JP2017187367A - Gas concentration measurement device for internal combustion engine - Google Patents

Gas concentration measurement device for internal combustion engine Download PDF

Info

Publication number
JP2017187367A
JP2017187367A JP2016075825A JP2016075825A JP2017187367A JP 2017187367 A JP2017187367 A JP 2017187367A JP 2016075825 A JP2016075825 A JP 2016075825A JP 2016075825 A JP2016075825 A JP 2016075825A JP 2017187367 A JP2017187367 A JP 2017187367A
Authority
JP
Japan
Prior art keywords
light
gas concentration
main body
oxidation
adhesion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016075825A
Other languages
Japanese (ja)
Inventor
高伸 青地
Takanobu Aochi
高伸 青地
幸慈 小川
Yukiji Ogawa
幸慈 小川
一弘 大曽根
Kazuhiro Osone
一弘 大曽根
克彬 元澤
Katsuaki Motozawa
克彬 元澤
俊樹 森田
Toshiki Morita
俊樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2016075825A priority Critical patent/JP2017187367A/en
Publication of JP2017187367A publication Critical patent/JP2017187367A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas concentration measurement device for an internal combustion engine, the gas concentration measurement device combining securement of measurement accuracy with low cost.SOLUTION: A reflection part 21 has: an oxidization/corrosion preventive film 26 that is formed in a boundary between the reflection part 21 and glass; and a tight adhesion layer 27 that is formed between the oxidization/corrosion preventive film 26 and a main body 25. A stainless steel or nickel alloy is used in the main body 25, and SiOor Pt is used in the oxidization/corrosion preventive film 26, and Ti or Cr is used in the tight adhesion layer 27. As a result, reduction in reflectance of the reflection part 21 is suppressed, and measurement accuracy of gas concentration can be secured. Further, the gas concentration measurement device for an internal combustion engine can be obtained only by forming the oxidization/corrosion preventive film 26 and the tight adhesion layer 27 in the main body 25, and manufacturing the reflection part 21, and a structure, control and the like are not complicated. Thus, the securement of measurement accuracy can be combined with low cost.SELECTED DRAWING: Figure 2

Description

本発明は、非分散赤外吸収法により内燃機関の燃焼室のガス濃度を計測する装置に関する。   The present invention relates to an apparatus for measuring a gas concentration in a combustion chamber of an internal combustion engine by a non-dispersive infrared absorption method.

例えば、特許文献1には、非分散赤外吸収法を適用して内燃機関の燃焼室のガス濃度を計測する装置が開示されている。当該装置は、燃焼室内でレーザ光の出射位置及び入射位置として使用される光学ロッドの汚れを検出すると、プリズムを回転させてレーザ光の出射位置及び入射位置を移動させる。   For example, Patent Document 1 discloses an apparatus that measures a gas concentration in a combustion chamber of an internal combustion engine by applying a non-dispersive infrared absorption method. When detecting the contamination of the optical rod used as the laser beam emission position and the incident position in the combustion chamber, the apparatus rotates the prism to move the laser beam emission position and the incident position.

特開2000−314345号公報JP 2000-314345 A

特許文献1に記載された装置は、プリズム、及び当該プリズムを駆動するモータが必要であり、構造及び制御の複雑化、及びそれに伴う製造コストの増加を招く。また、特許文献1に記載された装置は、光学ロッドの汚染された面積が広がるのに伴い、計測に使用される実質的な光量が減少してガス濃度の計測精度が低下する。   The apparatus described in Patent Document 1 requires a prism and a motor for driving the prism, which leads to a complicated structure and control, and an associated increase in manufacturing cost. Moreover, the apparatus described in Patent Document 1 decreases the measurement accuracy of the gas concentration by reducing the substantial amount of light used for measurement as the contaminated area of the optical rod increases.

そこで本発明は、上記事情に鑑みてなされたもので、計測精度の確保と低コストとを両立した内燃機関用ガス濃度計測装置を提供することを課題としてなされたものである。   Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas concentration measuring device for an internal combustion engine that ensures both measurement accuracy and low cost.

上記課題を解決するために、本発明の内燃機関用ガス濃度計測装置は、光源から発せられた光を燃焼室内に向けて一方向へ放射する放射部と、前記放射部から放射された光を反射する反射部と、前記反射部により反射された光を受ける受光部と、前記受光部により受けられた光の強度を測定する光強度測定部と、を備え、前記放射部から放射される光の強度と前記光強度測定部の測定結果とに基づき、前記燃焼室内のガス濃度を計測する内燃機関用ガス濃度計測装置であって、前記反射部は、本体と、ガスとの境界面を形成する酸化/腐食防止膜と、前記本体と前記酸化/腐食防止膜との間に形成される密着層と、を有し、前記本体には、ステンレス或いはニッケル合金が用いられ、前記酸化/腐食防止膜には、SiO2或いはPtが用いられ、前記密着層には、Ti或いはCrが用いられることを特徴とする。 In order to solve the above-mentioned problems, a gas concentration measuring apparatus for an internal combustion engine according to the present invention includes a radiating unit that radiates light emitted from a light source in one direction toward a combustion chamber, and light emitted from the radiating unit. Light that is radiated from the radiating unit, comprising: a reflecting unit that reflects; a light receiving unit that receives the light reflected by the reflecting unit; and a light intensity measuring unit that measures the intensity of the light received by the light receiving unit. The gas concentration measuring device for an internal combustion engine that measures the gas concentration in the combustion chamber based on the intensity of the light and the measurement result of the light intensity measuring unit, wherein the reflecting unit forms a boundary surface between the main body and the gas An oxidation / corrosion prevention film, and an adhesion layer formed between the main body and the oxidation / corrosion prevention film, wherein the main body is made of stainless steel or nickel alloy, and the oxidation / corrosion prevention For the film, SiO 2 or Pt is used. Ti or Cr is used for the adhesion layer.

本発明によれば、燃焼室内で高温のガスに曝される反射部に酸化被膜が生成されるのを抑止することができる。これにより、酸化皮膜が光を散乱させることに起因する反射率の低下を防止し、反射率を維持する、延いてはガス濃度の計測精度を確保することができる。また、反射部の本体に酸化/腐食防止膜及び密着層を成膜するだけで実施可能であるため、構造、制御等が複雑化することがなく、計測精度の確保と低コストとを両立することができる。   According to the present invention, it is possible to suppress the formation of an oxide film on the reflective portion exposed to high-temperature gas in the combustion chamber. Thereby, the fall of the reflectance resulting from an oxide film scattering light can be prevented, the reflectance can be maintained, and the measurement precision of gas concentration can be ensured. In addition, since it can be performed simply by forming an oxidation / corrosion prevention film and an adhesion layer on the main body of the reflecting portion, the structure, control, etc. are not complicated, and both ensuring measurement accuracy and low cost are achieved. be able to.

本実施形態に係る内燃機関用ガス濃度計測装置が適用されたエンジンの概念図である。1 is a conceptual diagram of an engine to which a gas concentration measuring device for an internal combustion engine according to an embodiment is applied. 本実施形態の説明図であって、特に、反射部の構造を示す図である。It is explanatory drawing of this embodiment, Comprising: It is a figure which shows the structure of a reflection part especially. 本実施形態の説明図であって、特に、酸化/腐食防止膜及び密着層が成膜されていない試料における評価試験結果を示す図表である。It is explanatory drawing of this embodiment, Comprising: It is a graph which shows the evaluation test result in the sample in which the oxidation / corrosion prevention film and the adhesion layer were not especially formed into a film. 本実施形態の説明図であって、特に、酸化/腐食防止膜或いは密着層が成膜された試料における評価試験結果を示す図表である。It is explanatory drawing of this embodiment, Comprising: It is a graph which shows the evaluation test result in the sample in which the oxidation / corrosion prevention film or the adhesion layer was especially formed into a film. 他の実施形態の説明図である。It is explanatory drawing of other embodiment. 他の実施形態の説明図である。It is explanatory drawing of other embodiment.

本発明の一実施形態を添付した図を参照して説明する。
本実施形態に係る内燃機関用ガス濃度計測装置11(便宜的に「ガス濃度計測装置11」と称する)は、非分散赤外吸収(NDIR:Non Dispersive InfraRed)法を適用して、エンジン1(内燃機関)の燃焼室2内のガス濃度(対象となるガス成分濃度)を計測するものである。図1に、当該ガス濃度計測装置11が適用されたエンジン1の概念図を示す。
An embodiment of the present invention will be described with reference to the accompanying drawings.
The gas concentration measuring device 11 for an internal combustion engine according to the present embodiment (referred to as “gas concentration measuring device 11” for convenience) applies the non-dispersive infrared absorption (NDIR) method to the engine 1 ( The gas concentration (target gas component concentration) in the combustion chamber 2 of the internal combustion engine) is measured. FIG. 1 shows a conceptual diagram of an engine 1 to which the gas concentration measuring device 11 is applied.

図1、図2を参照すると、ガス濃度計測装置11は、光源12から発せられたレーザ光(本実施形態では「半導体レーザビーム」)を燃焼室2内のガスに向けて一方向へ放射する放射部13と、放射部13から燃焼室2内へ放射されたレーザ光(入射赤外光)を入射させる反射部21と、反射部21に入射したレーザ光の反射光(透過赤外光)を受ける受光部14とを有する。また、ガス濃度計測装置11は、放射部13、反射部21、及び受光部14を含む光学系が点火プラグ3に構成される。換言すると、点火プラグ3は、所謂、点火プラグ型光学センサである。   Referring to FIGS. 1 and 2, the gas concentration measuring device 11 emits laser light (in this embodiment, “semiconductor laser beam”) emitted from the light source 12 in one direction toward the gas in the combustion chamber 2. Radiation unit 13, reflection unit 21 that makes laser light (incident infrared light) emitted from the radiation unit 13 into the combustion chamber 2 incident, and reflected light (transmission infrared light) of the laser light incident on the reflection unit 21 And a light receiving portion 14 for receiving the light. Further, in the gas concentration measuring device 11, an optical system including the radiation unit 13, the reflection unit 21, and the light receiving unit 14 is configured in the ignition plug 3. In other words, the spark plug 3 is a so-called spark plug type optical sensor.

一方、ガス濃度計測装置11は、光源12から発せられたレーザ光を放射部13へ伝搬する入射光ファイバ15と、受光部14に入射した反射光(透過赤外光)を伝搬する反射光ファイバ16と、反射光ファイバ16を伝搬する反射光の測定対象となる波長の光強度を測定する光強度測定部17(ディテクタ)とを有する。さらに、ガス濃度計測装置11は、放射部13から放射されるレーザ光(入射赤外光)の強度と光強度測定部17の測定結果(透過赤外光の強度)とから得られる赤外線の減衰量に基づき、燃焼室2内のガス濃度を出力する演算処理部18を有する。なお、演算処理部18は、演算手段(CPU)、記憶手段を備える、所謂、マイクロコンピュータにより構成される。また、図1において、符号4は点火コイル、符号7は点火プラグ3の点火時期を制御する電子制御ユニット(ECU)である。   On the other hand, the gas concentration measuring device 11 includes an incident optical fiber 15 that propagates laser light emitted from the light source 12 to the radiating unit 13 and a reflected optical fiber that propagates reflected light (transmitted infrared light) incident on the light receiving unit 14. 16 and a light intensity measurement unit 17 (detector) that measures the light intensity of the wavelength that is the measurement target of the reflected light that propagates through the reflected optical fiber 16. Further, the gas concentration measuring device 11 attenuates infrared rays obtained from the intensity of the laser light (incident infrared light) emitted from the radiation unit 13 and the measurement result (the intensity of transmitted infrared light) of the light intensity measurement unit 17. An arithmetic processing unit 18 is provided for outputting the gas concentration in the combustion chamber 2 based on the amount. Note that the arithmetic processing unit 18 is configured by a so-called microcomputer provided with arithmetic means (CPU) and storage means. In FIG. 1, reference numeral 4 is an ignition coil, and reference numeral 7 is an electronic control unit (ECU) that controls the ignition timing of the spark plug 3.

(反射部)
反射部21は、点火プラグ3の接地電極5に隣接して横並びに配置されたL形片22により支持される。L形片22は、点火プラグ3の接地電極5に対して独立して設けられ、中心電極6が配置される点火プラグ3の端面3Aから当該点火プラグ3の中心線に沿って図1における下方向へ延びる第1片23と、屈曲部(エルボ)を介して第1片23に連続する第2片24とを有する。反射部21は、L形片22の第2片24の一側面(図1における上側の面)に固定され、反射面となる一方の端面(図1における上側の円形面)が、点火プラグ3の端面3Aに対向する。
(Reflection part)
The reflecting portion 21 is supported by L-shaped pieces 22 arranged side by side adjacent to the ground electrode 5 of the spark plug 3. The L-shaped piece 22 is provided independently of the ground electrode 5 of the spark plug 3 and extends along the center line of the spark plug 3 from the end surface 3A of the spark plug 3 on which the center electrode 6 is disposed. It has the 1st piece 23 extended in a direction, and the 2nd piece 24 following the 1st piece 23 via a bending part (elbow). The reflecting portion 21 is fixed to one side surface (upper surface in FIG. 1) of the second piece 24 of the L-shaped piece 22, and one end surface (upper circular surface in FIG. 1) serving as a reflecting surface is the spark plug 3. It faces the end surface 3A.

図2に示されるように、反射部21は、当該反射部21の中核を構成する本体25と、当該反射部21の、点火プラグ3の端面3Aとの対向面、すなわち、レーザ光が入射する側の表面を構成する酸化/腐食防止膜26と、本体25と酸化/腐食防止膜26との間に形成される密着層27とを有する。本体25は、円柱形に形成され、素材にステンレス或いはニッケル合金が用いられる。また、酸化/腐食防止膜26には、SiO2或いはPtが用いられる。さらに、密着層27には、Ti或いはCrが用いられる。なお、本実施形態において、本体25の素材に用いられるステンレスは、例えば、SUS304、SUS316Lである。また、本体25の素材に用いられるニッケル合金は、例えば、インコネル(INCONEL:登録商標)600である。 As shown in FIG. 2, the reflecting portion 21 is a surface on which the main body 25 constituting the core of the reflecting portion 21 faces the end surface 3 </ b> A of the spark plug 3, that is, a laser beam is incident. An oxidation / corrosion prevention film 26 constituting the surface on the side, and an adhesion layer 27 formed between the main body 25 and the oxidation / corrosion prevention film 26. The main body 25 is formed in a cylindrical shape, and stainless steel or nickel alloy is used as a material. The oxidation / corrosion prevention film 26 is made of SiO 2 or Pt. Further, Ti or Cr is used for the adhesion layer 27. In the present embodiment, the stainless steel used for the material of the main body 25 is, for example, SUS304 or SUS316L. The nickel alloy used for the material of the main body 25 is, for example, INCONEL (registered trademark) 600.

(作用)
前述のガス濃度計測装置11の作用を説明する。
光源12から発せられたレーザ光は、入射光ファイバ15を伝搬して放出部13から燃焼室2内に向けて一方向へ放射される。放射部13から放射されたレーザ光(入射赤外光)は、燃焼室2内のガスを透過して反射部21に入射する。反射光、すなわち、反射部21により反射されたレーザ光(透過赤外光)は、受光部14により受けられる。受光部14により受けられた反射光、すなわち、受光部14に入射したレーザ光(透過赤外光)は、反射光ファイバ16を伝搬して光強度測定部17により強度(透過赤外光の強度)が測定される。
(Function)
The operation of the gas concentration measuring device 11 will be described.
Laser light emitted from the light source 12 propagates through the incident optical fiber 15 and is radiated in one direction from the emitting portion 13 into the combustion chamber 2. Laser light (incident infrared light) emitted from the radiation unit 13 passes through the gas in the combustion chamber 2 and enters the reflection unit 21. The reflected light, that is, the laser light (transmitted infrared light) reflected by the reflecting unit 21 is received by the light receiving unit 14. The reflected light received by the light receiving unit 14, that is, the laser light (transmitted infrared light) incident on the light receiving unit 14 propagates through the reflected optical fiber 16 and the intensity (intensity of transmitted infrared light) by the light intensity measuring unit 17. ) Is measured.

演算処理部18は、放射部13から放射されるレーザ光(入射赤外光)の強度と光強度測定部17の測定結果である反射光(透過赤外光)の強度とを演算処理して、燃焼室2内のガスを透過する赤外光の透過率(赤外線の減衰量)を算出する。また、演算処理部18は、当該算出結果、及び記憶部に格納されたデータテーブルに基づき燃焼室2内のガス成分の濃度を決定し、演算処理結果として出力する。   The arithmetic processing unit 18 performs arithmetic processing on the intensity of the laser light (incident infrared light) emitted from the radiation unit 13 and the intensity of the reflected light (transmitted infrared light) that is the measurement result of the light intensity measuring unit 17. Then, the transmittance (infrared attenuation amount) of infrared light that passes through the gas in the combustion chamber 2 is calculated. The arithmetic processing unit 18 determines the concentration of the gas component in the combustion chamber 2 based on the calculation result and the data table stored in the storage unit, and outputs the result as the arithmetic processing result.

(評価試験)
次に、反射部21の酸化/腐食防止膜26及び密着層27について実施した評価試験の結果を考察する。当該評価試験は、後述する数種類の試料を500℃、650℃、800℃の各温度のガス(燃焼ガス)に一定時間(30分間)曝した後、各試料にレーザ光を照射して反射率を計測し、当該反射率の計測結果に基づき、各試料の反射面の性状を評価するものである。
(Evaluation test)
Next, the results of an evaluation test performed on the oxidation / corrosion prevention film 26 and the adhesion layer 27 of the reflection portion 21 will be considered. In this evaluation test, several samples described later are exposed to gases (combustion gases) at temperatures of 500 ° C., 650 ° C., and 800 ° C. for a certain period (30 minutes), and then each sample is irradiated with laser light to reflect the reflectance. And the properties of the reflecting surface of each sample are evaluated based on the measurement result of the reflectance.

なお、反射率は、試験前の状態(便宜的に「初期状態」と称する)の試料の反射率、すなわち、高温のガスに曝される前の試料の反射率を100%として計測したものである。また、各試料は、ガス濃度計測装置11に使用される反射部21と同一形状(寸法)のものを使用した。さらに、酸化/腐食防止膜26は3000Å、本体25と酸化/腐食防止膜26との間に成膜される密着層27は500Åの厚さで成膜した。   The reflectance is measured with the reflectance of the sample in the state before the test (referred to as “initial state” for convenience), that is, the reflectance of the sample before being exposed to high-temperature gas as 100%. is there. In addition, each sample had the same shape (dimension) as that of the reflector 21 used in the gas concentration measuring device 11. Further, the oxidation / corrosion prevention film 26 was formed with a thickness of 3000 mm, and the adhesion layer 27 formed between the main body 25 and the oxidation / corrosion prevention film 26 was formed with a thickness of 500 mm.

図3は、比較対象として、酸化/腐食防止膜26及び密着層27が形成されていない試料について実施した試験結果を示す図表である。つまり、図3は、本体25の素材に使用されるステンレス(SUS304、SUS316L)或いはニッケル合金(インコネル600)をガスに曝したときの試験結果、すなわち、本体25が直接ガスに曝されることを想定して実施した試験結果を示す。   FIG. 3 is a chart showing the results of tests performed on a sample on which the oxidation / corrosion prevention film 26 and the adhesion layer 27 are not formed as a comparison target. That is, FIG. 3 shows the test result when stainless steel (SUS304, SUS316L) or nickel alloy (Inconel 600) used for the material of the main body 25 is exposed to gas, that is, the main body 25 is directly exposed to gas. The results of the test conducted under the assumption are shown.

図3を参照すると、500℃における反射率は、ステンレス(SUS304、SUS316L)及びニッケル合金(インコネル600)の双方で略100%を維持している、すわわち、反射面に劣化は認められない。また、650℃における反射率は、ステンレス(SUS304、SUS316L)で約50%、ニッケル合金(インコネル600)で約40%である。   Referring to FIG. 3, the reflectance at 500 ° C. is maintained approximately 100% for both stainless steel (SUS304, SUS316L) and nickel alloy (Inconel 600), that is, no deterioration is observed on the reflecting surface. . The reflectance at 650 ° C. is about 50% for stainless steel (SUS304, SUS316L) and about 40% for nickel alloy (Inconel 600).

一方、800℃における反射率は、ステンレス(SUS304、SUS316L)及びニッケル合金(インコネル600)の双方で10%前後である。当該試験結果から、より高温のガスに曝されることにより各試料の表面(反射面)の反射率は低下するが、ステンレス(SUS304、SUS316L)及びニッケル合金(インコネル600)は、同一傾向の性状を示すことがわかる。   On the other hand, the reflectance at 800 ° C. is around 10% for both stainless steel (SUS304, SUS316L) and nickel alloy (Inconel 600). From the test results, the reflectance of the surface (reflecting surface) of each sample decreases when exposed to a higher temperature gas, but stainless steel (SUS304, SUS316L) and nickel alloy (Inconel 600) have the same tendency. It can be seen that

他方、図4は、ステンレス(SUS316L)の本体25に、Ptの酸化/腐食防止膜26とTiの密着層27とを成膜した試料(便宜的に「試料1」と称する)、SiO2の酸化/腐食防止膜26とTiの密着層27とを成膜した試料(便宜的に「試料2」と称する)、Ptの酸化/腐食防止膜26のみを成膜した試料(便宜的に「試料3」と称する)、の3種類の薄膜を成膜した各試料について実施した試験結果を示す図表である。 On the other hand, FIG. 4 shows a sample in which a Pt oxidation / corrosion prevention film 26 and a Ti adhesion layer 27 are formed on a stainless steel (SUS316L) body 25 (referred to as “sample 1” for convenience), SiO 2 A sample in which the oxidation / corrosion prevention film 26 and the Ti adhesion layer 27 are formed (for convenience, referred to as “sample 2”), and a sample in which only the Pt oxidation / corrosion prevention film 26 is formed (for convenience, “sample”). 3 ”) is a chart showing the test results of each sample formed with three types of thin films.

図4を参照すると、500℃における反射率は、試料1乃至3が初期状態の試料と同様、略100%を維持している。そして、試料1は、650℃における反射率が約90%、800℃における反射率が約80%であった。また、試料2は、650℃における反射率が約100%、800℃における反射率が約90%であった。一方、試料3は、650℃における反射率が約70%、800℃における反射率が約40%であった。   Referring to FIG. 4, the reflectance at 500 ° C. is maintained approximately 100% in the same manner as the samples 1 to 3 in the initial state. Sample 1 had a reflectance of about 90% at 650 ° C. and a reflectance of about 80% at 800 ° C. Sample 2 had a reflectivity of about 100% at 650 ° C. and a reflectivity of about 90% at 800 ° C. On the other hand, Sample 3 had a reflectance at 650 ° C. of about 70% and a reflectance at 800 ° C. of about 40%.

前述の試験結果から、ガスとの境界面に酸化/腐食防止膜26を形成すると共に当該酸化/腐食防止膜26と本体25との間に密着層27を形成し、本体25にステンレス(SUS316L)、酸化/腐食防止膜26にSiO2、及び密着層27にTiを用いて反射部21を構成することにより、より高い温度(800℃)に曝される環境でも反射面の劣化を抑止することが可能であることがわかった。なお、Crにより密着層27を形成した場合も、Tiによる密着層27と同様に、反射面の劣化を抑止することが発明者により実証されている。 From the above test results, an oxidation / corrosion prevention film 26 is formed on the interface with the gas, and an adhesion layer 27 is formed between the oxidation / corrosion prevention film 26 and the main body 25, and the main body 25 is made of stainless steel (SUS316L). Further, by forming the reflection portion 21 using SiO 2 for the oxidation / corrosion prevention film 26 and Ti for the adhesion layer 27, the deterioration of the reflection surface can be suppressed even in an environment exposed to a higher temperature (800 ° C.). Was found to be possible. In addition, even when the adhesion layer 27 is formed of Cr, the inventor has proved that the deterioration of the reflection surface is suppressed as in the case of the adhesion layer 27 of Ti.

この実施形態では以下の効果を奏する。
本実施形態によれば、ガスとの境界面に酸化/腐食防止膜26を形成すると共に当該酸化/腐食防止膜26と本体25との間に密着層27を形成し、本体25にステンレス(SUS304、SUS316L)或いはニッケル合金(インコネル600)、酸化/腐食防止膜26にSiO2或いはPt、及び密着層27にTi或いはCrを用いて反射部21を構成した。
このようにして構成された反射部21を備える内燃機関用ガス濃度計測装置11は、エンジン1の燃焼室2内で高温のガス(ガソリン、酸素、窒素、炭化水素、水等を含む燃焼ガス)に曝されることによる、反射部21の劣化、すなわち、反射面(レーザ光が入射される側の面)における酸化反応を抑止することができる。これにより、反射面に生成された酸化皮膜が反射部21に入射したレーザ光を散乱させることに起因する反射率の低下を抑止することが可能であり、反射部21の反射率を維持、延いてはガス濃度の計測精度を確保することができる。
また、本実施形態は、反射部21の本体25に酸化/腐食防止膜26及び密着層27を成膜するだけで実施可能であることから、構造、制御等が複雑化することがないので、計測精度の確保と低コストとを両立したガス濃度計測装置11を提供することができる。
This embodiment has the following effects.
According to the present embodiment, the oxidation / corrosion prevention film 26 is formed on the interface with the gas, and the adhesion layer 27 is formed between the oxidation / corrosion prevention film 26 and the main body 25, and the main body 25 is made of stainless steel (SUS304). SUS316L) or nickel alloy (Inconel 600), the oxidation / corrosion prevention film 26 is made of SiO 2 or Pt, and the adhesion layer 27 is made of Ti or Cr.
The gas concentration measuring device 11 for an internal combustion engine having the reflection portion 21 configured as described above is a high-temperature gas (combustion gas containing gasoline, oxygen, nitrogen, hydrocarbons, water, etc.) in the combustion chamber 2 of the engine 1. It is possible to suppress the deterioration of the reflecting portion 21 due to exposure to light, that is, the oxidation reaction on the reflecting surface (the surface on which laser light is incident). As a result, it is possible to suppress a decrease in reflectance caused by the oxide film generated on the reflecting surface scattering the laser light incident on the reflecting portion 21, and maintain and extend the reflectance of the reflecting portion 21. Therefore, the measurement accuracy of the gas concentration can be ensured.
In addition, since the present embodiment can be implemented only by forming the oxidation / corrosion prevention film 26 and the adhesion layer 27 on the main body 25 of the reflecting portion 21, the structure, control, and the like are not complicated. It is possible to provide the gas concentration measuring apparatus 11 that achieves both measurement accuracy and low cost.

なお、実施形態は上記に限定されるものではなく、例えば、次のように構成することができる。
本実施形態では、酸化/腐食防止膜26及び密着層27を、本体25のレーザ光が入射される側の面にのみ形成(成膜)して反射部21を構成したが、例えば、図5に示されるように、酸化/腐食防止膜26及び密着層27を本体25の全ての面に形成(成膜)して反射部21を構成することができる。
また、本実施形態では、反射部21を支持するL形片22を、点火プラグ3の接地電極5と独立して設けたが、図6に示されるように、L形22を接地電極5と一体化させる、すなわち、反射部21を接地電極5に設けてガス濃度計測装置11を構成することができる。
In addition, embodiment is not limited above, For example, it can comprise as follows.
In this embodiment, the reflection / reflection unit 21 is configured by forming (depositing) the oxidation / corrosion prevention film 26 and the adhesion layer 27 only on the surface of the main body 25 on the side on which the laser beam is incident. For example, FIG. As shown in FIG. 5, the reflecting portion 21 can be configured by forming (depositing) the oxidation / corrosion prevention film 26 and the adhesion layer 27 on all surfaces of the main body 25.
Further, in the present embodiment, the L-shaped piece 22 that supports the reflecting portion 21 is provided independently of the ground electrode 5 of the spark plug 3, but the L-shaped 22 is connected to the ground electrode 5 as shown in FIG. In other words, the gas concentration measuring device 11 can be configured by providing the reflecting portion 21 on the ground electrode 5.

1 エンジン(内燃機関)、2 燃焼室、11 ガス濃度計測装置、12 光源、13 放射部、14 受光部、17 光強度測定部、21 反射部、25 本体、26 酸化/腐食防止膜、27 密着層 DESCRIPTION OF SYMBOLS 1 Engine (internal combustion engine), 2 Combustion chamber, 11 Gas concentration measuring device, 12 Light source, 13 Radiation part, 14 Light reception part, 17 Light intensity measurement part, 21 Reflection part, 25 Main body, 26 Oxidation / corrosion prevention film, 27 Contact | adherence layer

Claims (1)

光源から発せられた光を燃焼室内に向けて一方向へ放射する放射部と、
前記放射部から放射された光を反射する反射部と、
前記反射部により反射された光を受ける受光部と、
前記受光部により受けられた光の強度を測定する光強度測定部と、
を備え、
前記放射部から放射される光の強度と前記光強度測定部の測定結果とに基づき、前記燃焼室内のガス濃度を計測する内燃機関用ガス濃度計測装置であって、
前記反射部は、本体と、ガスとの境界面を形成する酸化/腐食防止膜と、前記本体と前記酸化/腐食防止膜との間に形成される密着層と、を有し、
前記本体には、ステンレス或いはニッケル合金が用いられ、
前記酸化/腐食防止膜には、SiO2或いはPtが用いられ、
前記密着層には、Ti或いはCrが用いられることを特徴とする内燃機関用ガス濃度計測装置。
A radiating section that radiates light emitted from the light source in one direction toward the combustion chamber;
A reflection part for reflecting the light emitted from the radiation part;
A light receiving portion for receiving the light reflected by the reflecting portion;
A light intensity measuring unit for measuring the intensity of light received by the light receiving unit;
With
A gas concentration measuring device for an internal combustion engine that measures the gas concentration in the combustion chamber based on the intensity of light emitted from the radiating unit and the measurement result of the light intensity measuring unit,
The reflective portion includes a main body, an oxidation / corrosion prevention film that forms a boundary surface with a gas, and an adhesion layer formed between the main body and the oxidation / corrosion prevention film,
Stainless steel or nickel alloy is used for the main body,
For the oxidation / corrosion prevention film, SiO 2 or Pt is used,
A gas concentration measuring apparatus for an internal combustion engine, wherein Ti or Cr is used for the adhesion layer.
JP2016075825A 2016-04-05 2016-04-05 Gas concentration measurement device for internal combustion engine Pending JP2017187367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075825A JP2017187367A (en) 2016-04-05 2016-04-05 Gas concentration measurement device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075825A JP2017187367A (en) 2016-04-05 2016-04-05 Gas concentration measurement device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017187367A true JP2017187367A (en) 2017-10-12

Family

ID=60044087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075825A Pending JP2017187367A (en) 2016-04-05 2016-04-05 Gas concentration measurement device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017187367A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376861A (en) * 1986-09-19 1988-04-07 Nippon Steel Corp Stainless steel for burner and its production
JPH06136575A (en) * 1992-10-26 1994-05-17 Sumitomo Metal Ind Ltd Insulated tube for preventing galvanic corrosion excellent in film adhesion
JP2002519511A (en) * 1998-06-26 2002-07-02 シー.エイ.パテンツ、エル.エル.シー. Method of forming a corrosion resistant coating on an alloy surface
JP2004185998A (en) * 2002-12-04 2004-07-02 Toyota Motor Corp Separator for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376861A (en) * 1986-09-19 1988-04-07 Nippon Steel Corp Stainless steel for burner and its production
JPH06136575A (en) * 1992-10-26 1994-05-17 Sumitomo Metal Ind Ltd Insulated tube for preventing galvanic corrosion excellent in film adhesion
JP2002519511A (en) * 1998-06-26 2002-07-02 シー.エイ.パテンツ、エル.エル.シー. Method of forming a corrosion resistant coating on an alloy surface
JP2004185998A (en) * 2002-12-04 2004-07-02 Toyota Motor Corp Separator for fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
河原伸幸: "点火プラグ実装型燃料・残留ガス濃度計測センサシステムの開発", READOUT, JPN7019002172, December 2009 (2009-12-01), pages 42 - 47, ISSN: 0004341177 *

Similar Documents

Publication Publication Date Title
JP5462892B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
WO2012161067A1 (en) Measuring unit and gas analyzer
US20080068587A1 (en) Surface defect detection method and surface defect inspection apparatus
JP6681070B2 (en) Optical fiber device and sensor system
JP2007279025A (en) Attenuated total reflection type optical probe, and aqueous solution spectrometric measuring device using the same
JP6035628B2 (en) Gas sensor
JP4807803B2 (en) Gas content measuring apparatus and method
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
JP2017187367A (en) Gas concentration measurement device for internal combustion engine
JP6391305B2 (en) Optical fiber sensor device
JP4035582B2 (en) Particle analyzer
JP2014238333A (en) Liquid immersion probe and infrared spectrophotometer
JP2009197606A (en) Valve lift quantity measuring device and measuring method
JP2007178325A (en) Chip for inspecting optical measuring instrument, inspection method of the optical measuring instrument, manufacturing method of the optical measuring instrument and usage method of the optical measuring instrument
JP2007027478A (en) Etching method and etching device
JP6752414B2 (en) Heat therapy device
US11921031B2 (en) Compact gas sensor
JP2019007885A (en) Reflector, multiple reflection cell, gas concentration monitor, and method for manufacturing reflector
WO2006109408A1 (en) Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer
JP6479465B2 (en) Substrate processing apparatus and substrate temperature measuring apparatus
WO2010084523A1 (en) Humidity sensor and humidity measurement device
JP5932294B2 (en) Passive optical gaseous emission sensor
JP2006125860A (en) Surface plasmon sensor, and apparatus for measuring surface plasmon
JP2019109075A (en) Gas temperature measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210317