JP2017187328A - Capacitance type humidity sensor - Google Patents

Capacitance type humidity sensor Download PDF

Info

Publication number
JP2017187328A
JP2017187328A JP2016074924A JP2016074924A JP2017187328A JP 2017187328 A JP2017187328 A JP 2017187328A JP 2016074924 A JP2016074924 A JP 2016074924A JP 2016074924 A JP2016074924 A JP 2016074924A JP 2017187328 A JP2017187328 A JP 2017187328A
Authority
JP
Japan
Prior art keywords
value
capacitance value
unit
capacitance
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016074924A
Other languages
Japanese (ja)
Inventor
樹史 矢野
Tatsufumi Yano
樹史 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2016074924A priority Critical patent/JP2017187328A/en
Publication of JP2017187328A publication Critical patent/JP2017187328A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct a shift in capacitance value.SOLUTION: A capacitance type humidity sensor comprises: a capacitance measurement unit 3 for measuring a capacitance value between the upper and lower electrodes of an element unit 1; a dew condensation determination unit 5 for determining whether the element unit 1 is in a dew condensed state; an inflection point detection unit 6 for making the capacitance value measured immediately after it is determined that the dew condensed state of the element unit 1 is resolved be a capacitance value at an inflection point on a relative humidity-capacitance value characteristic; a reference value calculation unit 7 for calculating a second reference value that is a capacitance value corresponding to 100%RH relative humidity at the current ambient temperature from a first reference value that is a capacitance value corresponding to 100%RH relative humidity when the current ambient temperature is at a reference temperature and the current ambient temperature; and a reference value update unit 9 for calculating, and updating to, the latest value of the first reference value from the capacitance value at the inflection point and the current ambient temperature when the capacitance value at the inflection point and the second reference value are different. The element unit 1 has a dew condensation detection structure for causing an inflection point to occur in the relative humidity-capacitance value characteristic.SELECTED DRAWING: Figure 2

Description

本発明は、湿度の変化に応じたセンサ素子部の電極間の静電容量の変化を利用して相対湿度を計測する容量型湿度センサに関するものである。   The present invention relates to a capacitive humidity sensor that measures relative humidity using a change in capacitance between electrodes of a sensor element unit in accordance with a change in humidity.

容量型湿度センサの感湿膜に、結露により生じた水滴が触れると、感湿膜と水滴との接触の条件(接触時間、周囲温度など)によっては感湿膜の膨潤などの構造変化や、膜−基板界面への水分子の残留が生じ、結露解消後に同一温度、同一湿度における容量値のシフト(以下単にシフト)が見られることがある。容量型湿度センサでは、感湿膜の上下に配置される電極間の容量値から相対湿度を求めるので、容量値にシフトが生じると、相対湿度にもシフトが生じることになる。例えば外気ダクトでの露点計測などの湿度計測に容量型湿度センサを用いる場合、センサには耐結露性が要求され、高湿度雰囲気下での高精度な計測が要求される。   When water droplets generated by condensation are in contact with the moisture sensitive film of a capacitive humidity sensor, depending on the contact conditions (contact time, ambient temperature, etc.) between the moisture sensitive film and the water droplet, structural changes such as swelling of the moisture sensitive film, Water molecules may remain at the film-substrate interface, and a capacitance value shift (hereinafter simply referred to as “shift”) at the same temperature and humidity may be observed after dew condensation is eliminated. In the capacitive humidity sensor, the relative humidity is obtained from the capacitance value between the electrodes arranged above and below the moisture sensitive film. Therefore, when the capacitance value is shifted, the relative humidity is also shifted. For example, when a capacitive humidity sensor is used for humidity measurement such as dew point measurement in an outside air duct, the sensor is required to be resistant to dew condensation, and is required to measure with high accuracy in a high humidity atmosphere.

従来、容量値のシフトを修正する方法として、湿度センサチップに隣接配置した温度センサ兼加熱ヒータにより一定間隔でチップを加熱して、シフトの要因となる、感湿膜に付着した水分子等を脱離させる方法がある(特許文献1参照)。   Conventionally, as a method of correcting the shift of the capacitance value, the chip is heated at regular intervals by a temperature sensor / heater arranged adjacent to the humidity sensor chip, and water molecules adhering to the moisture sensitive film, which cause the shift, are removed. There is a method of desorption (see Patent Document 1).

特開2010−8318号公報JP 2010-8318 A

特許文献1に開示された技術では、湿度センサチップを加熱してチップの回復を図る加熱クリーニングを一定間隔で行うが、次回の加熱クリーニングが実施されるまでの期間において容量値のシフトを修正することができないという課題があった。   In the technique disclosed in Patent Document 1, heating cleaning is performed at regular intervals to recover the chip by heating the humidity sensor chip, but the shift of the capacitance value is corrected in the period until the next heating cleaning is performed. There was a problem that it was not possible.

本発明は、上記課題を解決するためになされたもので、加熱クリーニングが実施されない期間であっても容量値のシフトを修正することができ、計測する相対湿度のシフトを修正することができる容量型湿度センサを提供することを目的とする。   The present invention has been made to solve the above-described problem, and is capable of correcting the shift of the capacitance value even during the period when the heat cleaning is not performed, and the capacity capable of correcting the shift of the relative humidity to be measured. An object of the present invention is to provide a mold humidity sensor.

本発明の容量型湿度センサは、感湿膜を上部電極と下部電極で挟んだ構造の素子部と、前記上部電極と前記下部電極間の容量値を計測する容量計測手段と、この容量計測手段によって計測された容量値に基づいて前記素子部が結露状態かどうかを判定する結露判定手段と、前記素子部が結露状態と判定され、この結露状態が解消したと判定された直後に前記容量計測手段によって計測された容量値を、相対湿度−容量値特性上の変曲点の容量値とする変曲点検出手段と、周囲温度が基準温度のときの相対湿度100%RHに対応する容量値である第1の基準値を記憶する記憶手段と、前記第1の基準値と現在の周囲温度の値から、現在の周囲温度における相対湿度100%RHに対応する容量値である第2の基準値を算出する基準値算出手段と、前記変曲点の容量値と前記第2の基準値とが異なる値かどうかを判定する比較手段と、前記変曲点の容量値と前記第2の基準値とが異なると判定された場合に、前記変曲点の容量値と現在の周囲温度の値から、前記第1の基準値の最新値を算出して、前記記憶手段に記憶された値を更新する基準値更新手段とを備え、前記素子部は、相対湿度−容量値特性に前記変曲点を生じさせるための結露検知構造を有することを特徴とするものである。   The capacitive humidity sensor according to the present invention includes an element portion having a structure in which a moisture sensitive film is sandwiched between an upper electrode and a lower electrode, a capacitance measuring means for measuring a capacitance value between the upper electrode and the lower electrode, and the capacitance measuring means. The condensation measurement means for determining whether or not the element unit is in a dew condensation state based on the capacitance value measured by the method, and the capacitance measurement immediately after it is determined that the element unit is in a dew condensation state and the dew condensation state is eliminated. An inflection point detecting means that uses the capacitance value measured by the means as a capacitance value of an inflection point on the relative humidity-capacitance value characteristic, and a capacitance value corresponding to a relative humidity of 100% RH when the ambient temperature is the reference temperature And a second reference which is a capacity value corresponding to a relative humidity of 100% RH at the current ambient temperature from the first reference value and the current ambient temperature value. Reference value calculation means for calculating a value The comparing means for determining whether the capacitance value of the inflection point and the second reference value are different from each other, and the capacitance value of the inflection point and the second reference value are determined to be different from each other And a reference value update means for calculating the latest value of the first reference value from the capacity value of the inflection point and the current ambient temperature value and updating the value stored in the storage means. The element section has a dew condensation detection structure for generating the inflection point in the relative humidity-capacitance value characteristic.

また、本発明の容量型湿度センサの1構成例において、前記記憶手段は、結露時の容量値を予め記憶し、前記結露判定手段は、前記容量計測手段によって計測された容量値と前記結露時の容量値とを比較することにより、前記素子部が結露状態かどうかを判定することを特徴とするものである。
また、本発明の容量型湿度センサの1構成例において、前記結露検知構造は、前記素子部の表面に前記下部電極の一部が露出するように、前記下部電極を覆う前記感湿膜の一部が除去された切欠き部からなることを特徴とするものである。
また、本発明の容量型湿度センサの1構成例において、前記結露検知構造は、前記素子部の表面に前記下部電極の一部が露出するように、前記感湿膜と前記上部電極とに設けられた複数の開口部からなることを特徴とするものである。
また、本発明の容量型湿度センサの1構成例において、前記結露検知構造は、前記上部電極から突き出るように形成された第1の突出部と、前記下部電極から突き出るように形成され、前記第1の突出部とギャップを隔てて対向するように配置された第2の突出部とからなることを特徴とするものである。
Further, in one configuration example of the capacitive humidity sensor of the present invention, the storage unit stores in advance a capacitance value at the time of condensation, and the condensation determination unit is configured to determine the capacitance value measured by the capacitance measurement unit and the condensation time. It is characterized by determining whether the said element part is a dew condensation state by comparing with the capacitance value of this.
In the configuration example of the capacitive humidity sensor according to the present invention, the dew condensation detection structure may be configured such that the moisture sensitive film covers the lower electrode so that a part of the lower electrode is exposed on the surface of the element portion. It is characterized by comprising a notch part from which the part has been removed.
In the configuration example of the capacitive humidity sensor of the present invention, the dew condensation detection structure is provided on the moisture sensitive film and the upper electrode so that a part of the lower electrode is exposed on the surface of the element portion. It is characterized by comprising a plurality of openings.
Further, in one configuration example of the capacitive humidity sensor of the present invention, the dew condensation detection structure is formed to protrude from the upper electrode, and to protrude from the lower electrode. It consists of a 2nd protrusion part arrange | positioned so that 1 protrusion part and a gap may be opposed.

また、本発明の容量型湿度センサの1構成例は、さらに、前記結露判定手段が結露状態と判定したときに、前記容量計測手段の計測周期を通常の周期よりも短い所定の周期に変更し、前記結露判定手段が結露状態が解消したと判定し、かつ前記変曲点検出手段が前記変曲点の容量値を検出した後に、前記計測周期を通常の周期に戻す計測周期変更手段を備えることを特徴とするものである。
また、本発明の容量型湿度センサの1構成例は、さらに、前記容量計測手段によって計測された容量値と前記第1の基準値と現在の周囲温度の値に基づいて相対湿度を求める相対湿度導出手段を備えることを特徴とするものである。
また、本発明の容量型湿度センサの1構成例は、さらに、周囲温度を計測する温度センサを備えることを特徴とするものである。
Further, in one configuration example of the capacitive humidity sensor according to the present invention, when the dew condensation determination unit determines that the dew condensation state is present, the measurement cycle of the capacity measurement unit is changed to a predetermined cycle shorter than a normal cycle. And a measurement cycle changing unit that returns the measurement cycle to a normal cycle after the condensation determination unit determines that the dew condensation state has been resolved and the inflection point detection unit detects the capacitance value of the inflection point. It is characterized by this.
Further, one configuration example of the capacitive humidity sensor according to the present invention further includes a relative humidity for obtaining a relative humidity based on the capacitance value measured by the capacitance measuring means, the first reference value, and the current ambient temperature value. A derivation unit is provided.
In addition, one configuration example of the capacitive humidity sensor of the present invention is further provided with a temperature sensor for measuring the ambient temperature.

本発明によれば、容量計測手段と結露判定手段と変曲点検出手段と記憶手段と基準値算出手段と比較手段と基準値更新手段とを設け、さらに相対湿度−容量値特性に変曲点を生じさせるための結露検知構造を素子部に設けることにより、加熱クリーニングが実施されない期間であっても容量値のシフトを修正することができ、計測する相対湿度のシフトを修正することができる。   According to the present invention, the capacity measuring means, the dew condensation determination means, the inflection point detection means, the storage means, the reference value calculation means, the comparison means, and the reference value update means are provided, and further the inflection point in the relative humidity-capacitance value characteristic By providing the element portion with a dew condensation detection structure for causing the occurrence of the problem, the shift of the capacitance value can be corrected even during the period when the heat cleaning is not performed, and the shift of the relative humidity to be measured can be corrected.

容量型湿度センサにおける相対湿度−容量値特性を示す図である。It is a figure which shows the relative humidity-capacitance value characteristic in a capacitive humidity sensor. 本発明の第1の実施の形態に係る容量型湿度センサの構成を示すブロック図である。It is a block diagram which shows the structure of the capacitive humidity sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る容量型湿度センサの素子部の平面図および断面図である。It is the top view and sectional drawing of the element part of the capacitive humidity sensor which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る容量型湿度センサの容量計測部の構成を示すブロック図である。It is a block diagram which shows the structure of the capacity | capacitance measurement part of the capacitive humidity sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る容量型湿度センサの素子部の上下電極間電圧−充電時間特性を示す図である。It is a figure which shows the voltage-charge time characteristic between the upper and lower electrodes of the element part of the capacitive humidity sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る容量型湿度センサの素子部に結露が生じた様子を示す図である。It is a figure which shows a mode that the dew condensation produced in the element part of the capacitive humidity sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る容量型湿度センサの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the capacitive humidity sensor which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る容量型湿度センサの素子部の平面図および断面図である。It is the top view and sectional drawing of the element part of the capacitive humidity sensor which concern on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る容量型湿度センサの素子部に結露が生じた様子を示す図である。It is a figure which shows a mode that the dew condensation produced in the element part of the capacitive humidity sensor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る容量型湿度センサの素子部の平面図および断面図である。It is the top view and sectional drawing of the element part of the capacitive humidity sensor which concern on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る容量型湿度センサの素子部に結露が生じた様子を示す図である。It is a figure which shows a mode that the dew condensation produced in the element part of the capacitive humidity sensor which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る容量型湿度センサの素子部の別の構成を示す平面図および断面図である。It is the top view and sectional drawing which show another structure of the element part of the capacitive humidity sensor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る容量型湿度センサの素子部の平面図および断面図である。It is the top view and sectional drawing of the element part of the capacitive humidity sensor which concern on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る容量型湿度センサの素子部に結露が生じた様子を示す図である。It is a figure which shows a mode that the dew condensation produced in the element part of the capacitive humidity sensor which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る容量型湿度センサの構成を示すブロック図である。It is a block diagram which shows the structure of the capacitive humidity sensor which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る容量型湿度センサの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the capacitive humidity sensor which concerns on the 5th Embodiment of this invention.

[発明の原理]
容量型湿度センサは、感湿膜の上下に配置された上下電極間の容量値と、予め記録・調整した基準値とを基に相対湿度を求めるセンサである。電極に結露が生じていない状態では、相対湿度とセンサの容量値とは図1の特性線20で示すような関係になり、計測した容量値が予め定められた容量値C100になったときを、相対湿度100%RHとする。一方、電極に結露により生じた水滴が付着すると、水滴が電荷を帯びることで見かけ上の容量値が増加して、相対湿度100%RH以上の値(100+a)%RHに相当する容量値C(100+a)を示す。図1においては破線21で示すような相対湿度−容量値特性が生じることになる。
[Principle of the Invention]
The capacitive humidity sensor is a sensor for obtaining relative humidity based on a capacitance value between upper and lower electrodes arranged above and below a moisture sensitive film and a reference value recorded and adjusted in advance. In a state where no condensation occurs on the electrodes, the relative humidity and the capacitance value of the sensor have a relationship as shown by the characteristic line 20 in FIG. 1, and the measured capacitance value becomes a predetermined capacitance value C100. The relative humidity is 100% RH. On the other hand, when water droplets generated by dew condensation adhere to the electrode, the apparent capacitance value increases due to the water droplets being charged, and a capacitance value C (corresponding to a relative humidity of 100% RH or more (100 + a)% RH. 100 + a). In FIG. 1, a relative humidity-capacitance value characteristic as indicated by a broken line 21 is generated.

以上のような現象を利用して、容量型湿度センサの結露が解消して通常の湿度計測ができる状態に戻る点を基準点として容量値のシフト量を修正できることが望ましい。しかしながら、従来の高分子容量型湿度センサの構成では、図1の特性線20,21で示したように相対湿度−容量値特性の傾きがほぼ一定で、結露状態と結露解消の境界を区別できないため、結露解消後の容量値のシフトの有無やシフト量を判定することができない。   It is desirable that the amount of shift of the capacitance value can be corrected using the phenomenon as described above as a reference point at which the condensation of the capacitive humidity sensor is resolved and the normal humidity measurement can be returned. However, in the configuration of the conventional polymer capacitive humidity sensor, as shown by the characteristic lines 20 and 21 in FIG. 1, the slope of the relative humidity-capacitance value characteristic is almost constant, and the boundary between the condensation state and the condensation elimination cannot be distinguished. For this reason, it is not possible to determine the presence or absence of the shift of the capacitance value after the elimination of condensation.

結露センサを別途設置すれば水滴の有無を検出できるが、結露センサを設けたとしても、湿度センサ上の水滴の有無の状態を直接知ることはできない。つまり、結露センサは乾いていても湿度センサに水滴が付着していたり、湿度センサは乾いていても結露センサに水滴が付着していたりする場合があり得る。   If a condensation sensor is separately installed, the presence or absence of water droplets can be detected, but even if a condensation sensor is provided, the presence or absence of water droplets on the humidity sensor cannot be directly known. That is, even if the dew condensation sensor is dry, water droplets may adhere to the humidity sensor, or even if the humidity sensor is dry, water droplets may adhere to the dew condensation sensor.

そこで、本発明では、後述のように容量型湿度センサの素子部に結露検知構造を加えることにより、相対湿度−容量値特性が図1の特性線22に示すような特性になるようにし、相対湿度−容量値特性に変曲点23を生じさせることで結露解消後の容量値のシフトの有無を判定できるようにする。   Therefore, in the present invention, by adding a dew condensation detection structure to the element portion of the capacitive humidity sensor as will be described later, the relative humidity-capacitance value characteristic becomes a characteristic as shown by the characteristic line 22 in FIG. By generating an inflection point 23 in the humidity-capacitance value characteristic, it is possible to determine whether or not there is a shift in the capacitance value after eliminating condensation.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図2は本発明の第1の実施の形態に係る容量型湿度センサの構成を示すブロック図である。容量型湿度センサは、素子部1と、素子部1の周辺に配置された温度センサ2と、素子部1の上部電極と下部電極間の容量値を計測する容量計測部3と、周囲温度が基準温度のときの相対湿度100%RHに対応する容量値である第1の基準値と結露時の容量値とを予め記憶する記憶部4と、容量計測部3によって計測された容量値に基づいて素子部1が結露状態かどうかを判定する結露判定部5と、素子部1が結露状態と判定され、この結露状態が解消したと判定された直後に容量計測部3によって計測された容量値を、相対湿度−容量値特性上の変曲点の容量値とする変曲点検出部6と、第1の基準値と現在の周囲温度の値から、現在の周囲温度における相対湿度100%RHに対応する容量値である第2の基準値を算出する基準値算出部7と、変曲点の容量値と第2の基準値とが異なる値かどうかを判定する比較部8と、変曲点の容量値と第2の基準値とが異なると判定された場合に、変曲点の容量値と現在の周囲温度の値から、第1の基準値の最新値を算出して、記憶部4に記憶された値を更新する基準値更新部9と、容量計測部3によって計測された容量値と第1の基準値と現在の周囲温度の値に基づいて相対湿度を求める相対湿度導出部10とを備えている。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing the configuration of the capacitive humidity sensor according to the first embodiment of the present invention. The capacitive humidity sensor includes an element unit 1, a temperature sensor 2 disposed around the element unit 1, a capacitance measuring unit 3 that measures a capacitance value between the upper electrode and the lower electrode of the element unit 1, and an ambient temperature is Based on a storage unit 4 that stores in advance a first reference value that is a capacity value corresponding to a relative humidity of 100% RH at the reference temperature and a capacity value at the time of condensation, and a capacity value measured by the capacity measuring unit 3 A condensation determination unit 5 that determines whether or not the element unit 1 is in a dew condensation state, and a capacitance value that is measured by the capacitance measurement unit 3 immediately after it is determined that the element unit 1 is in a dew condensation state and this dew condensation state has been resolved. From the inflection point detection unit 6 that takes the capacitance value of the inflection point on the relative humidity-capacitance value characteristic, and the first reference value and the current ambient temperature value, the relative humidity at the current ambient temperature is 100% RH. Reference value calculation for calculating a second reference value that is a capacitance value corresponding to 7 and the comparison unit 8 that determines whether or not the capacitance value of the inflection point and the second reference value are different, and when it is determined that the capacitance value of the inflection point and the second reference value are different. A reference value update unit 9 that calculates the latest value of the first reference value from the capacitance value of the inflection point and the current ambient temperature value, and updates the value stored in the storage unit 4; And a relative humidity deriving unit 10 that obtains the relative humidity based on the capacitance value measured in Step 3, the first reference value, and the current ambient temperature value.

なお、図1の構成では、容量型湿度センサの内部に温度センサ2を設ける構成としているが、これに限るものではなく、容量型湿度センサの外部に設けられた温度センサから周囲温度の情報を取得するようにしてもよい。   In the configuration of FIG. 1, the temperature sensor 2 is provided inside the capacitive humidity sensor. However, the configuration is not limited to this, and the ambient temperature information is obtained from the temperature sensor provided outside the capacitive humidity sensor. You may make it acquire.

図3(A)は本実施の形態の素子部1の平面図、図3(B)は図3(A)のI−I線断面図である。素子部1は、基板100上に配置された板状の導電体からなる下部電極101と、下部電極101上に配置された高分子からなる感湿膜102と、感湿膜102上に配置された板状の導電体からなる上部電極103と、電極101,103と容量計測部3とを電気的に接続するための電極ピン104,105と、電極ピン104,105と電極101,103とを接合する導電ペースト106,107と、下部電極101の一部が露出するように下部電極101を覆う感湿膜102の一部が除去された切欠き部108(結露検知構造)とから構成される。   FIG. 3A is a plan view of the element portion 1 of the present embodiment, and FIG. 3B is a cross-sectional view taken along the line II of FIG. The element unit 1 is arranged on the lower electrode 101 made of a plate-like conductor arranged on the substrate 100, the moisture sensitive film 102 made of a polymer arranged on the lower electrode 101, and the moisture sensitive film 102. An upper electrode 103 made of a plate-shaped conductor, electrode pins 104 and 105 for electrically connecting the electrodes 101 and 103 and the capacitance measuring unit 3, and electrode pins 104 and 105 and electrodes 101 and 103 The conductive paste 106 and 107 to be joined and a notch 108 (condensation detection structure) from which a part of the moisture sensitive film 102 covering the lower electrode 101 is removed so that a part of the lower electrode 101 is exposed. .

図4は容量計測部3の構成を示すブロック図である。容量計測部3は、電源30と、抵抗31と、スイッチ32と、電圧検出部33と、容量値算出部34とから構成される。   FIG. 4 is a block diagram showing the configuration of the capacity measuring unit 3. The capacity measurement unit 3 includes a power supply 30, a resistor 31, a switch 32, a voltage detection unit 33, and a capacitance value calculation unit 34.

容量値算出部34がスイッチ32をオンにすると、電源30から抵抗31を介して素子部1の上部電極103と下部電極101間に電圧が印加され、上部電極103と感湿膜102と下部電極101とからなるコンデンサが充電され、上部電極103と下部電極101間の電圧が図5に示すように変化していく。図5の50は相対湿度0%RHにおける上下電極間電圧−充電時間特性を示し、51は相対湿度100%RHにおける上下電極間電圧−充電時間特性を示している。   When the capacitance value calculation unit 34 turns on the switch 32, a voltage is applied from the power supply 30 via the resistor 31 between the upper electrode 103 and the lower electrode 101 of the element unit 1, and the upper electrode 103, the moisture sensitive film 102, and the lower electrode are applied. 101 is charged, and the voltage between the upper electrode 103 and the lower electrode 101 changes as shown in FIG. In FIG. 5, 50 indicates the voltage between the upper and lower electrodes and the charging time characteristic at a relative humidity of 0% RH, and 51 indicates the voltage between the upper and lower electrodes and the charging time characteristic at a relative humidity of 100% RH.

上部電極103と下部電極101間に電圧を印加したときから、この上部電極103と下部電極101間の電圧が所定の閾値電圧THに達するまでの充電時間は、コンデンサの容量値Cと抵抗31の既知の抵抗値Rとに比例するので、充電時間を計測すれば、この充電時間から容量値Cを求めることが可能である。図5のt0は相対湿度0%RHにおける充電時間を示し、t1は相対湿度100%RHにおける充電時間を示している。   The charging time from when the voltage is applied between the upper electrode 103 and the lower electrode 101 to when the voltage between the upper electrode 103 and the lower electrode 101 reaches a predetermined threshold voltage TH is determined by the capacitance value C of the capacitor and the resistance 31. Since it is proportional to the known resistance value R, if the charging time is measured, the capacity value C can be obtained from this charging time. In FIG. 5, t0 indicates a charging time at a relative humidity of 0% RH, and t1 indicates a charging time at a relative humidity of 100% RH.

電圧検出部33は、素子部1の上部電極103と下部電極101間の電圧を検出する。容量値算出部34は、電圧検出部33の検出結果から、上部電極103と下部電極101間の電圧が閾値電圧THに達するまでの充電時間を計測し、この充電時間の計測結果から上部電極103と下部電極101間の容量値Cを算出する。   The voltage detection unit 33 detects the voltage between the upper electrode 103 and the lower electrode 101 of the element unit 1. The capacitance value calculation unit 34 measures the charging time until the voltage between the upper electrode 103 and the lower electrode 101 reaches the threshold voltage TH from the detection result of the voltage detection unit 33, and the upper electrode 103 from the measurement result of the charging time. And a capacitance value C between the lower electrode 101 and the lower electrode 101 is calculated.

一方、図6に示すように、結露により生じた水滴109が素子部1に付着して、水滴109を介して上部電極103と下部電極101間が導通すると、図4に示すようなリーク電流によりコンデンサの充電時間が延びる。図5の52は素子部1に結露が生じたときの上下電極間電圧−充電時間特性を示し、t2は素子部1に結露が生じたときの充電時間を示している。このように結露により充電時間が延びると、結果として容量値Cが見かけ上急峻に増加し、容量型湿度センサにおける相対湿度−容量値特性上に、図1の23で示したような変曲点を生じる。また、結露の解消時(水滴消失時)には容量値Cが急激に減少して同様の変曲点が観測される。   On the other hand, as shown in FIG. 6, when a water droplet 109 generated by condensation adheres to the element unit 1 and the upper electrode 103 and the lower electrode 101 are conducted through the water droplet 109, a leakage current as shown in FIG. The capacitor charging time is extended. 5 indicates a voltage-charge time characteristic between the upper and lower electrodes when condensation occurs in the element unit 1, and t <b> 2 indicates a charging time when condensation occurs in the element unit 1. Thus, when the charging time is extended due to condensation, the capacitance value C appears to increase sharply as a result, and the inflection point as indicated by 23 in FIG. Produce. Further, when condensation is eliminated (at the time of disappearance of water droplets), the capacitance value C rapidly decreases and a similar inflection point is observed.

次に、変曲点を利用して、結露解消後の容量値Cのシフトを修正する本実施の形態の方法について説明する。図7は本実施の形態の容量型湿度センサの動作を説明するフローチャートである。
まず、記憶部4には、周囲温度が基準温度のときの相対湿度100%RHに対応する容量値Cである第1の基準値Aと、素子部1に結露が生じたときの容量値C(図1のCc)とが予め登録されている。第1の基準値Aと結露時の容量値Ccとは、センサの運用前に予め行う試験によって求めることができる。
Next, a method of the present embodiment for correcting the shift of the capacitance value C after eliminating condensation using an inflection point will be described. FIG. 7 is a flowchart for explaining the operation of the capacitive humidity sensor according to the present embodiment.
First, the storage unit 4 includes a first reference value A, which is a capacitance value C corresponding to a relative humidity of 100% RH when the ambient temperature is the reference temperature, and a capacitance value C when condensation occurs in the element unit 1. (Cc in FIG. 1) is registered in advance. The first reference value A and the capacitance value Cc at the time of condensation can be obtained by a test performed in advance before the operation of the sensor.

容量計測部3は、上記のとおり素子部1の上部電極103と下部電極101間の容量値Cを一定の計測周期ごとに計測する(図7ステップS1)。
結露判定部5は、容量計測部3によって計測された容量値Cと記憶部4に予め記憶された結露時の容量値Ccとを比較して、素子部1が結露状態かどうかを判定する(図7ステップS2)。結露判定部5は、容量計測部3によって計測された容量値Cが結露時の容量値Ccに達している場合、素子部1が結露状態と判定する(ステップS2においてYES)。
As described above, the capacitance measuring unit 3 measures the capacitance value C between the upper electrode 103 and the lower electrode 101 of the element unit 1 for every predetermined measurement period (step S1 in FIG. 7).
The condensation determination unit 5 compares the capacitance value C measured by the capacitance measurement unit 3 with the capacitance value Cc at the time of condensation stored in the storage unit 4 in advance to determine whether the element unit 1 is in a condensed state ( FIG. 7 step S2). When the capacitance value C measured by the capacitance measuring unit 3 has reached the capacitance value Cc at the time of condensation, the condensation determination unit 5 determines that the element unit 1 is in a condensed state (YES in step S2).

次に、結露判定部5は、素子部1が結露状態と判定した後に、この結露状態が解消したかどうかを判定する(図7ステップS3)。結露判定部5は、容量計測部3によって計測された容量値Cが結露時の容量値Cc未満になったときに、素子部1の結露状態が解消したと判定する(ステップS3においてYES)。
変曲点検出部6は、素子部1の結露状態が解消したと判定された直後に容量計測部3によって計測された容量値Cを変曲点の容量値とする(図7ステップS4)。
Next, after determining that the element unit 1 is in the dew condensation state, the dew condensation determination unit 5 determines whether or not this dew condensation state has been eliminated (step S3 in FIG. 7). The dew condensation determination unit 5 determines that the dew condensation state of the element unit 1 has been eliminated when the capacitance value C measured by the capacitance measurement unit 3 is less than the capacitance value Cc at the time of dew condensation (YES in step S3).
The inflection point detection unit 6 sets the capacitance value C measured by the capacitance measurement unit 3 immediately after it is determined that the dew condensation state of the element unit 1 has been eliminated (step S4 in FIG. 7).

次に、基準値算出部7は、記憶部4に予め記憶された第1の基準値Aと温度センサ2によって計測された周囲温度とから、現在の周囲温度における相対湿度100%RHに対応する容量値Cである第2の基準値Bを算出する(図7ステップS5)。第2の基準値Bは、本実施の形態の容量型湿度センサの相対湿度−容量値特性の周囲温度依存性(例えば温度係数(F/℃))を予め調査し記憶部4に登録しておくことにより、この周囲温度依存性に基づいて算出することができる。   Next, the reference value calculation unit 7 corresponds to the relative humidity 100% RH at the current ambient temperature from the first reference value A stored in advance in the storage unit 4 and the ambient temperature measured by the temperature sensor 2. A second reference value B, which is a capacitance value C, is calculated (step S5 in FIG. 7). The second reference value B is obtained by previously investigating the ambient temperature dependency (for example, temperature coefficient (F / ° C.)) of the relative humidity-capacitance value characteristic of the capacitive humidity sensor of the present embodiment and registering it in the storage unit 4. It is possible to calculate based on this ambient temperature dependency.

比較部8は、変曲点検出部6が検出した変曲点の容量値と基準値算出部7が算出した第2の基準値Bとを比較し、変曲点の容量値と第2の基準値Bとが異なる値かどうかを判定する(図7ステップS6)。第2の基準値Bの実測値に相当する変曲点の容量値と計算から求めた第2の基準値Bとが異なることは、結露解消後に容量値のシフトが生じたことを意味する。   The comparison unit 8 compares the capacitance value of the inflection point detected by the inflection point detection unit 6 with the second reference value B calculated by the reference value calculation unit 7, and compares the capacitance value of the inflection point with the second value. It is determined whether or not the reference value B is different (step S6 in FIG. 7). The difference between the capacity value of the inflection point corresponding to the actually measured value of the second reference value B and the second reference value B obtained from the calculation means that the capacity value has shifted after the condensation has been eliminated.

基準値更新部9は、変曲点の容量値と第2の基準値Bとが異なると判定された場合(ステップS6においてYES)、変曲点の容量値と温度センサ2によって計測された周囲温度とから、周囲温度が基準温度のときの相対湿度100%RHに対応する容量値Cである第1の基準値Aの最新値を算出し、記憶部4に記憶されている第1の基準値Aを、算出した最新値に更新する(図7ステップS7)。第1の基準値Aの最新値は、変曲点の容量値を第2の基準値Bの真値と見なし、この第2の基準値Bの真値と温度センサ2が計測した周囲温度の値と上記で説明した相対湿度−容量値特性の周囲温度依存性とを用いて算出することができる。   When it is determined that the inflection point capacitance value and the second reference value B are different (YES in step S6), the reference value update unit 9 determines the inflection point capacitance value and the ambient temperature measured by the temperature sensor 2. From the temperature, the latest value of the first reference value A, which is the capacitance value C corresponding to the relative humidity 100% RH when the ambient temperature is the reference temperature, is calculated, and the first reference stored in the storage unit 4 is calculated. The value A is updated to the calculated latest value (step S7 in FIG. 7). The latest value of the first reference value A is that the capacitance value of the inflection point is regarded as the true value of the second reference value B, and the true value of the second reference value B and the ambient temperature measured by the temperature sensor 2 are It can be calculated using the value and the ambient temperature dependency of the relative humidity-capacitance value characteristic described above.

基準値更新部9は、変曲点の容量値と第2の基準値Bとが一致する場合には(ステップS6においてNO)、記憶部4に記憶されている第1の基準値Aを更新しない(図7ステップS8)。
こうして、本実施の形態では、加熱クリーニングが実施されない期間であっても容量値のシフトを修正することができる。
The reference value update unit 9 updates the first reference value A stored in the storage unit 4 when the inflection point capacitance value matches the second reference value B (NO in step S6). No (Step S8 in FIG. 7).
Thus, in this embodiment, the shift of the capacitance value can be corrected even during the period when the heat cleaning is not performed.

容量型湿度センサが計測する相対湿度をX(%RH)、容量計測部3が計測した容量値をCとすると、相対湿度X(%RH)と容量値Cと第2の基準値Bと周囲温度との関係は、相対湿度導出部10内の図示しないテーブルに予め記録されている。   When the relative humidity measured by the capacitive humidity sensor is X (% RH) and the capacitance value measured by the capacitance measuring unit 3 is C, the relative humidity X (% RH), the capacitance value C, the second reference value B, and the surroundings The relationship with the temperature is recorded in advance in a table (not shown) in the relative humidity deriving unit 10.

相対湿度導出部10は、容量計測部3によって容量値Cが計測される度に、テーブルを参照して、容量値Cと第2の基準値Bと温度センサ2によって計測された周囲温度の値とに対応する相対湿度Xの値をテーブルから取得すればよい。上記のとおり、第2の基準値Bは、記憶部4に記憶された第1の基準値Aと温度センサ2によって計測された周囲温度の値と相対湿度−容量値特性の周囲温度依存性とを用いて算出すればよい。
本実施の形態では、容量値のシフトが生じていると判定した場合には第1の基準値Aを更新するので、容量値のシフトによる相対湿度Xのシフトを防ぐことができる。
The relative humidity deriving unit 10 refers to the table every time the capacitance value C is measured by the capacitance measuring unit 3, and the value of the ambient temperature measured by the capacitance value C, the second reference value B, and the temperature sensor 2. The value of the relative humidity X corresponding to can be obtained from the table. As described above, the second reference value B includes the first reference value A stored in the storage unit 4, the ambient temperature value measured by the temperature sensor 2, and the ambient temperature dependency of the relative humidity-capacitance value characteristic. What is necessary is just to calculate using.
In the present embodiment, when it is determined that the capacitance value has shifted, the first reference value A is updated, so that the relative humidity X can be prevented from shifting due to the capacitance value shift.

[第2の実施の形態]
次に、本発明の第2の実施の形態では、第1の実施の形態における素子部1の別の例を説明する。図8(A)は本実施の形態の素子部1の平面図、図8(B)は図8(A)のI−I線断面図であり、図3(A)、図3(B)と同様の構成には同一の符号を付してある。本実施の形態の素子部1は、感湿膜102と上部電極103とに複数の開口部110(結露検知構造)を設けることにより、下部電極101が広範囲に露出するようにしたものである。
[Second Embodiment]
Next, in the second embodiment of the present invention, another example of the element unit 1 in the first embodiment will be described. 8A is a plan view of the element portion 1 of the present embodiment, FIG. 8B is a cross-sectional view taken along the line II of FIG. 8A, and FIGS. 3A and 3B. The same code | symbol is attached | subjected to the structure similar to. In the element portion 1 of this embodiment, a plurality of openings 110 (condensation detection structure) are provided in the moisture sensitive film 102 and the upper electrode 103 so that the lower electrode 101 is exposed over a wide range.

図9(A)、図9(B)に示すように、結露により生じた水滴109が素子部1に付着して、水滴109を介して上部電極103と下部電極101間が導通すると、上部電極103と感湿膜102と下部電極101とからなるコンデンサの充電時間が延びる。コンデンサの充電時間が延びたときの相対湿度−容量値特性の変化は第1の実施の形態で説明したとおりである。   As shown in FIGS. 9A and 9B, when the water droplet 109 generated by condensation adheres to the element portion 1 and the upper electrode 103 and the lower electrode 101 are electrically connected via the water droplet 109, the upper electrode The charging time of the capacitor composed of 103, the moisture sensitive film 102, and the lower electrode 101 is extended. The change in the relative humidity-capacitance value characteristic when the charging time of the capacitor is extended is as described in the first embodiment.

図9(A)は素子部1の全面に結露が生じた例を示しており、図9(B)は素子部1の一部に結露が生じた例を示している。第1の実施の形態の素子部1の構造では、切欠き部108の箇所に水滴が付着した場合にのみ結露の発生を検出することができ、素子部1のその他の箇所に水滴が付着した場合には結露の発生を検出できない。これに対して、本実施の形態では、素子部1の広範囲の領域について結露の発生を検出することができる。
容量型湿度センサのその他の構成は第1の実施の形態で説明したとおりである。
9A shows an example in which condensation occurs on the entire surface of the element portion 1, and FIG. 9B shows an example in which condensation occurs on a part of the element portion 1. In the structure of the element unit 1 according to the first embodiment, it is possible to detect the occurrence of condensation only when water droplets adhere to the notch portion 108, and water droplets adhere to other portions of the element unit 1. In this case, the occurrence of condensation cannot be detected. On the other hand, in the present embodiment, it is possible to detect the occurrence of condensation in a wide area of the element unit 1.
The other configuration of the capacitive humidity sensor is as described in the first embodiment.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図10(A)は本実施の形態の素子部1の平面図、図10(B)は図10(A)のI−I線断面図、図10(C)は図10(A)のI’−I’線断面図であり、図3(A)、図3(B)と同様の構成には同一の符号を付してある。本実施の形態は第1の実施の形態の素子部1の別の例を示すものであり、第1、第2の実施の形態と異なる結露検知構造を有するものである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. 10A is a plan view of the element portion 1 of the present embodiment, FIG. 10B is a cross-sectional view taken along the line II of FIG. 10A, and FIG. 10C is I of FIG. FIG. 4 is a cross-sectional view taken along the line “-I”, and the same reference numerals are given to the same components as those in FIGS. 3A and 3B. This embodiment shows another example of the element unit 1 of the first embodiment, and has a dew condensation detection structure different from the first and second embodiments.

具体的には、結露検知構造は、ギャップ113を隔てて対向するように配置された突出部111,112から構成される。これら突出部111,112は、感湿膜102を挟んだ状態の下部電極101と上部電極103から感湿膜102が存在しない領域に突き出るように基板100上に配置される。   Specifically, the dew condensation detection structure is composed of protrusions 111 and 112 arranged to face each other with a gap 113 therebetween. These protrusions 111 and 112 are arranged on the substrate 100 so as to protrude from the lower electrode 101 and the upper electrode 103 with the moisture sensitive film 102 sandwiched therebetween to a region where the moisture sensitive film 102 does not exist.

図11に示すように、結露により生じた水滴109が素子部1に付着して、水滴109を介して突出部111と112間が導通すると、上部電極103と下部電極101間が導通する。ギャップ113の水平方向(図10(A)、図11左右方向)の幅は、結露が生じたときに突出部111と112間が導通するように設定しておけばよい。
容量型湿度センサのその他の構成は第1の実施の形態で説明したとおりである。
As shown in FIG. 11, when the water droplet 109 generated by condensation adheres to the element portion 1 and the projections 111 and 112 are conducted through the water droplet 109, the upper electrode 103 and the lower electrode 101 are conducted. The width of the gap 113 in the horizontal direction (FIG. 10A, left-right direction in FIG. 11) may be set so that the protrusions 111 and 112 are electrically connected when condensation occurs.
The other configuration of the capacitive humidity sensor is as described in the first embodiment.

なお、素子部1の構成は図12(A)、図12(B)、図12(C)に示すようにしてもよい。図12(A)は本実施の形態の素子部1の別の構成を示す平面図、図12(B)は図12(A)のI−I線断面図、図12(C)は図12(A)のI’−I’線断面図である。この例では、図10(A)〜図10(C)に示した例と感湿膜102のパターンが異なる。   The structure of the element portion 1 may be as shown in FIGS. 12A, 12B, and 12C. 12A is a plan view showing another structure of the element portion 1 of this embodiment, FIG. 12B is a cross-sectional view taken along the line II of FIG. 12A, and FIG. 12C is FIG. It is I'-I 'sectional view taken on the line of (A). In this example, the pattern of the moisture sensitive film 102 is different from the example shown in FIGS. 10 (A) to 10 (C).

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。図13(A)は本実施の形態の素子部1の平面図、図13(B)は図13(A)のI−I線断面図であり、図3(A)、図3(B)と同様の構成には同一の符号を付してある。本実施の形態は第1の実施の形態の素子部1の別の例を示すものであり、第3の実施の形態と同様の結露検知構造を有するものである。ただし、本実施の形態の結露検知構造を構成する突出部111,112は、感湿膜102を挟んだ状態の電極本体ではなく、感湿膜102が存在しない部分(電極101,103に電極ピン104,105が接合される端子の部分)から突き出るように基板100上に形成されている。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. 13A is a plan view of the element portion 1 of the present embodiment, FIG. 13B is a cross-sectional view taken along the line II of FIG. 13A, and FIGS. 3A and 3B. The same code | symbol is attached | subjected to the structure similar to. This embodiment shows another example of the element unit 1 of the first embodiment, and has the same dew condensation detection structure as that of the third embodiment. However, the protrusions 111 and 112 constituting the dew condensation detection structure of the present embodiment are not electrode bodies in a state where the moisture sensitive film 102 is sandwiched, but portions where the moisture sensitive film 102 does not exist (electrodes 101 and 103 are electrode pins). 104 and 105 are formed on the substrate 100 so as to protrude from the portion of the terminal to be joined.

図14に示すように、結露により生じた水滴109が素子部1に付着して、水滴109を介して突出部111と112間が導通すると、第3の実施の形態と同様に上部電極103と下部電極101間が導通することになる。   As shown in FIG. 14, when the water droplet 109 generated by condensation adheres to the element portion 1 and the projections 111 and 112 are conducted through the water droplet 109, the upper electrode 103 and the upper electrode 103 are connected to each other as in the third embodiment. The lower electrode 101 is electrically connected.

[第5の実施の形態]
次に、本発明の第5の実施の形態について説明する。通常の計測周期が長い場合や(例えば数分など)、周囲湿度が急速に変化しやすい設置環境下では、水滴消失後の変曲点を記録できないことが予想される。その場合は結露状態と判定している期間のみ、一時的に計測周期を十分に短く変更して(例えば1秒以下など)、水滴消失直後の変曲点の容量値を計測できる構成にしてもよい。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. When the normal measurement cycle is long (for example, several minutes) or in an installation environment where the ambient humidity is likely to change rapidly, it is expected that the inflection point after the disappearance of the water droplet cannot be recorded. In such a case, only during the period when the condensation state is determined, the measurement cycle is temporarily changed sufficiently short (for example, 1 second or less) so that the capacity value of the inflection point immediately after the disappearance of the water droplet can be measured. Good.

図15は本実施の形態に係る容量型湿度センサの構成を示すブロック図、図16は本実施の形態の容量型湿度センサの動作を説明するフローチャートである。
本実施の形態の容量型湿度センサは、第1の実施の形態の構成に、計測周期変更部11を追加したものである。素子部1の構成は第1〜第4の実施の形態で説明したとおりである。
FIG. 15 is a block diagram showing the configuration of the capacitive humidity sensor according to this embodiment, and FIG. 16 is a flowchart for explaining the operation of the capacitive humidity sensor of this embodiment.
The capacitive humidity sensor of the present embodiment is obtained by adding a measurement cycle changing unit 11 to the configuration of the first embodiment. The configuration of the element unit 1 is as described in the first to fourth embodiments.

計測周期変更部11は、結露判定部5が結露状態と判定したときに(図16ステップS2においてYES)、計測周期を通常の周期よりも短い所定の周期に変更する(図16ステップS9)。また、計測周期変更部11は、結露判定部5が結露状態が解消したと判定し(図16ステップS3においてYES)、かつ変曲点検出部6が変曲点の容量値を検出した後に、計測周期を通常の周期に戻す(図16ステップS10)。なお、ここでは、ステップS10の処理をステップS4の処理後に行なっているが、ステップS10の処理は、ステップS4,S5,S6,S7(S8)のいずれかの後であれば、どこで行なってもよい。   When the dew condensation determination unit 5 determines that the dew condensation state is present (YES in step S2 in FIG. 16), the measurement cycle changing unit 11 changes the measurement cycle to a predetermined cycle shorter than the normal cycle (step S9 in FIG. 16). The measurement cycle changing unit 11 determines that the dew condensation state has been eliminated by the dew condensation determination unit 5 (YES in step S3 in FIG. 16), and the inflection point detection unit 6 detects the capacitance value of the inflection point. The measurement cycle is returned to the normal cycle (step S10 in FIG. 16). Here, the process of step S10 is performed after the process of step S4, but the process of step S10 is performed anywhere after any of steps S4, S5, S6, and S7 (S8). Good.

第1の実施の形態で説明したように、容量計測部3は、計測周期ごとに上部電極103と下部電極101間の容量値Cを計測する。本実施の形態のように計測周期を変更するには、容量計測部3の容量値算出部34が、計測周期変更部11からの指示に応じて、上部電極103と下部電極101間の容量値Cを算出する周期を変更すればよい。相対湿度導出部10は容量計測部3によって容量値Cが計測される度に相対湿度Xを求めるので、容量計測部3の計測周期が変更されると、それに応じて相対湿度導出部10の周期も変更されることになる。その他の構成は第1の実施の形態で説明したとおりである。
こうして、本実施の形態では、素子部1が結露状態の間、計測周期を短くすることにより、変曲点の容量値を容易に検出することができる。
As described in the first embodiment, the capacitance measuring unit 3 measures the capacitance value C between the upper electrode 103 and the lower electrode 101 every measurement cycle. In order to change the measurement cycle as in the present embodiment, the capacitance value calculation unit 34 of the capacitance measurement unit 3 determines the capacitance value between the upper electrode 103 and the lower electrode 101 in accordance with an instruction from the measurement cycle change unit 11. What is necessary is just to change the period which calculates C. Since the relative humidity deriving unit 10 obtains the relative humidity X every time the capacitance value C is measured by the capacity measuring unit 3, when the measurement cycle of the capacity measuring unit 3 is changed, the cycle of the relative humidity deriving unit 10 is accordingly changed. Will also be changed. Other configurations are the same as those described in the first embodiment.
Thus, in the present embodiment, the capacitance value at the inflection point can be easily detected by shortening the measurement cycle while the element unit 1 is in the dew condensation state.

なお、第1〜第5の実施の形態において、素子部1の表面から積極的に水滴を排除することを目的に、素子部1に疎水化表面処理を施してもよいし、感湿膜102の膜面が鉛直となるように素子部1を配置してもよい。   In the first to fifth embodiments, the element unit 1 may be subjected to a hydrophobic surface treatment for the purpose of positively removing water droplets from the surface of the element unit 1, or the moisture sensitive film 102. The element portion 1 may be arranged so that the film surface of the substrate is vertical.

第1〜第5の実施の形態で説明した容量計測部3の容量値算出部34と記憶部4と結露判定部5と変曲点検出部6と基準値算出部7と比較部8と基準値更新部9と相対湿度導出部10と計測周期変更部11とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って第1〜第5の実施の形態で説明した処理を実行する。   The capacitance value calculation unit 34, the storage unit 4, the dew condensation determination unit 5, the inflection point detection unit 6, the reference value calculation unit 7, the comparison unit 8, and the reference of the capacitance measurement unit 3 described in the first to fifth embodiments. The value updating unit 9, the relative humidity deriving unit 10, and the measurement cycle changing unit 11 can be realized by a computer having a CPU (Central Processing Unit), a storage device, and an interface, and a program for controlling these hardware resources. it can. The CPU executes the processes described in the first to fifth embodiments in accordance with a program stored in the storage device.

本発明は、容量型湿度センサの容量値のシフトを修正する技術に適用することができる。   The present invention can be applied to a technique for correcting a shift in capacitance value of a capacitive humidity sensor.

1…素子部、2…温度センサ、3…容量計測部、4…記憶部、5…結露判定部、6…変曲点検出部、7…基準値算出部、8…比較部、9…基準値更新部、10…相対湿度導出部、11…計測周期変更部、30…電源、31…抵抗、32…スイッチ、33…電圧検出部、34…容量値算出部、100…基板、101…下部電極、102…感湿膜、103…上部電極、104,105…電極ピン、106,107…導電ペースト、108…切欠き部、110…開口部、111,112…突出部、113…ギャップ。   DESCRIPTION OF SYMBOLS 1 ... Element part, 2 ... Temperature sensor, 3 ... Capacity | capacitance measurement part, 4 ... Memory | storage part, 5 ... Condensation determination part, 6 ... Inflection point detection part, 7 ... Reference value calculation part, 8 ... Comparison part, 9 ... Reference | standard Value updating unit, 10 ... Relative humidity deriving unit, 11 ... Measurement cycle changing unit, 30 ... Power source, 31 ... Resistance, 32 ... Switch, 33 ... Voltage detection unit, 34 ... Capacitance value calculating unit, 100 ... Substrate, 101 ... Lower part Electrode, 102 ... moisture sensitive film, 103 ... upper electrode, 104, 105 ... electrode pin, 106, 107 ... conductive paste, 108 ... notch, 110 ... opening, 111, 112 ... projection, 113 ... gap.

Claims (8)

感湿膜を上部電極と下部電極で挟んだ構造の素子部と、
前記上部電極と前記下部電極間の容量値を計測する容量計測手段と、
この容量計測手段によって計測された容量値に基づいて前記素子部が結露状態かどうかを判定する結露判定手段と、
前記素子部が結露状態と判定され、この結露状態が解消したと判定された直後に前記容量計測手段によって計測された容量値を、相対湿度−容量値特性上の変曲点の容量値とする変曲点検出手段と、
周囲温度が基準温度のときの相対湿度100%RHに対応する容量値である第1の基準値を記憶する記憶手段と、
前記第1の基準値と現在の周囲温度の値から、現在の周囲温度における相対湿度100%RHに対応する容量値である第2の基準値を算出する基準値算出手段と、
前記変曲点の容量値と前記第2の基準値とが異なる値かどうかを判定する比較手段と、
前記変曲点の容量値と前記第2の基準値とが異なると判定された場合に、前記変曲点の容量値と現在の周囲温度の値から、前記第1の基準値の最新値を算出して、前記記憶手段に記憶された値を更新する基準値更新手段とを備え、
前記素子部は、相対湿度−容量値特性に前記変曲点を生じさせるための結露検知構造を有することを特徴とする容量型湿度センサ。
An element part having a structure in which a moisture sensitive film is sandwiched between an upper electrode and a lower electrode;
Capacitance measuring means for measuring a capacitance value between the upper electrode and the lower electrode;
Condensation determination means for determining whether the element unit is in a dew condensation state based on the capacitance value measured by the capacity measurement means;
The capacitance value measured by the capacitance measuring unit immediately after it is determined that the element unit is in a dew condensation state and the dew condensation state is eliminated is set as a capacitance value at an inflection point on the relative humidity-capacitance value characteristic. Inflection point detection means;
Storage means for storing a first reference value which is a capacity value corresponding to a relative humidity of 100% RH when the ambient temperature is a reference temperature;
Reference value calculating means for calculating a second reference value that is a capacity value corresponding to a relative humidity of 100% RH at the current ambient temperature from the first reference value and the current ambient temperature value;
A comparison means for determining whether the capacitance value of the inflection point is different from the second reference value;
When it is determined that the capacity value of the inflection point is different from the second reference value, the latest value of the first reference value is determined from the capacity value of the inflection point and the current ambient temperature value. A reference value updating unit that calculates and updates a value stored in the storage unit,
The capacitive humidity sensor characterized in that the element section has a dew condensation detection structure for causing the inflection point in the relative humidity-capacitance value characteristic.
請求項1記載の容量型湿度センサにおいて、
前記記憶手段は、結露時の容量値を予め記憶し、
前記結露判定手段は、前記容量計測手段によって計測された容量値と前記結露時の容量値とを比較することにより、前記素子部が結露状態かどうかを判定することを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to claim 1, wherein
The storage means stores in advance a capacitance value at the time of condensation,
The dew condensation determining means determines whether or not the element portion is in a dew condensation state by comparing the capacitance value measured by the capacitance measuring means and the capacitance value at the time of dew condensation. .
請求項1または2記載の容量型湿度センサにおいて、
前記結露検知構造は、前記素子部の表面に前記下部電極の一部が露出するように、前記下部電極を覆う前記感湿膜の一部が除去された切欠き部からなることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to claim 1 or 2,
The dew condensation detection structure includes a notch portion from which a part of the moisture sensitive film covering the lower electrode is removed so that a part of the lower electrode is exposed on the surface of the element portion. Capacitive humidity sensor.
請求項1または2記載の容量型湿度センサにおいて、
前記結露検知構造は、前記素子部の表面に前記下部電極の一部が露出するように、前記感湿膜と前記上部電極とに設けられた複数の開口部からなることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to claim 1 or 2,
The dew condensation detection structure includes a plurality of openings provided in the moisture-sensitive film and the upper electrode so that a part of the lower electrode is exposed on the surface of the element portion. Humidity sensor.
請求項1または2記載の容量型湿度センサにおいて、
前記結露検知構造は、
前記上部電極から突き出るように形成された第1の突出部と、
前記下部電極から突き出るように形成され、前記第1の突出部とギャップを隔てて対向するように配置された第2の突出部とからなることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to claim 1 or 2,
The dew condensation detection structure is
A first protrusion formed to protrude from the upper electrode;
A capacitive humidity sensor comprising: a second protrusion formed so as to protrude from the lower electrode, and arranged to face the first protrusion with a gap therebetween.
請求項1乃至5のいずれか1項に記載の容量型湿度センサにおいて、
さらに、前記結露判定手段が結露状態と判定したときに、前記容量計測手段の計測周期を通常の周期よりも短い所定の周期に変更し、前記結露判定手段が結露状態が解消したと判定し、かつ前記変曲点検出手段が前記変曲点の容量値を検出した後に、前記計測周期を通常の周期に戻す計測周期変更手段を備えることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to any one of claims 1 to 5,
Further, when the condensation determination unit determines that the condensation state is present, the measurement cycle of the capacity measurement unit is changed to a predetermined cycle shorter than a normal cycle, and the condensation determination unit determines that the condensation state has been eliminated, A capacitive humidity sensor comprising: a measurement cycle changing unit that returns the measurement cycle to a normal cycle after the inflection point detection unit detects a capacitance value of the inflection point.
請求項1乃至6のいずれか1項に記載の容量型湿度センサにおいて、
さらに、前記容量計測手段によって計測された容量値と前記第1の基準値と現在の周囲温度の値に基づいて相対湿度を求める相対湿度導出手段を備えることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to any one of claims 1 to 6,
The capacitive humidity sensor further comprises relative humidity deriving means for obtaining relative humidity based on the capacitance value measured by the capacitance measuring means, the first reference value, and the current ambient temperature value.
請求項1乃至7のいずれか1項に記載の容量型湿度センサにおいて、
さらに、周囲温度を計測する温度センサを備えることを特徴とする容量型湿度センサ。
The capacitive humidity sensor according to any one of claims 1 to 7,
The capacitive humidity sensor further comprises a temperature sensor for measuring the ambient temperature.
JP2016074924A 2016-04-04 2016-04-04 Capacitance type humidity sensor Pending JP2017187328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074924A JP2017187328A (en) 2016-04-04 2016-04-04 Capacitance type humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074924A JP2017187328A (en) 2016-04-04 2016-04-04 Capacitance type humidity sensor

Publications (1)

Publication Number Publication Date
JP2017187328A true JP2017187328A (en) 2017-10-12

Family

ID=60044762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074924A Pending JP2017187328A (en) 2016-04-04 2016-04-04 Capacitance type humidity sensor

Country Status (1)

Country Link
JP (1) JP2017187328A (en)

Similar Documents

Publication Publication Date Title
US4898476A (en) Arrangement for measuring the water vapor dew point in gases
US7552635B2 (en) Humidity sensor capable of self-regulating temperature compensation and manufacturing method thereof
CN105339764B (en) Method for running sensor device
CA3044692C (en) Method for the in-situ calibration of a thermometer
US9664575B2 (en) Self-calibrating resistive flexure sensor
US20140146008A1 (en) Touch panel device
US9500735B2 (en) Method for calibrating a conductivity measuring cell
US9851846B2 (en) Input device and method of operating input device
US9696272B2 (en) Systems and methods for humidity measurement using dielectric material-based relative humidity sensors
US20120291541A1 (en) Digital field-induction water-level intelligent sensing system and its implementation method
JP2021508817A (en) Shunt resistor current value correction system and method
CN106482752B (en) Sensor device and method for calibrating a sensor device
US11519873B2 (en) Calibration of a humidity sensor device
JP2014085154A (en) Humidity detector
US10613049B2 (en) Capacitive sensor for detecting a medium, and corresponding method
TW202124952A (en) Gas sensing device and detection method of gas concentration
JP2017187328A (en) Capacitance type humidity sensor
JP7006359B2 (en) Battery smoke determination method and battery system
CN107076629B (en) Method for determining a pressure measurement signal and pressure measurement device for use in the method
CN107014550A (en) Relative pressure sensor
TWI442050B (en) Contact object water content sensing device, sensing method and computer program products
US20080110769A1 (en) Exhaust gas sensors and methods for measuring concentrations of nox and ammonia and temperatures of the sensors
KR20190058004A (en) High responsability temperuture and humidity sensor module with multi sensing type
CN203949741U (en) Temperature sensing system with quartz crystal temperature sensor and temperature sensing device thereof
KR20170092252A (en) Flexible gas sensor and producing method thereof