JP2017186687A - Net-like structure - Google Patents

Net-like structure Download PDF

Info

Publication number
JP2017186687A
JP2017186687A JP2016074393A JP2016074393A JP2017186687A JP 2017186687 A JP2017186687 A JP 2017186687A JP 2016074393 A JP2016074393 A JP 2016074393A JP 2016074393 A JP2016074393 A JP 2016074393A JP 2017186687 A JP2017186687 A JP 2017186687A
Authority
JP
Japan
Prior art keywords
fibers
network structure
fiber
thick
main region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074393A
Other languages
Japanese (ja)
Other versions
JP6217780B2 (en
Inventor
拓勇 井上
Takuo Inoue
拓勇 井上
小淵 信一
Shinichi Kofuchi
信一 小淵
靖司 山田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016074393A priority Critical patent/JP6217780B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to PL16786570T priority patent/PL3290557T3/en
Priority to KR1020177033880A priority patent/KR102443939B1/en
Priority to US15/570,498 priority patent/US20180177306A1/en
Priority to PCT/JP2016/063391 priority patent/WO2016175294A1/en
Priority to CN201680024536.4A priority patent/CN107532355B/en
Priority to EP16786570.8A priority patent/EP3290557B1/en
Publication of JP2017186687A publication Critical patent/JP2017186687A/en
Application granted granted Critical
Publication of JP6217780B2 publication Critical patent/JP6217780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a net-like structure that has a soft touch feeling when used and less bottom-touch feeling, and is excellent in compression durability.SOLUTION: The net-like structure is a net-like structure having a three-dimensional random loop joint structure formed of a thermoplastic elastomer continuous linear body. In a thickness direction of the net-like structure, there exist a fine fiber main region comprising mainly fine fibers having a fiber diameter of 0.1 mm or more and 1.5 mm or less, a thick fiber main region comprising mainly thick fibers having a fiber diameter of 0.4 mm or more and 3.0 mm or less, and a mixture region between the fine fiber main region and the thick fiber main region in which fine fibers and thick fibers are mixed. The thick fiber has a fiber diameter thicker than the fine fiber by 0.07 mm or more. The residual strain after repeated compression with a 750 N constant load is 15% or less when pressure is applied from the fine fiber main region side of the net-like structure.SELECTED DRAWING: None

Description

本発明は、オフィスチェア、家具、ソファー、ベッド等の寝具、鉄道・自動車・二輪車・ベビーカー・チャイルドシート・車椅子等の車両用座席、フロアーマット、衝突や挟まれ防止部材等の衝撃吸収用のマット等に用いられる網状クッション材に好適な網状構造体に関するものである。   The present invention includes office chairs, furniture, sofas, beddings such as beds, seats for vehicles such as railways, automobiles, two-wheeled vehicles, strollers, child seats, wheelchairs, floor mats, mats for impact absorption such as collision and pinching prevention members, etc. The present invention relates to a net-like structure suitable for a net-like cushion material used in the above.

現在、家具、ベッド等の寝具、電車・自動車・二輪車等の車両用座席に用いられるクッション材として、網状構造体が広く使用されつつある。   Currently, mesh structures are being widely used as cushion materials used for furniture, bedding such as beds, and seats for vehicles such as trains, automobiles, and motorcycles.

特許文献1には、網状構造体を構成する連続線状体が中実断面繊維(断面が中実である繊維をいう。以下同じ。)のみからなる網状構造体が記載されている。中実断面繊維は中空断面繊維(断面が中空である繊維をいう。以下同じ。)に比べ、同じ素材、同じ繊維径の場合、重くなる。網状構造体の重さを抑えるため、連続線状体が中実断面繊維のみからなる網状構造体は、通常中空断面繊維のみからなる網状構造体に比べ、連続線状体の繊維径を細くする、あるいは網状構造体の構成繊維数を減らすこと等により、重量の増加を抑制する場合が多く、その結果として、得られる網状構造体は底付き感のあるものとなる場合が多かった。   Patent Document 1 describes a network structure in which the continuous linear body constituting the network structure is composed only of solid cross-section fibers (referred to as fibers having a solid cross section; the same shall apply hereinafter). Solid cross-section fibers are heavier in the case of the same material and the same fiber diameter compared to hollow cross-section fibers (referring to fibers having a hollow cross section; the same shall apply hereinafter). In order to reduce the weight of the net-like structure, the net-like structure in which the continuous linear body is composed only of solid cross-section fibers usually has a smaller diameter of the continuous linear body than the network structure composed of only hollow cross-section fibers. Alternatively, the increase in weight is often suppressed by reducing the number of constituent fibers of the network structure, and as a result, the resulting network structure often has a feeling of bottoming.

特許文献2には、網状構造体を構成する連続線状体が中空断面繊維のみからなる網状構造体が記載されている。中空断面繊維のみからなる網状構造体は、中実断面繊維のみからなる網状構造体に比べ軽量化できる、同じ重量であれば網状構造体の硬度を上げることができる、という利点を有する。しかし、中実断面繊維に比べ、繊維径が太くなることから、クッション材等として使用する際に、ソフトな触感が得られにくいという課題があった。   Patent Document 2 describes a network structure in which a continuous linear body constituting the network structure is composed of only hollow cross-section fibers. A network structure composed only of hollow cross-section fibers can be reduced in weight as compared to a network structure composed only of solid cross-section fibers, and has the advantage that the hardness of the network structure can be increased with the same weight. However, since the fiber diameter is thicker than that of the solid cross-section fiber, there is a problem that it is difficult to obtain a soft touch when used as a cushioning material or the like.

特許文献3には、異なる繊維径の連続線状体から構成された網状構造体が記載されている。網状構造体は、太い繊維径の連続線状体からなる振動吸収と体型保持を担う基本層と、細い繊維径の連続線状体からなる柔らかく圧力分散を均一にする特性を担う表面層からなっている。また、特許文献3には、太い繊維径の連続線状体からなる基本層と、細い繊維経の連続線状体からなる表面層とが溶融接着されていない網状構造体に関する記載もある。しかしながら、特許文献3に記載の網状構造体および複数の網状構造体が溶融接着されずに積層されている網状構造体は、網状構造体の実際の使用時のへたり具合を想定した圧縮耐久性の指標である750N定荷重繰り返し圧縮後残留歪みが大きいという課題を有したものであった。   Patent Document 3 describes a network structure composed of continuous linear bodies having different fiber diameters. The network structure is composed of a basic layer responsible for vibration absorption and body shape maintenance composed of continuous filaments with a large fiber diameter, and a surface layer responsible for soft and uniform pressure dispersion composed of continuous filaments with a narrow fiber diameter. ing. Patent Document 3 also describes a network structure in which a basic layer made of a continuous linear body having a large fiber diameter and a surface layer made of a continuous linear body having a thin fiber diameter are not melt bonded. However, the network structure described in Patent Document 3 and a network structure in which a plurality of network structures are laminated without being melt-bonded have a compression durability that assumes a sag in actual use of the network structure. The residual strain after repeated compression at a constant load of 750 N, which is an index of the above, was a problem.

特開平7−68061号公報JP 7-68061 A 特開平7−173753号公報Japanese Patent Laid-Open No. 7-173753 特開平7−189105号公報JP 7-189105 A

本発明は、上記の従来技術の課題を背景になされたもので、使用時にソフトな触感を持ちつつ、底付き感が少なく、圧縮耐久性にも優れた網状構造体を提供することを課題とするものである。   The present invention has been made against the background of the above-described problems of the prior art, and it is an object of the present invention to provide a network structure that has a soft tactile sensation during use, has a low bottoming feeling, and is excellent in compression durability. To do.

本発明者らは、上記課題を解決するため鋭意研究した結果、ついに本発明を完成するに到った。すなわち、本発明は以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.

[1]熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持つ網状構造体であって、網状構造体の厚さ方向に、主に繊維径が0.1mm以上1.5mm以下の細い繊維からなる細繊維主領域と、主に繊維径が0.4mm以上3.0mm以下の太い繊維からなる太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域と、が存在し、細い繊維に比べて太い繊維の繊維径が0.07mm以上太く、網状構造体の細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下である網状構造体。   [1] A network structure having a three-dimensional random loop joining structure made of a continuous linear body of thermoplastic elastomer, the fiber diameter being mainly 0.1 mm or more and 1.5 mm or less in the thickness direction of the network structure A fine fiber main region composed of thin fibers, a thick fiber main region mainly composed of thick fibers having a fiber diameter of 0.4 mm to 3.0 mm, and a thin fiber positioned between the fine fiber main region and the thick fiber main region There is a mixed region in which fibers and thick fibers are mixed, and the fiber diameter of the thick fibers is 0.07 mm or more thick compared to the thin fibers, and when pressed from the fine fiber main region side of the network structure A network structure having a residual strain of 15% or less after 750 N constant load repeated compression.

[2]見かけ密度が0.005g/cm3以上0.20g/cm3以下である上記[1]に記載の網状構造体。 [2] network structure according to the apparent density of 0.005 g / cm 3 or more 0.20 g / cm 3 or less is the [1].

[3]細い繊維が中実断面を有する中実断面繊維であり、太い繊維が中空断面を有する中空断面繊維である上記[1]または[2]に記載の網状構造体。   [3] The network structure according to [1] or [2], wherein the thin fibers are solid cross-section fibers having a solid cross section, and the thick fibers are hollow cross-section fibers having a hollow cross section.

[4]網状構造体の細繊維主領域側から加圧した時のヒステリシスロスが60%以下である上記[1]から[3]のいずれかに記載の網状構造体。   [4] The network structure according to any one of [1] to [3], wherein a hysteresis loss when pressed from the fine fiber main region side of the network structure is 60% or less.

[5]クッション内部に上記[1]から[4]のいずれかに記載の網状構造体を含むクッション材。   [5] A cushioning material including the network structure according to any one of [1] to [4] above in the cushion.

本発明によれば、使用時にソフトな触感を持ちつつ、底付き感が少なく、圧縮耐久性にも優れた網状構造体が提供できる。そのため、オフィスチェア、家具、ソファー、ベッド等の寝具、鉄道・自動車・二輪車等の車両用座席等に好適に用いられる網状構造体を提供することが可能となった。   According to the present invention, it is possible to provide a network structure that has a soft tactile sensation during use, has a feeling of bottoming, and is excellent in compression durability. Therefore, it has become possible to provide a net-like structure suitably used for office chairs, furniture, bedding such as sofas and beds, and seats for vehicles such as railways, automobiles, and motorcycles.

網状構造体のヒステリシスロス測定における圧縮・除圧テストの模式的なグラフである。It is a typical graph of the compression / decompression test in the hysteresis loss measurement of a network structure.

以下、本発明についてその実施形態を詳細に説明する。本発明の網状構造体は、熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持つ網状構造体であって、網状構造体の厚さ方向に、主に繊維径が0.1mm以上1.5mm以下の細い繊維からなる細繊維主領域と、主に繊維径が0.4mm以上3.0mm以下の太い繊維からなる太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域と、が存在し、細い繊維に比べて太い繊維の繊維径が0.07mm以上太く、網状構造体の細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下である。本発明の網状構造体は、細い繊維の繊維径が0.1mm以上1.5mm以下であることから使用時にソフトな触感を持ち、太い繊維の繊維径が細い繊維の繊維径より0.07mm以上太いことから底付き感が少なく、細繊維主領域と太繊維主領域との間に混在領域が存在し細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下であることから圧縮耐久性に優れる。   Hereinafter, embodiments of the present invention will be described in detail. The network structure of the present invention is a network structure having a three-dimensional random loop joining structure composed of a thermoplastic elastomer continuous linear body, and the fiber diameter is mainly 0.1 mm or more in the thickness direction of the network structure. A fine fiber main region composed of fine fibers of 1.5 mm or less, a thick fiber main region mainly composed of thick fibers having a fiber diameter of 0.4 mm to 3.0 mm, and a fine fiber main region and a thick fiber main region. There is a mixed region formed by mixing thin fibers and thick fibers located between them, and the fiber diameter of the thick fibers is 0.07 mm or more thick compared to the thin fibers, and from the fine fiber main region side of the network structure The residual strain after repeated compression at a constant load of 750 N when pressurized is 15% or less. The network structure of the present invention has a soft tactile sensation during use since the fiber diameter of the thin fibers is 0.1 mm or more and 1.5 mm or less, and the fiber diameter of the thick fibers is 0.07 mm or more than the fiber diameter of the thin fibers. Because it is thick, there is little feeling of bottoming, there is a mixed region between the fine fiber main region and the thick fiber main region, and the residual strain after repeated compression at 750 N constant load when pressed from the fine fiber main region side is 15% It is excellent in compression durability from the following.

本発明の網状構造体は、熱可塑性エラストマーからなる連続線状体を曲がりくねらせてランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて接合させた三次元ランダムループ接合構造を持つ構造体である。   The network structure of the present invention has a three-dimensional random loop joining structure in which a continuous linear body made of a thermoplastic elastomer is twisted to form a random loop, and each loop is brought into contact with each other in a molten state and joined. It is a structure.

本発明の熱可塑性エラストマーとしては、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、熱可塑性エチレン酢酸ビニル共重合体エラストマー等が挙げれられる。なかでも、ポリエステル系熱可塑性エラストマーが、圧縮耐久性や耐熱性に優れるため、好ましい。   Examples of the thermoplastic elastomer of the present invention include polyester-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, thermoplastic ethylene-vinyl acetate copolymer elastomers, and the like. Of these, polyester-based thermoplastic elastomers are preferable because they are excellent in compression durability and heat resistance.

本発明におけるポリエステル系熱可塑性エラストマーとしては、熱可塑性ポリエステルをハードセグメントとし、ポリアルキレンジオールをソフトセグメントとするポリエステルエーテルブロック共重合体、または、脂肪族ポリエステルをソフトセグメントとするポリエステルエステルブロック共重合体が例示できる。   As the polyester-based thermoplastic elastomer in the present invention, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylene diol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment. Can be illustrated.

ポリエステルエーテルブロック共重合体としては、ジカルボン酸、ジオール成分、およびポリアルキレンジオールから構成された三元ブロック共重合体が例示できる。ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸等の芳香族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、琥珀酸、アジピン酸、セバシン酸、ダイマー酸等の脂肪族ジカルボン酸、または、これらのエステル形成性誘導体等から選ばれたジカルボン酸の少なくとも1種が挙げられる。ジオール成分としては、1,4−ブタンジオール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等の脂肪族ジオール、1,1−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール等の脂環族ジオール、または、これらのエステル形成性誘導体等から選ばれたジオール成分の少なくとも1種が挙げられる。ポリアルキレンジオールとしては、数平均分子量が約300〜5000のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシド−プロピレンオキシド共重合体からなるグリコール等のポリアルキレンジオールのうち少なくとも1種が挙げられる。   As a polyester ether block copolymer, the ternary block copolymer comprised from the dicarboxylic acid, the diol component, and the polyalkylenediol can be illustrated. Dicarboxylic acids include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid and other aromatic dicarboxylic acids, 1,4-cyclohexane Examples include at least one dicarboxylic acid selected from alicyclic dicarboxylic acids such as dicarboxylic acids, aliphatic dicarboxylic acids such as oxalic acid, adipic acid, sebacic acid, and dimer acid, or ester-forming derivatives thereof. . Examples of the diol component include aliphatic diols such as 1,4-butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 1,1-cyclohexanedimethanol, 1,4-cyclohexanedi Examples thereof include at least one diol component selected from alicyclic diols such as methanol or ester-forming derivatives thereof. Examples of the polyalkylene diol include at least one of polyalkylene diols such as polyethylene glycol having a number average molecular weight of about 300 to 5,000, polypropylene glycol, polytetramethylene glycol, and glycol made of an ethylene oxide-propylene oxide copolymer.

ポリエステルエステルブロック共重合体としては、ジカルボン酸、ジオール成分、およびポリエステルジオールから構成された三元ブロック共重合体が例示できる。ジカルボン酸およびジオール成分は上記のジカルボン酸およびジオール成分が例示できる。ポリエステルジオールとしては、数平均分子量が約300〜5000のポリラクトン等のポリエステルジオールのうち少なくとも各1種が挙げられる。   As a polyester ester block copolymer, the ternary block copolymer comprised from the dicarboxylic acid, the diol component, and the polyester diol can be illustrated. Examples of the dicarboxylic acid and diol component include the above-mentioned dicarboxylic acid and diol component. Examples of the polyester diol include at least one kind of polyester diol such as polylactone having a number average molecular weight of about 300 to 5,000.

熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮すると、ポリエステルエーテルブロック共重合体では、ジカルボン酸はテレフタル酸および/またはナフタレン2,6−ジカルボン酸、ジオール成分は1,4−ブタンジオール、ならびにポリアルキレンジオールはポリテトラメチレングリコールから構成される三元ブロック共重合体が特に好ましい。また、ポリエステルエステル共重合体では、ジカルボン酸はテレフタル酸および/またはナフタレン2,6−ジカルボン酸、ジオール成分は1,4−ブタンジオール、ならびにポリエステルジオールはポリラクトンから構成される三元ブロック共重合体が特に好ましい。特殊な例では、ポリシロキサン系のソフトセグメントを導入したものも使うことができる。   In consideration of thermal adhesiveness, hydrolysis resistance, stretchability, heat resistance, etc., in the polyester ether block copolymer, the dicarboxylic acid is terephthalic acid and / or naphthalene 2,6-dicarboxylic acid, and the diol component is 1,4- Butanediol and polyalkylenediol are particularly preferably ternary block copolymers composed of polytetramethylene glycol. In the polyester ester copolymer, the dicarboxylic acid is terephthalic acid and / or naphthalene 2,6-dicarboxylic acid, the diol component is 1,4-butanediol, and the polyester diol is a ternary block copolymer composed of polylactone. Is particularly preferred. As a special example, a polysiloxane-based soft segment can be used.

本発明のポリエステル系熱可塑性エラストマーのソフトセグメント含有量は、圧縮耐久性に優れる観点から、好ましくは15重量%以上、より好ましくは25重量%以上であり、さらに好ましくは30重量%以上であり、特に好ましくは40重量%以上であり、硬度確保と耐熱耐へたり性に優れる観点から、好ましくは80重量%以下、より好ましくは70重量%以下である。   The soft segment content of the polyester-based thermoplastic elastomer of the present invention is preferably 15% by weight or more, more preferably 25% by weight or more, and further preferably 30% by weight or more, from the viewpoint of excellent compression durability. The amount is particularly preferably 40% by weight or more, and preferably 80% by weight or less, more preferably 70% by weight or less, from the viewpoint of ensuring hardness and excellent heat resistance and sag resistance.

本発明におけるポリオレフィン系熱可塑性エラストマーとしては、エチレンとα−オレフィンとが共重合してなるエチレン・α−オレフィン共重合体であることが好ましく、オレフィンブロック共重合体であるエチレンおよびα−オレフィンからなるマルチブロック共重合体であることがより好ましい。エチレンおよびα−オレフィンからなるマルチブロック共重合体であることがより好ましいのは、一般的なランダム共重合体では、主鎖の連結鎖長が短くなり、結晶構造形成されにくく、耐久性が低下するためである。かかる観点から、エチレンと共重合するα−オレフィンは、炭素数3以上のα−オレフィンであることが好ましい。   The polyolefin-based thermoplastic elastomer in the present invention is preferably an ethylene / α-olefin copolymer obtained by copolymerizing ethylene and an α-olefin, from ethylene and α-olefin as an olefin block copolymer. It is more preferable that it is a multiblock copolymer. It is more preferable that the multi-block copolymer is composed of ethylene and α-olefin. In the case of a general random copolymer, the connecting chain length of the main chain is shortened, the crystal structure is hardly formed, and the durability is lowered. It is to do. From this viewpoint, the α-olefin copolymerized with ethylene is preferably an α-olefin having 3 or more carbon atoms.

ここで、炭素数3以上のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン等が挙げられ、好ましくは1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセンである。また、これら2種類以上を用いることもできる。   Here, examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene and the like are preferable, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1- Tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-eicosene. Two or more of these can also be used.

本発明のエチレン・α−オレフィン共重合体であるランダム共重合体は、特定のメタロセン化合物と有機金属化合物とを基本構成とする触媒系を用いて、エチレンとα−オレフィンとを共重合することによって得ることができ、マルチブロック共重合体は、チェーンシャトリング反応触媒を用いて、エチレンとα−オレフィンとを共重合することによって得ることができる。必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレン等のポリマーをブレンドすることができる。   The random copolymer that is the ethylene / α-olefin copolymer of the present invention is a copolymer of ethylene and an α-olefin using a catalyst system having a basic structure of a specific metallocene compound and an organometallic compound. The multiblock copolymer can be obtained by copolymerizing ethylene and α-olefin using a chain shuttling reaction catalyst. If necessary, two or more kinds of polymers polymerized by the above method, or polymers such as hydrogenated polybutadiene and hydrogenated polyisoprene can be blended.

本発明におけるエチレン・α−オレフィン共重合体のエチレンと炭素数が3以上のα−オレフィンとの比率は、エチレンが70mol%以上95mol%以下、炭素数が3以上のα−オレフィンが5mol%以上30mol%以下が好ましい。一般的に、高分子化合物がエラストマー性を得るのは、高分子鎖内に、ハードセグメントおよびソフトセグメントが存在するためであることが知られている。本発明のポリオレフィン系熱可塑性エラストマーにおいては、エチレンはハードセグメント、炭素数3以上のα−オレフィンはソフトセグメントの役割を担っていると考えられる。そのため、エチレンの比率が70mol%未満では、ハードセグメントが少ないため、ゴム弾性の回復性能が低下する。エチレンの比率は、より好ましくは75%以上、さらに好ましくは80mol%以上である。一方、エチレンの比率が95mol%を超える場合は、ソフトセグメントが少ないため、エラストマー性が発揮されにくく、クッション性能が劣る。エチレンの比率は、より好ましくは93mol%以下、さらに好ましくは90mol%以下である。   The ratio of ethylene to α-olefin having 3 or more carbon atoms in the ethylene / α-olefin copolymer in the present invention is such that ethylene is 70 mol% or more and 95 mol% or less, and α-olefin having 3 or more carbon atoms is 5 mol% or more. 30 mol% or less is preferable. In general, it is known that a polymer compound is elastomeric because a hard segment and a soft segment are present in a polymer chain. In the polyolefin-based thermoplastic elastomer of the present invention, it is considered that ethylene plays a role of a hard segment, and α-olefin having 3 or more carbon atoms plays a role of a soft segment. Therefore, when the ratio of ethylene is less than 70 mol%, since there are few hard segments, the recovery performance of rubber elasticity is lowered. The ratio of ethylene is more preferably 75% or more, and still more preferably 80 mol% or more. On the other hand, when the ratio of ethylene exceeds 95 mol%, since there are few soft segments, elastomeric properties are hardly exhibited and cushion performance is inferior. The ratio of ethylene is more preferably 93 mol% or less, still more preferably 90 mol% or less.

本発明におけるポリウレタン系熱可塑性エラストマーとしては、通常の溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)の存在または非存在下に、数平均分子量1000〜6000の末端に水酸基を有するポリエ−テルおよび/またはポリエステルと有機ジイソシアネ−トを主成分とするポリイソシアネ−トとを反応させた両末端がイソシアネ−ト基であるプレポリマ−に、ジアミンを主成分とするポリアミンにより鎖延長したポリウレタンエラストマ−を代表例として例示できる。ポリエステルおよび/またはポリエ−テルとしては、数平均分子量が約1000〜6000、好ましくは1300〜5000のポリブチレンアジペ−ト共重合ポリエステル、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、エチレンオキシド−プロピレンオキシド共重合体からなるグリコ−ル等のポリアルキレンジオ−ルが好ましい。ポリイソシアネ−トとしては、従来公知のポリイソシアネ−トを用いることができ、ジフェニルメタン4,4’−ジイソシアネ−トを主体としたイソシアネ−トを用い、必要に応じ従来公知のトリイソシアネ−ト等を微量添加使用してもよい。ポリアミンとしては、エチレンジアミン、1,2−プロピレンジアミン等公知のジアミンを主体とし、必要に応じて微量のトリアミン、テトラアミンを併用してもよい。これらのポリウレタン系熱可塑性エラストマーは単独または2種類以上混合して用いてもよい。   The polyurethane-based thermoplastic elastomer in the present invention includes a polyester and / or polyester having a hydroxyl group at the terminal having a number average molecular weight of 1000 to 6000 in the presence or absence of a normal solvent (dimethylformamide, dimethylacetamide, etc.) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a polypolymer having a diamine as a main component on a prepolymer having both ends being isocyanate groups. . Examples of the polyester and / or polyether include polybutylene adipate copolymer polyester having a number average molecular weight of about 1000 to 6000, preferably 1300 to 5000, polyethylene glycol, polypropylene glycol, polytetramethylene glycol. And polyalkylenediols such as glycols made of ethylene oxide-propylene oxide copolymer are preferred. As the polyisocyanate, a conventionally known polyisocyanate can be used. An isocyanate mainly composed of diphenylmethane 4,4′-diisocyanate is used, and a small amount of a conventionally known triisocyanate is added if necessary. May be used. As the polyamine, a known diamine such as ethylenediamine or 1,2-propylenediamine is mainly used, and a trace amount of triamine or tetraamine may be used in combination as required. These polyurethane-based thermoplastic elastomers may be used alone or in combination of two or more.

本発明におけるポリウレタン系熱可塑性エラストマーのソフトセグメント含有量は、圧縮耐久性に優れる観点から、好ましくは15重量%以上、より好ましくは25重量%以上であり、さらに好ましくは30重量%以上であり、最も好ましくは40重量%以上であり、硬度確保と耐熱耐へたり性に優れる観点から、好ましくは80重量%以下である、より好ましくは70重量%以下である。   The soft segment content of the polyurethane-based thermoplastic elastomer in the present invention is preferably 15% by weight or more, more preferably 25% by weight or more, and further preferably 30% by weight or more, from the viewpoint of excellent compression durability. The amount is most preferably 40% by weight or more, and preferably 80% by weight or less, more preferably 70% by weight or less, from the viewpoint of securing hardness and excellent heat resistance and sag resistance.

本発明におけるポリアミド系エラストマーとしては、ポリアミドをハードセグメントとし、ポリオールをソフトセグメントとし、両者を共重合したもの等が挙げられる。ハードセグメントであるポリアミドは、ラクタム化合物とジカルボン酸、または、ジアミンとジカルボン酸等の反応物から得られたポリアミドオリゴマーのうち少なくとも1種以上が挙げられる。ソフトセグメントであるポリオールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等のうち少なくとも1種以上が挙げられる。   Examples of the polyamide-based elastomer in the present invention include those in which polyamide is used as a hard segment, polyol is used as a soft segment, and both are copolymerized. The polyamide which is a hard segment includes at least one kind of polyamide oligomers obtained from a reaction product such as a lactam compound and a dicarboxylic acid or a diamine and a dicarboxylic acid. The polyol which is a soft segment includes at least one of polyether polyol, polyester polyol, polycarbonate polyol and the like.

ラクタム化合物として、γ−ブチロラクタム、ε−カプロラクタム、ω−ヘプタラクタム、ω−ウンデカラクタム、ω−ラウリルラクタム等の炭素数5〜20の脂肪族ラクタムのうち少なくとも1種以上が挙げられる。   Examples of the lactam compound include at least one of aliphatic lactams having 5 to 20 carbon atoms such as γ-butyrolactam, ε-caprolactam, ω-heptalactam, ω-undecalactam, and ω-lauryllactam.

ジカルボン酸として、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2〜20の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸等の芳香族ジカルボン酸等のジカルボン酸化合物のうち少なくとも1種以上が挙げられる。   Dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and other aliphatic dicarboxylic acids having 2 to 20 carbon atoms, and cyclohexanedicarboxylic acid and other fats Examples include at least one dicarboxylic acid compound such as an aromatic dicarboxylic acid such as a cyclic dicarboxylic acid, terephthalic acid, isophthalic acid, or orthophthalic acid.

ジアミンとして、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカンメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン等の脂肪族ジアミン、またはメタキシレンジアミン等の芳香族ジアミンのうち少なくとも1種以上が挙げられる。
ポリオールについては、ポリエーテルポリオールとして、数平均分子量が約300〜5000のポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、エチレンオキシド−プロピレンオキシド共重合体からなるグリコ−ル等のポリアルキレンジオ−ルのうち少なくとも1種以上が挙げられる。また、ポリカーボネートジオールとして、低分子ジオールとカーボネート化合物の反応物であり、数平均分子量が約300〜5000のものが挙げられる。低分子ジオールとして、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等の脂肪族ジオール、シクロヘキサンジメタノール、シクロヘキサンジオール等の脂環式ジオールのうち少なくとも1種以上が挙げられる。カーボネート化合物として、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等のうち少なくとも1種以上が挙げられる。また、ポリエステルポリオールとして、数平均分子量が約300〜5000のポリラクトン等のポリエステルジオールのうち少なくとも1種以上が挙げられる。
As diamines, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecanemethylenediamine, 2,2,4-trimethylhexa Examples include at least one of aliphatic diamines such as methylenediamine, 2,4,4-trimethylhexamethylenediamine, and 3-methylpentamethylenediamine, and aromatic diamines such as metaxylenediamine.
As for the polyol, a polyether polyol such as polyethylene glycol having a number average molecular weight of about 300 to 5,000, polypropylene glycol, polytetramethylene glycol, glycol comprising an ethylene oxide-propylene oxide copolymer, etc. Among the alkylene diols, at least one kind may be mentioned. The polycarbonate diol is a reaction product of a low molecular diol and a carbonate compound, and has a number average molecular weight of about 300 to 5,000. Low molecular diols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6 -Aliphatic diols such as hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and cycloaliphatic diols such as cyclohexanedimethanol and cyclohexanediol. Among these, at least one or more are listed. Examples of the carbonate compound include at least one of dialkyl carbonate, alkylene carbonate, diaryl carbonate and the like. Moreover, as a polyester polyol, at least 1 sort (s) or more is mentioned among polyester diols, such as polylactone with a number average molecular weight of about 300-5000.

本発明のポリアミド系熱可塑性エラストマーのソフトセグメント含有量は、圧縮耐久性に優れる観点から、好ましくは5重量%以上、より好ましくは10重量%以上であり、さらに好ましくは15重量%以上であり、最も好ましくは20重量%以上であり、硬度確保と耐熱耐へたり性に優れる観点から、好ましくは80重量%以下、より好ましくは70重量%以下である。   The soft segment content of the polyamide-based thermoplastic elastomer of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight or more, from the viewpoint of excellent compression durability. The amount is most preferably 20% by weight or more, and preferably 80% by weight or less, more preferably 70% by weight or less, from the viewpoint of ensuring hardness and excellent heat resistance and sag resistance.

本発明の熱可塑性エチレン酢酸ビニル共重合体エラストマーとして、網状構造体を構成するポリマーは、酢酸ビニルの含有率が1〜35%が好ましい。酢酸ビニル含有率が小さいとゴム弾性に乏しくなる恐れがある観点から酢酸ビニル含有率は1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。酢酸ビニル含有率が大きくなるとゴム弾性には優れるが、融点が低下し耐熱性に乏しくなる恐れがある観点から、酢酸ビニル含有率は35%以下が好ましく、30%以下がより好ましく、26%以下がさらに好ましい。   As the thermoplastic ethylene vinyl acetate copolymer elastomer of the present invention, the polymer constituting the network structure preferably has a vinyl acetate content of 1 to 35%. The vinyl acetate content is preferably 1% or more, more preferably 2% or more, and even more preferably 3% or more from the viewpoint that the rubber elasticity may be poor when the vinyl acetate content is small. When the vinyl acetate content is increased, the rubber elasticity is excellent, but from the viewpoint that the melting point is lowered and the heat resistance may be poor, the vinyl acetate content is preferably 35% or less, more preferably 30% or less, and 26% or less. Is more preferable.

熱可塑性エチレン酢酸ビニル共重合体エラストマーは、炭素数3以上のα−オレフィンを共重合することもできる。ここで、炭素数3以上のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン等が挙げられ、好ましくは1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセンである。また、これら2種類以上を用いることもできる。   The thermoplastic ethylene-vinyl acetate copolymer elastomer can also be copolymerized with an α-olefin having 3 or more carbon atoms. Here, examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene and the like are preferable, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1- Tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-eicosene. Two or more of these can also be used.

本発明の網状構造体を構成する連続線状体は、目的に応じて異なる2種以上の熱可塑性エラストマーの混合体で構成することができる。異なる2種以上の熱可塑性エラストマーの混合体で構成する場合は、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、およびポリアミド系熱可塑性エラストマーからなる群より少なくとも1つ選ばれる熱可塑性エラストマーを50重量%以上含むことが好ましく、60重量%以上含むことがより好ましく、70重量%以上含むことがさらに好ましい。   The continuous linear body constituting the network structure of the present invention can be composed of a mixture of two or more different thermoplastic elastomers depending on the purpose. When composed of a mixture of two or more different thermoplastic elastomers, at least one selected from the group consisting of polyester-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers The thermoplastic elastomer is preferably contained in an amount of 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more.

本発明の網状構造体を構成する連続線状体の熱可塑性エラストマーには、目的に応じて種々の添加剤を配合することができる。添加剤としては、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系等の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系等の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系等の光安定剤、帯電防止剤、過酸化物等の分子量調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物等の反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料等を添加することができる。   Various additives can be blended in the continuous linear thermoplastic elastomer constituting the network structure of the present invention according to the purpose. Additives include plasticizers such as phthalate ester, trimellitic ester, fatty acid, epoxy, adipic ester, polyester, etc., known hindered phenols, sulfur, phosphorus, amines, etc. Antioxidants, hindered amines, triazoles, benzophenones, benzoates, nickels, salicyls and other light stabilizers, antistatic agents, molecular weight modifiers such as peroxides, epoxy compounds, isocyanate compounds, carbodiimides Compounds having reactive groups such as organic compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids Organic and inorganic pigments can be added.

本発明の網状構造体を構成する連続線状体は、示差走査型熱量計(DSC)にて測定した融解曲線において、連続線状体を構成する熱可塑性エラストマーの融点以下に吸熱ピークを有するのが好ましい。融点以下に吸熱ピークを有する連続線状体からなる網状構造体は、耐熱耐へたり性が吸熱ピ−クを有しないものより著しく向上する。網状構造体の耐熱耐へたり性をより向上させるため、連続線状体を溶融熱接着後さらに連続線状体を構成する熱可塑性エラストマーの融点より少なくとも10℃以上低い温度でアニ−リング処理することも好ましい。網状構造体に圧縮歪みを付与してからアニ−リングするとさらに耐熱抗へたり性が向上する。このような処理をした網状構造体の連続線状体は、示差走査型熱量計(DSC)で測定した融解曲線に20℃以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニ−リングしない場合は融解曲線に20℃以上融点以下に吸熱ピ−クを発現しない。このことから類推するに、アニ−リングにより、ハ−ドセグメントが再配列され、疑似結晶化様の架橋点が形成され、耐熱抗へたり性が向上しているのではないかとも考えられる。以下、このアニーリング処理を「疑似結晶化処理」ということがある。この疑似結晶化処理効果は、ポリオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーにも有効である。   The continuous linear body constituting the network structure of the present invention has an endothermic peak below the melting point of the thermoplastic elastomer constituting the continuous linear body in the melting curve measured with a differential scanning calorimeter (DSC). Is preferred. A network structure composed of a continuous linear body having an endothermic peak below the melting point has a significantly improved heat sag resistance than that without an endothermic peak. In order to further improve the heat resistance and sag resistance of the network structure, the continuous linear body is subjected to an annealing treatment at a temperature lower by at least 10 ° C. than the melting point of the thermoplastic elastomer constituting the continuous linear body after melting and heat bonding. It is also preferable. When annealing is performed after applying a compressive strain to the network structure, the heat resistance and sag resistance are further improved. The continuous linear body of the network structure subjected to such treatment expresses an endothermic peak more clearly at a temperature of 20 ° C. or higher and a melting point or lower on a melting curve measured by a differential scanning calorimeter (DSC). When annealing is not performed, the endothermic peak does not appear in the melting curve at 20 ° C. or higher and the melting point or lower. By analogy with this, it is considered that the hard segments are rearranged by annealing and pseudo-crystallization-like cross-linking points are formed, and the heat resistance and sag resistance are improved. Hereinafter, this annealing process may be referred to as “pseudo crystallization process”. This pseudo-crystallization treatment effect is also effective for polyolefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers.

本発明の網状構造体は、使用時にソフトな触感を持つ、底付き感が少ない、圧縮耐久性に優れる、という3つの効果を併せ持った網状構造体である。上記3つの効果を併せ持つ網状構造体を得る方法は、少なくとも網状構造体の厚さ方向に、主に繊維径が0.1mm以上1.5mm以下の細い繊維からなる細繊維主領域と、主に繊維径が0.4mm以上3.0mm以下の太い繊維からなる太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域と、が存在し、細い繊維に比べて太い繊維の繊維径が0.07mm以上太く、かつ、網状構造体の細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下であることが必要である。   The network structure of the present invention is a network structure having the three effects of having a soft tactile sensation during use, less bottoming feeling, and excellent compression durability. A method of obtaining a network structure having the above three effects is mainly a fine fiber main region composed mainly of fine fibers having a fiber diameter of 0.1 mm or more and 1.5 mm or less, at least in the thickness direction of the network structure. A mixed region in which a thick fiber main region composed of thick fibers having a fiber diameter of 0.4 mm or more and 3.0 mm or less, and a thin fiber and a thick fiber located between the thin fiber main region and the thick fiber main region are mixed. There is a residual strain after repeated compression at a constant load of 750 N when the fiber diameter of the thick fiber is 0.07 mm or more thick compared to the thin fiber and the network is pressed from the fine fiber main region side. It must be 15% or less.

細繊維主領域において「主に」とは、その領域に含まれる総繊維本数に対して、細い繊維の繊維本数が占める割合が90%以上であることを意味する。太繊維主領域において「主に」とは、その領域に含まれる総繊維本数に対して、太い繊維径の繊維本数が占める割合が90%以上であることを意味する。また、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域においては、その領域に含まれる総繊維本数に対する細い繊維の繊維本数の占める割合が細繊維主領域に比べて低く、かつ、その領域に含まれる総繊維本数に対する太い繊維の繊維本数の占める割合が太繊維主領域に比べて低い。すなわち、混合領域は、その領域に含まれる総繊維本数に対して、細い繊維の繊維本数および太い繊維の繊維本数の両方がそれぞれ90%未満である領域を意味する。   “Mainly” in the fine fiber main region means that the ratio of the number of fine fibers to the total number of fibers contained in the region is 90% or more. “Mainly” in the thick fiber main region means that the ratio of the number of fibers having a large fiber diameter to the total number of fibers contained in the region is 90% or more. Moreover, in the mixed region formed by mixing fine fibers and thick fibers located between the fine fiber main region and the thick fiber main region, the ratio of the number of fine fibers to the total number of fibers contained in the region Is lower than the fine fiber main region, and the ratio of the number of thick fibers to the total number of fibers contained in the region is lower than that of the thick fiber main region. That is, the mixed region means a region where both the number of fine fibers and the number of thick fibers are less than 90% of the total number of fibers contained in the region.

ここで、所定の領域における各繊維の繊維本数の占める割合は、以下の方法で測定する。まず、試料を、幅方向3cm×長さ方向3cm×試料厚さの大きさに10サンプル切り出し、各サンプルの重さを電子天秤により測定する。次いで、各サンプルの同じ表面側から試料を構成している繊維を1本ずつサンプル厚さが出来るだけ均一に減少するように抜き出す。サンプル重さが最初に準備したサンプルの重さの90%以下の重さに初めてなるまで、繊維を1本ずつ抜き出す作業を続ける。抜き出した繊維の繊維径の大小を目視、光学顕微鏡等により確認し、細い繊維と太い繊維とに分け、細い繊維および太い繊維の繊維本数を数える。なお、後述のように、細い繊維が中実断面を有する中実断面繊維であり、太い繊維が中空断面を有する中空断面繊維である場合は、抜き出した繊維の断面を目視または光学顕微鏡等により確認することにより、細い繊維と太い繊維とに分けることができる。10サンプルの細い繊維および太い繊維の繊維本数を足してその領域に含まれる総繊維本数とする。その領域に含まれる総繊維本数に対する細い繊維の繊維本数および太い繊維の繊維本数から、細い繊維の繊維本数および太い繊維の繊維本数の占める割合をそれぞれ計算し、その領域が細繊維主領域、太繊維主領域、または混在領域かを判断する。   Here, the ratio of the number of fibers of each fiber in the predetermined region is measured by the following method. First, 10 samples are cut out in a size of 3 cm in the width direction × 3 cm in the length direction × sample thickness, and the weight of each sample is measured with an electronic balance. Next, the fibers constituting the sample are extracted one by one from the same surface side of each sample so as to reduce the sample thickness as uniformly as possible. The process of drawing out the fibers one by one is continued until the sample weight reaches 90% of the weight of the sample prepared first. The diameter of the extracted fiber is confirmed visually or with an optical microscope, and divided into thin fibers and thick fibers, and the number of thin fibers and thick fibers is counted. As will be described later, when the thin fiber is a solid cross-section fiber having a solid cross section and the thick fiber is a hollow cross-section fiber having a hollow cross section, the cross section of the extracted fiber is confirmed visually or by an optical microscope. By doing so, it can be divided into thin fibers and thick fibers. Add the number of thin fibers and thick fibers of 10 samples to obtain the total number of fibers contained in the region. From the number of fine fibers and the number of thick fibers to the total number of fibers contained in the area, the ratio of the number of fine fibers and the number of thick fibers is calculated. It is determined whether it is a fiber main region or a mixed region.

続いて、各サンプルからの繊維の抜き出し作業を再開し、サンプル重さが最初に準備したサンプルの重さの80%以下の重さに初めてなるまで、繊維を1本ずつ抜き出す作業を続け、上記と同様にして、その領域に含まれる総繊維本数に対する細い繊維の繊維本数および太い繊維の繊維本数から、細い繊維の繊維本数および太い繊維の繊維本数の占める割合をそれぞれ計算し、その領域が細繊維主領域、太繊維主領域、または混在領域かを判断する。   Subsequently, the operation of extracting fibers from each sample was resumed, and the operation of extracting fibers one by one was continued until the sample weight became the first 80% or less of the weight of the sample prepared first. In the same manner as above, the ratio of the number of thin fibers and the number of thick fibers is calculated from the number of thin fibers and the number of thick fibers from the total number of fibers contained in the region. It is determined whether it is a fiber main region, a thick fiber main region, or a mixed region.

その後、サンプル重さが最初に準備したサンプルの重さの70%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの60%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの50%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの40%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの30%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの20%以下の重さに初めてなるまで、サンプル重さが最初に準備したサンプルの重さの10%以下の重さに初めてなるまで、さらにサンプルの重さが0%の重さになるまで、サンプル重さのほぼ10%毎に、各サンプルからの繊維の抜き出し作業を繰り返し、上記と同様にして、表面側から厚さ方向に10個に区分した各領域に含まれる総繊維本数に対する細い繊維の繊維本数および太い繊維の繊維本数から、細い繊維の繊維本数および太い繊維の繊維本数の占める割合をそれぞれ計算し、各領域が細繊維主領域、太繊維主領域、または混在領域かを判断する。   After that, until the sample weight first begins to be less than 70% of the weight of the initially prepared sample, until the sample weight begins to be less than 60% of the weight of the first prepared sample, Sample weight until sample weight is first less than 40% of first sample weight until sample weight is first less than 50% of first sample weight Until the first sample weight is less than 20% of the weight of the first sample, until the first sample weight is less than 30% of the first sample weight. Fibers from each sample approximately every 10% of the sample weight until the first weight of the sample prepared is less than 10%, and until the sample weighs 0%. Repeat the extraction process. In the same manner as described above, the number of thin fibers and the number of thick fibers are calculated from the number of thin fibers and the number of thick fibers with respect to the total number of fibers included in each region divided into 10 in the thickness direction from the surface side. The ratio of the number of fibers is calculated, and it is determined whether each region is a fine fiber main region, a thick fiber main region, or a mixed region.

本発明の網状構造体は、網状構造体の細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮(以下、細繊維主領域側からの750N定荷重繰り返し圧縮ともいう)後の残留歪みが、15%以下であり、好ましくは13%以下であり、より好ましくは11%以下であり、さらに好ましくは10%以下である。連続線状体が主に細い繊維からなる層および連続線状体が主に太い繊維からなる層を積層した構造を持つ複層構造の網状構造体においては、主に細い繊維からなる層(すなわち細繊維主領域)側からの750N定荷重繰り返し圧縮後の残留歪みが、主に太い繊維からなる層(すなわち太繊維主領域)側からの750N定荷重繰り返し圧縮後の残留歪みより、残留歪みが大きい。そのため、細繊維主領域側からの750N定荷重繰り返し圧縮後の残留歪みが低い値になることは、網状構造体全体としての圧縮耐久性が良いことを意味する。   The network structure of the present invention has a residual strain after 750 N constant load repeated compression (hereinafter also referred to as 750 N constant load repeated compression from the fine fiber main region side) when pressurized from the fine fiber main region side of the network structure. However, it is 15% or less, Preferably it is 13% or less, More preferably, it is 11% or less, More preferably, it is 10% or less. In a multi-layered network structure having a structure in which a continuous linear body is formed by laminating a layer mainly composed of thin fibers and a layer composed of continuous fibers mainly composed of thick fibers, a layer composed mainly of thin fibers (i.e. The residual strain after the 750N constant load repeated compression from the fine fiber main region) side is more than the residual strain after the 750N constant load repeated compression mainly from the thick fiber layer (ie, the thick fiber main region) side. large. Therefore, a low value of residual strain after 750 N constant load repeated compression from the fine fiber main region side means that the compression durability of the entire network structure is good.

上記の細繊維主領域側からの750N定荷重繰り返し圧縮後の残留歪みを小さくするためは、細繊維主領域と太繊維主領域との間の位置に細い繊維と太い繊維とが混在してなる混在領域を存在させ、これらの領域が分離することなく一体化することにより網状構造体全体の厚さが形成されていることが重要である。   In order to reduce the residual strain after the 750N constant load repeated compression from the fine fiber main region side, a thin fiber and a thick fiber are mixed at a position between the fine fiber main region and the thick fiber main region. It is important that the thickness of the entire network structure is formed by the existence of mixed regions and the integration of these regions without separation.

細い繊維と太い繊維とが混在してなる混在領域が存在せず、主に細い繊維からなる網状構造体と、主に太い繊維からなる網状構造体とを重ね合わせただけで、容易に分離でき一体化していない2枚重ね合わせ積層網状構造体でも、使用時にソフトな触感を持つ、底付き感が少ない網状構造体を得ることは可能である。しかし、上記重ね合わせ積層網状構造体では、連続線状体が細い繊維からなる圧縮硬度の低い網状構造体の面から加圧圧縮していくと、まず連続線状体が細い繊維からなる圧縮硬度の低い網状構造体のみが圧縮変形し、連続線状体が細い繊維からなる圧縮硬度の低い網状構造体のみが、連続線状体が太い繊維からなる圧縮硬度の高い網状構造体から独立してたわむ。そして、連続線状体が細い繊維からなる圧縮硬度の低い網状構造体のみで圧縮負荷に耐えきれなくなった段階でようやく連続線状体が太い繊維からなる圧縮硬度の高い網状構造体に圧縮応力が伝播し、連続線状体が太い繊維からなる圧縮硬度の高い網状構造体の変形やたわみが始まる。このため加圧圧縮が繰り返されると連続線状体が細い繊維からなる圧縮硬度の低い網状構造体の方が先に疲労が蓄積し、連続線状体が太い繊維からなる圧縮硬度の高い網状構造体よりも厚さ低下や圧縮硬度低下が進んでいく。つまり、網状構造体全体として圧縮耐久性が低い網状構造体となってしまう。   There is no mixed region consisting of thin fibers and thick fibers, and the network structure consisting mainly of thin fibers and the network structure consisting mainly of thick fibers can be easily separated. Even with a two-layer laminated network structure that is not integrated, it is possible to obtain a network structure that has a soft tactile sensation during use and a low feeling of bottoming. However, in the above layered laminated network structure, when the continuous linear body is compressed and compressed from the surface of the network structure having a low compression hardness composed of thin fibers, first, the continuous linear body is composed of thin fibers. Only the low-net-like network structure is compressively deformed, and the continuous linear body is composed of thin fibers, and only the low-compressed-hardness network structure is independent of the high-compressed network structure composed of thick fibers. Deflection. At the stage where the continuous linear body is made up of thin fibers composed of thin fibers and has a low compressive hardness and cannot withstand the compressive load, the continuous linear body is finally composed of thick fibers and the compressive stress is applied to the high compressive network structures. Propagation begins and deformation and deflection of the network structure with high compressive hardness, the continuous linear body consisting of thick fibers. For this reason, when pressure compression is repeated, the network structure with low compression hardness, in which the continuous linear body is composed of thin fibers, accumulates fatigue earlier, and the network structure with high compression hardness, in which the continuous linear body is composed of thick fibers. Thickness reduction and compression hardness reduction progress than the body. That is, the network structure as a whole has a network structure with low compression durability.

また、細い繊維と太い繊維とが混在してなる混在領域は存在しないが、主に細い繊維からなる網状構造体と、主に太い繊維からなる網状構造体とを接着により貼り合わせ一体化した2枚貼り合わせ積層網状構造体でも、使用時にソフトな触感を持つ、底付き感が少ない網状構造体を得ることは可能である。しかし、上記貼り合わせ積層網状構造体では、繰り返し圧縮の初期段階は、加圧圧縮負荷に対して両方の網状構造体が一体となって変形したわむが、圧縮が繰り返されるにつれ接着面に応力が集中し、接着力の低下やはがれが生じるため、2枚貼り合わせ積層網状構造体も網状構造体全体として圧縮耐久性が低い網状構造体となってしまう。   Further, there is no mixed region in which thin fibers and thick fibers are mixed, but a network structure mainly composed of thin fibers and a network structure mainly composed of thick fibers are bonded and integrated by bonding 2 Even with a sheet-laminated laminated network structure, it is possible to obtain a network structure with a soft tactile sensation during use and a low feeling of bottoming. However, in the above-mentioned laminated laminated network structure, the initial stage of repeated compression is such that both network structures are deformed as a unit against the pressure compression load, but stress is applied to the adhesive surface as compression is repeated. As a result, the adhesive strength is reduced and peeling occurs, so that the two-layer laminated network structure is a network structure having a low compression durability as a whole.

また、細い繊維と太い繊維とが混在してなる混在領域は存在しないが、主に細い繊維からなる細繊維主領域と、主に太い繊維からなる太繊維主領域とが融着一体化した網状構造体でも、使用時にソフトな触感を持つ、底付き感が少ない網状構造体を得ることは可能である。このような網状構造体は、主に太い繊維からなる網状構造体の上に細い繊維を吐出して主に細い繊維からなる網状構造体を融着積層する方法によって得ることができる。しかし、この方法で得られた上記網状構造体は、一旦太い繊維が固化した後、細い繊維を融着させるため、太い繊維層と細い繊維層の境界面の融着力が低く、繰り返し圧縮負荷を受けると境界面に応力が集中し界面剥離が発生し、結果的に圧縮耐久性が悪くなる。   In addition, there is no mixed area where thin fibers and thick fibers are mixed, but a fine fiber main area mainly composed of thin fibers and a thick fiber main area mainly composed of thick fibers are fused and integrated. Even in the case of a structure, it is possible to obtain a network structure that has a soft tactile sensation during use and a low feeling of bottoming. Such a network structure can be obtained by a method in which thin fibers are discharged onto a network structure mainly composed of thick fibers, and a network structure mainly composed of thin fibers is fused and laminated. However, since the network structure obtained by this method fuses thin fibers once thick fibers are solidified, the fusion force at the interface between the thick fiber layer and the thin fiber layer is low, and repeated compression load is applied. When it receives, stress concentrates on the boundary surface and interface peeling occurs, resulting in poor compression durability.

本発明の網状構造体は、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域が存在し、これらの領域を分離することなく一体化したことで網状構造体全体の厚さを形成した網状構造体の場合、連続線状体が主に細い繊維からなる圧縮硬度の低い細繊維主領域側から加圧圧縮しても、混在領域を通じて、圧縮初期の段階から、連続線状体が主に太い繊維からなる圧縮硬度の高い太繊維主領域側へ応力が伝播し、厚さ方向へ応力が効率よく分散され、加圧圧縮負荷に対し網状構造体全体が変形したわむ。これにより、連続線状体が主に細い繊維からなる圧縮硬度が低い細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが小さくなり、網状構造体全体としての圧縮耐久性も高くなるものである。   The network structure of the present invention has a mixed region in which a thin fiber and a thick fiber are mixed between a fine fiber main region and a thick fiber main region, and these regions are integrated without being separated. In the case of a network structure in which the thickness of the entire network structure is formed, even if the continuous linear body is compressed and compressed from the side of the fine fiber main region having a low compression hardness consisting mainly of fine fibers, From the initial stage of compression, the stress propagates to the thick fiber main region side where the continuous linear body is mainly composed of thick fibers and has high compression hardness, and the stress is efficiently dispersed in the thickness direction. The entire network structure is deformed. As a result, the residual strain after repeated compression at a constant load of 750 N when the continuous linear body is mainly pressed from the side of the fine fiber main region having a low compression hardness consisting of fine fibers is reduced, and the compression durability of the entire network structure is reduced. The property is also increased.

本発明の網状構造体は、特開2014−194099号公報等に記載された公知の方法に新たな技術を付加することにより得られる。例えば、後述する複数のオリフィスでかつ異なるオリフィス孔径を複数有する多列ノズルより熱可塑性エラストマーをノズルオリフィスに分配し、上記熱可塑性エラストマーの融点より20℃以上120℃未満高い紡糸温度で、上記ノズルより下方に向け吐出させ、溶融状態で互いに連続線状体を接触させて融着させ3次元構造を形成しつつ、引き取りコンベアネットで挟み込み、冷却槽中の冷却水で冷却せしめた後、引出し、水切り後または乾燥して、両面または片面が平滑化した網状構造体を得る。片面のみを平滑化させる場合は、傾斜を持つ引取ネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引取ネット面のみ形態を緩和させつつ冷却すると良い。得られた網状構造体をアニーリング処理することもできる。なお、網状構造体の乾燥処理をアニーリング処理としても良い。   The network structure of the present invention can be obtained by adding a new technique to a known method described in Japanese Patent Application Laid-Open No. 2014-194099. For example, a thermoplastic elastomer is distributed to the nozzle orifice from a plurality of orifices having a plurality of orifices and a plurality of different orifice hole diameters, which will be described later, and the spinning temperature is higher than the melting point of the thermoplastic elastomer by 20 ° C. or more and less than 120 ° C. It is discharged downward and brought into contact with each other in a molten state to form a three-dimensional structure, sandwiched by a take-up conveyor net, cooled with cooling water in a cooling tank, and then drawn out and drained. After or drying, a network structure having smoothed both sides or one side is obtained. In the case of smoothing only one surface, it is preferable that cooling is performed while relaxing the shape of only the take-up net surface while discharging it onto an inclined take-up net and bringing it into contact with each other in a molten state to form a three-dimensional structure. The obtained network structure can be annealed. The drying process of the network structure may be an annealing process.

本発明の網状構造体を得る手段としては、ノズル形状やディメンジョン、ノズル孔配列を最適にすることが好ましい。ノズル形状は、細い繊維を形成するオリフィス径は1.5mm以下が好ましく、太い繊維を形成するオリフィス径は2mm以上が好ましい。また、太い繊維を形成するノズルオリフィス形状は中空形成性を有することが好ましく、C型ノズルや3点ブリッジ形状ノズル等が挙げられるが、耐圧の観点から3点ブリッジ形状ノズルであることが好ましい。孔間ピッチは、細い繊維を形成するオリフィスと太い繊維を形成するオリフィスいずれも、4mm以上12mm以下が好ましく、5mm以上11mm以下がさらに好ましい。ノズル孔配列は、格子配列、円周配列、千鳥配列等が例示されるが、網状構造体の品位の観点から格子配列または千鳥配列が好ましい。ここで、孔間ピッチとは、ノズル孔の中心間の距離であり、網状構造体の幅方向の孔間ピッチ(以下、「幅方向孔間ピッチ」ともいう)および網状構造体の厚さ方向の孔間ピッチ(以下、「厚さ方向孔間ピッチ」ともいう)が存在する。上記に記載の好適な孔間ピッチについては、幅方向孔間ピッチおよび厚さ方向孔間ピッチの両者に好適な孔間ピッチを記載したものである。   As a means for obtaining the network structure of the present invention, it is preferable to optimize the nozzle shape, dimensions, and nozzle hole arrangement. With respect to the nozzle shape, the orifice diameter for forming fine fibers is preferably 1.5 mm or less, and the orifice diameter for forming thick fibers is preferably 2 mm or more. Moreover, it is preferable that the nozzle orifice shape which forms a thick fiber has a hollow formability, and a C type nozzle, a 3-point bridge shape nozzle, etc. are mentioned, However, From a pressure | voltage resistant viewpoint, it is preferable that it is a 3-point bridge shape nozzle. The inter-hole pitch is preferably 4 mm or more and 12 mm or less, and more preferably 5 mm or more and 11 mm or less for both the orifice forming the fine fibers and the orifice forming the thick fibers. Examples of the nozzle hole array include a lattice array, a circumferential array, a staggered array, and the like, but a lattice array or a staggered array is preferable from the viewpoint of the quality of the network structure. Here, the inter-hole pitch is the distance between the centers of the nozzle holes, the inter-hole pitch in the width direction of the network structure (hereinafter also referred to as “width-direction hole pitch”), and the thickness direction of the network structure. Between the holes (hereinafter also referred to as “thickness direction hole pitch”). About the suitable hole pitch as described above, the hole pitch suitable for both the width direction hole pitch and the thickness direction hole pitch is described.

本発明の網状構造体を得るためのノズルとしては、
a群:細い繊維用オリフィス孔が厚さ方向に複数列配置されて構成されるオリフィス孔群、
ab混在群:細い繊維用オリフィス孔と太い繊維用オリフィス孔が混在して厚さ方向に複数列配置されて構成されるオリフィス孔群、
b群:太い繊維用オリフィス孔が厚さ方向に複数列配置されて構成されるオリフィス孔群、
の3つの群(a群、ab混在群、およびb群)からなるノズルが挙げられる。
As a nozzle for obtaining the network structure of the present invention,
Group a: Orifice hole group configured by arranging a plurality of fine fiber orifice holes in the thickness direction,
ab mixed group: an orifice hole group constituted by arranging a plurality of thin fiber orifice holes and thick fiber orifice holes in a plurality of rows in the thickness direction;
b group: Orifice hole group composed of a plurality of thick fiber orifice holes arranged in the thickness direction,
No. 3 nozzles (a group, ab mixed group, and b group).

また、別のノズルとしては、
α群:細い繊維用オリフィス孔が厚さ方向に複数列配置されて構成されるオリフィス孔群、
β群:太い繊維用オリフィス孔が厚さ方向に複数列配置されて構成されるオリフィス孔群、
の2つの群(α群およびβ群)からなり、細い繊維用オリフィスの幅方向孔間ピッチと太い繊維用オリフィスの幅方向孔間ピッチの差が小さいノズルも挙げられる。ノズルの構造を簡素化できる観点から、上記α群およびβ群からなるノズルがより好ましい。
As another nozzle,
α group: Orifice hole group composed of multiple orifice holes for thin fibers arranged in the thickness direction,
β group: Orifice hole group composed of a plurality of thick orifice holes for fibers arranged in the thickness direction,
And a nozzle having a small difference between the widthwise hole pitch of the fine fiber orifice and the widthwise hole pitch of the thick fiber orifice. From the viewpoint of simplifying the nozzle structure, the nozzles composed of the α group and the β group are more preferable.

ノズルのオリフィス孔群としては2つだが、α群とβ群との境界面付近から紡糸された繊維は、細い繊維と太い繊維とが混在してなる混在領域を形成するため、本発明の厚さ方向に3つの領域を含む網状構造体を得ることができる。   Although the number of orifice holes in the nozzle is two, the fibers spun from the vicinity of the boundary surface between the α group and the β group form a mixed region in which thin fibers and thick fibers are mixed. A network structure including three regions in the vertical direction can be obtained.

本発明の圧縮耐久性に優れた網状構造体を得るためには、細い繊維用オリフィスの幅方向孔間ピッチと太い繊維用オリフィスの幅方向孔間ピッチの差を小さくする必要がある。幅方向孔間ピッチの差が小さいと耐久性の差が小さくなる理由の全容は明らかになっている訳では無いが、以下のように推測される。   In order to obtain a network structure excellent in compression durability according to the present invention, it is necessary to reduce the difference between the widthwise hole pitch of the fine fiber orifice and the widthwise hole pitch of the thick fiber orifice. Although the whole reason why the difference in durability is reduced when the difference in pitch between the widthwise holes is small is not clarified, it is estimated as follows.

細い繊維と太い繊維とが混在してなる混在領域において、オリフィスの幅方向孔間ピッチの差が小さいということは、混在領域において細い繊維と太い繊維の構成本数が近いことを意味する。細い繊維と太い繊維の構成本数が近いと、細い繊維と太い繊維とがほぼ1本対1本で複数の接点を構成しているといえる。そのため、連続線状体が主に細い繊維からなる側(細繊維主領域側)から加圧された場合にも、応力が伝播しやすいため、圧縮耐久性が良くなると考えられる。   In a mixed region where thin fibers and thick fibers are mixed, a small difference in pitch between holes in the width direction of the orifice means that the number of thin fibers and thick fibers in the mixed region is close. When the number of thin fibers and thick fibers is close, it can be said that the thin fibers and the thick fibers constitute a plurality of contact points in a one-to-one manner. Therefore, even when the continuous linear body is pressurized from the side mainly composed of fine fibers (the fine fiber main region side), it is considered that the compression durability is improved because stress easily propagates.

それに対し、オリフィスの幅方向孔間ピッチの差が大きいノズルで網状構造体を形成した場合、細い繊維と太い繊維とが混在してなる混在領域において、たとえば細い繊維の構成本数が太い繊維の構成本数に比べて多い時は、混在領域において、細い繊維の一部は太い繊維と接点をほとんど有しないものが存在することになる。そのため、連続線状体が主に太い繊維からなる側(太繊維主領域側)から加圧した時は、太い繊維から応力が殆ど伝播しない細い繊維が存在し、それらは太い繊維から応力が伝播された細い繊維を経由して応力が伝播されると考えられる。一方、連続線状体が主に細い繊維からなる側(細繊維主領域側)から加圧した時は、太い繊維に応力を伝播できない細い繊維が存在し、それらは太い繊維に応力を伝播できる細い繊維を経由して応力を太い繊維に伝播すると考えられる。   On the other hand, when a network structure is formed with a nozzle having a large difference in the pitch between holes in the width direction of the orifice, in the mixed region where thin fibers and thick fibers are mixed, for example, the structure of fibers with a large number of thin fibers When the number is larger than the number, in the mixed region, some of the thin fibers have thick fibers and few contacts. For this reason, when the continuous linear body is pressurized from the side consisting mainly of thick fibers (thick fiber main region side), there are fine fibers from which the stress hardly propagates from the thick fibers, and the stress propagates from the thick fibers. It is thought that stress is propagated through the formed thin fibers. On the other hand, when the continuous linear body is pressurized from the side mainly composed of fine fibers (fine fiber main region side), there are fine fibers that cannot propagate stress to thick fibers, and they can propagate stress to thick fibers. It is thought that stress is propagated to thick fibers via thin fibers.

すなわち、オリフィスの幅方向孔間ピッチの差が大きいノズルで網状構造体を形成した場合は、細い繊維と太い繊維とが混在してなる混在領域において、応力の伝播の方向が、厚さ方向と厚さ方向に直交する方向に分散してしまうため、応力の伝播効率が低下するため、連続線状体が主に細い繊維からなる側(細繊維主領域側)から加圧された場合と連続線状体が主に太い繊維からなる側(太繊維主領域側)から加圧された場合とで、圧縮耐久性の差が大きく、細繊維主領域側から加圧された場合の圧縮耐久性に劣る網状構造体となるものと考えられる。   That is, when a network structure is formed with a nozzle having a large difference in pitch between holes in the width direction of the orifice, the direction of stress propagation is the thickness direction in the mixed region where thin fibers and thick fibers are mixed. Since it disperses in the direction perpendicular to the thickness direction, the propagation efficiency of the stress decreases, so the continuous linear body is continuous with the case where it is mainly pressed from the side consisting of fine fibers (fine fiber main region side). There is a large difference in compression durability when the linear body is mainly pressed from the side consisting of thick fibers (thick fiber main region side), and the compression durability when pressed from the fine fiber main region side It is thought that it becomes a network structure inferior to.

細い繊維用オリフィスの幅方向孔間ピッチと太い繊維用オリフィスの幅方向孔間ピッチの差としては、2mm以下であることが好ましく、1mm以下であることがより好ましく、0mm、すなわち幅方向孔間ピッチが同じであることがさらに好ましい。   The difference between the widthwise hole pitch of the fine fiber orifice and the widthwise hole pitch of the thick fiber orifice is preferably 2 mm or less, more preferably 1 mm or less, and 0 mm, that is, between the width direction holes. More preferably, the pitch is the same.

本発明の網状構造体の主に細繊維主領域を構成する細い繊維の繊維径は0.1mm以上1.5mm以下であり、0.2mm以上1.4mm以下が好ましく、0.3mm以上1.3mm以下がより好ましい。繊維径が0.1mm未満だと細すぎてしまい、緻密性やソフトな触感は良好となるが網状構造体として必要な硬度を確保することが困難となり、繊維径が1.5mmを超えるとソフトな触感を得ることが困難になる場合がある。   The fiber diameter of the fine fibers mainly constituting the fine fiber main region of the network structure of the present invention is 0.1 mm or more and 1.5 mm or less, preferably 0.2 mm or more and 1.4 mm or less, and 0.3 mm or more and 1. 3 mm or less is more preferable. If the fiber diameter is less than 0.1 mm, it will be too thin and the fineness and soft feel will be good, but it will be difficult to secure the necessary hardness as a network structure, and if the fiber diameter exceeds 1.5 mm, it will be soft. It may be difficult to obtain a good tactile sensation.

本発明の網状構造体の主に太繊維主領域を構成する太い繊維の繊維径は0.4mm以上3.0mm以下であり、0.5mm以上2.5mm以下が好ましく、0.6mm以上2.0mm以下がより好ましい。繊維径が0.4mm未満だと細すぎてしまい、網状構造体として必要な硬度を確保することが困難となり、繊維径が3.0mmを超えると網状構造体の硬度は確保できるが、網状構造が粗くなり、圧縮耐久性が劣る場合がある。   The fiber diameter of the thick fibers mainly constituting the thick fiber main region of the network structure of the present invention is 0.4 mm or more and 3.0 mm or less, preferably 0.5 mm or more and 2.5 mm or less, and 0.6 mm or more and 2. 0 mm or less is more preferable. If the fiber diameter is less than 0.4 mm, it will be too thin and it will be difficult to ensure the required hardness as a network structure. If the fiber diameter exceeds 3.0 mm, the hardness of the network structure can be ensured. May become rough and compression durability may be inferior.

本発明の網状構造体を構成する連続線状体の細い繊維と太い繊維の繊維径は、太い繊維の方が、0.07mm以上太く、0.10mm以上太いのが好ましく、0.12mm以上太いのがより好ましく、0.15mm以上太いのがさらに好ましく、0.20mm以上太いのが特に好ましく、0.25mm以上太いのが最も好ましい。太い繊維と細い繊維の繊維径の差の上限は、本発明においては、2.5mm以下が好ましい。太い繊維が細い繊維の繊維径よりも0.07mm未満太い場合は、網状構造体に底付き感がある場合がある。逆に繊維径の差が大きすぎると異物感が出過ぎるため、適正な範囲に設定する必要がある。   The fiber diameter of the thin fibers and the thick fibers of the continuous linear body constituting the network structure of the present invention is 0.07 mm or more thick, preferably 0.10 mm or more thick, and preferably 0.12 mm or more thick. Is more preferably 0.15 mm or thicker, particularly preferably 0.20 mm or thicker, and most preferably 0.25 mm or thicker. In the present invention, the upper limit of the difference in fiber diameter between the thick fiber and the thin fiber is preferably 2.5 mm or less. If the thick fiber is less than 0.07 mm thicker than the fiber diameter of the thin fiber, the network structure may have a bottoming feeling. Conversely, if the difference in fiber diameter is too large, the feeling of foreign matter will be excessive, so it is necessary to set it within an appropriate range.

本発明の網状構造体を構成する細い繊維の総重量比率は、網状構造体を構成する全繊維に対し10%以上90%以下が好ましい。本発明の網状構造体にソフトな触感を付与するためには、20%以上80%以下がより好ましく、30%以上70%以下がさらに好ましい。10%未満および90%を超えると、網状構造体にソフトな触感を付与できなくなる場合がある。   The total weight ratio of the thin fibers constituting the network structure of the present invention is preferably 10% or more and 90% or less with respect to the total fibers constituting the network structure. In order to impart a soft tactile sensation to the network structure of the present invention, it is preferably 20% or more and 80% or less, and more preferably 30% or more and 70% or less. If it is less than 10% or more than 90%, it may not be possible to give a soft tactile feel to the network structure.

本発明の網状構造体において、細い繊維が中実断面を有する中実断面繊維であり、太い繊維が中空断面を有する中空断面繊維であることが好ましい。細い繊維は中実断面繊維であればより細い繊維が製造可能となるからであり、太い繊維は中空断面繊維であれば重量が軽くなるからである。中実断面繊維および中空断面繊維は、それらの繊維の断面を目視または光学顕微鏡等による観察により識別する。   In the network structure of the present invention, it is preferable that the thin fibers are solid cross-section fibers having a solid cross section, and the thick fibers are hollow cross-section fibers having a hollow cross section. This is because a thin fiber can be produced if it is a solid cross-section fiber, and a thin fiber can be manufactured if the fiber is a hollow cross-section fiber. Solid cross-section fibers and hollow cross-section fibers are identified by visual observation or observation with an optical microscope or the like.

本発明の網状構造体を構成する連続線状体は、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合線状としても良い。複合形態としては、線状体自身を複合化した場合として、シース・コア型、サイドバイサイド型、偏芯シース・コア型等の複合線状体が挙げられる。   The continuous linear body constituting the network structure of the present invention may be a composite linear combination with another thermoplastic resin as long as the object of the present invention is not impaired. Examples of the composite form include composite linear bodies such as a sheath / core type, a side-by-side type, and an eccentric sheath / core type when the linear body itself is combined.

本発明の網状構造体を構成する連続線状体の断面形状は略円形状であることが好ましいが、異型断面とすることで抗圧縮性やタッチを付与することができる場合もある。   The cross-sectional shape of the continuous linear body constituting the network structure of the present invention is preferably substantially circular, but there may be a case where an anti-compression property or a touch can be imparted by using an atypical cross section.

本発明の網状構造体を構成する連続線状体には、性能を低下させない範囲で、防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能を持った薬剤を、連続線状体を構成する熱可塑性エラストマーに含有させ、および/または連続線状体表面に添加等の処理により付着させることもできる。   In the continuous linear body constituting the network structure of the present invention, a drug having functions such as deodorizing antibacterial, deodorizing, antifungal, coloring, aroma, flame retardant, moisture absorption and desorption etc. is added within a range not deteriorating the performance. Further, it can be contained in the thermoplastic elastomer constituting the continuous linear body and / or adhered to the surface of the continuous linear body by a treatment such as addition.

本発明の網状構造体は、あらゆる形状に成型したものを含む。例えば、板状、三角柱、多角体、円柱、球状やこれらを多数含む網状構造体も含まれる。これらの成型方法は、カット、熱プレス、不織布加工等の公知な方法で行うことができる。   The network structure of the present invention includes those molded into any shape. For example, plate-shaped, triangular prisms, polygons, cylinders, spheres, and network structures including many of these are also included. These molding methods can be performed by known methods such as cutting, hot pressing, and nonwoven fabric processing.

本発明の網状構造体は、網状構造体の少なくとも一部分に、上記の細繊維主領域と、上記の太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する上記の混在領域が存在する網状構造体をも含むものである。すなわち、本発明の網状構造体は、細繊維主領域、混合領域、および太繊維主領域をそれぞれ1つ含む場合だけでなく、それらの少なくともいずれかを複数含む場合もある。たとえば、本発明の網状構造体は、その厚さ方向に、細繊維主領域、混在領域、太繊維主領域、混在領域、および細繊維主領域を含む網状構造体、あるいは、細繊維主領域、混在領域、太繊維主領域、混在領域、細繊維主領域、混在領域、および太繊維主領域を含む網状構造体等も、好適に含まれる。このように、細繊維主領域および太繊維主領域の少なくともいずれかが複数存在する網状構造体においても、使用時にソフトな触感を持ちつつ、底付き感が少なく、圧縮耐久性にも優れる観点から、各細繊維主領域と各太繊維主領域との間には、混合領域が存在することが好ましい。さらに、本発明の網状構造体は、ソフトな触感を付与する観点から、少なくとも一方の表面側が細繊維主領域側であることが必要であり、両方の表面側が細繊維主領域側であってもよい。   In the network structure of the present invention, at least a part of the network structure includes the fine fiber main region, the thick fiber main region, and the mixture of the fine fiber main region and the thick fiber main region. The network structure including the region is also included. That is, the network structure of the present invention may include not only one fine fiber main region, one mixed region, and one thick fiber main region, but also a plurality of at least one of them. For example, the network structure of the present invention, in the thickness direction, a fine fiber main region, a mixed region, a thick fiber main region, a mixed region, and a network structure including a fine fiber main region, or a fine fiber main region, A network structure including a mixed region, a thick fiber main region, a mixed region, a fine fiber main region, a mixed region, and a thick fiber main region is also preferably included. Thus, even in a network structure in which at least one of a fine fiber main region and a thick fiber main region is present, from the viewpoint of having a soft tactile sensation at the time of use, less bottoming feeling, and excellent compression durability. A mixed region is preferably present between each fine fiber main region and each thick fiber main region. Furthermore, the network structure of the present invention requires that at least one surface side is a fine fiber main region side from the viewpoint of imparting a soft tactile sensation, and both surface sides are fine fiber main region sides. Good.

本発明の網状構造体の見かけ密度は、0.005g/cm3以上0.20g/cm3以下が好ましく、0.01g/cm3以上0.18g/cm3以下がより好ましく、0.02g/cm3以上0.15g/cm3以下がさらに好ましい。見かけ密度が0.005g/cm3未満であるとクッション材として使用する際に必要な硬度が保てなくなり、逆に0.20g/cm3を越えると硬くなり過ぎてしまいクッション材に不適なものとなる場合がある。 Apparent density of the network structure of the present invention is preferably 0.005 g / cm 3 or more 0.20 g / cm 3 or less, more preferably 0.01 g / cm 3 or more 0.18 g / cm 3 or less, 0.02 g / More preferably, it is not less than cm 3 and not more than 0.15 g / cm 3 . Unsuitable cushioning material hardness is not be maintained, becomes too hard, exceeds 0.20 g / cm 3 in the opposite required when the apparent density is used as a cushioning material is less than 0.005 g / cm 3 It may become.

本発明の網状構造体の厚さは、5mm以上が好ましく、10mm以上がより好ましい。厚さが5mm未満ではクッション材に使用すると薄すぎてしまい底付き感が出てしまう場合がある。厚さの上限は製造装置の関係から、300mm以下が好ましく、200mm以下がより好ましく、120mm以下がさらに好ましい。   The thickness of the network structure of the present invention is preferably 5 mm or more, and more preferably 10 mm or more. If the thickness is less than 5 mm, it may become too thin when used as a cushioning material, resulting in a feeling of bottoming. The upper limit of the thickness is preferably 300 mm or less, more preferably 200 mm or less, and still more preferably 120 mm or less, from the viewpoint of the production apparatus.

本発明の網状構造体の細繊維主領域側(両方の表面側が細繊維主領域側である場合はより細い繊維からなる細繊維主領域表面側)から加圧した時の25%圧縮時硬度は、10N/φ100mm以上が好ましく、20N/φ100mm以上がより好ましい。25%圧縮時硬度が10N/φ100mm未満ではクッション材としての硬度が不足してしまい底付き感が出てしまう場合がある。25%圧縮時硬度の上限は特に規定しないが、1.5kN/φ100mm以下が好ましい。   The hardness at the time of 25% compression when pressed from the fine fiber main region side of the network structure of the present invention (when both surface sides are fine fiber main region sides, the fine fiber main region surface side consisting of finer fibers) is 10 N / φ100 mm or more is preferable, and 20 N / φ100 mm or more is more preferable. If the hardness at 25% compression is less than 10 N / φ100 mm, the hardness as a cushioning material may be insufficient and a feeling of bottoming may appear. The upper limit of the hardness at 25% compression is not particularly specified, but is preferably 1.5 kN / φ100 mm or less.

本発明の網状構造体の細繊維主領域側(両方の表面側が細繊維主領域側である場合はより細い繊維からなる細繊維主領域表面側)から加圧した時の40%圧縮時硬度は、20N/φ100mm以上が好ましく、30N/φ100mm以上がより好ましく、40N/φ100mm以上がさらに好ましい。40%圧縮時硬度が20N/φ100mm未満ではクッション材としての硬度が不足してしまい底付き感が出てしまう場合がある。40%圧縮時硬度の上限は特に規定しないが、5kN/φ100mm以下が好ましい。   40% compression hardness when pressed from the fine fiber main region side of the network structure of the present invention (when both surface sides are fine fiber main region sides, the fine fiber main region surface side consisting of finer fibers) 20 N / φ100 mm or more is preferable, 30 N / φ100 mm or more is more preferable, and 40 N / φ100 mm or more is more preferable. If the hardness at 40% compression is less than 20 N / φ100 mm, the hardness as a cushioning material may be insufficient and a feeling of bottoming may appear. The upper limit of the 40% compression hardness is not particularly specified, but is preferably 5 kN / φ100 mm or less.

本発明の網状構造体の細繊維主領域側(両方の表面側が細繊維主領域側である場合はより細い繊維からなる細繊維主領域表面側)から加圧した時のヒステリシスロスは、60%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることがさらに好ましく、30%以下であることが特に好ましく、25%以下であることが最も好ましい。上記のヒステリシスロスが60%を超えると、本発明の網状構造体の反発性が低下し過ぎて寝心地や座り心地が悪くなる。ヒステリシスロスの下限は、特に限定はないが、本発明においては1%以上が好ましい。   The hysteresis loss when pressed from the fine fiber main region side of the network structure of the present invention (the fine fiber main region surface side consisting of finer fibers when both surface sides are fine fiber main region sides) is 60%. Or less, more preferably 50% or less, further preferably 40% or less, particularly preferably 30% or less, and most preferably 25% or less. When the hysteresis loss exceeds 60%, the rebound of the network structure of the present invention is excessively lowered, and the sleeping comfort and the sitting comfort are deteriorated. The lower limit of the hysteresis loss is not particularly limited, but is preferably 1% or more in the present invention.

なお、本発明において、細繊維主領域側(両方の表面側が細繊維主領域側である場合はより細い繊維からなる細繊維主領域表面側)から加圧した時の、750定荷重繰り返し圧縮後の残留歪み、25%および40%圧縮時硬度、ならびにヒステリシスロスは、インストロンジャパンカンパニーリミテッド製インストロン万能試験機、株式会社島津製作所製精密万能試験機オートグラフ AG−X plus、株式会社オリエンテック製テンシロン万能材料試験機等の万能試験機を用いて測定することができる。   In the present invention, after compression at 750 constant load when compressed from the fine fiber main region side (when both surface sides are the fine fiber main region side, the fine fiber main region surface side made of finer fibers). Residual strain, 25% and 40% compression hardness, and hysteresis loss were measured by Instron Universal Testing Machine manufactured by Instron Japan Company Limited, Precision Universal Testing Machine Autograph AG-X plus manufactured by Shimadzu Corporation, Orientec Co., Ltd. It can be measured using a universal testing machine such as Tensilon Universal Material Testing Machine.

本発明のクッション材は、クッション内部に上記の網状構造体を含む。本発明のクッション材は、クッション内部に上記の網状構造体を含むため、使用時にソフトな触感を持ちつつ、底付き感が少なく、圧縮耐久性にも優れる。   The cushion material of the present invention includes the above-described network structure inside the cushion. Since the cushion material according to the present invention includes the above-described network structure inside the cushion, the cushion material has a soft touch feeling during use, has a feeling of bottoming, and is excellent in compression durability.

以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。実施例中における特性値の測定および評価は下記のように行った。なお、試料の大きさは以下に記載の大きさを標準とするが、試料が不足する場合は可能な大きさの試料サイズを用いて測定を行った。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The measurement and evaluation of the characteristic values in the examples were performed as follows. In addition, although the magnitude | size of a sample makes the standard the magnitude | size of the following as a standard, when the sample was insufficient, it measured using the sample size of the possible magnitude | size.

(1)繊維径(mm)
試料を幅方向10cm×長さ方向10cm×試料厚さの大きさに切断し、切断断面から厚さ方向に細繊維主領域および太繊維主領域のそれぞれからランダムに10本の繊維の線状体を約5mmの長さで採集した(混在領域からは線状体の採集はしないものとする。細繊維主領域および/または太繊維主領域が複数存在する場合は、それぞれの領域から10本ずつ線状体を採集した)。採集した線状体を輪切り方向で切断し、繊維軸方向に立てた状態でカバーガラスに載せ、適切な倍率に設定した光学顕微鏡で輪切り方向の繊維断面写真を得た。得られた繊維断面写真から各領域を構成する繊維の直径を求め、それぞれの繊維径とした。各領域のそれぞれの繊維径の平均を算出して繊維径の平均値とした:単位mm(各n=10の平均値)。細繊維主領域および/または太繊維主領域が複数存在し、細い繊維の繊維経の平均値および/または太い繊維の繊維径の平均値が複数存在する場合は、それぞれの主領域の繊維経の平均値を求めるものとした。また、比較例2における、繊維径の測定は、切断断面から厚さ方向にランダムに10本の繊維の線状体を約5mmの長さで採集し、採集した線状体の断面写真を、光学顕微鏡を適切な倍率で撮影し、得られた繊維断面写真から上記と同様にして繊維径を求めた。網状構造体の表面は平滑性を得るためにフラット化されているため繊維断面が変形している場合があるため、網状構造体表面から2mm以内の領域から試料は採取しないこととした。なお、線状体の断面形状が中空断面形状や異形断面形状の場合、得られた繊維断面写真から線状体の断面形状の外周長さを求め、その外周長さと等しい外周長さを持つ円の直径を計算により求め、その長さを繊維径とした。
(1) Fiber diameter (mm)
A sample is cut into a size of 10 cm in the width direction, 10 cm in the length direction, and the thickness of the sample, and a linear body of ten fibers randomly from each of the fine fiber main region and the thick fiber main region in the thickness direction from the cut cross section. (A linear body is not collected from the mixed region. When there are a plurality of fine fiber main regions and / or large fiber main regions, 10 pieces are collected from each region.) Linear bodies were collected). The collected linear body was cut in a ring cutting direction, placed on a cover glass in a state standing in the fiber axis direction, and a fiber cross-sectional photograph in the ring cutting direction was obtained with an optical microscope set to an appropriate magnification. The diameter of the fiber which comprises each area | region was calculated | required from the obtained fiber cross-sectional photograph, and it was set as each fiber diameter. The average of the respective fiber diameters in each region was calculated to obtain the average value of the fiber diameters: unit mm (average value of each n = 10). When there are a plurality of fine fiber main regions and / or thick fiber main regions, and there are a plurality of average values of fiber diameters of thin fibers and / or average values of fiber diameters of thick fibers, the fiber lengths of the respective main regions The average value was obtained. Further, in the measurement of the fiber diameter in Comparative Example 2, a linear body of 10 fibers was randomly collected in the thickness direction from the cut cross section in a length of about 5 mm, and a cross-sectional photograph of the collected linear body was collected. The optical microscope was image | photographed with appropriate magnification, and the fiber diameter was calculated | required similarly to the above from the obtained fiber cross-sectional photograph. Since the surface of the network structure is flattened in order to obtain smoothness, the fiber cross section may be deformed. Therefore, a sample was not collected from an area within 2 mm from the surface of the network structure. In addition, when the cross-sectional shape of the linear body is a hollow cross-sectional shape or an irregular cross-sectional shape, the outer peripheral length of the cross-sectional shape of the linear body is obtained from the obtained fiber cross-sectional photograph, and a circle having an outer peripheral length equal to the outer peripheral length The diameter was determined by calculation, and the length was defined as the fiber diameter.

(2)繊維径の差(mm)
上記(1)で測定された細い繊維および太い繊維のそれぞれの繊維径の平均値の差を取り、
(繊維径の差)=(太い繊維の繊維径の平均値)−(細い繊維の繊維径の平均値):単位mm
の式により繊維径の差を算出した。なお、細繊維主領域および/または太繊維主領域が複数存在し、太い繊維の繊維径の平均値および/または細い繊維の繊維経の平均値が複数存在する場合は、上記式における(太い繊維の繊維径の平均値)としては最も値の大きい(太い繊維の繊維経の平均値)を、(細い繊維の繊維径の平均値)としては最も値の小さい(細い繊維の繊維経の平均値)を、採用した。
(2) Difference in fiber diameter (mm)
Taking the difference between the average values of the fiber diameters of the thin fiber and the thick fiber measured in (1) above,
(Difference in fiber diameter) = (Average value of fiber diameter of thick fibers) − (Average value of fiber diameter of thin fibers): Unit mm
The difference in fiber diameter was calculated by the following formula. In addition, when there are a plurality of fine fiber main regions and / or thick fiber main regions and an average value of fiber diameters of thick fibers and / or a plurality of average values of fiber diameters of thin fibers, (Average fiber diameter) is the largest (average fiber diameter of thick fibers), and (average fiber diameter of thin fibers) is the smallest (average fiber diameter of thin fibers). )It was adopted.

(3)細い繊維の総重量比率(%)
試料を幅方向5cm×長さ方向5cm×試料厚さの大きさに切断した。その試料を構成している繊維を、目視または光学顕微鏡等により確認し、細い繊維と太い繊維に分ける。その後、細い繊維のみの総重量と、太い繊維のみの総重量を計測する。細い繊維の総重量比率は、
(細い繊維の総重量比率)=(細い繊維の総重量)/(細い繊維の総重量+太い繊維の総重量)×100:単位%
の式により算出した。
(3) Total weight ratio of thin fibers (%)
The sample was cut into a size of width 5 cm × length 5 cm × sample thickness. The fibers constituting the sample are confirmed visually or with an optical microscope or the like, and are divided into thin fibers and thick fibers. Thereafter, the total weight of only the thin fibers and the total weight of only the thick fibers are measured. The total weight ratio of thin fibers is
(Total weight ratio of thin fibers) = (total weight of thin fibers) / (total weight of thin fibers + total weight of thick fibers) × 100: unit%
It was calculated by the following formula.

(4)中空率(%)
試料を幅方向5cm×長さ方向5cm×試料厚さの大きさに切断し、試料表面両側から厚さ方向10%以内の範囲以外の切断断面から厚さ方向にランダムに中空断面繊維の線状体10本を採集した。採集した線状体を輪切り方向で切断し、繊維軸方向に立てた状態でカバーガラスに載せ、光学顕微鏡で輪切り方向の繊維断面写真を得た。断面写真より中空部面積(a)および中空部を含む繊維の全面積(b)を求め、
(中空率)=(a)/(b)(単位%、n=10の平均値)
の式により中空率を算出した。
(4) Hollow ratio (%)
The sample is cut into a size of 5 cm in the width direction × 5 cm in the length direction × the thickness of the sample, and the hollow cross-section fibers are randomly formed in the thickness direction from the cut cross section outside the range within 10% of the thickness direction from both sides of the sample surface. Ten bodies were collected. The collected linear body was cut in a ring cutting direction, placed on a cover glass in a state of being erected in the fiber axis direction, and a fiber cross-sectional photograph in the ring cutting direction was obtained with an optical microscope. Obtain the hollow area (a) and the total area (b) of the fiber including the hollow part from the cross-sectional photograph,
(Hollow rate) = (a) / (b) (unit%, average value of n = 10)
The hollow ratio was calculated by the following formula.

(5)厚さおよび見かけ密度(mmおよびg/cm3
試料を幅方向10cm×長さ方向10cm×試料厚さの大きさに4サンプル切り出し、無荷重で24時間放置した。その後、細い繊維面側を上にして高分子計器製FD−80N型測厚器にて面積15cm2の円形測定子を使用し、各サンプル1か所の高さを測定して4サンプルの平均値を求め、厚さとした。また、上記試料を電子天秤に載せて計測した4サンプルの重さの平均値を求め、重さとした。また、見かけ密度は、重さおよび厚さから
(見かけ密度)=(重さ)/(厚さ×10×10):単位g/cm3
の式により算出した。
(5) Thickness and apparent density (mm and g / cm 3 )
Four samples were cut into a size of width 10 cm × length 10 cm × sample thickness, and left unloaded for 24 hours. Then, using a circular gauge probe with an area of 15 cm 2 with a polymer instrument FD-80N thickness gauge with the fine fiber side facing up, the height of each sample was measured, and the average of four samples The value was calculated and taken as the thickness. Moreover, the average value of the weight of 4 samples which measured the said sample on the electronic balance was calculated | required, and it was set as the weight. Further, the apparent density is determined from the weight and thickness. (Apparent density) = (Weight) / (Thickness × 10 × 10): Unit g / cm 3
It was calculated by the following formula.

(6)融点(Tm)(℃)
TAインスツルメント社製示差走査熱量計Q200を使用し、昇温速度20℃/分で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(6) Melting point (Tm) (° C)
An endothermic peak (melting peak) temperature was determined from an endothermic curve measured using a differential scanning calorimeter Q200 manufactured by TA Instruments Co., Ltd. at a heating rate of 20 ° C./min.

(7)750N定荷重繰り返し圧縮後の残留歪み(%)
試料を幅方向40cm×長さ方向40cm×試料厚さの大きさに切断し、23℃±2℃の環境下に無荷重で24時間放置した後、23℃±2℃の環境下にある万能試験機(インストロンジャパンカンパニーリミテッド製インストロン万能試験機)を用いて計測した。直径200mm、厚さ3mmの加圧板をサンプル中心になるように細繊維主領域(細繊維主領域が複数の場合は主に最も細い繊維からなる細繊維主領域、以下同じ)側を加圧板側にしてサンプルを配置させ、万能試験機で荷重が5Nと検出された時の厚さを計測し、初期硬度計厚さ(c)とした。その後、厚さを測定したサンプルを、ASKER STM−536を用いて、JIS K6400−4(2004)A法(定荷重法)に準拠して750N定荷重繰り返し圧縮を行なった。加圧板は、底面のエッジ部に曲率半径25±1mmをもつ、直径250±1mm、厚さ3mmの円形で下面が平らなものを用い、荷重750±20N、圧縮頻度は毎分70±5回、繰り返し圧縮回数は8万回、最大の750±20Nに加圧している時間は、繰り返し圧縮に要する時間の25%以下とした。繰り返し圧縮終了後、試験片を力のかからない状態で10±0.5分間放置し、万能試験機(インストロンジャパンカンパニーリミテッド製インストロン万能試験機)を用いて、直径200mm、厚さ3mmの加圧板をサンプル中心になるようにサンプルを配置させ、万能試験機で荷重が5Nと検出された時の厚さを計測し、繰り返し圧縮後硬度計厚さ(d)とした。細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みは、初期硬度計厚さ(c)と繰り返し圧縮後硬度計厚さ(d)を用いて、
(750N定荷重繰り返し圧縮後の残留歪み)
={(c)−(d)}/(c)×100:単位%(n=3の平均値)
の式により算出した。
(7) Residual strain after repeated compression at 750 N constant load (%)
A sample is cut into a size of 40 cm in the width direction, 40 cm in the length direction, and the thickness of the sample, and left for 24 hours under no load in an environment of 23 ° C. ± 2 ° C., and then in a 23 ° C. ± 2 ° C. environment Measurements were made using a testing machine (Instron Universal Testing Machine manufactured by Instron Japan Company Limited). The fine fiber main region (when there are multiple fine fiber main regions, the fine fiber main region consisting mainly of the finest fibers, the same shall apply hereinafter) side of the pressure plate with a diameter of 200 mm and a thickness of 3 mm is the pressure plate side. Then, the sample was placed, and the thickness when the load was detected as 5 N was measured with a universal testing machine, and the thickness was determined as the initial hardness meter thickness (c). Thereafter, the sample whose thickness was measured was subjected to 750 N constant load repeated compression using ASKER STM-536 in accordance with JIS K6400-4 (2004) A method (constant load method). The pressure plate uses a circular plate with a radius of curvature of 25 ± 1 mm at the bottom edge, a diameter of 250 ± 1 mm, a thickness of 3 mm, and a flat bottom surface, a load of 750 ± 20 N, and a compression frequency of 70 ± 5 times per minute. The number of times of repeated compression was 80,000 times, and the time during which the maximum pressure was applied to 750 ± 20 N was 25% or less of the time required for repeated compression. After repeated compression, the test piece is left for 10 ± 0.5 minutes without applying force, and is added with a diameter of 200 mm and a thickness of 3 mm using a universal testing machine (Instron Universal Testing Machine manufactured by Instron Japan Company Limited). The sample was placed so that the platen was at the center of the sample, and the thickness when the load was detected as 5 N by a universal testing machine was measured, and the hardness meter thickness (d) after repeated compression was measured. The residual strain after repeated compression at 750 N constant load when pressurized from the fine fiber main region side is determined using the initial hardness meter thickness (c) and the hardness meter thickness after repeated compression (d),
(Residual strain after repeated compression at 750 N constant load)
= {(C)-(d)} / (c) × 100: Unit% (average value of n = 3)
It was calculated by the following formula.

(8)25%、40%圧縮時硬度(N/φ100mm)
試料を幅方向20cm×長さ方向20cm×試料厚さの大きさに切断し、23℃±2℃の環境下に無荷重で24時間放置した後、23±2℃の環境下にある万能試験機(インストロンジャパンカンパニーリミテッド製インストロン万能試験機)にて加圧板をサンプル中心になるように細繊維主領域(細繊維主領域が複数の場合は主に最も細い繊維からなる細繊維主領域、以下同じ)側を加圧板側にしてサンプルを配置させ、直径φ100mm、厚さ25±1mm、底面のエッジ部に曲率半径10±1mmをもち下面が平らな加圧板を用い1mm/minの速度で圧縮を開始し、万能試験機で荷重が0.4Nと検出された時の厚さを計測し、硬度計厚さとした。この時の加圧板の位置をゼロ点として、速度10mm/minで硬度計厚さの75%まで圧縮した後、直ちに速度10mm/minにて加圧板をゼロ点まで戻し、引き続き速度10mm/minで硬度計厚さの25%および40%まで圧縮し、その際の荷重を測定し、各々を細繊維主領域側から加圧した時の25%圧縮時硬度および40%圧縮時硬度とした:単位N/φ100mm(n=3の平均値)。
(8) 25%, 40% compression hardness (N / φ100mm)
A sample is cut into a size of 20 cm in the width direction × 20 cm in the length direction × the thickness of the sample, left unloaded in an environment of 23 ° C. ± 2 ° C. for 24 hours, and then a universal test in an environment of 23 ± 2 ° C. Machine (Instron universal testing machine manufactured by Instron Japan Company Limited) main area of fine fiber so that the pressure plate is at the center of the sample (if there are multiple fine fiber main areas, the main area of fine fibers consisting mainly of the finest fibers) , The same applies hereinafter) Place the sample with the pressure plate side facing, and use a pressure plate with a diameter of 100 mm, a thickness of 25 ± 1 mm, a radius of curvature of 10 ± 1 mm at the bottom edge and a flat bottom surface, and a speed of 1 mm / min. Then, the compression was started, and the thickness when the load was detected as 0.4 N was measured with a universal testing machine to obtain the hardness meter thickness. The position of the pressure plate at this time is set to the zero point, and after compressing to 75% of the hardness meter thickness at a speed of 10 mm / min, the pressure plate is immediately returned to the zero point at a speed of 10 mm / min, and subsequently at a speed of 10 mm / min. Compressed to 25% and 40% of the hardness meter thickness, measured the load at that time, and determined the hardness at 25% compression and 40% compression hardness when pressed from the fine fiber main region side: unit N / φ100 mm (average value of n = 3).

(9)ヒステリシスロス(%)
試料を幅方向20cm×長さ方向20cm×試料厚さの大きさに切断し、23±2℃の環境下に無荷重で24時間放置した後、23℃±2℃の環境下にある万能試験機(インストロンジャパンカンパニーリミテッド製インストロン万能試験機)にて加圧板をサンプル中心になるように細繊維主領域(細繊維主領域が複数の場合は主に最も細い繊維からなる細繊維主領域、以下同じ)側を加圧板側にしてサンプルを配置させ、直径φ100mm、厚さ25±1mm、底面のエッジ部に曲率半径10±1mmをもち下面が平らな加圧板を用い1mm/minの速度で圧縮を開始し、万能試験機で荷重が0.4Nと検出された時の厚さを計測し、硬度計厚さとした。この時の加圧板の位置をゼロ点として、速度10mm/minで硬度計厚さの75%まで圧縮した後、直ちに速度10mm/minにて加圧板をゼロ点まで戻した(一回目の応力歪み曲線)。ゼロ点に戻ると再度、速度10mm/minで硬度計厚さの75%まで圧縮し、直ちに同一速度にてゼロ点まで戻した(2回目の応力歪み曲線)。
(9) Hysteresis loss (%)
A sample is cut into a size of 20 cm in the width direction, 20 cm in the length direction, and the thickness of the sample, left in an environment of 23 ± 2 ° C. with no load for 24 hours, and then a universal test in an environment of 23 ° C. ± 2 ° C. Machine (Instron universal testing machine manufactured by Instron Japan Company Limited) main area of fine fiber so that the pressure plate is at the center of the sample (if there are multiple fine fiber main areas, the main area of fine fibers consisting mainly of the finest fibers) , The same applies hereinafter) Place the sample with the pressure plate side facing, and use a pressure plate with a diameter of 100 mm, a thickness of 25 ± 1 mm, a radius of curvature of 10 ± 1 mm at the bottom edge and a flat bottom surface, and a speed of 1 mm / min. Then, the compression was started, and the thickness when the load was detected as 0.4 N was measured with a universal testing machine to obtain the hardness meter thickness. The position of the pressure plate at this time was set to the zero point, and after compression to 75% of the hardness meter thickness at a speed of 10 mm / min, the pressure plate was immediately returned to the zero point at a speed of 10 mm / min (the first stress strain) curve). When it returned to the zero point, it was again compressed to 75% of the hardness meter thickness at a speed of 10 mm / min, and immediately returned to the zero point at the same speed (second stress strain curve).

図1(a)の2回目の応力歪み曲線において、図1(b)の2回目の圧縮時応力曲線の示す圧縮エネルギー(WC)、図1(c)の2回目の除圧時応力曲線の示す圧縮エネルギー(WC’)とし、下記式
(ヒステリシスロス)=(WC−WC’)/WC×100:単位%
WC=∫PdT(0%から75%まで圧縮したときの仕事量)
WC’=∫PdT(75%から0%まで除圧したときの仕事量)
に従って、細繊維主領域(細繊維主領域が複数の場合は主に最も細い繊維からなる細繊維主領域、以下同じ)側から加圧した時のヒステリシスロスを求めた。
In the second stress strain curve of FIG. 1A, the compression energy (WC) indicated by the second compression stress curve of FIG. 1B and the second decompression stress curve of FIG. The following formula (hysteresis loss) = (WC−WC ′) / WC × 100: unit%
WC = ∫PdT (Work amount when compressed from 0% to 75%)
WC ′ = ∫PdT (Work amount when decompressing from 75% to 0%)
Accordingly, the hysteresis loss when pressing was performed from the fine fiber main region (in the case where there are a plurality of fine fiber main regions, the fine fiber main region mainly composed of the thinnest fibers, hereinafter the same) was determined.

上記のヒステリシスロスは、簡易的には、例えば図1のような応力歪み曲線が得られたら、パソコンによるデータ解析によって算出することができる。また、斜線部分の面積をWCとし、網掛け部分の面積をWC’として、それらの面積の差を切り抜いた部分の重さから求めることもできる(n=3の平均値)。   The hysteresis loss can be simply calculated by data analysis using a personal computer when a stress strain curve as shown in FIG. 1 is obtained, for example. Also, the area of the shaded portion can be determined as WC, and the area of the shaded portion can be determined as WC ′, and the difference between these areas can be obtained from the weight of the portion cut out (average value of n = 3).

(10)底付き感
試料を幅方向40cm×長さ方向40cm×試料厚さの大きさに切断し、その試料に体重40kg〜100kgの範囲にあるパネラー30名(20歳〜39歳の男性;5名、20歳〜39歳の女性:5名、40歳〜59歳の男性:5名、40歳〜59歳の女性:5名、60歳〜80歳の男性:5名、60歳〜80歳の女性:5名)を椅子に座らせ、細繊維主領域(細繊維主領域が複数の場合は主に最も細い繊維からなる細繊維主領域、以下同じ)側から座ったときの「どすん」と椅子の座面に当たった感じの程度を感覚的に定性評価した。評価基準は、感じない;◎、弱く感じる;○、中程度に感じる;△、強く感じる;×、とした。
(10) Bottom feeling A sample was cut into a size of 40 cm in the width direction, 40 cm in the length direction, and the thickness of the sample, and 30 panelists (male aged 20 to 39 years old) having a body weight in the range of 40 kg to 100 kg. 5, 20-39-year-old women: 5, 40-59-year-old men: 5, 40-59-year-old women: 5, 60- to 80-year-old men: 5, 60-year-old 80-year-old woman: 5) sits on a chair and sits from the side of the fine fiber main region (if there are multiple fine fiber main regions, the fine fiber main region consisting mainly of the finest fibers, the same applies hereinafter) The degree of feeling of “Donsun” hitting the seat of the chair was qualitatively evaluated. The evaluation criteria were as follows: No feeling; ◎, weak feeling; ○, moderate feeling; Δ, strong feeling;

[実施例1]
ポリエステル系熱可塑性エラストマーとして、ジメチルテレフタレ−ト(DMT)と1,4−ブタンジオ−ル(1,4−BD)を少量の触媒と仕込み、常法によりエステル交換後、数平均分子量1000のポリテトラメチレングリコ−ル(PTMG)を添加して昇温減圧しつつ重縮合せしめポリエ−テルエステルブロック共重合エラストマーを生成させ、次いで酸化防止剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマーA−1を得た。ポリエステル系熱可塑性エラストマーA−1は、ソフトセグメント含有率40重量%、融点198℃であった。
[Example 1]
Polyester thermoplastic elastomer containing dimethyl terephthalate (DMT) and 1,4-butanediol (1,4-BD) with a small amount of catalyst, transesterified by a conventional method, and having a number average molecular weight of 1,000 Tetramethylene glycol (PTMG) was added and polycondensed while raising the temperature and pressure to form a polyetherester block copolymer elastomer. Then, 1% of antioxidant was added, mixed, kneaded, pelletized, The polyester-based thermoplastic elastomer A-1 was obtained by vacuum drying for a period of time. Polyester thermoplastic elastomer A-1 had a soft segment content of 40% by weight and a melting point of 198 ° C.

幅方向の長さ50cm、厚さ方向の長さ67.6mmのノズル有効面にオリフィスの形状は、厚さ方向1列から7列目を外径3mm、内径2.6mmでトリプルブリッジの太い繊維用の中空形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向孔間ピッチ5.2mmの千鳥配列とし、厚さ方向8列から14列目を外径1mmの細い繊維用の中実形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向の孔間ピッチ5.2mmの千鳥配列としたノズルを用い、得られたポリエステル系熱可塑性エラストマー(A−1)を紡糸温度(溶融温度)240℃にて、中空形成オリフィス孔の単孔吐出量1.4g/min、中実形成オリフィス孔の単孔吐出量0.8g/minでノズル下方に吐出させ、ノズル面26cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に開口幅52mm間隔で一対の引き取りコンベアネットを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアネットで挟み込みつつ1.14m/minの引き取り速度で冷却水中へ引込み、固化させることで厚さ方向の両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。   Thickness fiber with a length of 50cm in the width direction and a length of 67.6mm in the thickness direction. The orifice shape is 3mm outer diameter in the first to seventh rows in the thickness direction, 2.6mm in inner diameter, and a thick triple bridge fiber. The hollow forming orifices for use are made in a staggered arrangement with a pitch between the holes in the width direction of 6 mm and a pitch between the holes in the thickness direction of 5.2 mm, and the solid forming orifices for thin fibers with an outer diameter of 1 mm in the 8th to 14th rows in the thickness direction. The obtained polyester-based thermoplastic elastomer (A-1) was used at a spinning temperature (melting temperature) of 240 ° C. using a nozzle having a staggered arrangement with a pitch between holes in the width direction of 6 mm and a pitch between holes in the thickness direction of 5.2 mm. A single hole discharge rate of 1.4 g / min for a hollow forming orifice hole and a single hole discharge amount of 0.8 g / min for a solid forming orifice hole is discharged below the nozzle, and cooling water is arranged under the nozzle surface 26 cm, 60cm A pair of take-up conveyor nets are arranged in parallel so that the endless nets made by Ness are spaced at intervals of 52 mm in the opening width so as to partially protrude on the water surface, and the molten discharge line is twisted on the conveyor net on the water surface. A loop is formed to form a three-dimensional network structure while fusing the contact portions, and both sides of the molten network structure are taken up by a conveyor net and taken into cooling water at a take-up speed of 1.14 m / min. The both sides in the thickness direction were flattened by drawing and solidifying, and then cut into a predetermined size and dried and heat-treated with 110 ° C. hot air for 15 minutes to obtain a network structure.

得られた網状構造体は、主に繊維径が0.48mmの中実断面繊維からなる細繊維主領域と、主に繊維径が0.73mmの断面形状が三角おむすび型で中空率が20%の中空断面繊維からなる太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域と、が存在し、これらの領域が分離することなく一体化した網状構造体であり、繊維径の差が0.25mm、細い繊維の総重量比率が35%、見かけ密度が0.050g/cm3、表面が平坦化された厚さが50mmであった。 The obtained network structure has a fine fiber main region mainly made of solid cross-section fibers having a fiber diameter of 0.48 mm, and a cross-sectional shape mainly having a fiber diameter of 0.73 mm is a triangular rice ball type with a hollow ratio of 20%. A thick fiber main region composed of hollow cross-section fibers, and a mixed region in which a thin fiber and a thick fiber are mixed between the fine fiber main region and the thick fiber main region. A network structure integrated without separation, with a difference in fiber diameter of 0.25 mm, a total weight ratio of thin fibers of 35%, an apparent density of 0.050 g / cm 3 , and a flattened surface thickness Was 50 mm.

得られた網状構造体について、細繊維主領域側から加圧した時の、750N定荷重繰り返し圧縮後の残留歪みが7.0%、25%圧縮時硬度が28.9N/φ100mm、40%圧縮時硬度が55.7N/φ100mm、ヒステリシスロスが26.7%、パネラーによる底付き感は感じられず評価が◎であった。結果を表1にまとめた。   With respect to the obtained network structure, the residual strain after repeated compression at 750 N constant load when pressurized from the fine fiber main region side is 7.0%, 25% compression hardness is 28.9 N / φ100 mm, 40% compression The time hardness was 55.7 N / φ100 mm, the hysteresis loss was 26.7%, the feeling of bottoming by the panel was not felt, and the evaluation was ◎. The results are summarized in Table 1.

Figure 2017186687
Figure 2017186687

表1に示すように、本実施例で得られた網状構造体は、細い繊維の繊維径が0.1mm以上1.5mm以下であり、また、細い繊維の総重量比率が10%以上90%以下であったことから、ソフトな触感を有していた。また、本実施例で得られた網状構造体は、太い繊維の繊維径が細い繊維の繊維径に比べて0.07mm以上太く、また、細繊維主領域側から加圧した時の、25%圧縮時硬度が10N/φ100mm以上、40%圧縮時硬度が20N/φ100mm以上であったことから、底付き感のパネラーによる定性評価において底付き感がなかった。また、本実施例で得られた網状構造体は、細繊維主領域と太繊維主領域との間に混在領域が存在し、細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下であったことから、圧縮耐久性に優れていた。   As shown in Table 1, in the network structure obtained in this example, the fiber diameter of the thin fibers is 0.1 mm or more and 1.5 mm or less, and the total weight ratio of the thin fibers is 10% or more and 90%. Since it was the following, it had a soft touch. In addition, the network structure obtained in this example has a fiber diameter of 0.07 mm or more larger than the fiber diameter of the thin fiber, and 25% when pressurized from the fine fiber main region side. Since the hardness at the time of compression was 10 N / φ100 mm or more and the hardness at the time of 40% compression was 20 N / φ100 mm or more, there was no feeling of bottoming in the qualitative evaluation by the panel feeling of bottoming. In addition, the network structure obtained in this example has a mixed region between the fine fiber main region and the thick fiber main region, and after repeated compression at a constant load of 750 N when pressurized from the fine fiber main region side. Since the residual strain was 15% or less, the compression durability was excellent.

[実施例2]
幅方向の長さ50cm、厚さ方向の長さ67.6mmのノズル有効面にオリフィスの形状は、厚さ方向1列から7列目を外径3mm、内径2.6mmでトリプルブリッジの太い繊維用の中空形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向孔間ピッチ5.2mmの千鳥配列とし、厚さ方向8列から13列目を外径1.2mmの細い繊維用の中実形成オリフィスを幅方向孔間ピッチ7mm、厚さ方向孔間ピッチ6.1mmの千鳥配列としたノズルを用い、上記で得られたポリエステル系熱可塑性エラストマー(A−1)を、紡糸温度(溶融温度)を240℃、中空形成オリフィス孔の単孔吐出量1.2g/min、中実形成オリフィス孔の単孔吐出量1.0g/minでノズル下方に吐出させ、ノズル面28cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に開口幅52mm間隔で一対の引き取りコンベアネットを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアネットで挟み込みつつ1.14m/minの引き取り速度で冷却水中へ引込み、固化させることで厚さ方向の両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。
[Example 2]
Thickness fiber with a length of 50cm in the width direction and a length of 67.6mm in the thickness direction. The orifice shape is 3mm outer diameter in the first to seventh rows in the thickness direction, 2.6mm in inner diameter, and a thick triple bridge fiber. The hollow forming orifice for use is a staggered arrangement with a pitch between the holes in the width direction of 6 mm and a pitch between the holes in the thickness direction of 5.2 mm. The solid formation for thin fibers with an outer diameter of 1.2 mm in the 8th to 13th rows in the thickness direction The polyester thermoplastic elastomer (A-1) obtained above was spun at a spinning temperature (melting temperature) using a nozzle in which the orifices had a staggered arrangement of 7 mm in the width direction hole pitch and 6.1 mm in the thickness direction hole pitch. At a temperature of 240 ° C., a single-hole discharge rate of 1.2 g / min for the hollow forming orifice hole, and a single-hole discharge rate of 1.0 g / min for the solid forming orifice hole, and cooling water is disposed 28 cm below the nozzle surface. Width 60 The stainless steel endless nets are arranged in parallel so that a part of the pair of take-up conveyor nets protrudes on the water surface at intervals of 52 mm in opening width, and the molten discharge line is bent on the conveyor net on the water surface. A kneading loop is formed to form a three-dimensional network structure while fusing the contact portions, and both sides of the molten network structure are taken up and sandwiched between conveyor nets and cooled at a take-up speed of 1.14 m / min. After drawing into water and solidifying, both sides in the thickness direction were flattened, then cut into a predetermined size and dried and heat-treated with 110 ° C. hot air for 15 minutes to obtain a network structure.

得られた網状構造体は、主に繊維径が0.63mmの中実断面繊維からなる細繊維主領域と、主に繊維径が0.70mmの断面形状が三角おむすび型で中空率が18%の中空断面繊維からなる太繊維主領域と、細繊維主領域と太繊維主領域との間に位置する細い繊維と太い繊維とが混在してなる混在領域と、が存在し、これらの領域が分離することなく一体化した網状構造体であり、繊維径の差が0.07mm、細い繊維の総重量比率が45%、見かけ密度が0.046g/cm3、表面が平坦化された厚さが50mmであった。 The obtained network structure has a fine fiber main region mainly made of solid cross-section fibers with a fiber diameter of 0.63 mm, and a triangular shape with a cross-sectional shape of a fiber diameter of 0.70 mm and a hollow ratio of 18%. A thick fiber main region composed of hollow cross-section fibers, and a mixed region in which a thin fiber and a thick fiber are mixed between the fine fiber main region and the thick fiber main region. A network structure integrated without separation, with a difference in fiber diameter of 0.07 mm, a total weight ratio of thin fibers of 45%, an apparent density of 0.046 g / cm 3 , and a flattened surface thickness Was 50 mm.

得られた網状構造体について、細繊維主領域側から加圧した時の、750N定荷重繰り返し圧縮後の残留歪みが7.2%、25%圧縮時硬度が39.4N/φ100mm、40%圧縮時硬度が68.4N/φ100mm、ヒステリシスロスが23.1%、パネラーによる底付き感は感じられず評価が◎であった。結果を表1にまとめた。   About the obtained network structure, when pressed from the fine fiber main region side, the residual strain after repeated compression at a constant load of 750 N is 7.2%, the hardness at 25% compression is 39.4 N / φ100 mm, 40% compression The time hardness was 68.4 N / φ100 mm, the hysteresis loss was 23.1%, the feeling of bottoming by the panel was not felt, and the evaluation was ◎. The results are summarized in Table 1.

表1に示すように、本実施例で得られた網状構造体は、細い繊維の繊維径が0.1mm以上1.5mm以下であり、また、細い繊維の総重量比率が10%以上90%以下であったことから、ソフトな触感を有していた。また、本実施例で得られた網状構造体は、太い繊維の繊維径が細い繊維の繊維径に比べて0.07mm以上太く、また、細繊維主領域側から加圧した時の、25%圧縮時硬度が10N/φ100mm以上、40%圧縮時硬度が20N/φ100mm以上であったことから、底付き感のパネラーによる定性評価において底付き感がなかった。また、本実施例で得られた網状構造体は、細繊維主領域と太繊維主領域との間に混在領域が存在し、細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下であったことから、圧縮耐久性に優れていた。   As shown in Table 1, in the network structure obtained in this example, the fiber diameter of the thin fibers is 0.1 mm or more and 1.5 mm or less, and the total weight ratio of the thin fibers is 10% or more and 90%. Since it was the following, it had a soft touch. In addition, the network structure obtained in this example has a fiber diameter of 0.07 mm or more larger than the fiber diameter of the thin fiber, and 25% when pressurized from the fine fiber main region side. Since the hardness at the time of compression was 10 N / φ100 mm or more and the hardness at the time of 40% compression was 20 N / φ100 mm or more, there was no feeling of bottoming in the qualitative evaluation by the panel feeling of bottoming. In addition, the network structure obtained in this example has a mixed region between the fine fiber main region and the thick fiber main region, and after repeated compression at a constant load of 750 N when pressurized from the fine fiber main region side. Since the residual strain was 15% or less, the compression durability was excellent.

[実施例3]
幅方向の長さ50cm、厚さ方向の長さ72.7mmのノズル有効面にオリフィスの形状は、厚さ方向1列から4列目を外径1mmの細い繊維用の中実形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向の孔間ピッチ5.2mmの千鳥配列とし、厚さ方向5列から11列目を外径3mm、内径2.6mmでトリプルブリッジの太い繊維用の中空形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向孔間ピッチ5.2mmの千鳥配列とし、厚さ方向12列から15列目を外径1mmの細い繊維用の中実形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向の孔間ピッチ5.2mmの千鳥配列としたノズルを用い、上記で得られたポリエステル系熱可塑性エラストマー(A−1)を、紡糸温度(溶融温度)240℃にて、中空形成オリフィス孔の単孔吐出量1.5g/min、中実形成オリフィス孔の単孔吐出量0.9g/minの速度でノズル下方に吐出させ、ノズル面28cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に開口幅52mm間隔で一対の引き取りコンベアネットを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアネットで挟み込みつつ1.54m/minの引き取り速度で冷却水中へ引込み、固化させることで厚さ方向の両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。
[Example 3]
The orifice shape on the nozzle effective surface of 50 cm in the width direction and 72.7 mm in the thickness direction is the width of the solid forming orifice for thin fibers with an outer diameter of 1 mm in the first to fourth rows in the thickness direction. Hollow forming orifices for thick triple bridge fibers with an outer diameter of 3 mm and an inner diameter of 2.6 mm in the 5th to 11th rows in the thickness direction, with a staggered arrangement of 6 mm pitch between holes in the direction and 5.2 mm pitch between holes in the thickness direction Is a staggered array with a width-direction hole pitch of 6 mm and a thickness-direction hole pitch of 5.2 mm, and the solid-form orifices for thin fibers with an outer diameter of 1 mm are arranged in the 12th to 15th rows in the thickness direction. Using a nozzle having a staggered arrangement of 6 mm and a pitch between holes in the thickness direction of 5.2 mm, the polyester-based thermoplastic elastomer (A-1) obtained above is hollow at a spinning temperature (melting temperature) of 240 ° C. Forming orifice hole Made of stainless steel with a single hole discharge rate of 1.5 g / min and a solid orifice orifice with a single hole discharge rate of 0.9 g / min. A pair of take-up conveyor nets are arranged in parallel so that the endless nets are spaced at intervals of 52 mm in the opening width so as to partially protrude on the water surface, and the discharge line shape in the molten state is twisted on the conveyor net on the water surface. Forming a three-dimensional network structure while fusing the contact part to form a loop, drawing the both sides of the molten network structure into the cooling water at a take-up speed of 1.54 m / min while being sandwiched between conveyor nets, After solidifying, both surfaces in the thickness direction were flattened, then cut to a predetermined size and dried and heat-treated with 110 ° C. hot air for 15 minutes to obtain a network structure.

得られた網状構造体は、厚さ方向に、主に細い繊維からなる細繊維主領域と、細い繊維と太い繊維とが混在してなる混在領域と、主に太い繊維からなる太繊維主領域と、細い繊維と太い繊維とが混在してなる混在領域と、主に細い繊維からなる細繊維主領域と、がこの順に存在し、これらの領域が分離することなく一体化した網状構造体であり、太い繊維は、断面形状が三角おむすび型の中空断面で中空率が20%、繊維径が0.70mmの中空線状体で形成されており、細い繊維は、繊維径0.50mmの中実線状体で形成されており、繊維径の差が0.20mm、細い繊維の総重量比率が40%、見かけ密度が0.040g/cm3、表面が平坦化された厚さが51mmであった。ここで、本実施例において得られた網状構造体は、両方の表層面が主に細い繊維からなる細繊維主領域であることから、主に最も細い繊維からなる細繊維主領域を選択しその領域側から加圧することで測定を行った。 The obtained network structure has, in the thickness direction, a fine fiber main region mainly composed of thin fibers, a mixed region composed of thin fibers and thick fibers, and a thick fiber main region mainly composed of thick fibers. And a mixed region composed of thin fibers and thick fibers and a fine fiber main region mainly composed of thin fibers in this order, and these regions are integrated without separation. A thick fiber is a hollow cross section having a triangular rice ball type cross section, a hollow linear body having a hollow ratio of 20% and a fiber diameter of 0.70 mm, and a thin fiber having a fiber diameter of 0.50 mm. It is formed of a solid wire, the difference in fiber diameter is 0.20 mm, the total weight ratio of thin fibers is 40%, the apparent density is 0.040 g / cm 3 , and the flattened thickness is 51 mm. It was. Here, since the network structure obtained in this example is a fine fiber main region mainly composed of thin fibers on both surface layers, the fine fiber main region composed mainly of the finest fibers is selected and Measurement was performed by applying pressure from the region side.

得られた網状構造体について、細繊維主領域側から加圧した時の、750N定荷重繰り返し圧縮後の残留歪みが7.1%、25%圧縮時硬度が18.0N/φ100mm、40%圧縮時硬度が35.7N/φ100mm、ヒステリシスロスが26.0%、パネラーによる底付き感は感じられず評価が◎であった。結果を表1にまとめた。   About the obtained network structure, residual pressure after repeated compression at 750 N constant load when pressed from the fine fiber main region side is 7.1%, hardness at 25% compression is 18.0 N / φ100 mm, 40% compression The time hardness was 35.7 N / φ100 mm, the hysteresis loss was 26.0%, and the feeling of bottoming by the panel was not felt, and the evaluation was ◎. The results are summarized in Table 1.

表1に示すように、本実施例で得られた網状構造体は、細い繊維の繊維径が0.1mm以上1.5mm以下であり、また、細い繊維の総重量比率が10%以上90%以下であったことから、ソフトな触感を有していた。また、本実施例で得られた網状構造体は、太い繊維の繊維径が細い繊維の繊維径に比べて0.07mm以上太く、また、細繊維主領域側から加圧した時の、25%圧縮時硬度が10N/φ100mm以上、40%圧縮時硬度が20N/φ100mm以上であったことから、底付き感のパネラーによる定性評価において底付き感がなかった。また、本実施例で得られた網状構造体は、細繊維主領域と太繊維主領域との間に混在領域が存在し、細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下であったことから、圧縮耐久性に優れていた。   As shown in Table 1, in the network structure obtained in this example, the fiber diameter of the thin fibers is 0.1 mm or more and 1.5 mm or less, and the total weight ratio of the thin fibers is 10% or more and 90%. Since it was the following, it had a soft touch. In addition, the network structure obtained in this example has a fiber diameter of 0.07 mm or more larger than the fiber diameter of the thin fiber, and 25% when pressurized from the fine fiber main region side. Since the hardness at the time of compression was 10 N / φ100 mm or more and the hardness at the time of 40% compression was 20 N / φ100 mm or more, there was no feeling of bottoming in the qualitative evaluation by the panel feeling of bottoming. In addition, the network structure obtained in this example has a mixed region between the fine fiber main region and the thick fiber main region, and after repeated compression at a constant load of 750 N when pressurized from the fine fiber main region side. Since the residual strain was 15% or less, the compression durability was excellent.

[比較例1]
得られたポリエステル系熱可塑性エラストマー(A−1)を用い、紡糸温度(溶融温度)を240℃、幅方向の長さ50cm、厚さ方向の長さ67.6mmのノズル有効面に、1列から8列までを、オリフィス形状が外径3mm、内径2.6mmでトリプルブリッジの太い繊維用の中空形成オリフィスを幅方向孔間ピッチ10mm、厚さ方向孔間ピッチを7.5mmの千鳥配置とし、9列から11列目までを、外径0.7mmの細い繊維用の中実形成オリフィスを、幅方向孔間ピッチを2.5mm、厚さ方向孔間ピッチ3.7mmとしたノズルを用い、中空形成オリフィス孔の単孔吐出量2.0g/min、中実形成オリフィス孔の単孔吐出量0.5g/min、全吐出量1100g/minの速度でノズル下方に吐出させ、ノズル面18cm下に冷却水を配し、幅60cmのステンレス製エンドレスネットを平行に開口幅50mm間隔で一対の引き取りコンベアネットを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアネットで挟み込みつつ1.00m/minの引き取り速度で冷却水中へ引込み、固化させた後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。
[Comparative Example 1]
Using the obtained polyester-based thermoplastic elastomer (A-1), one row on a nozzle effective surface having a spinning temperature (melting temperature) of 240 ° C., a length in the width direction of 50 cm, and a length in the thickness direction of 67.6 mm. To 8 rows, the orifice shape is 3mm outside diameter, 2.6mm inside diameter, and the hollow forming orifice for thick triple bridge fibers is staggered with a 10mm width-to-hole pitch and 7.5mm thickness-to-hole pitch. In the 9th to 11th rows, a solid-forming orifice for thin fibers having an outer diameter of 0.7 mm is used, and a nozzle having a widthwise hole pitch of 2.5 mm and a thicknesswise hole pitch of 3.7 mm is used. A single hole discharge rate of 2.0 g / min for hollow forming orifice holes, a single hole discharge amount of solid forming orifice holes of 0.5 g / min, and a total discharge rate of 1100 g / min are discharged downward from the nozzle, and nozzle surface 18c Cooling water is placed underneath, and a stainless steel endless net having a width of 60 cm is arranged in parallel so that a pair of take-up conveyor nets are partly exposed on the water surface at an opening width interval of 50 mm, on the conveyor net on the water surface, The molten discharge line is twisted to form a loop to form a three-dimensional network structure while fusing the contact portions, and both sides of the molten network structure are taken up and sandwiched between conveyor nets 1 After being drawn into cooling water at a take-up speed of 0.000 m / min and solidified, it was cut into a predetermined size and subjected to a drying heat treatment with hot air at 110 ° C. for 15 minutes to obtain a network structure.

得られた網状構造体は、主に細い繊維からなる細繊維主領域と、主に太い繊維からなる太繊維主領域と、が分離することなく一体化した網状構造体であった。得られた網状構造体は、太い繊維形成オリフィスの幅方向孔間ピッチと細い繊維形成オリフィスの幅方向孔間ピッチが非常に異なるため、細い繊維のループとループの間に太い繊維のループが入り込むことができず、細い繊維と太い繊維を混在させて厚さを形成した領域が存在しない網状構造体であった。   The obtained network structure was a network structure in which the fine fiber main region mainly composed of thin fibers and the thick fiber main region mainly composed of thick fibers were integrated without being separated. In the obtained network structure, the pitch between the wide fibers in the width direction of the thick fiber forming orifice and the pitch between the holes in the width direction of the thin fiber forming orifice are very different from each other. It was a network structure in which there was no region where the thickness was formed by mixing thin fibers and thick fibers.

太い繊維は、断面形状が三角おむすび型の中空断面で中空率が28%、繊維径が0.80mmの中空線状体で形成されており、細い繊維は、繊維径0.32mmの中実線状体で形成されており、繊維径の差が0.48mm、細い繊維の総重量比率が27%、見かけ密度が0.046g/cm3、表面が平坦化された厚さが50mmであった。 A thick fiber is a hollow cross section having a triangular rice cake type cross section, and is formed of a hollow linear body having a hollow ratio of 28% and a fiber diameter of 0.80 mm. A thin fiber is a solid line having a fiber diameter of 0.32 mm. The difference in fiber diameter was 0.48 mm, the total weight ratio of thin fibers was 27%, the apparent density was 0.046 g / cm 3 , and the flattened thickness of the surface was 50 mm.

得られた網状構造体について、細繊維主領域側から加圧した時の、750N定荷重繰り返し圧縮後の残留歪みが15.6%、25%圧縮時硬度が21.9N/φ100mm、40%圧縮時硬度が40.3N/φ100mm、ヒステリシスロスが23.8%、パネラーによる底付き感は感じられず評価が◎であった。結果を表1にまとめた。   About the obtained network structure, when pressed from the fine fiber main region side, the residual strain after repeated compression at 750 N constant load is 15.6%, the hardness at 25% compression is 21.9 N / φ100 mm, 40% compression The time hardness was 40.3 N / φ100 mm, the hysteresis loss was 23.8%, the feeling of bottoming by the panel was not felt, and the evaluation was ◎. The results are summarized in Table 1.

表1に示すように、本比較例で得られた網状構造体は、細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%より大きかったことから、圧縮耐久性が悪かった。   As shown in Table 1, the network structure obtained in this comparative example had a compression endurance of more than 15% after 750 N constant load repeated compression when pressurized from the fine fiber main region side. The nature was bad.

[比較例2]
幅方向の長さ100cm、厚さ方向の長さ31.2mmのノズル有効面にオリフィスの形状は、厚さ方向7列を外径3mm、内径2.6mmでトリプルブリッジの中空形成性断面としたオリフィスを幅方向孔間ピッチ6mm、厚さ方向孔間ピッチ5.2mmの千鳥配列としたノズルを用い、得られたポリエステル系熱可塑性エラストマー(A−1)を紡糸温度(溶融温度)240℃にて、単孔吐出量1.5g/minの速度でノズル下方に吐出させ、ノズル面28cm下に冷却水を配し、幅200cmのステンレス製エンドレスネットを平行に開口幅27mm間隔で一対の引き取りコンベアを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアで挟み込みつつ1.14m/minの引き取り速度で冷却水中へ引込み、固化させることで厚さ方向の両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、断面形状が三角おむすび型を有する主に中空断面繊維からなる網状構造体を得た。得られた網状構造体は、見かけ密度が0.063g/cm3、表面が平坦化された厚さが25mmであり、中空断面繊維は中空率が20%、繊維径が0.76mmであった。
[Comparative Example 2]
The shape of the orifice on the nozzle effective surface with a length of 100 cm in the width direction and a length of 31.2 mm in the thickness direction is a triple bridge hollow forming cross section with 7 rows in the thickness direction and an outer diameter of 3 mm and an inner diameter of 2.6 mm. The obtained polyester-based thermoplastic elastomer (A-1) was set to a spinning temperature (melting temperature) of 240 ° C. using a nozzle in which the orifices were arranged in a staggered arrangement with a pitch between the holes in the width direction of 6 mm and a pitch between the holes in the thickness direction of 5.2 mm. Then, a single-hole discharge rate of 1.5 g / min is discharged below the nozzle, cooling water is arranged under the nozzle surface 28 cm, and a pair of take-up conveyors with a stainless steel endless net having a width of 200 cm in parallel with an opening width of 27 mm. Is arranged so as to partially protrude on the water surface, and the molten discharge line is twisted on the conveyor net on the water surface to form a loop to fuse the contact portion. A three-dimensional network structure is formed, and both sides of the molten network structure are drawn into the cooling water at a take-up speed of 1.14 m / min while being sandwiched between take-up conveyors, and both sides in the thickness direction are flattened by solidifying. Then, it cut | disconnected to the predetermined | prescribed magnitude | size and dried and heat-processed for 15 minutes with 110 degreeC hot air, and obtained the network structure which a cross-sectional shape mainly consists of a hollow cross-section fiber. The network structure thus obtained had an apparent density of 0.063 g / cm 3 , a flattened surface thickness of 25 mm, a hollow cross-section fiber having a hollowness of 20% and a fiber diameter of 0.76 mm. .

また、幅方向100cm、厚さ方向の幅31.2mmのノズル有効面にオリフィスの形状は、厚さ方向7列を外形1mmの中実形成オリフィスを幅方向孔間ピッチ6mm、厚さ方向孔間ピッチ5.2mmの千鳥配列としたノズルを用い、得られた熱可塑性弾性樹脂(A−1)を溶融温度240℃にて、単孔吐出量0.9g/minの速度でノズル下方に吐出させ、ノズル面28cm下に冷却水を配し、幅200cmのステンレス製エンドレスネットを平行に開口幅27mm間隔で一対の引き取りコンベアを水面上に一部出るように配して、その水面上のコンベアネット上に、該溶融状態の吐出線状を曲がりくねらせル−プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引き取りコンベアで挟み込みつつ1.14m/minの引き取り速度で冷却水中へ引込み、固化させることで厚さ方向の両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、主に中実断面繊維からなる網状構造体を得た。得られた網状構造体は、見かけ密度が0.038g/cm3、表面が平坦化された厚さが25mmであり、中実断面繊維は、繊維径0.50mmであった。 In addition, the shape of the orifice on the nozzle effective surface with a width direction of 100 cm and a thickness direction width of 31.2 mm is 7 mm in the thickness direction, a solid forming orifice with an outer diameter of 1 mm, and a width-direction hole pitch of 6 mm, between the holes in the thickness direction. Using a staggered nozzle with a pitch of 5.2 mm, the obtained thermoplastic elastic resin (A-1) was discharged below the nozzle at a melting temperature of 240 ° C. and a single hole discharge rate of 0.9 g / min. , Distributing cooling water below the 28cm nozzle surface, and arranging a 200cm wide stainless steel endless net in parallel with a pair of take-up conveyors at intervals of opening width of 27mm on the water surface. A three-dimensional network structure is formed by twisting the discharge line shape in the molten state to form a loop while fusing the contact portions, and both sides of the molten network structure are picked up and sandwiched between conveyors. While drawing it into cooling water at a take-up speed of 1.14 m / min and flattening both sides in the thickness direction by solidifying, cut to a predetermined size and dry heat-treat with hot air at 110 ° C. for 15 minutes A network structure mainly composed of solid cross-section fibers was obtained. The resulting network structure had an apparent density of 0.038 g / cm 3 , a flattened thickness of 25 mm, and a solid cross-section fiber having a fiber diameter of 0.50 mm.

得られた主に細い繊維である中実断面繊維からなる網状構造体と、主に太い繊維である中空断面繊維からなる網状構造体とを重ね合わせ網状構造体を作成した。重ね合わせた網状構造体全体の見かけ密度が0.051g/cm3、厚さが50mmであった。なお太い繊維である中空断面繊維の繊維径と細い繊維である中実断面繊維の繊維径の差は0.26mmであった。 The obtained network structure composed of solid cross-section fibers, which are mainly thin fibers, and network structure composed of hollow cross-section fibers, which are mainly thick fibers, were overlapped to create a network structure. The apparent density of the entire laminated network structure was 0.051 g / cm 3 and the thickness was 50 mm. The difference between the fiber diameter of the hollow cross-section fiber, which is a thick fiber, and the fiber diameter of the solid cross-section fiber, which is a thin fiber, was 0.26 mm.

この重ね合わせ網状構造体について、細い繊維である中実断面繊維からなる網状構造体側から圧縮した時の、750N定荷重繰り返し圧縮後の残留歪みが17.3%、25%圧縮時硬度が32.1N/φ100mm、40%圧縮時硬度が61.3N/φ100mm、ヒステリシスロスが26.2%、パネラーによる底付き感は感じられず評価が◎であった。結果を表1にまとめた。   With respect to this overlapped network structure, the residual strain after repeated compression at a constant load of 750 N is 17.3% and the hardness when compressed is 32. 32. 1N / φ100 mm, 40% hardness at compression 61.3 N / φ100 mm, hysteresis loss 26.2%, no feeling of bottoming due to panelists was felt, and evaluation was ◎. The results are summarized in Table 1.

表1に示すように、本比較例で得られた重ね合せ網状構造体は、細い繊維からなる網状構造体側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%より大きかったことから、圧縮耐久性が悪かった。   As shown in Table 1, the overlap network structure obtained in this comparative example had a residual strain after repeated compression at 750 N constant load when pressed from the network structure side made of fine fibers, greater than 15%. Therefore, the compression durability was bad.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の網状構造体は、使用時にソフトな触感を持つ、底付き感が少ない、圧縮耐久性に優れる、という3つの特徴を全て満たす網状構造体であり、オフィスチェア、家具、ソファー、ベッド等の寝具、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に用いられるクッション材に好適な網状構造体を提供できるため、産業界に寄与すること大である。   The network structure of the present invention is a network structure that satisfies all the three characteristics of having a soft tactile sensation during use, low bottoming feeling, and excellent compression durability, such as an office chair, furniture, sofa, bed, etc. Can provide a net-like structure suitable for cushioning materials used in bedding, vehicle seats such as trains, automobiles, two-wheeled vehicles, strollers, and child seats, floor mats, and mats for shock absorption such as collision and pinching prevention members. It is great to contribute to the industry.

Claims (5)

熱可塑性エラストマー連続線状体からなる三次元ランダムループ接合構造を持つ網状構造体であって、
前記網状構造体の厚さ方向に、主に繊維径が0.1mm以上1.5mm以下の細い繊維からなる細繊維主領域と、主に繊維径が0.4mm以上3.0mm以下の太い繊維からなる太繊維主領域と、前記細繊維主領域と前記太繊維主領域との間に位置する前記細い繊維と前記太い繊維とが混在してなる混在領域と、が存在し、
前記細い繊維に比べて前記太い繊維の繊維径が0.07mm以上太く、
前記網状構造体の前記細繊維主領域側から加圧した時の750N定荷重繰り返し圧縮後の残留歪みが15%以下である網状構造体。
A network structure having a three-dimensional random loop joining structure composed of a continuous line of thermoplastic elastomer,
A fine fiber main region mainly composed of fine fibers having a fiber diameter of 0.1 mm to 1.5 mm and a thick fiber having a fiber diameter of 0.4 mm to 3.0 mm in the thickness direction of the network structure. A thick fiber main region, and a mixed region formed by mixing the thin fiber and the thick fiber located between the fine fiber main region and the thick fiber main region,
The fiber diameter of the thick fiber is 0.07 mm or more thick compared to the thin fiber,
A network structure having a residual strain of 15% or less after repeated compression at a constant load of 750 N when pressurized from the fine fiber main region side of the network structure.
見かけ密度が0.005g/cm3以上0.20g/cm3以下である請求項1に記載の網状構造体。 The apparent network structure according to claim 1 density of 0.005 g / cm 3 or more 0.20 g / cm 3 or less. 前記細い繊維が中実断面を有する中実断面繊維であり、前記太い繊維が中空断面を有する中空断面繊維である請求項1または2に記載の網状構造体。   The network structure according to claim 1 or 2, wherein the thin fibers are solid cross-section fibers having a solid cross section, and the thick fibers are hollow cross-section fibers having a hollow cross section. 前記網状構造体の前記細繊維主領域側から加圧した時のヒステリシスロスが60%以下である請求項1から3のいずれか1項に記載の網状構造体。   The network structure according to any one of claims 1 to 3, wherein a hysteresis loss when the network structure is pressed from the fine fiber main region side is 60% or less. クッション内部に請求項1から4のいずれか1項に記載の網状構造体を含むクッション材。   A cushioning material comprising the network structure according to any one of claims 1 to 4 inside the cushion.
JP2016074393A 2015-04-28 2016-04-01 Network structure Active JP6217780B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016074393A JP6217780B2 (en) 2016-04-01 2016-04-01 Network structure
KR1020177033880A KR102443939B1 (en) 2015-04-28 2016-04-28 network structure
US15/570,498 US20180177306A1 (en) 2015-04-28 2016-04-28 Net-like structure
PCT/JP2016/063391 WO2016175294A1 (en) 2015-04-28 2016-04-28 Net-like structure
PL16786570T PL3290557T3 (en) 2015-04-28 2016-04-28 Net-like structure
CN201680024536.4A CN107532355B (en) 2015-04-28 2016-04-28 Net-shaped structure
EP16786570.8A EP3290557B1 (en) 2015-04-28 2016-04-28 Net-like structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074393A JP6217780B2 (en) 2016-04-01 2016-04-01 Network structure

Publications (2)

Publication Number Publication Date
JP2017186687A true JP2017186687A (en) 2017-10-12
JP6217780B2 JP6217780B2 (en) 2017-10-25

Family

ID=60046231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074393A Active JP6217780B2 (en) 2015-04-28 2016-04-01 Network structure

Country Status (1)

Country Link
JP (1) JP6217780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190964A1 (en) * 2022-03-31 2023-10-05 東洋紡エムシー株式会社 Three-dimensional net-like structure and manufacturing method for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936757A (en) * 1982-08-19 1984-02-29 株式会社クラレ Laminate nonwoven fabric and production thereof
JPH07189105A (en) * 1993-12-24 1995-07-25 Toyobo Co Ltd Netlike structure having different fineness and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936757A (en) * 1982-08-19 1984-02-29 株式会社クラレ Laminate nonwoven fabric and production thereof
JPH07189105A (en) * 1993-12-24 1995-07-25 Toyobo Co Ltd Netlike structure having different fineness and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190964A1 (en) * 2022-03-31 2023-10-05 東洋紡エムシー株式会社 Three-dimensional net-like structure and manufacturing method for same

Also Published As

Publication number Publication date
JP6217780B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
US9970140B2 (en) Network structure having excellent compression durability
WO2015064523A1 (en) Quiet, lightweight elastic mesh structure
WO2006046541A1 (en) Seat, process for producing the same and method of treatment for recovery from permanent set of the seat
JPWO2007114232A1 (en) Seat seat
JP5966471B2 (en) Elastic network structure with excellent quietness and hardness
KR102288683B1 (en) Net-like structure
JP6217780B2 (en) Network structure
WO2016175294A1 (en) Net-like structure
JP2015198877A (en) Cushion body and seat
JP6807650B2 (en) Cushion body
JP6428868B2 (en) Manufacturing method of network structure
JP2002000408A (en) Vehicle seat
JPWO2014192790A1 (en) Elastic network structure excellent in lightness and hardness
JP2001061605A (en) Seat for vehicle
JP4789681B2 (en) Cushion body manufacturing method and seat seat manufacturing method
JPH07238457A (en) Network structure for cushion, its production and cushion product
JP6350578B2 (en) Network structure
JPH07238461A (en) Laminated structure, its production and product using the same
JPH07316967A (en) Flame-resistant laminate net-like material and its production and product using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R151 Written notification of patent or utility model registration

Ref document number: 6217780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350