JP2017186960A - Structure of housing of exhaust selector valve - Google Patents

Structure of housing of exhaust selector valve Download PDF

Info

Publication number
JP2017186960A
JP2017186960A JP2016076382A JP2016076382A JP2017186960A JP 2017186960 A JP2017186960 A JP 2017186960A JP 2016076382 A JP2016076382 A JP 2016076382A JP 2016076382 A JP2016076382 A JP 2016076382A JP 2017186960 A JP2017186960 A JP 2017186960A
Authority
JP
Japan
Prior art keywords
exhaust
housing
insert member
engine
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016076382A
Other languages
Japanese (ja)
Inventor
弘晃 池上
Hiroaki Ikegami
弘晃 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016076382A priority Critical patent/JP2017186960A/en
Publication of JP2017186960A publication Critical patent/JP2017186960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To secure required high heat resistance while suppressing an increase of a cost caused by a use of a high-grade material for a housing 5, in an exhaust selector valve 4 which is arranged at an exhaust system of an engine 1 having, for example, a turbo supercharger (as one example, an HP turbo 3).SOLUTION: A seal member 51a between an exhaust system and the other component is formed at an insert member 51 which is interference-fit to a main body member 50 of a housing 5. A thermal expansion coefficient of the insert member 51 is set larger than that of the main body member 50, and a fastening margin between both the members is set so as not to reach zero even if a temperature of the insert member 51 is lowered ahead when temperatures of both the members are lowered during an operation of the engine 1.SELECTED DRAWING: Figure 2

Description

本発明は、エンジンなどの排気系に設けられる排気切替弁のハウジングの構造に関し、特にターボ過給機を備えたガソリンエンジンに好適なものに係る。   The present invention relates to a housing structure of an exhaust gas switching valve provided in an exhaust system of an engine or the like, and particularly relates to a structure suitable for a gasoline engine provided with a turbocharger.

従来より、車両などに搭載されるエンジンにおいて、排気エネルギを利用して吸気を過給するターボ過給機が用いられることがある。近年では例えば特許文献1に記載されているようにディーゼルエンジンにおいて大小、2つのターボ過給機を切り替えて動作させるようにしたものがあり、排気通路には排気の流れの上流側に位置する高圧段のターボ過給機と、その下流側に位置する低圧段のターボ過給機とが配設されている。   Conventionally, a turbocharger that supercharges intake air by using exhaust energy is sometimes used in an engine mounted on a vehicle or the like. In recent years, for example, as described in Patent Document 1, there is a diesel engine in which two large and small turbochargers are switched to operate, and the exhaust passage has a high pressure located upstream of the exhaust flow. A turbocharger of a stage and a low-pressure turbocharger located downstream thereof are arranged.

そして、前記高圧段のターボ過給機に排気を導入する通路から分岐して、当該高圧段のターボ過給機の下流側に排気の流れをバイパスさせるバイパス通路が設けられ、その分岐部に排気切替弁が配設されている。この排気切替弁により、排気の流れを高圧段のターボ過給機またはバイパス通路のいずれかに向かうように変更することができる。そして、その排気切替弁のハウジングには、排気通路を構成する部品との間のシール面が形成されている。   A bypass passage is provided that branches from a passage for introducing exhaust gas to the high-pressure turbocharger and bypasses the exhaust flow downstream of the high-pressure turbocharger. A switching valve is provided. With this exhaust gas switching valve, the flow of exhaust gas can be changed to go to either the high-pressure stage turbocharger or the bypass passage. And the sealing surface between the parts which comprise an exhaust passage is formed in the housing of the exhaust gas switching valve.

特開2012−12990号公報JP 2012-12990 A

ところで、近年では自動車の燃費改善のために、ガソリンエンジンにもターボ過給機を装備することが増えてきており、ディーゼルエンジンに比べて排気温度が高いことから、ターボ過給機や排気切替弁のハウジングの耐熱性を高めることが必要になる。ここで一般的にターボハウジングの材料としては、高温強度や熱疲労特性に優れたオーステナイト系の耐熱鋳鋼が用いられるが、このようなハイグレード材料は高価であり、コストの増大を招くことになる。   By the way, in recent years, in order to improve the fuel efficiency of automobiles, gasoline engines are increasingly equipped with turbochargers, and the exhaust temperature is higher than that of diesel engines. It is necessary to increase the heat resistance of the housing. Here, as a material for the turbo housing, austenitic heat-resistant cast steel having excellent high-temperature strength and thermal fatigue characteristics is generally used. However, such a high-grade material is expensive and causes an increase in cost. .

そこで、排気切替弁のハウジングとしては、特に耐熱性が問題になるシール面のみを前記のようなハイグレード材料で形成することも考えられるが、この場合には、シール面を形成するインサート部材を、ハウジングの本体部材にどのように組み付けるかが問題になる。例えば本体部材を比較的耐熱性が低いものの安価なフェライト系の耐熱鋳鋼によって形成した場合、その熱膨張係数がインサート部材よりも小さくなることから、エンジンの運転中にハウジングの温度が低下するときに、インサート部材との間に隙間が生じるおそれがあるからである。   Therefore, as a housing for the exhaust gas switching valve, it is conceivable to form only the seal surface where heat resistance is a problem with the high-grade material as described above. In this case, an insert member for forming the seal surface is used. The problem is how to assemble the body member of the housing. For example, when the main body member is made of an inexpensive ferritic heat-resistant cast steel with relatively low heat resistance, its thermal expansion coefficient is smaller than that of the insert member, so the temperature of the housing decreases during engine operation. This is because a gap may be formed between the insert member and the insert member.

かかる点に鑑みて本発明の目的は、例えばターボ過給機を備えたエンジンに用いられる排気切替弁において、ハウジングにハイグレード材料を用いることによるコストの増大を抑制しながら、求められる高い耐熱性を確保することにある。   In view of such points, an object of the present invention is to provide high heat resistance that is required while suppressing an increase in cost due to the use of a high-grade material for a housing, for example, in an exhaust gas switching valve used in an engine equipped with a turbocharger. Is to ensure.

前記の目的を達成するために本発明は、エンジンの排気系に設けられ、排気の流れを変更する排気切替弁のハウジングの構造を対象とする。そして、ハウジングの本体部材に締まり嵌めで嵌め込むインサート部材に、排気系の他の部品との間のシール面を設ける構造とし、このインサート部材の熱膨張係数を本体部材よりも大きく設定するとともに、当該インサート部材の本体部材への締め代を、エンジンの運転中に両部材の温度が低下するときにインサート部材の温度が先に低下しても、零にならないように設定した。   In order to achieve the above object, the present invention is directed to a structure of an exhaust switching valve housing that is provided in an exhaust system of an engine and changes an exhaust flow. And it is set as the structure which provides the sealing surface between other parts of an exhaust system in the insert member inserted by the interference fit in the main body member of a housing, and sets the thermal expansion coefficient of this insert member larger than the main body member, The tightening allowance of the insert member to the main body member was set so as not to become zero even if the temperature of the insert member first decreased when the temperature of both members decreased during the operation of the engine.

すなわち、エンジンの運転中には高温の排気を受けて、ハウジングの温度が常温よりも高くなり、その本体部材およびインサート部材がそれぞれ熱膨張することになる。ここで、エンジンの負荷が増大し、排気系の温度が上昇するときには一時的に、インサート部材の熱膨張量が先に大きくなるので、その熱膨張係数が本体部材よりも大きいことと相俟って、両部材の間の締め代が増大し、隙間が生じることはない。   That is, during the operation of the engine, high-temperature exhaust is received, the temperature of the housing becomes higher than the normal temperature, and the main body member and the insert member are each thermally expanded. Here, when the engine load increases and the temperature of the exhaust system rises, the amount of thermal expansion of the insert member temporarily increases temporarily, which is coupled with the fact that the coefficient of thermal expansion is larger than that of the main body member. Thus, the tightening allowance between both members is increased, and no gap is generated.

一方、例えばエンジン負荷の低下に伴い排気系の温度が下がるときには、先に温度の低下するインサート部材の熱膨張量が小さくなる(即ち収縮する)ことから、その熱膨張係数が大きいことも相俟って、本体部材との間の締め代が小さくなってしまい、隙間が生じるおそれがあった。   On the other hand, for example, when the temperature of the exhaust system decreases as the engine load decreases, the amount of thermal expansion of the insert member whose temperature decreases first decreases (that is, contracts). Therefore, there is a possibility that a clearance between the main body member is reduced and a gap is generated.

これに対し前記の構成によれば、そのようにインサート部材の温度が先に低下するときに、遅れて温度の低下する本体部材との間に生じ得る収縮量の差の最大値を予め実験や計算によって求めておき、この最大値よりも大きくなるように、インサート部材の本体部材への締め代を設定している。よって、前記のように先に温度の低下するインサート部材の収縮量が大きくなっても、本体部材との間に隙間が生じる心配はない。   On the other hand, according to the above-described configuration, when the temperature of the insert member decreases first, the maximum value of the difference in contraction amount that can occur between the main body member and the temperature of the insert member that decreases with a delay is measured in advance. The fastening allowance to the main body member of the insert member is set so as to be larger than this maximum value obtained by calculation. Therefore, even if the amount of shrinkage of the insert member whose temperature decreases first increases as described above, there is no concern that a gap will be formed between the body member and the body member.

そして、前記のハウジングの構造によれば、シール面の形成されたインサート部材を、例えばオーステナイト系の耐熱鋳鋼のようなハイグレード材料によって形成し、シール面の耐熱性を十分に確保しながら、ハウジングの本体部材には高価なハイグレード材料を使用しないことで、コストの増大を抑制できる。   According to the structure of the housing, the insert member formed with the seal surface is formed of a high-grade material such as austenitic heat-resistant cast steel, for example, while sufficiently ensuring the heat resistance of the seal surface. An increase in cost can be suppressed by using no expensive high-grade material for the main body member.

本発明に係るハウジングの構造を用いれば、排気切替弁と排気系の他の部品との間のシール面を別体のインサート部材に形成しているので、このインサート部材を高価なハイグレード材料によって形成することで、求められる高い耐熱性を確保することができるとともに、ハウジングの本体部材にはハイグレード材料を用いないことによって、コストの増大を抑制できる。しかも、インサート部材と本体部材との嵌め合いの部分に隙間が生じるおそれがない。   If the structure of the housing according to the present invention is used, the seal surface between the exhaust switching valve and the other parts of the exhaust system is formed in a separate insert member. Therefore, the insert member is made of an expensive high-grade material. By forming, the required high heat resistance can be ensured, and an increase in cost can be suppressed by not using a high-grade material for the main body member of the housing. In addition, there is no possibility that a gap is generated in the fitting portion between the insert member and the main body member.

本発明の実施の形態に係るエンジンの吸排気系の概略構成図である。1 is a schematic configuration diagram of an intake / exhaust system of an engine according to an embodiment of the present invention. 排気切り替え弁のハウジングの構造を示す正面図である。It is a front view which shows the structure of the housing of an exhaust gas switching valve. インサート部材のハウジング本体部材への締め代の変化を示すタイミングチャートである。It is a timing chart which shows the change of the interference to the housing body member of an insert member.

以下、本発明に係る排気切替弁を、一例として自動車に搭載されたエンジン1の排気系に配設した実施の形態について説明する。なお、エンジン1としては例えば、筒内直接噴射式または吸気ポート噴射式のガソリンエンジンの他に、筒内直接噴射式のマルチフューエルエンジン、ディーゼルエンジンなどが挙げられる。   Hereinafter, an embodiment in which an exhaust gas switching valve according to the present invention is disposed in an exhaust system of an engine 1 mounted on an automobile will be described as an example. Examples of the engine 1 include an in-cylinder direct injection type multi-fuel engine and a diesel engine in addition to the in-cylinder direct injection type or intake port injection type gasoline engine.

−排気系のターボシステム−
図1は、本実施の形態に係るエンジン1に装備された2ステージ・ターボシステムを概略的に示しており、このシステムは、低圧段および高圧段の2つのターボ過給機2,3を直列に配置し、エンジン1の運転状態に応じて切り替えて動作させるようにしたものである。すなわち、まず、エンジン1の吸気系、即ち吸気通路11には、吸気の流れの上流側に低圧段のターボ過給機2(以下、LPターボ2ともいう)のコンプレッサインペラ21が配設され、吸気通路11を流通する吸気を圧縮するようになっている。
−Turbo system for exhaust system−
FIG. 1 schematically shows a two-stage turbo system installed in an engine 1 according to the present embodiment. This system is composed of two turbochargers 2 and 3 in a low-pressure stage and a high-pressure stage in series. It is arranged to be operated in accordance with the operating state of the engine 1. That is, first, in the intake system of the engine 1, that is, the intake passage 11, a compressor impeller 21 of a low-pressure stage turbocharger 2 (hereinafter also referred to as LP turbo 2) is disposed upstream of the flow of intake air. The intake air flowing through the intake passage 11 is compressed.

このLPターボ2は、一例として大容量の高速型ターボ過給機であり、その下流側には比較的小容量の高圧段のターボ過給機3(以下、HPターボ3ともいう)のコンプレッサインペラ31が配設されている。HPターボ3は、エンジン1の低中速域で過給能力が高くなる低速型のターボ過給機であり、前記LPターボ2によって圧縮された吸気をさらに圧縮する。こうして圧縮されて温度の上昇した吸気を冷却するために、HPターボ3の下流側にはインタークーラ12が配設されている。   The LP turbo 2 is, for example, a large-capacity high-speed turbocharger, and a compressor impeller of a relatively small-capacity high-pressure turbocharger 3 (hereinafter also referred to as an HP turbo 3) on the downstream side thereof. 31 is disposed. The HP turbo 3 is a low-speed turbocharger that has a high supercharging capability in the low and medium speed range of the engine 1, and further compresses the intake air compressed by the LP turbo 2. An intercooler 12 is disposed on the downstream side of the HP turbo 3 in order to cool the intake air that has been compressed and thus increased in temperature.

さらに、吸気通路11には、前記HPターボ3のコンプレッサインペラ31をバイパスして、その上流側から下流側に吸気を流通させる吸気バイパス通路13と、この吸気バイパス通路13を流れる吸気の流量を調整可能な吸気切替弁14とが設けられている。吸気切替弁14の開度を増加させるほど、コンプレッサインペラ31をバイパスする吸気の流量が増大し、開度を減少させるほど、バイパスする吸気の流量は減少する。   Further, the intake passage 11 bypasses the compressor impeller 31 of the HP turbo 3 and adjusts the flow rate of the intake air flowing through the intake bypass passage 13 and the intake bypass passage 13 for flowing the intake air from the upstream side to the downstream side. A possible intake switching valve 14 is provided. As the opening degree of the intake switching valve 14 is increased, the flow rate of intake air that bypasses the compressor impeller 31 is increased. As the opening degree is decreased, the flow rate of intake air that is bypassed is decreased.

一方、エンジン1の排気系、即ち排気通路15には、図示しない排気マニホルドよりも排気の流れの下流側に前記HPターボ3のタービンホイール32が配設されており、排気の流れを受けて回転し、タービンシャフト33を介してコンプレッサインペラ31を回転させる。このタービンホイール32よりも下流側の排気通路15には、LPターボ2のタービンホイール22が配設されており、前記HPターボ3を通過した排気を受けて回転し、タービンシャフト23を介してコンプレッサインペラ21を回転させる。   On the other hand, in the exhaust system of the engine 1, that is, the exhaust passage 15, the turbine wheel 32 of the HP turbo 3 is disposed downstream of the exhaust manifold (not shown) and rotates in response to the exhaust flow. Then, the compressor impeller 31 is rotated via the turbine shaft 33. A turbine wheel 22 of the LP turbo 2 is disposed in the exhaust passage 15 on the downstream side of the turbine wheel 32, and rotates by receiving the exhaust gas that has passed through the HP turbo 3. The impeller 21 is rotated.

さらに、排気通路15から分岐して、前記HPターボ3のタービンホイール32をバイパスする排気バイパス通路16が設けられ、この排気バイパス通路16の分岐部に排気切替弁4が配設されている。詳しくは図2に示すように排気切替弁4は、排気通路15から排気バイパス通路16が分岐する部分に取り付けられるハウジング5と、これに収容された弁体6と、を備えており、この弁体6によって、排気バイパス通路16に連通する開口部5d(以下、バイパス開口部5dという)を開閉するようになっている。   Further, an exhaust bypass passage 16 branched from the exhaust passage 15 and bypassing the turbine wheel 32 of the HP turbo 3 is provided, and an exhaust switching valve 4 is disposed at a branch portion of the exhaust bypass passage 16. Specifically, as shown in FIG. 2, the exhaust gas switching valve 4 includes a housing 5 attached to a portion where the exhaust bypass passage 16 branches from the exhaust passage 15, and a valve body 6 accommodated in the housing 5. The body 6 opens and closes an opening 5d communicating with the exhaust bypass passage 16 (hereinafter referred to as a bypass opening 5d).

すなわち、前記の弁体6が全閉状態になると、排気バイパス通路16への排気の流量が零になって、排気の流れはHPターボ3のタービンホイール32に向かうようになる。その状態から弁体6が開かれてゆくと、その開度の増加に応じて排気バイパス通路16に向かう排気(即ち、HPターボ3をバイパスする排気)の流量が増大してゆく。なお、図1に表れているように排気通路15には、LPターボ2のタービンホイール22をバイパスする排気バイパス通路17も設けられており、ここにはウエストゲート弁18が設けられている。   That is, when the valve body 6 is fully closed, the flow rate of the exhaust gas to the exhaust bypass passage 16 becomes zero, and the flow of the exhaust gas flows toward the turbine wheel 32 of the HP turbo 3. When the valve body 6 is opened from this state, the flow rate of the exhaust (that is, the exhaust that bypasses the HP turbo 3) toward the exhaust bypass passage 16 increases as the opening degree increases. As shown in FIG. 1, the exhaust passage 15 is also provided with an exhaust bypass passage 17 that bypasses the turbine wheel 22 of the LP turbo 2, and a wastegate valve 18 is provided here.

そして、例えばエンジン1のコントローラであるECU100からの信号に応じて、前記の吸気切替弁14および排気切替弁4の開度がエンジン1の運転状態に基づいて制御され、LPターボ2およびHPターボ3の動作が切り替えられるようになっている。例えば、エンジン回転数が特に低い運転領域では吸気切替弁14および排気切替弁4が全閉とされ、LPターボ2およびHPターボ3の双方が吸気を過給する。なお、このときにはウエストゲート弁18も閉じられる。   For example, the opening degree of the intake switching valve 14 and the exhaust switching valve 4 is controlled based on the operating state of the engine 1 in accordance with a signal from the ECU 100 which is a controller of the engine 1, and the LP turbo 2 and the HP turbo 3. The operation of can be switched. For example, in the operating region where the engine speed is particularly low, the intake switching valve 14 and the exhaust switching valve 4 are fully closed, and both the LP turbo 2 and the HP turbo 3 supercharge the intake air. At this time, the wastegate valve 18 is also closed.

そうしてエンジン回転数の上昇に連れて排気切替弁4が開かれ、徐々にHPターボ3による過給の度合いが低下するとともに、LPターボ2による過給の度合いが高くなってゆく。さらにエンジン回転数またはエンジン負荷が上昇して中高回転の運転領域になると、吸気切替弁14も開かれて主にLPターボ2による過給状態に切り替わり、HPターボ3は実質、過給を行わないアイドリング状態になる。そして、高負荷高回転の所定運転領域ではウエストゲート弁18が開かれる。   Thus, as the engine speed increases, the exhaust gas switching valve 4 is opened, and the degree of supercharging by the HP turbo 3 gradually decreases and the degree of supercharging by the LP turbo 2 gradually increases. Further, when the engine speed or the engine load rises to reach a middle / high speed operation region, the intake switching valve 14 is also opened to switch to the supercharged state mainly by the LP turbo 2, and the HP turbo 3 does not perform supercharging substantially. Idle state. Then, the wastegate valve 18 is opened in a predetermined operation region of high load and high rotation.

−排気切替弁の構造−
図2には排気通路15から取り外して単体で示すように、本実施の形態の排気切替弁4はバタフライ弁からなり、そのハウジング5には、排気通路15の上流側を構成する部品(排気系の他の部品)に接合されるフランジ面5a(図2において正面に示す)が形成されている。このフランジ面5aは基本的には矩形状とされ、その四隅のうちの1つ(図2では右上の隅)が外方に延出している。
−Exhaust switching valve structure−
As shown in FIG. 2 as a single unit removed from the exhaust passage 15, the exhaust switching valve 4 of the present embodiment is a butterfly valve, and the housing 5 has components (exhaust system) constituting the upstream side of the exhaust passage 15. A flange surface 5a (shown in front in FIG. 2) to be joined to the other component is formed. The flange surface 5a is basically rectangular, and one of the four corners (upper right corner in FIG. 2) extends outward.

また、フランジ面5aには、その概略中央部位における断面円形状の開口部と、ここから前記の延出方向に延びる開口部とが連続して、異形の開口部5bが形成され、排気通路15の上流側に連通されるようになっている(以下、上流側開口部5bという)。この上流側開口部5bは、ハウジング5に設けられた二股状の連通路5cによって、排気バイパス通路16に連なる断面円形状のバイパス開口部5dと、HPターボ3のタービンホイール32の入口に連なる断面台形状のターボ開口部5eとにそれぞれ連通されている。なお、フランジ面5aの四隅にはそれぞれボルト穴5fが開口している。   In addition, the flange surface 5a is formed with an opening 5b having a circular shape in a cross section at a substantially central portion thereof and an opening extending in the extending direction from the opening 5b. Is communicated with the upstream side of the first side (hereinafter referred to as upstream side opening 5b). The upstream opening 5 b is formed by a bifurcated communication passage 5 c provided in the housing 5, and has a cross section that is continuous with the circular bypass opening 5 d that is continuous with the exhaust bypass passage 16 and the inlet of the turbine wheel 32 of the HP turbo 3. Each communicates with the trapezoidal turbo opening 5e. Bolt holes 5f are opened at the four corners of the flange surface 5a.

そして、前記のバイパス開口部5dを開閉する円板状の弁体6が支軸7にネジ留めされて、一体に回動するようになっている。支軸7は、図2において左右方向に延びていて、その先端部(図2において右側の端部)にはレバー71が取り付けられている。すなわち、支軸7の先端部は、ハウジング5の外周からフランジ面5aに沿うように突出する筒部を貫通して、その外方に突出しており、前記のレバー71に接続された図示しないアクチュエータによって回動されるようになっている。   And the disc-shaped valve body 6 which opens and closes the said bypass opening 5d is screwed by the spindle 7, and it rotates integrally. The support shaft 7 extends in the left-right direction in FIG. 2, and a lever 71 is attached to a distal end portion (right end portion in FIG. 2). That is, the distal end portion of the support shaft 7 passes through a cylindrical portion that protrudes from the outer periphery of the housing 5 along the flange surface 5a and protrudes outward, and is connected to the lever 71 (not shown). It is designed to be rotated by.

そうしてハウジング5のフランジ面5aに開口する上流側開口部5bの周縁部が、本実施の形態ではハウジング5の本体部材50とは別体のインサート部材51によって形成されている。本実施の形態では一例として本体部材50を、比較的安価な例えばフェライト系の耐熱鋳鋼によって形成するとともに、高温の排気を受けるインサート部材51は、比較的高価なものの高温強度や熱疲労特性に優れたオーステナイト系の耐熱鋳鋼によって形成している。   In this embodiment, the peripheral edge of the upstream opening 5b that opens to the flange surface 5a of the housing 5 is formed by an insert member 51 that is separate from the main body member 50 of the housing 5. In the present embodiment, as an example, the main body member 50 is formed of a relatively inexpensive, for example, ferritic heat-resistant cast steel, and the insert member 51 that receives high-temperature exhaust is relatively expensive but has excellent high-temperature strength and thermal fatigue characteristics. Austenitic heat-resistant cast steel.

このインサート部材51は、本体部材50に圧入、焼き嵌めなどの締まり嵌めによって嵌め込まれていて、ハウジング5のフランジ面5aの一部となる面51aが、排気通路15の上流側を構成する部品との間のシール面51aとなる。すなわち、本実施の形態では高温強度や熱疲労特性に優れたハイグレード材料からなるインサート部材51にシール面51aを形成することで、求められる高い耐熱性を確保することができる。   The insert member 51 is fitted into the main body member 50 by interference fitting such as press fitting and shrink fitting, and a surface 51a that is a part of the flange surface 5a of the housing 5 is a component that constitutes the upstream side of the exhaust passage 15. It becomes the sealing surface 51a between. That is, in this embodiment, the required high heat resistance can be ensured by forming the seal surface 51a on the insert member 51 made of a high-grade material excellent in high-temperature strength and thermal fatigue characteristics.

ここで、一般的にオーステナイト系の耐熱鋳鋼は、フェライト系の耐熱鋳鋼に比べて熱膨張係数が大きいので、エンジン1の運転中にはハウジング5の温度の変化によって、本体部材50とインサート部材51との締め代が変化するようになる。すなわち、エンジン1の運転中にはその負荷の増大や減少に応じて排気の熱量が変化し、これを受けてハウジング5の温度が変化することによって、一例を図3に模式的に示すように本体部材50とインサート部材51との締め代が変化するのである。   In general, austenitic heat-resistant cast steel has a larger coefficient of thermal expansion than ferritic heat-resistant cast steel. Therefore, during operation of the engine 1, the main body member 50 and the insert member 51 are affected by a change in the temperature of the housing 5. The allowance for changes will be changed. That is, while the engine 1 is in operation, the amount of heat of the exhaust gas changes in accordance with the increase or decrease of the load, and the temperature of the housing 5 changes in response to this, as shown schematically in FIG. The fastening allowance between the main body member 50 and the insert member 51 changes.

より詳しくは図3の時刻t0〜t1において、エンジン負荷の増大によって排気の熱量が増大し、排気切替弁4のハウジング5の温度が上昇するときには、その本体部材50およびインサート部材51がそれぞれ熱膨張することになる。このとき、より排気熱の影響を受けやすいインサート部材51の温度が先に高くなることと、このインサート部材51の熱膨張係数が大きいこととが相俟って、一時的に両部材50,51の間の締め代が大きくなる。   More specifically, at time t0 to t1 in FIG. 3, when the amount of heat of the exhaust increases due to an increase in engine load and the temperature of the housing 5 of the exhaust switching valve 4 rises, the main body member 50 and the insert member 51 are each thermally expanded. Will do. At this time, due to the fact that the temperature of the insert member 51 that is more easily affected by the exhaust heat becomes higher first and the thermal expansion coefficient of the insert member 51 is larger, both the members 50 and 51 are temporarily provided. The allowance between is increased.

すなわち、一時的にインサート部材51の熱膨張量が本体部材50よりも大きくなって、図示の如く両部材50,51の嵌め合いにおける締め代が増大することになる。そして、その後の時刻t1〜t2では本体部材50の温度が徐々に高くなることによって、インサート部材51との熱膨張量の差、即ち締め代が徐々に小さくなってゆく。その後、エンジン1の負荷や回転数の変化が少ない定常状態になると(時刻t2〜t3)、締め代も概ね変化しないようになる。   That is, the thermal expansion amount of the insert member 51 temporarily becomes larger than that of the main body member 50, and the tightening allowance for fitting the both members 50 and 51 increases as shown in the figure. Then, at subsequent times t1 to t2, the temperature of the main body member 50 gradually increases, so that the difference in thermal expansion amount from the insert member 51, that is, the tightening margin gradually decreases. Thereafter, when the engine 1 is in a steady state with little change in the load and the number of revolutions (time t2 to t3), the tightening allowance generally does not change.

一方、時刻t3〜t4において例えばエンジン1の負荷が減少し、ハウジング5の温度が低下するときには、本体部材50およびインサート部材51の熱膨張量がいずれも小さくなる(即ち両部材50,51が収縮する)。このときには前記負荷の増大時と同じく、より排気熱の影響を受けやすいインサート部材51の温度が先に低くなることと、このインサート部材51の熱膨張係数が大きいこととが相俟って、一時的に両部材50,51の間の締め代が小さくなる。   On the other hand, for example, when the load on the engine 1 decreases and the temperature of the housing 5 decreases at time t3 to t4, the thermal expansion amounts of the main body member 50 and the insert member 51 are both small (that is, the members 50 and 51 are contracted). To do). At this time, as in the case of the increase in the load, the temperature of the insert member 51 that is more easily affected by the exhaust heat is lowered first, and the thermal expansion coefficient of the insert member 51 is large. Therefore, the tightening margin between the members 50 and 51 is reduced.

すなわち、先に温度の低下するインサート部材51の収縮量が一時的に大きくなることから、本体部材50との嵌め合いの締め代が小さくなってゆき、図3に仮想線で示すように締め代が元々小さい場合は、それが零よりも小さくなってしまい、本体部材50との間に隙間が生じるおそれがあった。こうなると隙間から高温高圧の排気が漏れることによって、排気切替弁4の機能が損なわれることになる。   That is, the amount of shrinkage of the insert member 51 where the temperature first decreases temporarily increases, so that the tightening allowance for fitting with the main body member 50 decreases, and the tightening allowance as shown by the phantom line in FIG. Is originally smaller than zero, there is a possibility that a gap may be formed between the main body member 50 and the main body member 50. If this happens, the high-temperature and high-pressure exhaust gas leaks from the gap, so that the function of the exhaust gas switching valve 4 is impaired.

これに対して本実施の形態では、前記のようにエンジン1の負荷などの減少に伴って、ハウジング5の本体部材50およびインサート部材51の温度が低下するときに、先に温度の低下するインサート部材51と、遅れて温度の低下する本体部材50との間に生じ得る収縮量の差の最大値を予め実験や計算によって求め、これよりも大きくなるようにインサート部材51の本体部材50への締め代を設定している。   In contrast, in the present embodiment, when the temperature of the main body member 50 and the insert member 51 of the housing 5 decreases as the load of the engine 1 decreases as described above, the insert whose temperature first decreases. The maximum value of the difference in shrinkage that can occur between the member 51 and the main body member 50 whose temperature decreases with a delay is obtained in advance by experiments and calculations, and the insert member 51 is applied to the main body member 50 so as to be larger than this. The tightening allowance is set.

すなわち、図3に実線で表されているように締め代が元々大きく設定されているので、前記の時刻t3〜t4においてハウジング5の温度が低下し、これにより本体部材50およびインサート部材51が収縮するときに、一時的にインサート部材51の収縮量が大きくなっても、本体部材50との嵌め合いにおける締め代がなくなることはなく、両部材50,51の間に隙間は生じない。   That is, as shown by the solid line in FIG. 3, the tightening margin is originally set to be large, so that the temperature of the housing 5 decreases at the time t3 to t4, and the main body member 50 and the insert member 51 are thereby contracted. In doing so, even if the amount of contraction of the insert member 51 temporarily increases, the allowance for fitting with the main body member 50 is not lost, and no gap is generated between the members 50 and 51.

したがって、本実施の形態に係る排気切替弁4のハウジング5は、その本体部材50を例えばフェライト系の耐熱鋳鋼など比較的安価な材料によって形成する一方で、これに嵌め込むインサート部材51は、例えばオーステナイト系の耐熱鋳鋼などのハイグレード材料によって形成している。そして、ハウジング5と排気通路15の構成部品との間のシール面51aをインサート部材51に形成することで、コストの増大を抑制しながら、十分な耐熱性を確保することができる。   Therefore, while the housing 5 of the exhaust gas switching valve 4 according to the present embodiment forms the main body member 50 of a relatively inexpensive material such as ferritic heat-resistant cast steel, the insert member 51 fitted therein is, for example, It is made of high-grade material such as austenitic heat-resistant cast steel. And by forming the sealing surface 51a between the housing 5 and the components of the exhaust passage 15 in the insert member 51, sufficient heat resistance can be ensured while suppressing an increase in cost.

しかも、熱膨張係数の高いインサート部材51を締まり嵌めによって、比較的容易に本体部材50に嵌め込むことができるとともに、エンジン1の運転状態が変化して、排気熱量の増減によりハウジング5の温度が変化しても、その本体部材50とインサート部材51の嵌め合いの部分に隙間が生じるおそれがなく、高温高圧の排気が漏れる心配もない。   In addition, the insert member 51 having a high thermal expansion coefficient can be fitted into the main body member 50 relatively easily by an interference fit, and the operating state of the engine 1 changes, and the temperature of the housing 5 is increased due to an increase or decrease in the amount of exhaust heat. Even if it changes, there is no possibility that a gap will occur in the fitting part of the main body member 50 and the insert member 51, and there is no fear that high-temperature and high-pressure exhaust will leak.

−他の実施形態−
本発明の構成は上述した実施の形態に限定されることなく、その他の種々の形態を包含する。すなわち、前記実施の形態では、HPターボ3または排気バイパス通路16に排気の流れを変更する排気切替弁4のハウジング5に、本発明を適用しているが、これに限らず例えばウエストゲート弁18のハウジングの構造として、本発明を適用することができる。
-Other embodiments-
The configuration of the present invention is not limited to the above-described embodiment, but includes other various forms. In other words, in the above-described embodiment, the present invention is applied to the housing 5 of the exhaust gas switching valve 4 that changes the flow of exhaust gas to the HP turbo 3 or the exhaust bypass passage 16. The present invention can be applied to the structure of the housing.

また、前記実施の形態のような2ステージ・ターボシステムに限定されないことも勿論であり、例えば排気系にターボ過給機、または電動式或いは機械駆動式の過給機が1つ設けられている場合に、その過給機またはバイパス通路に排気の流れを変更する排気切替弁のハウジングにも、本発明を適用することができる。   Needless to say, the present invention is not limited to the two-stage turbo system as in the above-described embodiment. For example, the exhaust system is provided with one turbocharger or one electric or mechanically driven supercharger. In this case, the present invention can also be applied to a housing of an exhaust gas switching valve that changes the flow of exhaust gas to the supercharger or the bypass passage.

さらに、本発明は前記のように過給機が設けられている排気系にも限定されず、過給機の設けられていない排気系の排気切替弁にも適用できる。例えばEGR弁のハウジングの構造として本発明を適用することができる。   Furthermore, the present invention is not limited to an exhaust system provided with a supercharger as described above, and can be applied to an exhaust system switching valve of an exhaust system not provided with a supercharger. For example, the present invention can be applied as a structure of an EGR valve housing.

本発明は、エンジンの排気切替弁に適用可能であり、特にダウンサイジング・ガソリンエンジンなど排気温度の高くなりやすいターボ過給機を備える排気系に適用して、その信頼性を高めるという効果が高い。   INDUSTRIAL APPLICABILITY The present invention can be applied to an engine exhaust gas switching valve, and is particularly effective when applied to an exhaust system equipped with a turbocharger that tends to have a high exhaust temperature, such as a downsizing gasoline engine. .

1 エンジン
4 排気切替弁
5 ハウジング
50 本体部材
51 インサート部材
51a シール面
15 排気通路(排気系の他の部品)
1 Engine 4 Exhaust gas switching valve 5 Housing 50 Main body member 51 Insert member 51a Seal surface 15 Exhaust passage (other parts of exhaust system)

Claims (1)

エンジンの排気系に設けられ、排気の流れを変更する排気切替弁のハウジングの構造であって、
前記ハウジングの本体部材に締まり嵌めで嵌め込まれたインサート部材に、排気系の他の部品との間のシール面が形成され、
前記インサート部材の熱膨張係数が本体部材よりも大きく、かつ、当該インサート部材の本体部材への締め代が、エンジンの運転中に両部材の温度が低下するときにインサート部材の温度が先に低下しても、零にならないように設定されていることを特徴とする排気切替弁のハウジングの構造。
A structure of a housing of an exhaust gas switching valve that is provided in an engine exhaust system and changes an exhaust flow,
A seal surface between other parts of the exhaust system is formed on the insert member fitted into the body member of the housing with an interference fit,
When the thermal expansion coefficient of the insert member is larger than that of the main body member, and the tightening allowance of the insert member to the main body member decreases during the operation of the engine, the temperature of the insert member first decreases. Even if it is set so that it may not become zero, the structure of the housing of the exhaust gas switching valve characterized by the above-mentioned.
JP2016076382A 2016-04-06 2016-04-06 Structure of housing of exhaust selector valve Pending JP2017186960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076382A JP2017186960A (en) 2016-04-06 2016-04-06 Structure of housing of exhaust selector valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076382A JP2017186960A (en) 2016-04-06 2016-04-06 Structure of housing of exhaust selector valve

Publications (1)

Publication Number Publication Date
JP2017186960A true JP2017186960A (en) 2017-10-12

Family

ID=60046230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076382A Pending JP2017186960A (en) 2016-04-06 2016-04-06 Structure of housing of exhaust selector valve

Country Status (1)

Country Link
JP (1) JP2017186960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323804A (en) * 2018-12-18 2019-02-12 中国航发沈阳发动机研究所 A kind of anti-extrusion deformation formula gas circuit leakage test part support construction
DE112018005542T5 (en) 2017-09-27 2020-06-25 Hitachi Automotive Systems, Ltd. Vehicle control system
KR20220093489A (en) 2020-12-28 2022-07-05 가천대학교 산학협력단 Magnetizing Yoke

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018005542T5 (en) 2017-09-27 2020-06-25 Hitachi Automotive Systems, Ltd. Vehicle control system
CN109323804A (en) * 2018-12-18 2019-02-12 中国航发沈阳发动机研究所 A kind of anti-extrusion deformation formula gas circuit leakage test part support construction
KR20220093489A (en) 2020-12-28 2022-07-05 가천대학교 산학협력단 Magnetizing Yoke

Similar Documents

Publication Publication Date Title
US8051842B2 (en) Internal combustion engine with an exhaust-gas turbocharger and a charge-air cooler and method for operating an internal combustion engine
JP4692201B2 (en) EGR system for internal combustion engine
US8511066B2 (en) Multi-stage turbocharging system with thermal bypass
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
JP4788697B2 (en) Control device for engine with two-stage turbocharger
WO2007040071A1 (en) Egr system of two stage super-charging engine
WO2012086002A1 (en) Control device for internal combustion engine equipped with supercharger
JP5031250B2 (en) Engine three-stage turbocharging system
JP2011501043A5 (en)
JP2013515207A (en) Internal combustion engine
US20120152214A1 (en) Turbocharger system
JP2017186960A (en) Structure of housing of exhaust selector valve
JP5531944B2 (en) Diesel engine with turbocharger
US20070089412A1 (en) Method for controlling an exhaust gas recirculation system
JP2011021504A (en) Multi-stage supercharging apparatus
JP2007138798A (en) Multiple stage supercharging system
KR102144759B1 (en) Control method and control device of internal combustion engine
JP2010223077A (en) Internal combustion engine
GB2492995A (en) Reducing the catalyst light-off time for an engine with a multi-stage turbocharger
JP2008151006A (en) Control device of turbocharger
JP2011111929A (en) Internal combustion engine and method for controlling the same
JP4743171B2 (en) Supercharger control device for internal combustion engine
JP2018145915A (en) Exhaust system for internal combustion engine
JP6540659B2 (en) Control system for internal combustion engine
JPS6138127A (en) Turbo-compound engine