得する装置において、更に、前記輝点投光器とは異なるタイミングで一様光を前記被測定物に投光する背景光投光器、および、前記2個の投光器の投光タイミングを制御する制御器設け、前記カメラが取得・出力する輝点画像と背景画像を合成して、前記被測定物の反射率の違いによる輝点画像の明るさの違いを補正する画像処理部を有することを特徴とする輝点画像取得装置。A bright spot projector for projecting a bright spot pattern on the object to be measured, and a bright spot image that is arranged at a position away from the bright spot projector and that receives and outputs the bright spot image from the reflected light of the bright spot projection from the target object. A background light projector for projecting uniform light onto the object to be measured at a timing different from that of the bright spot projector, and a camera and an apparatus that obtains three-dimensional distance information by calculating an output signal of the camera; and A controller for controlling the light projection timing of the two light projectors, and combining the bright spot image acquired and output by the camera with the background image, and the brightness of the bright spot image due to the difference in reflectance of the object to be measured A bright spot image acquisition apparatus having an image processing unit for correcting the difference. 一様光を被測定物に投光する背景光投光時に被測定物を撮影するカメラから取得した背景画像と、前記被測定物に輝点パターンを投光した時にカメラから取得した輝点画像を用い、前記背景画像の輝度の逆数を用いた補正係数マップ画像を作成し、補正係数マップ画像の補正係数を前期輝点画像に掛け算することにより輝点画像の輝度を補正することを特徴とする輝点画像取得方法。A background image acquired from a camera that shoots the object to be measured when the background light is projected with uniform light on the object to be measured, and a bright spot image acquired from the camera when a bright spot pattern is projected on the object to be measured. A correction coefficient map image using the reciprocal of the luminance of the background image is created, and the luminance of the bright spot image is corrected by multiplying the correction coefficient of the correction coefficient map image by the previous bright spot image. A bright spot image acquisition method. 背景光投光時にカメラから取得した前記背景画像と、輝点を投光した時にカメラから取得した前記輝点画像を用い、これら2種類の画像信号を相互に減算する2個の減算器と、一方の減算器の出力はローパスフィルタを通した低域成分と、他方の減算器の出力により輝点画像の明るさの違いを補正する特許請求の範囲第1項記載の輝点画像取得装置。Two subtractors for subtracting these two kinds of image signals from each other using the background image acquired from the camera at the time of background light projection and the bright spot image acquired from the camera when the bright spot is projected; The bright spot image acquiring apparatus according to claim 1, wherein the output of one subtractor corrects the difference in brightness of the bright spot image by the low-pass component through a low-pass filter and the output of the other subtractor. 前記画像処理部は前記背景画像を導入し、前記カメラが出力する画像の各部の輝度をカメラの最大出力に合わせる補正係数の演算手段と、前記補正係数が最小値1となるように補正係数を合わせる補正係数正規化手段と、前記輝度画像を前記補正係数正規化手段が生成する補正係数を使って正規化する正規化手段よりなる特許請求の範囲第1項記載の輝点画像取得装置。The image processing unit introduces the background image, a correction coefficient calculating means for matching the luminance of each part of the image output by the camera to the maximum output of the camera, and the correction coefficient so that the correction coefficient becomes a minimum value 1. The bright spot image acquiring apparatus according to claim 1, comprising correction coefficient normalizing means for matching and normalizing means for normalizing the luminance image using a correction coefficient generated by the correction coefficient normalizing means.
JP2016094126A 2016-04-15 2016-04-15 Bright-spot image acquisition apparatus and bright-spot image acquisition method Pending JP2017191082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016094126A JP2017191082A (en) 2016-04-15 2016-04-15 Bright-spot image acquisition apparatus and bright-spot image acquisition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094126A JP2017191082A (en) 2016-04-15 2016-04-15 Bright-spot image acquisition apparatus and bright-spot image acquisition method

Publications (1)

Publication Number Publication Date
JP2017191082A true JP2017191082A (en) 2017-10-19

Family

ID=60084776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094126A Pending JP2017191082A (en) 2016-04-15 2016-04-15 Bright-spot image acquisition apparatus and bright-spot image acquisition method

Country Status (1)

Country Link
JP (1) JP2017191082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341527A (en) * 2018-10-22 2019-02-15 广东工业大学 A kind of the structured light projection three-dimension measuring system and method for auto shadows compensation
EP3492861A1 (en) * 2017-12-01 2019-06-05 Omron Corporation Image processing system and image processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492861A1 (en) * 2017-12-01 2019-06-05 Omron Corporation Image processing system and image processing method
CN109872382A (en) * 2017-12-01 2019-06-11 欧姆龙株式会社 Image processing system and image processing method
US11118901B2 (en) 2017-12-01 2021-09-14 Omron Corporation Image processing system and image processing method
CN109341527A (en) * 2018-10-22 2019-02-15 广东工业大学 A kind of the structured light projection three-dimension measuring system and method for auto shadows compensation

Similar Documents

Publication Publication Date Title
JP7191921B2 (en) TOF camera system and method for measuring distance with same
JP6866365B2 (en) Depth mapping with a head-mounted display using a stereo camera and structured light
US20200043225A1 (en) Image processing apparatus and control method thereof
US8830227B2 (en) Depth-based gain control
US10928518B2 (en) Range image generation apparatus and range image generation method
US10078907B2 (en) Distance measurement apparatus, distance measurement method, and storage medium
JP6467516B2 (en) Projector device with distance image acquisition device and projection method
US9894339B2 (en) Image processing apparatus, image processing method and program
JP6381654B2 (en) Gaze detection device
JP2006285763A (en) Method and device for generating image without shadow for photographic subject, and white board used therefor
JP2001285762A (en) Image printer
JP2017191082A (en) Bright-spot image acquisition apparatus and bright-spot image acquisition method
JP7056131B2 (en) Image processing system, image processing program, and image processing method
JP7118776B2 (en) IMAGING DEVICE, IMAGE PROCESSING METHOD, IMAGE PROCESSING PROGRAM AND RECORDING MEDIUM
JP2017191083A (en) Bright-spot image acquisition apparatus and bright-spot image acquisition method
JP7028814B2 (en) External shape recognition device, external shape recognition system and external shape recognition method
WO2017134907A1 (en) Imaging system, imaging device and imaging method
US9906705B2 (en) Image pickup apparatus
JP6236955B2 (en) Distance measuring device
JP6019621B2 (en) Distance measuring device
JP2013214938A (en) Imaging device and image processing method therefor
JP6939501B2 (en) Image processing system, image processing program, and image processing method
EP3430472B1 (en) Method of producing video images that are independent of the background lighting
JP2009210470A (en) Shape measurement method and device
JP6675461B2 (en) Image processing apparatus, control method therefor, and program