JP2017189741A - Lignin flocculant, production method of the same and lignin recovery method using the same - Google Patents

Lignin flocculant, production method of the same and lignin recovery method using the same Download PDF

Info

Publication number
JP2017189741A
JP2017189741A JP2016080236A JP2016080236A JP2017189741A JP 2017189741 A JP2017189741 A JP 2017189741A JP 2016080236 A JP2016080236 A JP 2016080236A JP 2016080236 A JP2016080236 A JP 2016080236A JP 2017189741 A JP2017189741 A JP 2017189741A
Authority
JP
Japan
Prior art keywords
lignin
flocculant
cationized
same
lignocellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080236A
Other languages
Japanese (ja)
Other versions
JP6656637B2 (en
Inventor
泰幸 松下
Yasuyuki Matsushita
泰幸 松下
弾 青木
Dan Aoki
弾 青木
福島 和彦
Kazuhiko Fukushima
和彦 福島
山田 竜彦
Tatsuhiko Yamada
竜彦 山田
史帆 高橋
Shiho Takahashi
史帆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Forest Research and Management Organization
Original Assignee
Nagoya University NUC
Forest Research and Management Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Forest Research and Management Organization filed Critical Nagoya University NUC
Priority to JP2016080236A priority Critical patent/JP6656637B2/en
Publication of JP2017189741A publication Critical patent/JP2017189741A/en
Application granted granted Critical
Publication of JP6656637B2 publication Critical patent/JP6656637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more efficient lignin flocculant by a lignin production method and a lignin recovery method.SOLUTION: In a lignin flocculant containing cationized lignin in which a lignin part and a cationization agent part are essential: lignin is a lignin derivative obtained by the solvolysis of lignocellulose with at least one digestion solvent selected from among polyethylene glycol, diethylene glycol, ethylene glycol, glycerol and polyglycerol, enzyme lignin obtained by the enzyme saccharification of the lignocellulose or alkali lignin obtained by the alkali digestion of the lignocellulose; and a cationization agent is glycidyltrimethylammonium chloride. The lignin flocculant, a production method of the same and a lignin recovery method using the same are provided.SELECTED DRAWING: None

Description

本発明は、リグニンを凝集するためのリグニン凝集剤及びその製造方法に関する。本発明はまた、リグニン凝集剤を使用するリグニン回収方法に関する。   The present invention relates to a lignin flocculant for aggregating lignin and a method for producing the same. The present invention also relates to a lignin recovery method using a lignin flocculant.

リグニンはバイオマスの3大主成分の一つであり、地上で2番目に多量に蓄積されている有機化合物である。化学パルプ化工程やバイオエタノール前処理工程で分離され、紙パルプ生産やバイオエタノール生産で副産されるが、熱源以外の有効な利用法に乏しく、その有効利用法が模索されている。   Lignin is one of the three major components of biomass and is the second most abundant organic compound on the ground. Although it is separated in the chemical pulping process and the bioethanol pretreatment process, it is produced as a by-product in paper pulp production and bioethanol production. However, there are few effective utilization methods other than heat sources, and the effective utilization method is being sought.

リグノセルロースを資源とするバイオリファイナリーの研究開発が進められており、例えば、プラントスケールにおいて、リグノセルロースをポリエチレングリコール(PEG)等の安全性の高いグリコール系薬剤を用いた常圧酸加溶媒分解法(PEG蒸解)にて分解し、パルプ及びリグニンを分離する方法が提案されている(非特許文献1)。当該方法により得られたリグニンは、グリコール系薬剤で誘導体化されたグリコールリグニンであり、リグニン本来の特性を保持しつつ、熱加工性が付与されているため、エンジニアリングプラスチック、各種熱可塑性樹脂、フィルム、電子基板、繊維強化材、各種接着剤、カーボンファイバー、活性炭素繊維、各種炭素材料、コンクリート用化学混和剤、分散剤、各種界面活性剤等の高付加価値材料の原料として利用が可能である。よって、上記常圧酸加溶媒分解法は、リグニン誘導体の製造方法でもある。   Research and development of biorefinery using lignocellulose as a resource is underway. For example, in the plant scale, atmospheric pressure acid solvolysis using lignocellulose using a highly safe glycol-based drug such as polyethylene glycol (PEG) A method for decomposing by PEG cooking and separating pulp and lignin has been proposed (Non-patent Document 1). The lignin obtained by this method is a glycol lignin derivatized with a glycol-based drug, and retains the original properties of lignin and is imparted with thermal processability. Therefore, engineering plastics, various thermoplastic resins, films It can be used as a raw material for high value-added materials such as electronic substrates, fiber reinforcements, various adhesives, carbon fibers, activated carbon fibers, various carbon materials, chemical admixtures for concrete, dispersants, various surfactants, etc. . Therefore, the atmospheric pressure acid solvolysis method is also a method for producing a lignin derivative.

常圧酸加溶媒分解法においては、蒸解工程から回収される濾液にリグニンが含まれており、例えばラボスケールにおいては濾液を水に滴下するなどの操作により、水に不溶なリグニンを沈殿物として得ているが、プラントスケールにおいては、より効率的なリグニン回収方法が求められている。   In the normal pressure acid solvolysis method, lignin is contained in the filtrate recovered from the cooking step. For example, in a lab scale, lignin that is insoluble in water is precipitated as a precipitate by an operation such as dropping the filtrate into water. However, there is a need for more efficient lignin recovery methods on the plant scale.

2015年リグニン討論会要旨集p104-105Summary of the 2015 Lignin debate p104-105

リグニン製造方法において、より効率的なリグニンの回収方法が求められている。   In the lignin production method, a more efficient lignin recovery method is required.

本発明者らは、リグニンから得られたカチオン化リグニンに、優れたリグニン凝集効果があることを見出し、本発明を完成した。すなわち、本発明は、以下に関する。
1.リグニン部位とカチオン化剤部位とを必須とするカチオン化リグニンを含むリグニン凝集剤である。
2.前記リグニンが、リグノセルロースをポリエチレングリコール、ジエチレングリコール、エチレングリコール、グリセリン及びポリグリセリンから選択される少なくとも1種の蒸解溶媒で加溶媒分解することにより得られたリグニン誘導体、リグノセルロースの酵素糖化により得られたエンザイムリグニン、又はリグノルロースをアルカリ蒸解することにより得られたアルカリリグニンである、上記1に記載のリグニン凝集剤である。
3.前記カチオン化剤が、グリシジルトリメチルアンモニウムクロライドである、上記1又は2に記載のリグニン凝集剤である。
4.リグニンとカチオン化剤とを反応させてカチオン化リグニンを得ることを含む、カチオン化リグニンを含むリグニン凝集剤の製造方法である。
5.リグニンを含む溶液に上記1〜4に記載のリグニン凝集剤を添加して、リグニンを凝集させることを含む、リグニンを回収する方法である。
6.前記リグニンを含む溶液のpHが3〜8である、上記5に記載のリグニンを回収する方法である。
The present inventors have found that the cationized lignin obtained from lignin has an excellent lignin aggregation effect, and completed the present invention. That is, the present invention relates to the following.
1. It is a lignin flocculant containing a cationized lignin that essentially comprises a lignin site and a cationizing agent site.
2. The lignin is obtained by enzymatic saccharification of lignocellulose, a lignin derivative obtained by solvolysis of lignocellulose with at least one cooking solvent selected from polyethylene glycol, diethylene glycol, ethylene glycol, glycerin and polyglycerin. 2. The lignin flocculant according to 1 above, which is an alkaline lignin obtained by alkaline digestion of enzyme lignin or lignolrose.
3. 3. The lignin flocculant according to 1 or 2 above, wherein the cationizing agent is glycidyl trimethyl ammonium chloride.
4). A method for producing a lignin flocculant containing a cationized lignin, comprising reacting a lignin and a cationizing agent to obtain a cationized lignin.
5. It is a method for recovering lignin, which comprises aggregating lignin by adding the lignin flocculant described in 1-4 above to a solution containing lignin.
6). 6. The method for recovering lignin according to 5 above, wherein the pH of the solution containing lignin is 3 to 8.

本発明のカチオン化リグニンをリグニン凝集剤として使用することにより、優れたリグニン凝集効果が得られ、蒸解後のリグニンを含む溶液からリグニンを高収率で回収することができる。本発明のリグニン凝集剤を使用するリグニン回収方法によれば、中性領域において優れたリグニンの凝集を達成するため、リグニン回収後の上清液を効率的に処理及び再利用することができる。   By using the cationized lignin of the present invention as a lignin flocculant, an excellent lignin aggregation effect can be obtained, and lignin can be recovered in a high yield from a solution containing lignin after cooking. According to the lignin recovery method using the lignin flocculant of the present invention, in order to achieve excellent lignin aggregation in the neutral region, the supernatant liquid after lignin recovery can be efficiently processed and reused.

実施形態1:カチオン化リグニンを含む凝集剤
本発明の凝集剤は、リグニン部位とカチオン化剤部位とを必須とするカチオン化リグニンを含む。これらの部位以外にその他の構造部位を有していてもよい。
Embodiment 1: Aggregating Agent Containing Cationized Lignin The aggregating agent of the present invention contains a cationized lignin that essentially comprises a lignin site and a cationizing agent site. In addition to these sites, other structural sites may be included.

上記リグニン部位は、リグニンに由来する構造単位である。リグニンとしては、特に限定されず、例えば、アルカリリグニン(リグノルロースをアルカリ蒸解することにより得られたリグニン)、クラフトリグニン、酢酸リグニン、オルガノソルブルリグニン、爆砕リグニン、硫酸リグニン、エンザイムリグニン(リグノセルロースの酵素糖化により得られたリグニン)等が挙げられ、これらのリグニンを1種又は2種以上を用いることができる。   The lignin site is a structural unit derived from lignin. The lignin is not particularly limited. For example, alkaline lignin (lignin obtained by alkaline digestion of lignorulose), kraft lignin, acetate lignin, organosolv lignin, explosive lignin, sulfated lignin, enzyme lignin (lignocellulose) Lignin obtained by enzymatic saccharification) and the like, and one or more of these lignins can be used.

リグニンとしては、加溶媒分解により得られたリグニンを使用することもできる。ここで、「加溶媒分解」とは、物質を有機溶媒試薬中で分解する際の化学反応をいい、物質が分解されると同時に、使用した溶媒試薬と分解された物質とが化学的に結合しながら(すなわち、溶媒分子が分解物に加わる)進む化学反応である。加溶媒分解反応を通じて、リグノセルロースにおけるリグニン中に分解試薬に由来するアルコール性水酸基及び/又はポリオキシアルキレン基等の親水性基が多数導入され、優れた熱溶融性を有するリグニン誘導体が生成される。このような加溶媒分解法は、例えば、特許第4025866号公報に記載されている。   As lignin, lignin obtained by solvolysis can also be used. Here, “solvolysis” refers to a chemical reaction when a substance is decomposed in an organic solvent reagent. At the same time as the substance is decomposed, the used solvent reagent and the decomposed substance are chemically bonded. It is a chemical reaction that proceeds while the solvent molecules are added to the degradation product. Through a solvolysis reaction, a large number of hydrophilic groups such as alcoholic hydroxyl groups and / or polyoxyalkylene groups derived from the decomposition reagent are introduced into the lignin in lignocellulose, and a lignin derivative having excellent heat melting properties is produced. . Such a solvolysis method is described in, for example, Japanese Patent No. 4025866.

加溶媒分解に使用される有機溶媒試薬としては、ポリエチレングリコール(PEG)、ジエチレングリコール、エチレングリコール、グリセリン、ポリグリセリン等の高沸点の試薬を使用することができる。好ましくは、有機溶媒試薬と塩酸、硫酸等酸とを混合して用い、好ましくは、分解試薬の融点以上(例えば、約120〜180℃)で加熱し、リグノセルロースを加溶媒分解する。加溶媒分解処理で得られた加溶媒分解物を、例えば水に滴下するなどの操作により、水に不溶なリグニン誘導体が沈殿物として得られる。なお、本発明で得られたカチオン化リグニンを含むリグニン凝集剤を使用して加溶媒分解物からリグニン誘導体を沈殿させてもよい。   As an organic solvent reagent used for solvolysis, a high boiling point reagent such as polyethylene glycol (PEG), diethylene glycol, ethylene glycol, glycerin, polyglycerin and the like can be used. Preferably, the organic solvent reagent is mixed with an acid such as hydrochloric acid or sulfuric acid, and the lignocellulose is solvolyzed by heating at a temperature equal to or higher than the melting point of the decomposition reagent (for example, about 120 to 180 ° C.). By subjecting the solvolysis product obtained by the solvolysis treatment to, for example, dropwise addition to water, a water-insoluble lignin derivative is obtained as a precipitate. In addition, you may precipitate a lignin derivative from a solvolysis product using the lignin flocculant containing the cationized lignin obtained by this invention.

上記リグニンの原料となる植物についても特に限定されず、スギ、モミ、ヒノキ、マツ等の針葉樹、ユーカリ、アカシア、シラカバ、ブナ、ナラ等の広葉樹、稲藁、穀物、バガス、竹、ケナフ、葦等の草本植物等が挙げられる。   The plant used as the raw material for the lignin is not particularly limited, and conifers such as cedar, fir, cypress, and pine, broad-leaved trees such as eucalyptus, acacia, birch, beech and oak, rice straw, cereal, bagasse, bamboo, kenaf, and straw Herbaceous plants and the like.

リグニンの分子量は、原料物質、単離方法によって異なり、本発明において使用されるリグニンの重量平均分子量は特に限定されないが、例えば、重量平均分子量500〜100万のリグニンを使用することができる。好ましくは、重量平均分子量5000〜10万のリグニンである。重量平均分子量は、ゲルパーミーエーションクロマトグラフィー(GPC)分析法を用い測定することができる。   The molecular weight of lignin varies depending on the raw material and the isolation method, and the weight average molecular weight of lignin used in the present invention is not particularly limited. For example, lignin having a weight average molecular weight of 500 to 1,000,000 can be used. Preferably, it is a lignin having a weight average molecular weight of 5000 to 100,000. The weight average molecular weight can be measured using gel permeation chromatography (GPC) analysis.

本発明のカチオン化リグニンにおけるカチオン化剤部位は、カチオン化剤に由来する構造単位である。カチオン化剤は、アンモニウム基、イミニウム基、スルホニウム基、ホスホニウム基等のカチオン基を有する化合物及びその塩であり、リグニンにカチオン基を導入することができる限りいずれのものを使用することができる。カチオン化剤として、市販のカチオン化剤を使用することができ、例えば、グリシジルトリメチルアンモニウムクロリド(GTA)、3−クロロー2−ヒドロキシプロピルトリメチルアンモニウムクロリド、3−クロロプロピルトリメチルアンモニウムクロリド、クロロコリンクロリド、アクリロイルオキシエチルトリメチルアンモニウムクロリド、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロリド、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、ジアリルジメチルアンモニウムクロライド、1-アリル-3-メチルイミダゾリウムヨーダイド等の第4級アンモニウム塩、並びにグリシジルジメチルアンモニウムクロリド、ジフェニル−4−チオフェノキシ・フェニルスルホニウムクロリド、(チオジ−1,4−フェニレン)ビス〔ジフェニルスルホニウム〕ジクロリド、3−クロロプロピルジメチルアンモニウムクロリド等の第3級スルホニウム塩を使用することができる。入手容易性及びコストの面から、グリシジルトリメチルアンモニウムクロリドが好ましい。   The cationizing agent site in the cationized lignin of the present invention is a structural unit derived from the cationizing agent. The cationizing agent is a compound having a cationic group such as an ammonium group, an iminium group, a sulfonium group, or a phosphonium group and a salt thereof, and any one can be used as long as the cationic group can be introduced into lignin. Commercially available cationizing agents can be used as the cationizing agent, such as glycidyltrimethylammonium chloride (GTA), 3-chloro-2-hydroxypropyltrimethylammonium chloride, 3-chloropropyltrimethylammonium chloride, chlorocholine chloride, Quaternary ammonium salts such as acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyltrimethylammonium chloride, (3-acrylamidopropyl) trimethylammonium chloride, diallyldimethylammonium chloride, 1-allyl-3-methylimidazolium iodide , And glycidyldimethylammonium chloride, diphenyl-4-thiophenoxy phenylsulfonium chloride, (thiodi-1,4- Eniren) bis [diphenyl sulfonium] dichloride, tertiary sulfonium salts such as 3-chloropropyl dimethyl ammonium chloride can be used. From the viewpoint of availability and cost, glycidyltrimethylammonium chloride is preferred.

本発明のカチオン化リグニンは、リグニン1gに対してカチオン化剤を1.5ミリ当量以上反応されたものであることが好ましい。より好ましくは、リグニン1gに対してカチオン化剤を1.8ミリ当量以上、さらに好ましくはリグニン1gに対してカチオン化剤を2.2ミリ当量以上反応されたものである。また、カチオン化剤の量の上限としては、リグニン1gに対して5当量以下であることが好ましく、4.1当量以下であることがより好ましい。ここでいう当量とは、原料としてのリグニン1gに反応させるカチオン基の量が何モルであるかをいう。   The cationized lignin of the present invention is preferably one obtained by reacting 1 g of lignin with a cationizing agent of 1.5 milliequivalent or more. More preferably, the cationizing agent is reacted in an amount of 1.8 milliequivalents or more with respect to 1 g of lignin, and more preferably 2.2 milliequivalents or more of the cationizing agent is reacted with 1 g of lignin. Moreover, as an upper limit of the quantity of a cationizing agent, it is preferable that it is 5 equivalent or less with respect to 1 g of lignin, and it is more preferable that it is 4.1 equivalent or less. The equivalent here means how many moles of cationic groups are reacted with 1 g of lignin as a raw material.

本発明の凝集剤によりリグニンが凝集するメカニズムについては、以下が考えられるが、これに限定されるわけではない。リグニンはポリフェノール性物質であり、フェノール性水酸基の存在により、水溶液中ではアニオン性に帯電している。このようなアニオン性物質を凝集させるためには、通常、カチオン性の官能基が必要である。しかしながら、カチオン性の官能基を有するトリメチルグリシジルアンモニウムクロライドを凝集剤として用いて試したところ、リグニンは凝集しなかったことから、水中のリグニン懸濁粒子の表面電荷を中和するだけでは凝集はできないことがわかった。これは、リグニン粒子は非常に細かいため、表面電荷を中和させるだけでは、沈殿するまでのフロックが形成できないためと考えられる。一方、本発明のカチオン化リグニンを含む凝集剤は、優れたリグニン凝集能を示している。これは、カチオン化リグニン中のカチオン性官能基により、水中のリグニン懸濁粒子の表面電荷を中和し、リグニン粒子間の反発作用を抑えて凝集現象を推進させると同時に、カチオン化リグニン中のリグニン部分が、リグニン粒子に吸着することで、接着剤の役割を果たし、リグニン粒子間の結び付けて凝集を起こしていると考えられる。市販の高分子カチオン系凝集剤(栗田工業(株)製 ジメチルアミノエチルアクリレートDAA)では本発明のカチオン化リグニン程のリグニン凝集能は示されなかったことからも、カチオン化リグニン中のリグニン部分が、リグニン粒子間の接着に非常に重要であることが示唆される。   Although the following is considered about the mechanism by which lignin aggregates with the flocculant of this invention, it is not necessarily limited to this. Lignin is a polyphenolic substance and is anionic in an aqueous solution due to the presence of phenolic hydroxyl groups. In order to agglomerate such an anionic substance, a cationic functional group is usually required. However, when trimethylglycidylammonium chloride having a cationic functional group was used as an aggregating agent, lignin did not agglomerate, so aggregation was not possible simply by neutralizing the surface charge of lignin suspension particles in water. I understood it. This is presumably because the lignin particles are very fine and flocs until they are precipitated cannot be formed only by neutralizing the surface charge. On the other hand, the flocculant containing the cationized lignin of the present invention exhibits excellent lignin aggregation ability. This is because the cationic functional group in the cationized lignin neutralizes the surface charge of the lignin suspension particles in water, suppresses the repulsive action between the lignin particles and promotes the aggregation phenomenon, and at the same time, The lignin portion is adsorbed on the lignin particles, thereby acting as an adhesive, and is considered to be caused by aggregation between the lignin particles. Since the commercially available polymeric cationic flocculant (dimethylaminoethyl acrylate DAA manufactured by Kurita Kogyo Co., Ltd.) did not show the lignin aggregating ability as much as the cationized lignin of the present invention, the lignin portion in the cationized lignin This suggests that it is very important for adhesion between lignin particles.

実施形態2:カチオン化リグニンを含むリグニン凝集剤の製造方法
本発明のカチオン化リグニンを含むリグニン凝集剤の製造方法は、リグニンとカチオン化剤とを反応させてカチオン化リグニンを得ることを含む。なお、上記のリグニン部位とカチオン化剤部位とを必須とするカチオン化リグニンには、このようにして得られたカチオン化リグニンが含まれる。よって、上記カチオン化リグニンを含む凝集剤と同様の内容については、適宜説明を省略する。
Embodiment 2: Method for producing lignin flocculant containing cationized lignin The method for producing a lignin flocculant containing a cationized lignin of the present invention comprises reacting lignin and a cationizing agent to obtain a cationized lignin. In addition, the cationized lignin obtained by doing in this way is contained in the cationized lignin which essentially requires said lignin site | part and a cationization agent site | part. Therefore, description of the same contents as those of the flocculant containing the cationized lignin will be omitted as appropriate.

リグニンとカチオン化剤とを反応させる方法としては、特に限定されないが、例えば、リグニンをアルカリ水溶液(例えば、NaOH水溶液)に溶解させ、そこに所定量のカチオン化剤を添加し、室温〜100℃の温度で30分間〜24時間撹拌して反応させる方法が挙げられる。反応終了後は、必要に応じて反応溶液から不溶物を濾過等により除去し、必要に応じて反応溶液を濃縮又は中和して、液体状態のカチオン化リグニンを含む凝集剤を得ることができる。必要に応じて、反応溶液を凍結乾燥等により乾燥することにより、固体状のカチオン化リグニンを含む凝集剤を得てもよい。カチオン化リグニンを含む凝集剤は、アルカリ水溶液由来のNaOHや無機塩、あるいは未反応物のリグニン及び/又はカチオン化化合物を含んでいてもよい。   The method for reacting lignin and the cationizing agent is not particularly limited. For example, lignin is dissolved in an alkaline aqueous solution (for example, NaOH aqueous solution), and a predetermined amount of the cationizing agent is added thereto, and the room temperature to 100 ° C. And reacting with stirring at a temperature of 30 minutes to 24 hours. After completion of the reaction, an insoluble matter can be removed from the reaction solution by filtration or the like as necessary, and the reaction solution can be concentrated or neutralized as necessary to obtain a flocculant containing a cationized lignin in a liquid state. . If necessary, a flocculant containing solid cationized lignin may be obtained by drying the reaction solution by freeze drying or the like. The flocculant containing cationized lignin may contain NaOH or inorganic salt derived from an alkaline aqueous solution, or unreacted lignin and / or a cationized compound.

リグニンとカチオン化剤との反応において、本発明のカチオン化リグニンは、リグニン1gに対してカチオン化剤を1.5ミリ当量以上反応させることが好ましい。より好ましくはリグニン1gに対してカチオン化剤を1.8ミリ当量以上、さらに好ましくはリグニン1gに対してカチオン化剤を2.2ミリ当量以上反応させることが好ましい。また、カチオン化剤の量の上限としては、リグニン1gに対して5当量以下であることが好ましく、4.1当量以下であることがより好ましい。ここでいう当量とは、原料としてのリグニン1gに反応させるカチオン基の量が何モルであるかをいう。   In the reaction of lignin with a cationizing agent, the cationized lignin of the present invention is preferably reacted with 1.5 milliequivalent or more of the cationizing agent with respect to 1 g of lignin. More preferably, the cationizing agent is reacted in an amount of 1.8 milliequivalents or more with respect to 1 g of lignin, and more preferably 2.2 milliequivalents or more of the cationizing agent is reacted with 1 g of lignin. Moreover, as an upper limit of the quantity of a cationizing agent, it is preferable that it is 5 equivalent or less with respect to 1 g of lignin, and it is more preferable that it is 4.1 equivalent or less. The equivalent here means how many moles of cationic groups are reacted with 1 g of lignin as a raw material.

実施形態3:リグニンを回収する方法。
本発明のカチオン化リグニンを含む凝集剤は、リグニンを回収する方法に使用することができる。本発明のリグニンを回収する方法は、リグニンを含む溶液に上記のカチオン化リグニンを含む凝集剤を添加して、リグニンを凝集させることを含む。
Embodiment 3: A method for recovering lignin.
The flocculant containing the cationized lignin of the present invention can be used in a method for recovering lignin. The method for recovering lignin of the present invention includes adding the above-mentioned flocculant containing cationized lignin to a solution containing lignin to cause lignin to aggregate.

リグノセルロースを資源とするバイオリファイナリーの研究開発が進められており、例えば、プラントスケールにおいて、リグノセルロースをポリエチレングリコール(PEG)等の安全性の高いグリコール系薬剤を用いた常圧酸加溶媒分解法にて分解し、パルプ及びリグニンを分離する方法が提案されている(2015年リグニン討論会要旨集P104-105)。常圧酸加溶媒分解法においては、蒸解工程から回収される濾液にリグニンが含まれており、例えばラボスケールにおいては濾液を水に滴下するなどの操作により、水に不溶なリグニンを沈殿物として得ているが、プラントスケールにおいては、より効率的なリグニン回収方法が求められている。   Research and development of biorefinery using lignocellulose as a resource is underway. For example, in the plant scale, atmospheric pressure acid solvolysis using lignocellulose using a highly safe glycol-based drug such as polyethylene glycol (PEG) Has been proposed to separate pulp and lignin (Abstracts of the 2015 Lignin Discussion P104-105). In the normal pressure acid solvolysis method, lignin is contained in the filtrate recovered from the cooking step. For example, in a lab scale, lignin that is insoluble in water is precipitated as a precipitate by an operation such as dropping the filtrate into water. However, there is a need for more efficient lignin recovery methods on the plant scale.

本発明のリグニンを回収する方法は、グリコール系溶剤を用いた常圧酸加溶媒分解法において回収されるリグニンを含む濾液に、カチオン化リグニンを含む凝集剤を添加して、リグニンを凝集させることを含む。沈殿されたリグニンは、濾過や遠心分離等で分離して回収することができる。この方法によれば、リグニンを効率的に高収率で回収することができ、得られたリグニンを材料として使用することができる。   In the method for recovering lignin of the present invention, a flocculant containing cationized lignin is added to a filtrate containing lignin recovered in a normal pressure acid solvolysis method using a glycol-based solvent to aggregate the lignin. including. The precipitated lignin can be separated and recovered by filtration or centrifugation. According to this method, lignin can be efficiently recovered at a high yield, and the obtained lignin can be used as a material.

常圧酸加溶媒分解法では、蒸解工程から回収される濾液を酸性状態とすることで、リグニンを沈殿させてリグニンを回収することも可能であるが、リグニン沈殿後の上清液にもリグニンが含まれている。本発明のリグニンを回収する方法は、リグニン分離後の上清液にカチオン化リグニンを含む凝集剤を添加して、リグニンを凝集させることを含む。   In the normal pressure acid solvolysis method, the lignin can be recovered by precipitating the lignin by bringing the filtrate recovered from the cooking step into an acidic state, but the lignin is also added to the supernatant after the lignin precipitation. It is included. The method for recovering lignin of the present invention includes adding an aggregating agent containing a cationized lignin to the supernatant after lignin separation to aggregate the lignin.

本発明のリグニンを回収する方法はまた、常圧酸加溶媒分解法以外のパルプ化技術やバイオリファイナリー技術における蒸解方法において回収されたリグニンを含む蒸解液にカチオン化リグニンを含む凝集剤を添加して、リグニンを凝集させることを含む。例えば、サルファイト蒸解後の廃液である、リグノスルホン酸を含む水溶液にリグニン凝集剤を添加することにより、リグノスルホン酸の凝集が可能である。   The method for recovering lignin of the present invention also includes adding a flocculant containing cationized lignin to the cooking liquor containing lignin recovered in the pulping technique other than atmospheric acid solvolysis and the cooking method in biorefinery technology. Aggregating lignin. For example, the lignosulfonic acid can be aggregated by adding a lignin flocculant to an aqueous solution containing lignosulfonic acid, which is a waste liquid after sulfite cooking.

リグニンを含む溶液に添加されるカチオン化リグニンを含む凝集剤の量としては、溶液のpH及び温度等により変わり得るが、溶液中のリグニンの重量に対して0.05重量%〜5重量%が好ましく、0.1重量%〜2重量%がより好ましく、0.5重量%〜1重量%がさらに好ましい。リグニンを含む溶液のpHとしてはいずれでもよいが、pH3〜8が好ましく、pH5〜7がより好ましい。   The amount of the flocculant containing cationized lignin added to the solution containing lignin may vary depending on the pH and temperature of the solution, but is 0.05 wt% to 5 wt% with respect to the weight of lignin in the solution. Preferably, 0.1% by weight to 2% by weight is more preferable, and 0.5% by weight to 1% by weight is further preferable. The pH of the solution containing lignin may be any, but is preferably pH 3-8, more preferably pH 5-7.

本発明の回収方法により沈殿されたリグニンは、濾過や遠心分離等で分離されて、洗浄後、リグニン材料として使用することができる。沈殿・回収されたリグニンにはカチオン化リグニンを含む凝集剤が含まれ得るが、凝集剤がリグニン由来であるため、硫酸アルミニウム等の無機凝集剤や他の有機凝集剤と比較して、リグニン材料としての性能に影響を与えない点においても、本発明のカチオン化リグニンを含む凝集剤を使用することに利点がある。   The lignin precipitated by the recovery method of the present invention is separated by filtration or centrifugation, and can be used as a lignin material after washing. The precipitated and recovered lignin may contain a flocculant containing cationized lignin, but since the flocculant is derived from lignin, lignin material compared to inorganic flocculants such as aluminum sulfate and other organic flocculants There is an advantage in using the flocculant containing the cationized lignin of the present invention in that it does not affect the performance of the present invention.

以下、本発明を実施例及び比較例によりさらに説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further, this invention is not limited to these.

実施例1:カチオン化リグニンの製造1及びリグニン凝集試験1
<凝集性を発揮する官能基の検索>
1)試料
リグニンとして以下の試料を用いた。
・加溶媒分解リグニン誘導体 (森林総研製 スギのPEG蒸解によるグリコールリグニン(以下、「グリコールリグニン」と呼ぶ)
・エンザイムリグニン (スギ由来)
・ソーダリグニン (森林総研製 スギのソーダ蒸解黒液から精製)
・リグノスルホン酸 (パールレックス(日本製紙ケミカル製))
カチオン化剤として以下の試料を用いた。
・グリシジルトリメチルアンモニウムクロリド(GTA)
Example 1 Production 1 of Cationized Lignin and Lignin Aggregation Test 1
<Search for functional groups that exhibit cohesiveness>
1) Samples The following samples were used as lignin.
Solvated lignin derivative (glycol lignin by PEG digestion of cedar made by Forestry Research Institute (hereinafter referred to as “glycol lignin”)
・ Enzyme lignin (from Japanese cedar)
・ Soda lignin (purified from Sugi soda cooking black liquor by Forest Research Institute)
・ Lignosulfonic acid (Pearl Rex (Nippon Paper Chemicals))
The following samples were used as cationizing agents.
・ Glycidyltrimethylammonium chloride (GTA)

2)リグニンへのカチオン基の導入
各種リグニン0.2 gをなす型フラスコにとり、0.5 N NaOH水溶液を50 mL加え、60℃のオイルバス中で3日間放置した後、グリシジルトリメチルアンモニウムクロリド(GTA)を60 mL加え50℃のオイルバス中で3時間反応させた(図1、表1: Trial 1〜3)。ポアサイズ0.45 μmのメンブレンフィルターを用いて反応液中の不溶物を取り除き、3500 MWCO透析膜を用いて透析し回収することで、カチオン化リグニンを得た。回収した溶液の一部を凍結乾燥し重量を測定することで溶液中のカチオン化リグニンの濃度を求めた。ソーダリグニンにも同様の手順によりカチオン基を導入した。エンザイムリグニンは0.5 N NaOH水溶液を50 mL加えても完全に溶解しなかったため60℃のオイルバス中で3日間処理し、GTAを60 mL加え50℃のオイルバス中で3時間反応させた。反応後も不溶物が残っていたためポアサイズ0.45 μmのメンブレンフィルターを用いて不溶物を取り除き、グリコールリグニンやソーダリグニン同様に透析した。
2) Introduction of cationic groups into lignin Take 0.2 g of various lignins in a flask, add 50 mL of 0.5 N NaOH aqueous solution, leave it in an oil bath at 60 ° C for 3 days, and then add 60 mg of glycidyltrimethylammonium chloride (GTA). mL was added and reacted in an oil bath at 50 ° C. for 3 hours (FIG. 1, Table 1: Trial 1 to 3). The insoluble matter in the reaction solution was removed using a membrane filter having a pore size of 0.45 μm, and cationized lignin was obtained by dialysis and recovery using a 3500 MWCO dialysis membrane. A portion of the collected solution was lyophilized and the weight was measured to determine the concentration of cationized lignin in the solution. A cationic group was also introduced into soda lignin by the same procedure. Enzyme lignin was not completely dissolved even when 50 mL of 0.5 N NaOH aqueous solution was added. The enzyme lignin was treated in an oil bath at 60 ° C. for 3 days, and 60 mL of GTA was added and reacted in an oil bath at 50 ° C. for 3 hours. Since insoluble matter remained even after the reaction, the insoluble matter was removed using a membrane filter having a pore size of 0.45 μm and dialyzed in the same manner as glycol lignin and soda lignin.

Figure 2017189741
Figure 2017189741

3)リグニンの凝集実験
・リグニンの凝集実験の検討
固形分濃度が1 gになるようにリグニン懸濁液を試験管に量りとり、そこにカチオン化リグニン(CL)をリグニンの重量に対して1wt%添加した。なお、リグニンはグリコールリグニン(森林総研製 スギのPEG蒸解によるグリコールリグニン)を使用した。添加した後すぐに試験管を1回ひっくり返し、溶液を混ぜたのち静置して溶液の様子を観察した。同様な手法で、カチオン化リグニン0.5wt%、0.25wt%および0.1wt%添加についても実験を行った。また、比較実験として、GTA(CL 1wt%添加と同量のカチオン量)およびリグノスルホン酸(パールレックス 日本製紙ケミカル製, 1wt%添加)を凝集剤として使用する凝集実験も同様に行った。
凝集沈降により生じた凝集体と上澄みとの境界線の高さを測り、境界面の初期水位に対する百分率(沈降度と定義する)を計算し、フロッキュレーションの指標とした。
沈降度(%)=(凝集体と上澄みとの境界線の高さ)/(初期水位)×100
3) Examination of lignin agglomeration experiment and lignin agglomeration experiment Weigh lignin suspension into a test tube so that the solid content concentration is 1 g, and add 1% cationized lignin (CL) to the weight of lignin. % Was added. As the lignin, glycol lignin (glycol lignin by PEG cooking of cedar made by Forestry Research Institute) was used. Immediately after the addition, the test tube was turned over once, mixed with the solution, and allowed to stand to observe the state of the solution. In the same manner, experiments were also conducted for addition of 0.5 wt%, 0.25 wt%, and 0.1 wt% of cationized lignin. In addition, as a comparative experiment, a coagulation experiment using GTA (the same amount of cation as CL added at 1 wt%) and lignosulfonic acid (Pearlx Nippon Paper Chemicals Co., Ltd., added at 1 wt%) as a coagulant was also performed.
The height of the boundary line between the aggregate and the supernatant produced by coagulation sedimentation was measured, and the percentage of the boundary surface relative to the initial water level (defined as sedimentation) was calculated and used as an index for flocculation.
Sedimentation degree (%) = (height of boundary line between aggregate and supernatant) / (initial water level) × 100

(結果)
はじめに、どのような官能基が有効であるかを確かめるため、アニオン性のリグノスルホン酸を凝集剤として用いて試したところ、凝集性を示さなかった。カチオン性のトリメチルグリシジルアンモニウムクロライドを凝集剤として用いて試したところ、これも凝集性を示さなかった。次に、今回調製したカチオン化リグニン(CL)を添加したところ、どのサンプルについても0.5wt%添加で十分な凝集効果が見られ、添加30分後には沈降度が約30%までになった(表2)。
(result)
First, in order to confirm what kind of functional group is effective, when anionic lignosulfonic acid was used as a flocculant, no aggregating property was shown. When trial was carried out using cationic trimethylglycidyl ammonium chloride as a flocculant, this also showed no flocculence. Next, when the cationized lignin (CL) prepared this time was added, a sufficient aggregation effect was observed with addition of 0.5 wt% for any sample, and the sedimentation degree reached about 30% 30 minutes after the addition ( Table 2).

Figure 2017189741
Figure 2017189741

実施例2:カチオン化リグニンの製造2及びリグニン凝集試験2
<官能基導入方法の最適化>
カチオン化剤であるGTA量をできるだけ少なくなるような反応条件を検討するとともに、工程手順の簡略化も目指した。
Example 2: Production of cationized lignin 2 and lignin aggregation test 2
<Optimization of functional group introduction method>
In addition to studying the reaction conditions to reduce the amount of GTA as a cationizing agent as much as possible, we aimed to simplify the process procedure.

(実験手順)
1)反応条件
表3に示したように所定量のグリコールリグニンを10 mLの0.5 N NaOH水溶液に溶解させた。そこに所定量のグリシジルトリメチルアンモニウムクロリド(GTA)を加えて50℃のオイルバスまたはウォーターバスで撹拌しながら3時間反応させた。反応後の溶液を3500 MWCO透析膜(BioDesign Inc. of New York)を用いて流水中で透析を行い、NaOHを取り除いた。Entry 8は透析を行わず、反応終了後の溶液をH2SO4によりpH 7に中和したものをそのままサンプルとして用いた。
(Experimental procedure)
1) Reaction conditions As shown in Table 3, a predetermined amount of glycol lignin was dissolved in 10 mL of 0.5 N NaOH aqueous solution. A predetermined amount of glycidyltrimethylammonium chloride (GTA) was added thereto and reacted for 3 hours with stirring in an oil bath or water bath at 50 ° C. The solution after the reaction was dialyzed in running water using a 3500 MWCO dialysis membrane (BioDesign Inc. of New York) to remove NaOH. Entry 8 did not undergo dialysis, and the solution after completion of the reaction was neutralized with H 2 SO 4 to pH 7 and used as a sample as it was.

Figure 2017189741
Figure 2017189741

2)凝集実験
試験管にリグニンの固形物量に対し1wt%のカチオン化リグニン(CL)を含むように各サンプル溶液を測りとり、水を加えて7mLまでメスアップした。また別の試験管には固形分濃度が1 gになるようにリグニン懸濁液を測りとった(pH 6.4)。なお、リグニンはグリコールリグニン(森林総研製 スギのPEG蒸解によるグリコールリグニン)を使用した。カチオン化リグニン(CL)を含む溶液をウォーターバスで50℃に温め、オーブンで50℃に予熱しておいたピペットでリグニン懸濁液に添加した。添加後すぐに試験管を1回ひっくり返し、溶液を混ぜたのち室温で静置して溶液の様子を観察した。また凝集沈降により生じた境界線の高さを測定した。水だけを添加したものをブランクとした。また、カチオン化リグニン0.5wt%および0.1wt%添加実験も同様の方法で実験を行った。
溶液のpHおよび温度の影響を調べるため、Entry 8のサンプルについて、水溶液のpHを5と3(H2SO4によりに調整)にした実験および水溶液の温度を30℃にした実験を行った。
比較例として、硫酸アルミニウム及び高分子カチオン系凝集剤(栗田工業(株)製 ジメチルアミノエチルアクリレートDAA)のリグニン凝集実験を、上記方法と同様に、pH6.4、pH 5.0、及びpH 3.0の条件下、0.1wt%、0.5wt%及び1wt%の添加量で行った。
2) Aggregation experiment Each sample solution was measured so that the test tube contained 1 wt% of cationized lignin (CL) with respect to the amount of solid matter of lignin, and water was added to make up to 7 mL. In another test tube, the lignin suspension was measured so that the solid content was 1 g (pH 6.4). As the lignin, glycol lignin (glycol lignin by PEG cooking of cedar made by Forestry Research Institute) was used. The solution containing cationized lignin (CL) was warmed to 50 ° C. in a water bath and added to the lignin suspension with a pipette that had been preheated to 50 ° C. in an oven. Immediately after the addition, the test tube was turned over once, and after mixing the solution, the solution was allowed to stand at room temperature and the state of the solution was observed. In addition, the height of the boundary line generated by coagulation sedimentation was measured. What added only water was made into the blank. In addition, experiments for adding 0.5 wt% and 0.1 wt% of cationized lignin were conducted in the same manner.
In order to investigate the effect of the pH and temperature of the solution, the Entry 8 sample was subjected to an experiment in which the pH of the aqueous solution was 5 and 3 (adjusted with H 2 SO 4 ) and an experiment in which the temperature of the aqueous solution was 30 ° C.
As a comparative example, the lignin aggregation experiment of aluminum sulfate and a polymeric cationic flocculant (dimethylaminoethyl acrylate DAA manufactured by Kurita Kogyo Co., Ltd.) was carried out under the conditions of pH 6.4, pH 5.0, and pH 3.0 as in the above method. Below, it carried out with the addition amount of 0.1 wt%, 0.5 wt%, and 1 wt%.

(結果)
凝集実験結果を表4に示す。Trial 9および10は水不溶部が多く、カチオン基の導入量が少ないと判断されたため、以下の検討は行わなかった。カチオン化剤をリグニンに対して約3倍量を使用したTrial 4は0.5%添加で凝集効果を示した。さらにカチオン化剤の量の減少について検討したところ、リグニンに対して約1/3量にしても、カチオン化リグニン(CL)は1wt%添加で十分な凝集効果を示した(Trial 7)。また、リグニンとカチオン化剤との反応後に透析処理をしなくても、凝集効果があることが分かり(Trial 8)、製造工程の簡略化を図ることができた。
pHの影響について調査したところ、pH 5の場合、カチオン化リグニンの添加量が0.5wt%でも凝集効果が見られた。pH 3においては、カチオン化リグニン0.1wt%添加で凝集効果が見られ、添加量が0.5wt%以上であると、逆に凝集効果を示さなくなった。pHによって溶液中のリグニンの電荷状態が変わり、このような結果をもたらしたと考えられる。
温度の影響について検討したところ、30℃の場合は50℃の時よりも凝集沈降速度が低下した。
(result)
Table 4 shows the results of the aggregation experiment. Since Trial 9 and 10 had many water-insoluble portions and the introduction amount of the cationic group was judged to be small, the following examination was not performed. Trial 4, which used about 3 times the amount of cationizing agent relative to lignin, showed an aggregating effect when 0.5% was added. Further, when the amount of the cationizing agent was reduced, the cationized lignin (CL) showed a sufficient aggregation effect with addition of 1 wt% even when the amount was about 1/3 of the lignin (Trial 7). Further, it was found that there was an aggregating effect without performing dialysis after the reaction between lignin and the cationizing agent (Trial 8), and the production process could be simplified.
As a result of investigating the influence of pH, in the case of pH 5, a coagulation effect was observed even when the amount of cationized lignin added was 0.5 wt%. At pH 3, an aggregation effect was observed when cationized lignin was added at 0.1 wt%, and when the addition amount was 0.5 wt% or more, no aggregation effect was exhibited. It is considered that the charge state of lignin in the solution was changed by the pH and brought such a result.
When the influence of temperature was examined, the coagulation sedimentation rate was lower at 30 ° C than at 50 ° C.

硫酸アルミニウムは、カチオン化リグニンとほぼ同等のリグニン凝集能を示した。市販の高分子カチオン系凝集剤は、0.1%添加の場合、どのpH条件においても凝集効果を示さなかった。また、0.5%、1.0%においては凝集効果は認められるものの、凝集粒子が細かく境界面がはっきりしなかった。遠心分離およびろ過によるリグニンの回収は困難と思われる。   Aluminum sulfate showed a lignin aggregation ability almost equal to that of cationized lignin. The commercially available polymeric cationic flocculant did not show the agglutination effect at any pH condition when added at 0.1%. Moreover, although the aggregation effect was recognized in 0.5% and 1.0%, the aggregated particles were fine and the boundary surface was not clear. Recovery of lignin by centrifugation and filtration seems difficult.

Figure 2017189741
Figure 2017189741

実施例3:リグニン凝集試験3
<カチオン化リグニン(CL)のリグニン回収工程における上精処理への適用>
現在、常圧酸加溶媒分解法におけるリグニンの回収工程では遠心分離法が適用されているが、その上精液にもリグニンが含まれている。この上清に溶解しているリグニンの回収にカチオン化リグニン(CL)が適用できるか試みた。
Example 3: Lignin aggregation test 3
<Application of cationized lignin (CL) to fine processing in lignin recovery process>
At present, the centrifugation method is applied in the recovery process of lignin in the atmospheric acid solvolysis method, but semen also contains lignin. An attempt was made to apply cationized lignin (CL) to recovering lignin dissolved in the supernatant.

(実験手順)
回収工程上精(リグニン含量 4.2g/L)をNaOH水溶液により、pHを3、5、7に調整した。カチオン化リグニン(CL)(表3 Trial 4〜8)を回収工程上清中のリグニンの重量に対して1、3、5wt%添加し、凝集沈降を観察した。30分以内に凝集沈降したものを◎、1時間以内に凝集沈降したものを〇とした。
(Experimental procedure)
The pH in the recovery process (lignin content 4.2 g / L) was adjusted to 3, 5, and 7 with an aqueous NaOH solution. Cationized lignin (CL) (Table 3 Trial 4-8) was added in an amount of 1, 3, 5 wt% with respect to the weight of lignin in the supernatant of the recovery process, and aggregation precipitation was observed. Those that aggregated and settled within 30 minutes were marked with ◎, and those that aggregated and settled within 1 hour were marked with ○.

(結果)
結果を表5に示す。pH 5とpH 7の時、すべてのカチオン化リグニン(CL)で凝集沈降が観察できた。一方、pH 3に関しては凝集沈降が全く観察できなかった。
(result)
The results are shown in Table 5. At pH 5 and pH 7, aggregated sedimentation was observed for all cationized lignins (CL). On the other hand, no coagulation sedimentation was observed at pH 3.

Figure 2017189741
Figure 2017189741

本発明により、リグニンから、リグニンを効率的に凝集するための凝集剤を製造する方法が提供された。本発明のリグニン凝集剤及びリグニン回収方法によれば、エンジニアリングプラスチック、各種熱可塑性樹脂、フィルム、電子基板、繊維強化材、各種接着剤、カーボンファイバー、活性炭素繊維、各種炭素材料、コンクリート用化学混和剤、分散剤、各種界面活性剤等の高付加価値材料の原料として利用が可能なリグニンを高収率で回収することができる。   The present invention provides a method for producing an aggregating agent for efficiently aggregating lignin from lignin. According to the lignin flocculant and lignin recovery method of the present invention, engineering plastics, various thermoplastic resins, films, electronic substrates, fiber reinforcements, various adhesives, carbon fibers, activated carbon fibers, various carbon materials, and chemical admixtures for concrete Lignin that can be used as a raw material for high value-added materials such as agents, dispersants, and various surfactants can be recovered in high yield.

Claims (6)

リグニン部位とカチオン化剤部位とを必須とするカチオン化リグニンを含むリグニン凝集剤。   A lignin flocculant comprising a cationized lignin that essentially comprises a lignin site and a cationizing agent site. 前記リグニンが、リグノセルロースをポリエチレングリコール、ジエチレングリコール、エチレングリコール、グリセリン及びポリグリセリンから選択される少なくとも1種の蒸解溶媒で加溶媒分解することにより得られたリグニン誘導体、リグノセルロースの酵素糖化により得られたエンザイムリグニン、又はリグノルロースをアルカリ蒸解することにより得られたアルカリリグニンである、請求項1に記載のリグニン凝集剤。   The lignin is obtained by enzymatic saccharification of lignocellulose, a lignin derivative obtained by solvolysis of lignocellulose with at least one cooking solvent selected from polyethylene glycol, diethylene glycol, ethylene glycol, glycerin and polyglycerin. The lignin flocculant according to claim 1, which is an alkaline lignin obtained by alkaline digestion of enzyme lignin or lignolose. 前記カチオン化剤が、グリシジルトリメチルアンモニウムクロライドである、請求項1又は2に記載のリグニン凝集剤。   The lignin flocculant according to claim 1 or 2, wherein the cationizing agent is glycidyltrimethylammonium chloride. リグニンとカチオン化剤とを反応させてカチオン化リグニンを得ることを含む、カチオン化リグニンを含むリグニン凝集剤の製造方法。   A method for producing a lignin flocculant containing a cationized lignin, comprising reacting a lignin and a cationizing agent to obtain a cationized lignin. リグニンを含む溶液に請求項1〜4に記載のリグニン凝集剤を添加して、リグニンを凝集させることを含む、リグニンを回収する方法。   A method for recovering lignin, comprising aggregating lignin by adding the lignin flocculant according to claim 1 to a solution containing lignin. 前記リグニンを含む溶液のpHが3〜8である、請求項5に記載のリグニンを回収する方法。   The method for recovering lignin according to claim 5, wherein the pH of the solution containing lignin is 3-8.
JP2016080236A 2016-04-13 2016-04-13 Lignin flocculant, method for producing the same, and method for recovering lignin using the same Active JP6656637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080236A JP6656637B2 (en) 2016-04-13 2016-04-13 Lignin flocculant, method for producing the same, and method for recovering lignin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080236A JP6656637B2 (en) 2016-04-13 2016-04-13 Lignin flocculant, method for producing the same, and method for recovering lignin using the same

Publications (2)

Publication Number Publication Date
JP2017189741A true JP2017189741A (en) 2017-10-19
JP6656637B2 JP6656637B2 (en) 2020-03-04

Family

ID=60086317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080236A Active JP6656637B2 (en) 2016-04-13 2016-04-13 Lignin flocculant, method for producing the same, and method for recovering lignin using the same

Country Status (1)

Country Link
JP (1) JP6656637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647356A (en) * 2018-12-29 2019-04-19 湘潭大学 A kind of preparation method and its application in removal waste water in anions and canons dyestuff at the same time of both sexes adsorbent material
KR102348855B1 (en) 2020-08-11 2022-01-11 주식회사 제이앤에이취프레스 Forging press machine including planetary gear power transmission speed reduction device
CN114426655A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Novel lignin-based oil-in-water emulsion demulsifier, preparation method thereof and treatment method of crude oil-in-water emulsion
CN115418003A (en) * 2022-10-14 2022-12-02 安徽工业大学 Method for recovering lignin precipitate in strengthening alkali pretreatment liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647356A (en) * 2018-12-29 2019-04-19 湘潭大学 A kind of preparation method and its application in removal waste water in anions and canons dyestuff at the same time of both sexes adsorbent material
KR102348855B1 (en) 2020-08-11 2022-01-11 주식회사 제이앤에이취프레스 Forging press machine including planetary gear power transmission speed reduction device
CN114426655A (en) * 2020-10-10 2022-05-03 中国石油化工股份有限公司 Novel lignin-based oil-in-water emulsion demulsifier, preparation method thereof and treatment method of crude oil-in-water emulsion
CN114426655B (en) * 2020-10-10 2023-11-14 中国石油化工股份有限公司 Lignin-based water-in-oil emulsion demulsifier, preparation method thereof and treatment method of crude oil water-in-oil emulsion
CN115418003A (en) * 2022-10-14 2022-12-02 安徽工业大学 Method for recovering lignin precipitate in strengthening alkali pretreatment liquid

Also Published As

Publication number Publication date
JP6656637B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6656637B2 (en) Lignin flocculant, method for producing the same, and method for recovering lignin using the same
Kong et al. Preparation of cationic softwood kraft lignin and its application in dye removal
Zou et al. Solvent-resistant lignin-epoxy hybrid nanoparticles for covalent surface modification and high-strength particulate adhesives
Meng et al. Synthesis, characterization, and utilization of a lignin-based adsorbent for effective removal of azo dye from aqueous solution
Khoo et al. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review
US7699958B2 (en) Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors
Visanko et al. Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil–water stabilizer
Amini et al. Ionic liquid-assisted bioconversion of lignocellulosic biomass for the development of value-added products
Qin et al. Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: performance and mechanism
Wang et al. Novel process for generating cationic lignin based flocculant
CA2986654C (en) A method and an apparatus for forming a lignin fraction, a lignin composition and its use
EP3294674B1 (en) Water treatment
Shen et al. Lime treatment of prehydrolysis liquor from the kraft-based dissolving pulp production process
Li et al. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride
Wang et al. Controlled assembly of lignocellulosic biomass components and properties of reformed materials
Sun et al. Recent studies on the preparation and application of ionic amphiphilic lignin: A comprehensive review
Pinto et al. Cationization of eucalyptus kraft LignoBoost lignin: Preparation, properties, and potential applications
JP2017141319A (en) Lignophenol production method and lignophenol production apparatus
Almeida et al. Production of functionalized nanocelluloses from different sources using deep eutectic solvents and their applications
CN108892786B (en) Lignin/surfactant composite nano particle and preparation method thereof
Ballinas-Casarrubias et al. Biopolymers from waste biomass—extraction, modification and ulterior uses
Boussetta et al. Bio-composites based on cellulosic fibers from agro-industrial waste filled PP matrix: production and properties
Hanafiah et al. Extraction and characterization of microfibrillated and nanofibrillated cellulose from office paper waste
CN106916320A (en) A kind of method of the quaternized lignin of the Microwave-assisted synthesis in low-concentration alkali liquor
CN103613688A (en) Extraction method and quaternarization modification method for semi-cellulose in waste viscose fiber production liquor

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200123

R150 Certificate of patent or registration of utility model

Ref document number: 6656637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250