JP2017188241A - Method for producing separator for solid polymer fuel cell - Google Patents

Method for producing separator for solid polymer fuel cell Download PDF

Info

Publication number
JP2017188241A
JP2017188241A JP2016074936A JP2016074936A JP2017188241A JP 2017188241 A JP2017188241 A JP 2017188241A JP 2016074936 A JP2016074936 A JP 2016074936A JP 2016074936 A JP2016074936 A JP 2016074936A JP 2017188241 A JP2017188241 A JP 2017188241A
Authority
JP
Japan
Prior art keywords
fuel cell
film
separator
stainless steel
graphene film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074936A
Other languages
Japanese (ja)
Other versions
JP6652770B2 (en
Inventor
昌信 熊谷
Masanobu Kumagai
昌信 熊谷
一郎 吉野
Ichiro Yoshino
一郎 吉野
正義 梅野
Masayoshi Umeno
正義 梅野
秀雄 内田
Hideo Uchida
秀雄 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Chubu University
Original Assignee
Nachi Fujikoshi Corp
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Chubu University filed Critical Nachi Fujikoshi Corp
Priority to JP2016074936A priority Critical patent/JP6652770B2/en
Publication of JP2017188241A publication Critical patent/JP2017188241A/en
Application granted granted Critical
Publication of JP6652770B2 publication Critical patent/JP6652770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a fuel cell separator having a desired conductivity required as a separator for a fuel cell and a contact resistance value with a gas diffusion layer.SOLUTION: In a method for producing a separator for a solid polymer fuel cell in which a graphene film is formed on a surface of a stainless steel by using a microwave plasma CVD method, a temperature range for forming the graphene film is set to a range from 323 K or more to 473 K or less. Also, nitrogen gas can be used for forming the graphene film. Further, the stainless steel may be an austenitic stainless steel.SELECTED DRAWING: Figure 1

Description

本発明は、主に車輌、船舶、航空機などの乗物に搭載され、または企業や一般家庭で使用されている燃料電池、特に固体高分子形燃料電池に用いるセパレータの製造方法に関する。   The present invention relates to a method of manufacturing a separator used in a fuel cell, particularly a polymer electrolyte fuel cell, which is mounted on a vehicle such as a vehicle, a ship, or an aircraft, or used in a company or a general household.

近年、自動車やバスの電源として搭載されている燃料電池や一般家庭向けの電源として提供されている燃料電池は、その多くが固体高分子形燃料電池(PEFCまたはPEMFC)である。固体高分子形燃料電池は、りん酸形燃料電池など他の燃料電池に比べて小形かつ軽量化が可能であり、起動時の操作が比較的に容易であることから各産業分野でその普及が進みつつある。   In recent years, many of the fuel cells mounted as power sources for automobiles and buses and the fuel cells provided as power sources for general households are polymer electrolyte fuel cells (PEFC or PEMFC). Solid polymer fuel cells are smaller and lighter than other fuel cells, such as phosphoric acid fuel cells, and are relatively easy to operate at startup. Progressing.

そのため固体高分子形燃料電池を構成するセパレータとしては、良好な導電性と高い耐食性が求められており、かつてはその材料としてグラファイトが使用されてきた。しかし、燃料電池の容量をより小形化する要望が高まる中、グラファイトは機械的強度と加工性という観点から、徐々に金属材料に代替されるようになってきた。   Therefore, as a separator constituting a solid polymer fuel cell, good conductivity and high corrosion resistance are required, and graphite has been used as the material. However, as the demand for smaller fuel cell capacity increases, graphite has gradually been replaced by metal materials from the viewpoint of mechanical strength and workability.

例えば、特許文献1および非特許文献1ではステンレス鋼を燃料電池用セパレータとして適用できることが開示されている。また、ステンレス鋼表面は不動態皮膜が存在することから燃料電池を構成するガス拡散層(GDL)との接触抵抗が大きく、そのままの状態では所望の導電性が得られない。そこで、ステンレス鋼表面に導電性の高い炭素膜を被覆することでステンレス鋼製セパレータに良好な導電性が付与される。   For example, Patent Document 1 and Non-Patent Document 1 disclose that stainless steel can be applied as a fuel cell separator. Further, since the stainless steel surface has a passive film, the contact resistance with the gas diffusion layer (GDL) constituting the fuel cell is large, and the desired conductivity cannot be obtained as it is. Therefore, good conductivity is imparted to the stainless steel separator by covering the stainless steel surface with a highly conductive carbon film.

中でも導電性の高い炭素膜の1つとしてグラフェン膜があり、その膜を形成する方法が例えば特許文献2および3に開示されている。具体的には、樟脳などを炭素源としてマイクロ波プラズマCVD法を用いることで、基板を423K〜873Kの温度範囲に保持した状態でグラフェン膜を形成する。なお、本願発明においてグラフェンとは、ベンゼン環が同一平面内で多数結合した巨大なπ共役系の炭素を言うものとする。 Among them, there is a graphene film as one of highly conductive carbon films, and methods for forming the film are disclosed in Patent Documents 2 and 3, for example. Specifically, a graphene film is formed in a state where the substrate is held in a temperature range of 423K to 873K by using a microwave plasma CVD method using camphor or the like as a carbon source. In the present invention, graphene refers to a huge π-conjugated carbon in which a large number of benzene rings are bonded in the same plane.

特開2010−33969号公報JP 2010-33969 A 特開2013−159521号公報JP 2013-159521 A 特開2015−34102号公報JP-A-2015-34102

S.Miyano et. al. 、 tanso247(2011)54.S. Miyano et. al. Tanso 247 (2011) 54.

しかし、特許文献1などに開示されているグラフェン膜の形成方法ではその形成温度範囲が約823K近い温度であることから、基板上にはグラフェン膜の他にアモルファスカーボンなど異なる形態のカーボン膜が形成されたり、種々の表面欠陥が発生する。その結果、燃料電池のセパレータとして求められる導電性が得られなかったり、電気抵抗が高くなるなどの問題があった。 However, in the method for forming a graphene film disclosed in Patent Document 1 and the like, the formation temperature range is a temperature close to about 823 K, so that carbon films of different forms such as amorphous carbon are formed on the substrate in addition to the graphene film. Or various surface defects occur. As a result, there have been problems such as that the conductivity required as a separator for a fuel cell cannot be obtained and the electrical resistance is increased.

そこで、本発明においては燃料電池用途のセパレータとして求められる所望の導電性やガス拡散層との接触抵抗値を備えた燃料電池用セパレータの製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a method for manufacturing a fuel cell separator having desired conductivity and a contact resistance value with a gas diffusion layer required as a separator for fuel cells.

前述した課題を解決するために、本発明者はマイクロ波プラズマCVD法を用いてステンレス鋼の表面にグラフェン膜が形成された固体高分子形燃料電池用セパレータの製造方法であって、グラフェン膜を形成する際の温度範囲を323K以上473K以下とする固体高分子形燃料電池用セパレータの製造方法とした。 In order to solve the above-mentioned problems, the present inventor is a method for manufacturing a separator for a polymer electrolyte fuel cell in which a graphene film is formed on a surface of stainless steel using a microwave plasma CVD method. The manufacturing method of the separator for a polymer electrolyte fuel cell was set so that the temperature range during the formation was 323 K or more and 473 K or less.

また、グラフェン膜を形成する際に窒素ガスを用いる(成膜装置内へ窒素ガスを導入する)固体高分子形燃料電池用セパレータの製造方法とすることもできる。成膜装置内への窒素ガス流量については、毎分20mL以下であることが好ましい。
Moreover, it can also be set as the manufacturing method of the separator for solid polymer fuel cells which uses nitrogen gas (introducing nitrogen gas in the film-forming apparatus) when forming a graphene film. The nitrogen gas flow rate into the film forming apparatus is preferably 20 mL or less per minute.

さらに、ステンレス鋼を、オーステナイト系ステンレス鋼とする固体高分子形燃料電池用セパレータの製造方法とすることもできる。なお、本願発明においてグラフェンとは、ベンゼン環が同一平面内で多数結合した巨大なπ共役系の炭素を言うものとする。 Furthermore, it can also be set as the manufacturing method of the separator for polymer electrolyte fuel cells which uses austenitic stainless steel for stainless steel. In the present invention, graphene refers to a huge π-conjugated carbon in which a large number of benzene rings are bonded in the same plane.

本発明に係る固体高分子形燃料電池用セパレータの製造方法により、導電性の良好なセパレータを得ることができるという効果を奏する。また、グラフェン膜をステンレス鋼上に形成する場合にオーステナイト系ステンレス鋼とすることにより、ガス拡散層との接触抵抗値を低減できる。 With the method for manufacturing a separator for a polymer electrolyte fuel cell according to the present invention, it is possible to obtain a separator having good conductivity. Further, when the graphene film is formed on stainless steel, the contact resistance value with the gas diffusion layer can be reduced by using austenitic stainless steel.

本発明の実施の形態に用いる成膜装置の模式断面図である。It is a schematic cross section of the film-forming apparatus used for embodiment of this invention. 実施例1において成膜温度が823Kの場合および473Kの場合における試験片表面のラマンスペクトルの測定結果である。FIG. 6 shows the measurement results of the Raman spectrum of the test piece surface when the film formation temperature is 823 K and when the film formation temperature is 473 K in Example 1. FIG. 実施例3において成膜時間を5分、15分、30分の3水準の場合における試験片表面のラマンスペクトルの測定結果である。It is a measurement result of the Raman spectrum of the test piece surface in the case where the film-forming time is 5 minutes, 15 minutes, and 30 minutes in Example 3. 実施例5において窒素ガス量を、0、1、3、5、7、10、20、30mL min−1の計8水準(本発明品3〜10)の場合における試験片表面のラマンスペクトルの測定結果である。In Example 5, the measurement of the Raman spectrum on the surface of the test piece in the case where the amount of nitrogen gas is 0, 1 , 3, 5, 7, 10, 20, 30 mL min −1 in total 8 levels (product 3 to 10 of the present invention). It is a result.

本発明の実施の形態の一例について図面を用いて説明する。図1は、本発明の実施の形態に用いる成膜装置の模式断面図を示す。図1に示すように、成膜装置(以下、「装置」とする)は装置内部に成膜すべき試験片を設置できるステージを備えており、装置上部にはマイクロ波を導入できる導波管と成膜工程後の装置内部を冷却する冷却ファンが具備されている。また、装置外部には原料ガスや不活性ガスを装置内部へ導入できるように配管が装置と接続されている。 An example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a film forming apparatus used in an embodiment of the present invention. As shown in FIG. 1, a film forming apparatus (hereinafter referred to as “apparatus”) includes a stage on which a test piece to be formed can be placed, and a waveguide into which microwaves can be introduced at the upper part of the apparatus. And a cooling fan for cooling the inside of the apparatus after the film forming step. In addition, piping is connected to the apparatus so that a raw material gas or an inert gas can be introduced into the apparatus outside.

次に、本発明の固体高分子形燃料電池用セパレータにおけるグラフェン膜の成膜工程を図1を用いて説明する。まず、装置のハッチを開き、前処理を行ったステンレス鋼などの基材を装置内のステージへ設置する。その後、ハッチを閉じて図示しない真空ポンプを使用して装置内部を減圧雰囲気にする。この時の装置内の圧力は、1×10−3Pa以下に設定する。 Next, the film forming process of the graphene film in the solid polymer fuel cell separator of the present invention will be described with reference to FIG. First, the hatch of the apparatus is opened, and a pretreated base material such as stainless steel is placed on the stage in the apparatus. Thereafter, the hatch is closed and the inside of the apparatus is put into a reduced pressure atmosphere using a vacuum pump (not shown). The pressure in the apparatus at this time is set to 1 × 10 −3 Pa or less.

装置内の圧力が所定の圧力に到達したことを確認した後、装置に内蔵されているヒータを利用してステージの温度を473Kまで上昇させる。ステージの温度が上昇することで、ステージ上の基材の温度も上昇する。ステージの温度が473Kに到達し、所定の時間が経過した後、ステージの高さを調整し、基材と装置のハッチとの距離を近づける。これにより、装置外より導出されるマイクロ波を効率的に基材表面に照射できる。 After confirming that the pressure in the apparatus has reached a predetermined pressure, the temperature of the stage is raised to 473 K using a heater built in the apparatus. As the stage temperature rises, the temperature of the substrate on the stage also rises. After the temperature of the stage reaches 473K and a predetermined time has elapsed, the height of the stage is adjusted, and the distance between the substrate and the hatch of the apparatus is made closer. Thereby, the microwave derived from the outside of the apparatus can be efficiently irradiated on the substrate surface.

次に、装置外部に設置された原料ガスおよび不活性ガスを装置内へ導入する。原料ガスとしてはアセチレンガス、不活性ガスとしてはアルゴンガスを使用する。上記2種類のガスを装置内へ導入した直後に、装置上部よりマイクロ波を装置内へ導入する。このときのマイクロ波の出力は1500W、出力時間は300秒(5分間)とする。同時に、マイクロ波を装置内へ導入することで発生する反射波については、500±50Wの範囲となるように調整する。   Next, a raw material gas and an inert gas installed outside the apparatus are introduced into the apparatus. Acetylene gas is used as the source gas, and argon gas is used as the inert gas. Immediately after introducing the two types of gases into the apparatus, microwaves are introduced into the apparatus from the upper part of the apparatus. At this time, the output of the microwave is 1500 W, and the output time is 300 seconds (5 minutes). At the same time, the reflected wave generated by introducing the microwave into the apparatus is adjusted to be in the range of 500 ± 50 W.

マイクロ波の入力がタイマーにより停止すると、装置内への原料ガスおよび不活性ガスの導入も停止する。その後、ヒータの電源をOFFにしてステージへの加熱も停止する。ステージの温度が373K以下になるまで装置内の圧力を1×10−3Pa以下に維持した状態で、装置上部の冷却ファンを用いて装置内を冷却する。 When the microwave input is stopped by the timer, the introduction of the source gas and the inert gas into the apparatus is also stopped. Thereafter, the heater is turned off to stop heating the stage. The inside of the apparatus is cooled using the cooling fan at the top of the apparatus while the pressure in the apparatus is maintained at 1 × 10 −3 Pa or less until the temperature of the stage becomes 373 K or less.

ステージの温度が常温まで冷却したことを確認した後、真空ポンプを停止し、装置内を復圧する。十分に復圧できたことを確認した後、ステージ上の基板を装置外へ取り出して一連のグラフェン膜の成膜工程が完了する。   After confirming that the temperature of the stage has cooled to room temperature, the vacuum pump is stopped and the pressure in the apparatus is restored. After confirming that the pressure has been sufficiently recovered, the substrate on the stage is taken out of the apparatus, and a series of graphene film forming steps is completed.

マイクロ波プラズマCVD法を用いてグラフェン膜を成膜した場合、成膜時の温度の違いによるグラフェン膜の物性の変化を確認する成膜試験を行った。その試験結果について、図面を参照して説明する。まず、本試験に用いる基板材料として市販のSUS316L(厚さ2mm)を選定した。その化学組成を表1に示す。 When a graphene film was formed using a microwave plasma CVD method, a film formation test was performed to confirm the change in physical properties of the graphene film due to a difference in temperature at the time of film formation. The test results will be described with reference to the drawings. First, a commercially available SUS316L (thickness 2 mm) was selected as a substrate material used in this test. The chemical composition is shown in Table 1.

Figure 2017188241
Figure 2017188241

成膜試験に供する試験片は、当該SUS316L材を20mm×20mmに切断した後、その表面にダイアモンドペーストを用いた鏡面研磨を施して、ヘキサン溶液中で10分間の超音波洗浄を行った。マイクロ波プラズマCVD成膜装置(神港精機株式会社製、以下、成膜装置という)のチャンバー内に4枚の試験片を設置した後、チャンバー内を0.5Paまで減圧雰囲気下にすると同時に各試験片を所定の温度まで加熱した。 The test piece to be used for the film formation test was obtained by cutting the SUS316L material into 20 mm × 20 mm, then performing mirror polishing with a diamond paste on the surface and performing ultrasonic cleaning in a hexane solution for 10 minutes. After four test pieces were installed in the chamber of a microwave plasma CVD film forming apparatus (manufactured by Shinko Seiki Co., Ltd., hereinafter referred to as a film forming apparatus), each chamber was placed under a reduced pressure atmosphere up to 0.5 Pa. The test piece was heated to a predetermined temperature.

本試験における成膜時の試験片の温度は、823K(550℃)および473K(200℃)の2水準とした。また、成膜時にチャンバー内へ導入した原料ガスは、アセチレンガス(単位時間当たりの流量:5mL min−1)とアルゴンガス(単位時間当たりの流量:100mL min−1)の混合ガスを用いた。チャンバー内に設置された各試験片が上記の所定温度に到達したことを確認した後、成膜装置の電力を1000Wとして、2.45GHzのマイクロ波をチャンバー内に供給し、各試験片に対してグラフェン膜を5分間成膜した。 The temperature of the test piece during film formation in this test was set at two levels of 823 K (550 ° C.) and 473 K (200 ° C.). The source gas introduced into the chamber during film formation was a mixed gas of acetylene gas (flow rate per unit time: 5 mL min −1 ) and argon gas (flow rate per unit time: 100 mL min −1 ). After confirming that each test piece installed in the chamber reached the above-mentioned predetermined temperature, the power of the film forming apparatus was set to 1000 W, and 2.45 GHz microwave was supplied into the chamber, and each test piece was supplied to the test piece. A graphene film was formed for 5 minutes.

次に、成膜した上記全ての試験片(4枚)をチャンバーから取り出して、それらの試験片から1枚を抽出して、その試験片の表面をラマン分光測定することで表面性状の違いを確認した。図2は、成膜温度が823K(550℃:従来品)の場合および473K(200℃:本発明品1)の各場合における試験片の表面をラマン分光測定装置(RENISHAW社製)を用いて測定した際のラマンスペクトルの測定結果を示す。 Next, all the test pieces (4 pieces) formed above are taken out of the chamber, one piece is extracted from those test pieces, and the surface properties of the test pieces are measured by Raman spectroscopy. confirmed. FIG. 2 shows the surface of the test piece when the film forming temperature is 823 K (550 ° C .: conventional product) and 473 K (200 ° C .: product 1 of the present invention) using a Raman spectrometer (manufactured by RENISHAW). The measurement result of the Raman spectrum at the time of measuring is shown.

成膜温度が823Kおよび473Kの各場合における試験片はともに、図2に示すように2つのピークが観測された。すなわち、1590cm−1付近に見られるGバンドと、1350cm−1付近に見られるDバンドである。Gバンドはグラファイトに起因するピークであり、Dバンドは表面欠陥やアモルファスカーボン等に起因するピークである。つまり、ラマンスペクトルの測定結果より、そのGバンドの比率が高いほど、またDバンドの比率が低いほど、試験片上に欠陥の少ないグラフェン膜が成膜されていることになる。 As shown in FIG. 2, two peaks were observed for the test pieces in each case where the film formation temperature was 823K and 473K. That is, the G band observed around 1590 cm -1, a D band observed around 1350 cm -1. The G band is a peak due to graphite, and the D band is a peak due to surface defects or amorphous carbon. That is, from the measurement result of the Raman spectrum, the graphene film with fewer defects is formed on the test piece as the G band ratio is higher and the D band ratio is lower.

ところが、GバンドおよびDバンドの各バンドの比(以下、G/D値という)については、473Kで成膜したG/D値は約1.0、823Kで成膜したG/D値は約0.5となった。G/D値が大きいほど、成膜した皮膜の結晶性が良好である(表面欠陥が少ない)ことから、473Kで成膜した本発明品1は823Kで成膜した従来品に比べて導電性が良好になることがわかった。 However, regarding the ratio of each band of the G band and the D band (hereinafter referred to as G / D value), the G / D value formed at 473K is about 1.0, and the G / D value formed at 823K is about It became 0.5. The larger the G / D value, the better the crystallinity of the film formed (the fewer surface defects). Therefore, the product 1 of the present invention formed at 473K is more conductive than the conventional product formed at 823K. Was found to be good.

次に、上記実施例1にて成膜した試験片に対して、交流四端子法を用いて試験片の通電性能を確認した。本試験では、SUS316L材およびグラフェン膜と電極基板たるガス拡散層との間の接触抵抗を交流四端子法により測定した。その測定結果について、図面を参照して説明する。本試験で用いた測定試料は、実施例1で作成した2種類の試験片のほかに、グラフェン膜を成膜していない、いわゆる未処理のSUS316L材およびグラファイト材(東海カーボン社製樹脂含浸黒鉛材、品番:G347B)を比較材として使用した。特に、グラファイト材については金属材料に比べて接触抵抗が優れているため、最終的な目標値となる材料として使用した。 Next, the current-carrying performance of the test piece was confirmed using the AC four-terminal method for the test piece formed in Example 1. In this test, the contact resistance between the SUS316L material and the graphene film and the gas diffusion layer as the electrode substrate was measured by an AC four-terminal method. The measurement results will be described with reference to the drawings. In addition to the two types of test pieces prepared in Example 1, the measurement sample used in this test was a so-called untreated SUS316L material and a graphite material (resin-impregnated graphite manufactured by Tokai Carbon Co., Ltd.) without a graphene film. Material, product number: G347B) was used as a comparative material. In particular, the graphite material has a higher contact resistance than the metal material, so it was used as the final target material.

上記計4種類の測定試料に対して、接触圧を50N cm−2、100N cm−2、150N cm−2および200N cm−2の計4水準における場合の電極基板となるガス拡散層との接触抵抗を交流四端子法により測定した。その測定結果を表2に示す。本発明品1の測定結果は、表2に示すように接触圧の値に関わらず比較材であるグラファイトとほぼ同じ測定結果を示した。 Contact with the gas diffusion layer serving as the electrode substrate when the contact pressure is 50 N cm −2 , 100 N cm −2 , 150 N cm −2, and 200 N cm −2 in total for the four types of measurement samples. Resistance was measured by the AC four-terminal method. The measurement results are shown in Table 2. As shown in Table 2, the measurement results of the product 1 of the present invention showed almost the same measurement results as the comparative graphite, regardless of the contact pressure value.

Figure 2017188241
Figure 2017188241

これに対して、従来品の場合には任意の荷重における電極基板となるガス拡散層とステンレス鋼間の接触抵抗は未処理のステンレス鋼とほぼ同じであった。以上の測定結果より、473Kでマイクロ波プラズマCVD法を用いたグラフェン膜をステンレス鋼上に成膜することでガス拡散層との接触抵抗を低減することができた。 On the other hand, in the case of the conventional product, the contact resistance between the gas diffusion layer serving as the electrode substrate and the stainless steel at an arbitrary load was almost the same as that of the untreated stainless steel. From the above measurement results, it was possible to reduce the contact resistance with the gas diffusion layer by forming a graphene film using a microwave plasma CVD method at 473 K on stainless steel.

次に、本発明に係るマイクロ波プラズマCVD法を用いて、成膜時間を変えて成膜されたグラフェン膜の性状変化を確認した。本試験における試験条件は、成膜温度を473Kとして、試験片は市販のSUS316L材を使用した。また、成膜時間は5分、15分、30分の計3水準で行い、成膜時間が5分間の試験片を本発明品1、成膜時間が15分間の試験片を本発明品2、成膜時間が30分間の試験片を本発明品3とした。その他の試験条件は実施例1の場合と同様とする。 Next, using the microwave plasma CVD method according to the present invention, the property change of the graphene film formed by changing the film formation time was confirmed. As test conditions in this test, the film formation temperature was set to 473 K, and a commercially available SUS316L material was used as the test piece. The film formation time is 5 minutes, 15 minutes, and 30 minutes. The test piece with a film formation time of 5 minutes is a product according to the present invention 1 and the test piece with a film formation time of 15 minutes is a product according to the present invention 2. A test piece having a film formation time of 30 minutes was designated as Product 3 of the present invention. The other test conditions are the same as in Example 1.

上記3水準の成膜時間で成膜を行った試験片のラマンスペクトルの測定結果を図3に示す。成膜時間を5分、15分、30分の3水準のいずれの場合も、マイクロ波プラズマCVD法によりSUS316L鋼表面にグラフェン膜を成膜すると、1590cm−1付近に見られるGバンドのピークが、1350cm−1付近に見られるDバンドのピークがそれぞれ観察された。また、これらの強度比(G/D値)はいずれもほぼ1.0となり、3水準の測定結果がほぼ一定値であることがわかった。 The measurement result of the Raman spectrum of the test piece which formed into a film with the said 3 levels of film-forming time is shown in FIG. When the film formation time is 5 minutes, 15 minutes, or 30 minutes, when a graphene film is formed on the surface of SUS316L steel by the microwave plasma CVD method, the peak of the G band seen in the vicinity of 1590 cm −1 is observed. A peak of a D band seen in the vicinity of 1350 cm −1 was observed. In addition, these intensity ratios (G / D values) were all about 1.0, indicating that the three-level measurement results were almost constant.

また、これらの3水準のグラフを比べると、成膜時間が長くなるにつれて(5分よりも15分、15分よりも30分)スペクトルの状態が徐々に滑らかになっていた。この事から、成膜時間が長いほど、成膜されるグラフェン層の厚さがより厚くなっている事が確認された。 Further, comparing these three levels of graphs, the state of the spectrum gradually became smoother as the film formation time became longer (15 minutes than 5 minutes, 30 minutes than 15 minutes). From this fact, it was confirmed that the longer the film formation time, the thicker the graphene layer formed.

次に、本発明に係るマイクロ波プラズマCVD法を用いて成膜時間を変えて成膜試験を行い、実施例2の場合と同様に成膜されたグラフェン膜と電極基板となるガス拡散層との接触抵抗を交流四端子法により測定した。その試験結果について、表3を用いて説明する。本試験では、実施例3で用いた3種類の試験片(本発明品1〜3)、すなわち成膜時間を5分、15分および30分の3水準に変化させた試験片を作製した。 Next, a film formation test was performed by changing the film formation time using the microwave plasma CVD method according to the present invention, and a graphene film formed in the same manner as in Example 2 and a gas diffusion layer serving as an electrode substrate, The contact resistance was measured by the AC four-terminal method. The test results will be described using Table 3. In this test, three types of test pieces used in Example 3 (present invention products 1 to 3), that is, test pieces in which the film formation time was changed to three levels of 5 minutes, 15 minutes, and 30 minutes were prepared.

接触抵抗値の測定においては、測定時の接触圧を50、100、150および200Ncm−2の条件にて測定した。その測定結果を表3に示す。本試験では、実施例2の場合と同様に試験片の最終的な目標値となる材料として、グラファイト材を使用した。 In the measurement of the contact resistance value, the contact pressure at the time of measurement was measured under the conditions of 50, 100, 150 and 200 Ncm −2 . The measurement results are shown in Table 3. In this test, a graphite material was used as a material that becomes the final target value of the test piece as in Example 2.

Figure 2017188241
Figure 2017188241

本試験の測定結果は、接触圧の変化に関わらず表3に示すように成膜時間が長くなるほど目標値であるグラファイト材に近い値が得られた。この結果より、成膜時間がより長い方がグラフェン膜が厚くなるため、接触抵抗値もより低くなることがわかった。 As shown in Table 3, the measurement result of this test was closer to the target graphite material as the film formation time was longer, as shown in Table 3. From this result, it was found that the longer the deposition time, the thicker the graphene film, and the lower the contact resistance value.

次に、本発明に係るマイクロ波プラズマCVD法を用いた成膜工程において、不活性ガスを成膜装置中へ導入して成膜した場合のグラフェン膜の性状変化を測定した。その測定結果について図面を用いて説明する。成膜工程はSUS316L製の基材に対して、成膜温度473K、全成膜時間を30分とした上で、成膜工程の後半15分間のみ不活性ガスとして窒素ガスを原料ガスに混合し、成膜装置内へ圧送した。 Next, in the film forming process using the microwave plasma CVD method according to the present invention, a change in the properties of the graphene film was measured when an inert gas was introduced into the film forming apparatus. The measurement result will be described with reference to the drawings. In the film forming process, a SUS316L base material is formed with a film forming temperature of 473 K and a total film forming time of 30 minutes, and nitrogen gas is mixed with the source gas as an inert gas only for the latter half 15 minutes of the film forming process. Then, it was pumped into the film forming apparatus.

また、成膜装置内へ圧送した窒素ガス量を、0、1、3、5、7mL min−1の計5水準および窒素ガスを10mL min−1、20mL min−1および30mL min−1の3水準を追加して計8水準で成膜工程を行い、それぞれ本発明品3、4、5、6、7、8、9、10とした。上述の成膜方法により成膜した8種類の試験片(本発明品3〜10)に対して、実施例1にて示した場合と同様にその試験片表面をラマン分光測定することで表面性状の違いを確認した。上述の8種類の試験片に対するラマン分光測定試験結果を図4に示す。 Also, 3 of the amount of nitrogen gas was pumped into the film forming apparatus, 0,1,3,5,7mL min -1 for a total of five levels and nitrogen gas 10mL min -1, 20mL min -1 and 30 mL min -1 The film formation process was carried out at a total of 8 levels by adding the levels to make the present invention products 3, 4, 5, 6, 7, 8, 9, 10 respectively. The surface properties of the eight types of test pieces (the products 3 to 10 of the present invention) formed by the above-described film forming method were measured by Raman spectroscopic measurement on the surface of the test pieces in the same manner as in Example 1. Confirmed the difference. FIG. 4 shows the Raman spectroscopic measurement test results for the above-described eight types of test pieces.

本測定結果は、図4に示すように成膜工程中に不活性ガスを導入した場合と導入しない場合とでは、いずれも1590cm−1付近に見られるGバンドのピークと1350cm−1付近に見られるDバンドのピークの強度比(G/D値)は約1とほぼ一定であることから、成膜工程中における不活性ガス導入の有無によるグラフェン膜の性状変化は見られなかった。 This measurement results in the case of not introducing the case of introducing an inert gas into the film-forming step as shown in FIG. 4, seen in the peak and 1350cm around -1 G band both observed around 1590 cm -1 Since the intensity ratio (G / D value) of the peak of the D band to be obtained is substantially constant at about 1, no change in the properties of the graphene film due to the presence or absence of inert gas introduction during the film forming process was not observed.

また、成膜工程中における不活性ガスの導入割合の多寡によっても、GバンドとDバンドのピークの強度比(G/D値)についても変化は見られなかった。そのため、成膜工程中における不活性ガスの導入割合によってもグラフェン膜の性状変化はないと考えられる。 In addition, no change was observed in the intensity ratio (G / D value) of the peak of the G band and the D band depending on the ratio of introduction of the inert gas during the film forming process. Therefore, it is considered that there is no change in the properties of the graphene film depending on the introduction ratio of the inert gas during the film forming process.

次に、本発明に係るマイクロ波プラズマCVD法を用いて成膜工程中に不活性ガスを原料ガスに混合させて、成膜試験を行い、成膜されたグラフェン膜の接触抵抗値の変化を測定した。本実施例では不活性ガスとしては窒素ガスを用いて、実施例5の場合と同様に成膜装置内へ圧送した窒素ガス量を、0、1、3、5、7mL min−1の各水準の他に窒素ガスを10mL min−1、20mL min−1および30mL min−1の3水準の計8水準にて成膜工程を行った。それぞれの場合を本発明品3、4、5、6、7、8、9、10とした。その測定結果について表4を用いて説明する。 Next, an inert gas is mixed with the source gas during the film formation process using the microwave plasma CVD method according to the present invention, a film formation test is performed, and a change in the contact resistance value of the formed graphene film is measured. It was measured. In this example, nitrogen gas was used as the inert gas, and the amount of nitrogen gas fed into the film forming apparatus in the same manner as in Example 5 was set to each level of 0 , 1 , 3, 5, 7 mL min −1 . other nitrogen gas to 10 mL min -1, and a film was formed step by eight levels of three levels of 20 mL min -1 and 30 mL min -1. The respective cases were designated as products 3, 4, 5, 6, 7, 8, 9, 10 of the present invention. The measurement results will be described using Table 4.

本試験で用いた試験片は、実施例5で成膜した試験片であり、接触抵抗の測定は実施例2の場合と同様に交流四端子法により測定した。その測定結果を表4に示す。なお、本試験においても実施例2の場合と同様に試験片の最終的な目標値となる材料として、グラファイト材を使用した。 The test piece used in this test was the test piece formed in Example 5, and the contact resistance was measured by the AC four-terminal method in the same manner as in Example 2. The measurement results are shown in Table 4. In this test as well, a graphite material was used as a material to be the final target value of the test piece as in Example 2.

Figure 2017188241
Figure 2017188241

グラフェン膜が被覆されてる本発明品と電極基板となるガス拡散層との接触抵抗を測定すると、表4に示すように本発明品全てにおいて接触圧が大きくなるほど接触抵抗が減少することがわかった。また、本試験における接触圧が100N cm−2の場合に接触抵抗値が10mΩ・cm以下であれば、固体高分子形燃料電池用セパレータとして一定水準の発電効率が期待できる。そのような観点から、固体高分子形燃料電池用セパレータの製造時における窒素ガス導入量は、20mL min−1(毎分20mL)以下であることが好ましい。特に、窒素ガスの流量が1mL min−1の場合においては、基準値となるグラファイト材にほぼ近似し、接触抵抗値が低減する観点からより好ましい。 When the contact resistance between the present invention product coated with the graphene film and the gas diffusion layer as the electrode substrate was measured, it was found that the contact resistance decreased as the contact pressure increased in all of the present product products as shown in Table 4. . In addition, when the contact pressure in this test is 100 N cm −2 and the contact resistance value is 10 mΩ · cm 2 or less, a certain level of power generation efficiency can be expected as a solid polymer fuel cell separator. From such a viewpoint, the amount of nitrogen gas introduced during the production of the polymer electrolyte fuel cell separator is preferably 20 mL min −1 (20 mL per minute) or less. In particular, when the flow rate of nitrogen gas is 1 mL min −1 , it is more preferable from the viewpoint of approximating the graphite material as the reference value and reducing the contact resistance value.

Claims (4)

マイクロ波プラズマCVD法を用いて成膜装置内でステンレス鋼の表面にグラフェン膜を形成する固体高分子形燃料電池用セパレータの製造方法であって、前記グラフェン膜を形成する際の前記成膜装置内の温度範囲は323K以上473K以下であることを特徴とする固体高分子形燃料電池用セパレータの製造方法。 A method for manufacturing a separator for a polymer electrolyte fuel cell in which a graphene film is formed on a surface of stainless steel in a film forming apparatus using a microwave plasma CVD method, and the film forming apparatus for forming the graphene film The temperature range is 323K or more and 473K or less, The manufacturing method of the separator for polymer electrolyte fuel cells characterized by the above-mentioned. 前記グラフェン膜を形成する際に、窒素ガスを前記成膜装置内へ導入することを特徴とする請求項1に記載の固体高分子形燃料電池用セパレータの製造方法。   The method for producing a separator for a polymer electrolyte fuel cell according to claim 1, wherein nitrogen gas is introduced into the film forming apparatus when the graphene film is formed. 前記成膜装置内への前記窒素ガスの流量は毎分20mL以下であることを特徴とする請求項2に記載の固体高分子形燃料電池用セパレータの製造方法。   The method for producing a separator for a polymer electrolyte fuel cell according to claim 2, wherein the flow rate of the nitrogen gas into the film forming apparatus is 20 mL or less per minute. 前記ステンレス鋼は、オーステナイト系ステンレス鋼であることを特徴とする請求項1ないし3に記載の固体高分子形燃料電池用セパレータの製造方法。   4. The method for manufacturing a separator for a polymer electrolyte fuel cell according to claim 1, wherein the stainless steel is an austenitic stainless steel.
JP2016074936A 2016-04-04 2016-04-04 Method for producing separator for polymer electrolyte fuel cell Active JP6652770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074936A JP6652770B2 (en) 2016-04-04 2016-04-04 Method for producing separator for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074936A JP6652770B2 (en) 2016-04-04 2016-04-04 Method for producing separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2017188241A true JP2017188241A (en) 2017-10-12
JP6652770B2 JP6652770B2 (en) 2020-02-26

Family

ID=60046537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074936A Active JP6652770B2 (en) 2016-04-04 2016-04-04 Method for producing separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6652770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109787A (en) * 2020-01-07 2021-08-02 株式会社豊田中央研究所 Carbon film, and film-formation method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165275A (en) * 2005-04-28 2007-06-28 Kurimoto Ltd Separator, manufacturing method of separator and solid polymer fuel cell using the same,
JP2008291327A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Method for producing amorphous carbon film, and production apparatus therefor
JP2010165908A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Amorphous carbon and method of manufacturing the same
JP2011151015A (en) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc Separator for fuel cell and method of manufacturing the same
JP2013159521A (en) * 2012-02-03 2013-08-19 Chube Univ Method for producing graphene film
JP2015034102A (en) * 2013-08-08 2015-02-19 学校法人中部大学 Method for producing graphene film
JP2015510489A (en) * 2012-02-24 2015-04-09 カリフォルニア インスティチュート オブ テクノロジー Method and system for graphene formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165275A (en) * 2005-04-28 2007-06-28 Kurimoto Ltd Separator, manufacturing method of separator and solid polymer fuel cell using the same,
JP2008291327A (en) * 2007-05-25 2008-12-04 Toyota Motor Corp Method for producing amorphous carbon film, and production apparatus therefor
JP2010165908A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Amorphous carbon and method of manufacturing the same
JP2011151015A (en) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc Separator for fuel cell and method of manufacturing the same
JP2013159521A (en) * 2012-02-03 2013-08-19 Chube Univ Method for producing graphene film
JP2015510489A (en) * 2012-02-24 2015-04-09 カリフォルニア インスティチュート オブ テクノロジー Method and system for graphene formation
JP2015034102A (en) * 2013-08-08 2015-02-19 学校法人中部大学 Method for producing graphene film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109787A (en) * 2020-01-07 2021-08-02 株式会社豊田中央研究所 Carbon film, and film-formation method therefor
JP7160053B2 (en) 2020-01-07 2022-10-25 株式会社豊田中央研究所 Carbon film and its deposition method

Also Published As

Publication number Publication date
JP6652770B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
Kim et al. Wafer‐scale and low‐temperature growth of 1T‐WS2 film for efficient and stable hydrogen evolution reaction
Ouyang et al. A brief review on plasma for synthesis and processing of electrode materials
US11124870B2 (en) Transfer-free method for producing graphene thin film
JP5833587B2 (en) Corrosion-resistant and conductive nanocarbon coating method using stainless steel as a base material, and fuel cell separator manufacturing method using the same
Yu et al. Vertical‐graphene‐reinforced titanium alloy bipolar plates in fuel cells
JP2018056119A (en) Electric contact, connector and manufacturing method of electric contact
KR101992633B1 (en) Methods of preparing graphene fiber complexes, and graphene fiber complexes prepared by the method
KR20150119078A (en) SINTERED BODY COMPRISING LiCoO2, SPUTTERING TARGET, AND PRODUCTION METHOD FOR SINTERED BODY COMPRISING LiCoO2
KR102017251B1 (en) Method for Preparation of Graphene Thin Film without Transfer Process
JP6652770B2 (en) Method for producing separator for polymer electrolyte fuel cell
TWI676593B (en) Graphite Composite Conductive Bar Material And Method For Producing Graphene Using The Same
KR20110034728A (en) Method for continuous surface treatments of carbon fibers by atmospheric pressure plasma
CN109234691A (en) A kind of high thermal conductivity graphite film-metallic composite and preparation method thereof
TWI521076B (en) Manufacturing method of the graphene layer
US20200123014A1 (en) Tailorable Polyorbital-Hybrid Ceramics
Wang et al. On the synergy manipulation between the activation temperature, surface resistance and secondary electron yield of NEG thin films
JP2019517095A (en) Method of manufacturing steel plate for battery case, and battery case manufactured by the method
KR101396009B1 (en) Fuel cell bipolar plate for transporting and manufacturing method thereof
CN104278271A (en) Electric spark deposition method of nickel-based alloy strengthened layer
JP2018049782A (en) Metal material, separator, cell, and fuel cell
KR101478555B1 (en) Nickel nano powder and method of manufacturing the same using high temperature plasma
JP6684488B2 (en) Method for manufacturing conductive DLC film
KR101429485B1 (en) Preparation method of bipolar plate for fuel cell
TWI381059B (en) A method for preparing a metal nitrogen oxide film
KR102518584B1 (en) Coating method of seperator for fuel cell and seperator for fuel cell prepared from the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6652770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150