JP2017187300A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2017187300A
JP2017187300A JP2016074091A JP2016074091A JP2017187300A JP 2017187300 A JP2017187300 A JP 2017187300A JP 2016074091 A JP2016074091 A JP 2016074091A JP 2016074091 A JP2016074091 A JP 2016074091A JP 2017187300 A JP2017187300 A JP 2017187300A
Authority
JP
Japan
Prior art keywords
bus bar
detection element
current
magnetic detection
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074091A
Other languages
English (en)
Other versions
JP6711086B2 (ja
Inventor
健 奥山
Takeshi Okuyama
健 奥山
二口 尚樹
Naoki Futakuchi
尚樹 二口
秋元 克弥
Katsuya Akimoto
克弥 秋元
雄二朗 冨田
Yujiro Tomita
雄二朗 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016074091A priority Critical patent/JP6711086B2/ja
Priority to US15/471,134 priority patent/US10060953B2/en
Priority to DE102017106590.3A priority patent/DE102017106590A1/de
Publication of JP2017187300A publication Critical patent/JP2017187300A/ja
Application granted granted Critical
Publication of JP6711086B2 publication Critical patent/JP6711086B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】高精度でかつ大電流の検出が可能な電流センサを提供する。【解決手段】測定対象となる電流が流れるバスバ2と、バスバ2を流れる電流により発生する磁界の強度を検出する磁気検出素子3と、バスバ2をバスバ2の厚さ方向に挟み込むように配置されている磁性材料からなる一対のシールド板4と、を備え、バスバ2には、バスバ2を貫通する貫通孔5が形成され貫通孔5の両側に電流路6が形成されており、磁気検出素子3は、バスバ2の厚さ方向において貫通孔5と重なる位置に配置されており、バスバ2は、その厚さ方向の中心位置が、一対のシールド板4間の空間における厚さ方向の中心位置からずれた位置に配置されている。【選択図】図1

Description

本発明は、電流センサに関する。
従来、電流センサとして、測定対象となる電流により発生する磁界の強度を検出する磁気検出素子を備えたものが知られている(例えば、特許文献1,2参照)。磁気検出素子により磁界の強度を検出することで、その磁界の強度を基に、電流を演算により求めることが可能である。
特許第4612554号公報 特開2015−137892号公報
ところで、より高い精度で電流を検出するためには、磁気検出素子としてより感度の高いもの、例えばGMR(Giant Magneto Resistive effect)センサ等を用いることが望まれる。
しかしながら、GMRセンサ等の感度の高い磁気検出素子は、一般に、検出可能な磁界の強度の範囲が狭い。そのため、例えば3相モータの各相に流れる電流など大電流を検出する場合には、測定対象となる電流により発生する磁界が大きくなりすぎ、GMRセンサ等の感度の高い磁気検出素子を用いることが困難となる場合があった。
そこで、本発明は、高精度でかつ大電流の検出が可能な電流センサを提供することを目的とする。
本発明は、上記課題を解決することを目的として、測定対象となる電流が流れるバスバと、前記バスバを流れる電流により発生する磁界の強度を検出する磁気検出素子と、前記バスバを前記バスバの厚さ方向に挟み込むように配置されている磁性材料からなる一対のシールド板と、を備え、前記バスバには、前記バスバを貫通する貫通孔が形成され前記貫通孔の両側に電流路が形成されており、前記磁気検出素子は、前記バスバの厚さ方向において前記貫通孔と重なる位置に配置されており、前記バスバは、その厚さ方向の中心位置が、前記一対のシールド板間の空間における厚さ方向の中心位置からずれた位置に配置されている、電流センサを提供する。
本発明によれば、高精度でかつ大電流の検出が可能な電流センサを提供できる。
本発明の一実施の形態に係る電流センサを示す図であり、(a)は斜視図、(b)はそのA−A線断面図である。 (a)はバスバ中心からの位置xを説明する説明図、(b)はバスバ中心からの位置xと磁束密度との関係を示すグラフ図である。 本発明の一変形例に係る電流センサを示す斜視図である。
[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
図1は、本実施の形態に係る電流センサを示す図であり、(a)は斜視図、(b)はそのA−A線断面図である。
図1(a),(b)に示すように、電流センサ1は、測定対象となる電流が流れるバスバ2と、バスバ2を流れる電流により発生する磁界の強度を検出する磁気検出素子3と、バスバ2をバスバ2の厚さ方向に挟み込むように配置されている磁性材料からなる一対のシールド板4と、を備えている。
バスバ2は、銅やアルミニウム等の電気良導体からなる板状の導体であり、電流を流す電流路となるものである。バスバ2は、例えば電気自動車やハイブリッド車におけるモータとインバータ間の電源ラインとして用いられるものである。バスバ2を流れる電流は、例えば、定常時で200A、異常時等の突入電流で最大800A程度であり、その周波数は、例えば最大100kHzである。本実施の形態では、バスバ2の長手方向に沿って電流が流れている。
磁気検出素子3は、検出軸Dに沿った方向の磁界の強度(磁束密度)に応じた電圧の出力信号を出力するように構成されている。本実施の形態では、磁気検出素子3として、高い感度を有するGMRセンサを用いた。
シールド板4は、外部からの磁界が磁気検出素子3の検出結果に影響を及ぼさないように、外部からの磁界を遮蔽するためのものである。シールド板4は、例えばケイ素鋼、パーマロイ、フェライト等の磁性材料からなる板状の部材からなる。
シールド板4は、バスバ2を厚さ方向から挟み込むようにバスバ2と離間して配置されている。また、シールド板4は、その表面がバスバ2の表面に対して平行となるように(シールド板4の表面の法線方向がバスバ2の厚さ方向と一致するように)配置されている。
本実施の形態では、バスバ2には、貫通孔5が形成されている。貫通孔5は、バスバ2を貫通するように形成されており、貫通孔5の周囲はバスバ2で囲まれている。つまり、貫通孔5は、その一部がバスバ2の側方に開口する切欠き状に形成されるものではない。貫通孔5を形成することで、貫通孔5の両側に電流路6が形成されることになる。
本実施の形態では、貫通孔5は、バスバ2の幅方向における中央部に形成されている。貫通孔5の両側に形成される電流路6は、同じ幅に形成されている。
貫通孔5内では、両電流路6で発生した磁界が互いに打ち消し合う。つまり、貫通孔5を形成することで、貫通孔5内や貫通孔5の近傍における磁界の強度を小さくすることができる。
本実施の形態では、磁気検出素子3は、バスバ2の厚さ方向において貫通孔5と重なる位置に配置されている。換言すれば、磁気検出素子3は、バスバ2の厚さ方向の一方から見た平面視において、貫通孔5と重なる位置に配置されている。なお、「磁気検出素子3はバスバ2の厚さ方向において貫通孔5と重なる位置に配置されている」とは、図1(b)における上方(または下方)から見た平面視において、磁気検出素子3の少なくとも一部が貫通孔5と重なる位置に配置されていることを意味しており、例えば磁気検出素子3の一部のみが平面視で貫通孔5と重なる位置に配置されている場合も含まれる。また、磁気検出素子3は、図1(b)の断面視において、その一部が貫通孔5内に配置されていてもよいし、磁気検出素子3の全体が貫通孔5の外部(貫通孔5の上下)に配置されていてもよい。なお、本実施の形態では、磁気検出素子3は、両シールド板4の間に、両シールド板4と離間して配置されている。
バスバ2に貫通孔5を形成し、かつ、バスバ2の厚さ方向において貫通孔5と重なる位置に磁気検出素子3を配置することによって、バスバ2に大電流が流れる場合であっても、磁気検出素子3で検出される磁界を小さくすることが可能になる。
磁気検出素子3は、基板7に搭載されている。磁気検出素子3は、基板7をバスバ2とシールド板4の間に挿し込むことで、平面視で貫通孔5と重なる位置に配置されている。基板7は、ガラスエポキシ等の樹脂から構成されている。
磁気検出素子3として用いるGMRセンサは、その検出軸Dが搭載される基板7の表面に沿った方向となる。そこで、本実施の形態では、磁気検出素子3は、その検出軸Dがバスバ2の幅方向に沿うように配置されている。なお、検出軸Dがバスバ2の厚さ方向に沿うように磁気検出素子3を配置してもよいが、この場合、基板7の先端部を90度折り曲げ、その折り曲げた部分に磁気検出素子3を搭載する必要が生じ、電流センサ1の構造が複雑になる。
図示していないが、両シールド板4の間には、モールド樹脂が充填され、両シールド板4と磁気検出素子3とバスバ2と基板7とが、モールド樹脂により一体に構成されている。モールド樹脂は、磁気検出素子3、バスバ2、および両シールド板4の位置関係を一定に保ち振動等による検出誤差を抑制する役割と、シールド板4間に異物が侵入することによる検出誤差を抑制する役割とを兼ねている。
さて、本実施の形態に係る電流センサ1では、バスバ2は、その厚さ方向の中心位置が、一対のシールド板4間の空間における厚さ方向の中心位置からずれた位置に配置されている。
換言すれば、電流センサ1では、バスバ2と一方のシールド板4間の厚さ方向に沿った距離aと、バスバ2と他方のシールド板4間の厚さ方向に沿った距離bとが異なっている。以下、シールド板4の一方を第1シールド板4aと呼称し、シールド板4の他方を第2シールド板4bと呼称する。第1シールド板4bとバスバ2との距離aは、第2シールド板4bとバスバ2との距離bよりも大きい。つまり、第2シールド板4bは、第1シールド板4aよりもバスバ2に近接して配置されている。
両シールド板4とバスバ2の距離a,bの差は、バスバ2に流れる電流の大きさ、磁気検出素子3の位置等に応じて適宜設定可能であるが、両シールド板4間の距離の10%以上とすること(例えば両シールド板4間の距離が10mmである場合には距離a,bの差を1mm以上とすること)が望ましい。
図2(a)に示すように、バスバ2の貫通孔5における中心位置(幅方向、長さ方向、及び厚さ方向の中心位置、以下バスバ中心と呼称する)Oから、第2シールド板4b側への幅方向に沿った距離(バスバ中心からの位置)をxとする。バスバ2に流れる電流を一定とした場合において、距離(バスバ中心からの位置)xと距離xの位置で検出される磁界の強度(磁束密度)との関係を図2(b)に示す。
図2(b)に実線で示されるように、シールド板4を非対称配置した(両シールド板4とバスバ2との距離a,bを異ならせた(a>b))本実施の形態においては、検出される磁束密度は、貫通孔5の中心位置(バスバ中心)Oよりも第2シールド板4b側にずれた位置でゼロとなり、さらに第2シールド板4b側へと近づくに従って、徐々に磁束密度が上昇していく。
これに対して、シールド板4を対称配置した(両シールド板4とバスバ2との距離a,bを等しくした)比較例においては、図2(b)に破線で示されるように、検出される磁束密度は、貫通孔5の中心位置(バスバ中心)Oでゼロとなり、第2シールド板4b側へと近づくに従って、徐々に磁束密度が上昇していく。
図2(b)における実線と破線とを比較すれば分かるように、本実施の形態のように両シールド板4とバスバ2との距離a,bを異ならせることによって、シールド板4を対称配置した比較例と比較して、バスバ2の近傍(貫通孔5内及び貫通孔5の近傍)の磁界の強度が減少する。
図2(b)では図示を省略しているが、本実施の形態においては、貫通孔5の中心位置Oから第1シールド板4a側にずれた位置では、比較例よりも検出される磁界の強度が大きくなってしまうため、磁気検出素子3は、バスバ2の厚さ方向の中心位置よりも、第2シールド板4b側にずれた位置(よりバスバ2に近接して配置されたシールド板4側にずれた位置)に配置されることが望ましいといえる。本実施の形態では、磁気検出素子3を搭載した基板7は、バスバ2と第2シールド板4bとの間に挿入されている。
磁気検出素子3を配置する位置は、磁気検出素子3が検出可能な磁界の強度の範囲と、バスバ2を流れる電流の大きさを考慮し、適宜な大きさの磁界の強度が検出可能な位置に配置するとよい。なお、磁気検出素子3を配置する位置は、貫通孔5の長さ方向及び幅方向における中心に配置されている必要はなく、平面視で貫通孔5と重なる位置に配置されていればよい。
本実施の形態では、貫通孔5を形成することによる磁界の強度の減衰に加え、さらにバスバ2と両シールド板4との距離a,bを異ならせることにより磁気検出素子3で検出される磁界の強度を減衰させており、これにより、バスバ2に流れる電流が大電流である場合であっても、GMRセンサ等の磁気検出素子3を用いた高精度な電流検出が可能になる。つまり、本実施の形態では、シールド板4が、外部からの磁界を遮蔽する役割と、磁気検出素子3で検出される磁界の強度を減衰させる役割とを兼ねているといえる。
本実施の形態では、電流の検出対象となるバスバ2が1本である場合を説明したが、電流の検出対象となるバスバ2が複数存在する場合にも、本発明は適用可能である。
例えば、図3に示す電流センサ31のように、電流の検出対象となるバスバ2が3本である場合、各バスバ2を同一平面上に整列配置した状態とし、各バスバ2を一括して挟み込むように共通のシールド板4を設けるとよい。この際、第2シールド板4bを第1シールド板4aよりも近接して配置する。また、平面視で各バスバ2の貫通孔5と重なる位置で、かつ、バスバ2の厚さ方向の中心よりも第2シールド板4b側にずれた位置に、各バスバ2に対応した磁気検出素子3をそれぞれ配置する。各バスバ2の貫通孔5を幅方向に一直線状に整列して配置することで、共通の基板7に各バスバ2に対応した複数(ここでは3つ)の磁気検出素子3を搭載することが可能であり、簡単な構成で複数のバスバ2に流れる電流を検出することが可能になる。各バスバ2に流れる電流は、例えば、インバータとモータ間を伝送される三相交流であってもよい。
(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係る電流センサ1では、バスバ2には、バスバ2を貫通する貫通孔5が形成され貫通孔5の両側に電流路6が形成されており、磁気検出素子3は、バスバ2の厚さ方向において貫通孔5と重なる位置に配置されており、バスバ2は、その厚さ方向の中心位置が、一対のシールド板4間の空間における厚さ方向の中心位置からずれた位置に配置されている。
バスバ2に貫通孔5を形成し、バスバ2の厚さ方向において貫通孔5と重なる位置に磁気検出素子3を配置することで、磁気検出素子3で検出される磁界の強度を小さくすることが可能になる。しかし、磁気検出素子3は基板7に搭載される必要があるため、実際には貫通孔5の中心(厚さ方向の中心)から離れた位置に磁気検出素子3が配置されてしまい、磁気検出素子3で検出される磁界の強度が十分に小さくならずに、大電流の測定が困難となるおそれもあった。
そこで、本実施の形態では、さらにバスバ2を両シールド板4間の中心からずれた位置に配置し、バスバ2と両シールド板4との距離a,bを異ならせることで、磁気検出素子3で検出される磁界の強度をより小さくした。これにより、測定対象となる電流が、例えばモータとインバータ間で伝送される電流など大電流であっても、GMRセンサ等の磁気検出素子3を用いることが可能となり、高精度に電流検出が可能となる。すなわち、本実施の形態によれば、高精度でかつ大電流の検出が可能な電流センサ1を実現できる。
(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
[1]測定対象となる電流が流れるバスバ(2)と、前記バスバ(2)を流れる電流により発生する磁界の強度を検出する磁気検出素子(3)と、前記バスバ(2)を前記バスバ(2)の厚さ方向に挟み込むように配置されている磁性材料からなる一対のシールド板(4)と、を備え、前記バスバ(2)には、前記バスバ(2)を貫通する貫通孔(5)が形成され前記貫通孔(5)の両側に電流路(6)が形成されており、前記磁気検出素子(3)は、前記バスバ(2)の厚さ方向において前記貫通孔(5)と重なる位置に配置されており、前記バスバ(2)は、その厚さ方向の中心位置が、前記一対のシールド板(4)間の空間における厚さ方向の中心位置からずれた位置に配置されている、電流センサ(1)。
[2]前記一対のシールド板(4)は、第1シールド板(4a)と、前記第1シールド板(4a)よりも前記バスバ(2)に近接して配置された第2シールド板(4b)と、からなり、前記磁気検出素子(3)は、前記バスバ(2)の厚さ方向の中心位置よりも、前記第2シールド板(4b)側にずれた位置に配置されている、[1]に記載の電流センサ(1)。
[3]前記磁気検出素子(3)が、GMRセンサである、[1]または[2]に記載の電流センサ(1)。
[4]前記磁気検出素子(3)は、その検出軸(D)が前記バスバ(2)の幅方向に沿うように配置されている、[3]に記載の電流センサ(1)。
[5]複数の前記バスバ(2)と、複数の前記バスバ(2)に対応した複数の磁気検出素子(3)と、を備え、複数の前記バスバ(2)は、同一平面上に整列して配置されており、前記一対のシールド板(4)は、複数の前記バスバ(4)を一括して挟み込むように配置されている、[1]乃至[4]の何れか1項に記載の電流センサ(31)。
以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。
例えば、上記実施の形態では、磁気検出素子3としてGMRセンサを用いる場合を説明したが、これに限らず、磁気検出素子3として、AMR(Anisotropic Magneto Resistive)センサ、TMR(Tunneling Magneto Resistive)センサ、ホールIC等の他の素子を用いることも可能である。ただし、高精度な電流検出を実現するため、なるべく精度の高い磁気検出素子3を用いることが望ましいといえる。
また、上記実施の形態では、磁気検出素子3を1つ用いる場合を説明したが、これに限らず、平面視で貫通孔5と重なる位置に複数(例えば2つ)の磁気検出素子3を配置し、複数の磁気検出素子3の出力を基に電流検出を行うようにしてもよい。
さらに、上記実施の形態では、バスバ2の幅方向における中央部に貫通孔5を形成したが、貫通孔5はバスバ2の幅方向における中央からずれた位置に形成されていてもよい。つまり、貫通孔5の両側の電流路6の幅が互いに異なっていてもよい。
1…電流センサ
2…バスバ
3…磁気検出素子
4…シールド板
4a…第1シールド板
4b…第2シールド板
5…貫通孔
6…電流路
7…基板

Claims (5)

  1. 測定対象となる電流が流れるバスバと、
    前記バスバを流れる電流により発生する磁界の強度を検出する磁気検出素子と、
    前記バスバを前記バスバの厚さ方向に挟み込むように配置されている磁性材料からなる一対のシールド板と、を備え、
    前記バスバには、前記バスバを貫通する貫通孔が形成され前記貫通孔の両側に電流路が形成されており、
    前記磁気検出素子は、前記バスバの厚さ方向において前記貫通孔と重なる位置に配置されており、
    前記バスバは、その厚さ方向の中心位置が、前記一対のシールド板間の空間における厚さ方向の中心位置からずれた位置に配置されている、
    電流センサ。
  2. 前記一対のシールド板は、第1シールド板と、前記第1シールド板よりも前記バスバに近接して配置された第2シールド板と、からなり、
    前記磁気検出素子は、前記バスバの厚さ方向の中心位置よりも、前記第2シールド板側にずれた位置に配置されている、
    請求項1に記載の電流センサ。
  3. 前記磁気検出素子が、GMRセンサである、
    請求項1または2に記載の電流センサ。
  4. 前記磁気検出素子は、その検出軸が前記バスバの幅方向に沿うように配置されている、
    請求項3に記載の電流センサ。
  5. 複数の前記バスバと、複数の前記バスバに対応した複数の磁気検出素子と、を備え、
    複数の前記バスバは、同一平面上に整列して配置されており、
    前記一対のシールド板は、複数の前記バスバを一括して挟み込むように配置されている、
    請求項1乃至4の何れか1項に記載の電流センサ。
JP2016074091A 2016-04-01 2016-04-01 電流センサ Expired - Fee Related JP6711086B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016074091A JP6711086B2 (ja) 2016-04-01 2016-04-01 電流センサ
US15/471,134 US10060953B2 (en) 2016-04-01 2017-03-28 Current sensor
DE102017106590.3A DE102017106590A1 (de) 2016-04-01 2017-03-28 Stromsensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074091A JP6711086B2 (ja) 2016-04-01 2016-04-01 電流センサ

Publications (2)

Publication Number Publication Date
JP2017187300A true JP2017187300A (ja) 2017-10-12
JP6711086B2 JP6711086B2 (ja) 2020-06-17

Family

ID=59885784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074091A Expired - Fee Related JP6711086B2 (ja) 2016-04-01 2016-04-01 電流センサ

Country Status (3)

Country Link
US (1) US10060953B2 (ja)
JP (1) JP6711086B2 (ja)
DE (1) DE102017106590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433621A (zh) * 2018-01-25 2020-07-17 株式会社村田制作所 磁传感器及电流传感器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841939B2 (ja) * 2017-12-13 2021-03-10 アルプスアルパイン株式会社 電流センサ
JP6472561B1 (ja) * 2018-06-26 2019-02-20 三菱電機株式会社 電力変換装置
DE102019114554B3 (de) * 2019-05-29 2020-09-24 Infineon Technologies Ag Stromschiene und Leistungsmodul mit Stromschiene
US11226382B2 (en) * 2020-04-07 2022-01-18 Allegro Microsystems, Llc Current sensor system
JP7367657B2 (ja) * 2020-11-10 2023-10-24 Tdk株式会社 電流センサ及び電気制御装置
JP7243747B2 (ja) * 2021-01-29 2023-03-22 Tdk株式会社 電流センサおよびそれを備えた電気制御装置
DE102021208350A1 (de) 2021-08-02 2023-02-02 Zf Friedrichshafen Ag AC-Stromschienenträger für Inverter zum Betreiben eines elektrischen Antriebs eines Elektrofahrzeugs oder eines Hybridfahrzeugs, Inverter
US11656250B2 (en) 2021-09-07 2023-05-23 Allegro Microsystems, Llc Current sensor system
US11892476B2 (en) 2022-02-15 2024-02-06 Allegro Microsystems, Llc Current sensor package
US11940470B2 (en) 2022-05-31 2024-03-26 Allegro Microsystems, Llc Current sensor system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030129A2 (en) * 2006-09-06 2008-03-13 Radivoje Popovic Sensor and procedure for measuring bus bar current with skin effect correction
WO2013176271A1 (ja) * 2012-05-24 2013-11-28 株式会社フジクラ 電流センサ
JP2015137892A (ja) * 2014-01-21 2015-07-30 日立金属株式会社 電流検出構造
JP2015194472A (ja) * 2014-01-23 2015-11-05 株式会社デンソー 電流検出システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525554B2 (ja) * 2005-10-21 2010-08-18 株式会社デンソー 電流センサ
JP4612554B2 (ja) 2006-02-16 2011-01-12 株式会社東海理化電機製作所 電流センサ
JP2016074091A (ja) 2014-10-02 2016-05-12 出光興産株式会社 延伸フィルムの製造方法及びその製造方法により得られた延伸フィルムからなる包装材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008030129A2 (en) * 2006-09-06 2008-03-13 Radivoje Popovic Sensor and procedure for measuring bus bar current with skin effect correction
WO2013176271A1 (ja) * 2012-05-24 2013-11-28 株式会社フジクラ 電流センサ
JP2015137892A (ja) * 2014-01-21 2015-07-30 日立金属株式会社 電流検出構造
JP2015194472A (ja) * 2014-01-23 2015-11-05 株式会社デンソー 電流検出システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433621A (zh) * 2018-01-25 2020-07-17 株式会社村田制作所 磁传感器及电流传感器

Also Published As

Publication number Publication date
DE102017106590A1 (de) 2017-10-05
US20170285075A1 (en) 2017-10-05
US10060953B2 (en) 2018-08-28
JP6711086B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6711086B2 (ja) 電流センサ
JP6690433B2 (ja) 電流センサ
JP6149885B2 (ja) 電流センサ
JP6651956B2 (ja) 電流センサ
CN107533089B (zh) 电流传感器
US10877075B2 (en) Current sensor
WO2013172109A1 (ja) 電流センサ
JP6403086B2 (ja) 電流検出構造
JP2013170878A (ja) 電流センサ
JP2015137892A (ja) 電流検出構造
JP2019138815A (ja) 電流センサ
WO2016056135A1 (ja) 電流検出装置、及び電流検出方法
JP2016200436A (ja) 電流センサ
JP6311790B2 (ja) 電流センサ
US10677819B2 (en) Current sensor
JP2016200438A (ja) 電流センサ
JP2019007935A (ja) 電流センサ
US11204372B2 (en) Current sensor
JP2014066623A (ja) 電流センサ
JP6144597B2 (ja) 電流センサ
US20200018804A1 (en) Electric current sensor
JP6076860B2 (ja) 電流検出装置
JP6390966B2 (ja) 磁束密度センサ
JP2015148469A (ja) 電流検出構造
WO2018008180A1 (ja) 電流センサ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees