JP2017186611A - Removing method of scale of heat exchanger - Google Patents

Removing method of scale of heat exchanger Download PDF

Info

Publication number
JP2017186611A
JP2017186611A JP2016076011A JP2016076011A JP2017186611A JP 2017186611 A JP2017186611 A JP 2017186611A JP 2016076011 A JP2016076011 A JP 2016076011A JP 2016076011 A JP2016076011 A JP 2016076011A JP 2017186611 A JP2017186611 A JP 2017186611A
Authority
JP
Japan
Prior art keywords
heat exchanger
iron
scale
hydrochloric acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076011A
Other languages
Japanese (ja)
Other versions
JP6728906B2 (en
JP2017186611A5 (en
Inventor
柿本 稔
Minoru Kakimoto
稔 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016076011A priority Critical patent/JP6728906B2/en
Publication of JP2017186611A publication Critical patent/JP2017186611A/en
Publication of JP2017186611A5 publication Critical patent/JP2017186611A5/ja
Application granted granted Critical
Publication of JP6728906B2 publication Critical patent/JP6728906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of scale of a heat exchanger capable of removing scale stuck to a heat exchanger without putting in a lot of labor and time.SOLUTION: A removing method of scale of a heat exchanger comprises cooling an iron-free solution obtained in an iron-removing step for depositing iron (III) hydroxide from a nickel chloride aqueous solution containing iron and subjecting the obtained slurry of the nickel chloride aqueous solution containing the iron (III) hydroxide to solid-liquid separation. The heat exchanger is equipped with a heat transfer surface made of pure titanium or an anticorrosive titanium alloy for cooling the iron-free solution. Scale stuck to the iron-free solution flow channel side of the heat transfer surface is removed by introducing a hydrochloric acid aqueous solution of a concentration of 5-10 wt.% into the heat exchanger.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換器に付着したスケールの除去方法に関する。より詳しくは、鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器に付着したスケールの除去方法に関する。 The present invention relates to a method for removing scale adhered to a heat exchanger. More specifically, the present invention relates to a method for removing scale attached to a heat exchanger used for cooling a deiron-free final solution obtained from a deironing step of removing iron from a nickel chloride aqueous solution containing iron.

ニッケル製錬においては、ニッケル鉱石やニッケル精鉱を溶鉱炉や電気炉等の乾式炉で溶解処理する乾式製錬法、ニッケル鉱石やニッケル精鉱中のニッケルを水溶液中に浸出して、不純物を除去した後、ニッケルを回収する湿式製錬法があり、目的や用途に応じて最適な方法が工業化されている。   In nickel smelting, a dry smelting method in which nickel ore or nickel concentrate is melted in a dry furnace such as a blast furnace or electric furnace, and nickel in the ore or nickel concentrate is leached into an aqueous solution to remove impurities. After that, there is a hydrometallurgical method for recovering nickel, and an optimum method is industrialized according to the purpose and application.

その中で、湿式製錬法では、例えば特許文献1に記載されているように、塩素ガスの酸化作用を利用してニッケルマットや混合硫化物を浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する塩素浸出プロセスが実用化されている。   Among them, in the hydrometallurgical method, as described in Patent Document 1, for example, nickel mat and mixed sulfide are leached using the oxidizing action of chlorine gas, and the leached nickel ions and cobalt ions are removed. Chlorine leaching processes have been put into practical use that are commercialized as electrolytic nickel and electrolytic cobalt by electrowinning.

塩素浸出プロセスのうちの塩素浸出工程では、混合硫化物と後述するセメンテーション残渣を塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケルおよびコバルトを塩化物水溶液中に浸出する。   In the chlorine leaching process of the chlorine leaching process, the mixed sulfide and cementation residue described later are repulped into an aqueous chloride solution, and then nickel and cobalt are leached into the aqueous chloride solution by blowing chlorine gas into the slurry. .

次に、セメンテーション工程では、塩素浸出工程で得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したNiと金属ニッケルを主成分とするニッケルマットを接触させて銅とニッケルの置換反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され、銅イオンはCuSまたはCu(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。 Next, in the cementation process, a nickel matte mainly composed of pulverized Ni 3 S 2 and metallic nickel is added to a chlorine leaching solution containing divalent copper chloro complex ions as an oxidizing agent obtained in the chlorine leaching process. By carrying out a substitution reaction between copper and nickel by contact, nickel in the nickel mat is substituted and leached into the liquid, and the copper ions become a solid (cementation residue) in the form of Cu 2 S or Cu 0 (metallic copper). Part).

そのセメンテーション終液と、ニッケルマットの置換浸出残渣と前記CuSまたはCu(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、セメンテーション終液は次の浄液工程へ、固体のセメンテーション残渣は前記塩素浸出工程へ送られる。 The cementation residue comprising the cementation final solution, the substitution leaching residue of nickel matte, and the solid precipitated in the form of Cu 2 S or Cu 0 (metal copper) is solid-liquid separated, and then cemented. The final liquid is sent to the next cleaning process, and the solid cementation residue is sent to the chlorine leaching process.

ここで、セメンテーション終液には、回収対象金属であるニッケルやコバルトの他にも、銅、鉄、鉛、亜鉛等の不純物が含有されているため、コバルトを分離回収し、不純物を除去し、電解採取に適した高純度塩化ニッケル水溶液を得るために、浄液工程が構成されている。セメンテーション終液は、脱鉄工程、コバルト分離工程、脱鉛工程、脱亜鉛工程を経て処理されることにより不純物が除去され、電解採取工程に供給される。 Here, the cementation final solution contains impurities such as copper, iron, lead, zinc, etc. in addition to nickel and cobalt, which are the metals to be collected, so cobalt is separated and recovered to remove the impurities. In order to obtain a high-purity nickel chloride aqueous solution suitable for electrowinning, a liquid purification process is configured. The cementation final solution is processed through a deironing process, a cobalt separation process, a deleading process, and a dezincing process to remove impurities, and is supplied to the electrowinning process.

脱鉄工程では、例えば酸化剤としての塩素ガスと中和剤としての炭酸塩を用いる酸化中和法が用いられている。酸化中和法は、鉄等の一部の重金属が、高次の酸化状態のイオンになると、低いpH領域でも水酸化物になり易い性質を利用したものであり、湿式製錬の浄液工程をはじめ、重金属を含む排水処理等に汎用されている方法である。 In the iron removal step, for example, an oxidation neutralization method using chlorine gas as an oxidizing agent and carbonate as a neutralizing agent is used. The oxidation neutralization method utilizes the property that some heavy metals, such as iron, tend to be hydroxides even in a low pH region when they become ions in a higher oxidation state. This method is widely used for wastewater treatment including heavy metals.

コバルト分離工程では、例えば溶媒抽出法が用いられている。塩化浴中においてはアミン系抽出剤を用いた溶媒抽出法が一般的に実施されているが、これは、水溶液中の塩化物イオン濃度が十分に高い場合、コバルトはクロロ錯イオンを形成するが、ニッケルはクロロ錯イオンを形成しないことを利用したものである。溶媒抽出工程でコバルトを含む塩化ニッケル水溶液から分離されたコバルトは、逆抽出操作によって塩化コバルト水溶液となり、さらに塩化コバルト浄液工程にて不純物が除去された後、電解採取工程にて製品である電気コバルトとなる。 In the cobalt separation step, for example, a solvent extraction method is used. In the chloride bath, a solvent extraction method using an amine-based extractant is generally carried out. This is because cobalt forms chloro complex ions when the chloride ion concentration in the aqueous solution is sufficiently high. Nickel utilizes the fact that it does not form chloro complex ions. The cobalt separated from the nickel chloride aqueous solution containing cobalt in the solvent extraction process becomes a cobalt chloride aqueous solution by back extraction operation, and after impurities are removed in the cobalt chloride liquid purification process, Cobalt.

脱鉛工程、脱亜鉛工程は、必要に応じて、適宜公知の方法が選択されている。 For the deleading step and the dezincing step, known methods are appropriately selected as necessary.

上記浄液工程を経た塩化ニッケル水溶液はpH調整の後、電解採取工程に送られ、電解採取工程にて電気ニッケルとなる。 After the pH adjustment, the aqueous nickel chloride solution that has undergone the liquid purification process is sent to the electrowinning process, and becomes electronickel in the electrowinning process.

この塩素浸出プロセスでは、上記セメンテーション工程における反応効率を上げるため、高温で反応が操作される。よって、次工程の脱鉄工程で処理されるセメンテーション終液は高温であり、脱鉄後の脱鉄終液も高温となる。 In this chlorine leaching process, the reaction is operated at a high temperature in order to increase the reaction efficiency in the cementation step. Therefore, the cementation final liquid processed at the deironing process of the following process is high temperature, and the deironing final liquid after iron removal also becomes high temperature.

ところが、次の溶媒抽出工程では、有機溶媒の蒸発、有機溶媒の分解、装置材質の耐熱性等を鑑みて、ある一定温度以下で操作される必要があり、脱鉄終液は熱交換器により冷却される。 However, in the next solvent extraction step, it is necessary to operate at a certain temperature or lower in view of evaporation of the organic solvent, decomposition of the organic solvent, heat resistance of the apparatus material, etc. To be cooled.

しかしながら、脱鉄終液は高濃度の塩化ニッケル水溶液であることから、脱鉄終液を冷却するために用いられる熱交換器の伝熱面の脱鉄終液流路側には、カルシウムを含んだスケールが徐々に析出、成長してくる。このスケールによって、通液量の減少が引き起され、操業の継続が困難となるため、定期的に熱交換器への脱鉄終液の通液を停止して、伝熱面に付着したスケールの除去作業を行う必要があった。 However, since the iron removal final solution is a high concentration nickel chloride aqueous solution, the heat removal surface of the heat exchanger used for cooling the iron removal final solution contains calcium on the side of the iron removal final solution flow path. Scale gradually precipitates and grows. This scale causes a decrease in the flow rate and makes it difficult to continue the operation. Therefore, the scale that adheres to the heat transfer surface periodically stops the flow of the deironed final solution to the heat exchanger. It was necessary to perform the removal work.

しかし、スケールの除去作業は多大な手間と時間を要する。通常、複数基の熱交換器を並列に配置することで、スケールの除去作業時でも残りの熱交換器を稼働させ脱鉄終液の通液を継続できる構成とはしているが、それでもスケールの除去作業時間が長引けば、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性もあった。 However, the removal of the scale requires a lot of labor and time. Normally, multiple heat exchangers are arranged in parallel, so that the remaining heat exchanger can be operated even during scale removal work and the removal of the final iron removal liquid can be continued. If the removal work time of the iron is prolonged, there is a possibility that the production of electronickel may be reduced due to a decrease in the flow rate of the iron removal final solution.

特許文献2には、配管のスケーリング防止方法が開示されているが、液組成、pH等の条件が異なるため、ニッケル製錬における塩素浸出プロセスの脱鉄終液に適用できるのもでは無い。 Patent Document 2 discloses a method for preventing scaling of piping. However, since the conditions such as the liquid composition and pH are different, the method is not applicable to the deironation final liquid of the chlorine leaching process in nickel smelting.

特開2012−026027号公報JP 2012-026027 A 特開平10−202213号公報JP-A-10-202213

そこで、本発明は、上記従来技術の問題点に鑑みて考案されたものであり、鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器において、多大な手間と時間を要さずに当該熱交換器に付着したスケールの除去を行うことができる熱交換器のスケール除去方法を提供するものである。   Therefore, the present invention has been devised in view of the above-described problems of the prior art, and is used to cool a deiron-free final solution obtained from a deironing step of removing iron from an aqueous nickel chloride solution containing iron. In a heat exchanger, the scale removal method of the heat exchanger which can remove the scale adhering to the said heat exchanger without requiring a lot of time and effort is provided.

本発明者は、上記目的を達成すべく、特に、スケールの溶解方法について鋭意検討を重ねた結果、熱交換器に5〜10重量%の濃度の塩酸水溶液を通液することにより、スケールが除去できることを見出し、本発明を完成させるに至った。 In order to achieve the above-mentioned object, the present inventor, in particular, as a result of intensive studies on the method for dissolving the scale, removes the scale by passing an aqueous hydrochloric acid solution having a concentration of 5 to 10% by weight through the heat exchanger. The present inventors have found that the present invention can be accomplished and have completed the present invention.

すなわち、本発明の第1の発明の熱交換器のスケール除去方法は、鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却する熱交換器のスケール除去方法であって、5〜10重量%の濃度の塩酸水溶液を前記熱交換器に通液することにより、前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去する、ことを特徴とする。 That is, in the heat exchanger descaling method of the first aspect of the present invention, an iron (III) hydroxide precipitate is produced from an aqueous nickel chloride solution containing iron, and the nickel chloride containing the iron (III) hydroxide is produced. A scale removal method for a heat exchanger for cooling a deiron removal liquid obtained from a deironation step for solid-liquid separation of an aqueous slurry, and passing an aqueous hydrochloric acid solution having a concentration of 5 to 10% by weight through the heat exchanger. By removing the scale adhering to the deiron final liquid flow channel side of the heat transfer surface made of pure titanium or corrosion resistant titanium alloy for cooling the deiron final liquid with which the heat exchanger is provided. Features.

また、本発明の第2の発明の熱交換器のスケール除去方法は、本発明の第1の発明において、前記塩酸水溶液は循環使用することを特徴とする。   The scale removal method for a heat exchanger according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the aqueous hydrochloric acid solution is circulated.

また、本発明の第3の発明の熱交換器のスケール除去方法は、本発明の第1または第2の発明において、前記塩酸水溶液の濃度は5〜6重量%であることを特徴とする。 The scale removal method for a heat exchanger according to a third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the concentration of the aqueous hydrochloric acid solution is 5 to 6% by weight.

また、本発明の第4の発明の熱交換器のスケール除去方法は、本発明の第1ないし第3の発明のいずれかにおいて、前記熱交換器はプレート式熱交換器であることを特徴とする。 According to a fourth aspect of the present invention, there is provided a heat exchanger scale removing method according to any one of the first to third aspects of the present invention, wherein the heat exchanger is a plate heat exchanger. To do.

本発明の熱交換器のスケール除去方法によれば、鉄を含む塩化ニッケル水溶液から鉄を除去する脱鉄工程の熱交換器において、多大な手間と時間を要さずに熱交換器に付着したスケールの除去を行うことができ、流量低下によって電気ニッケルが減産となる可能性も無くなる。 According to the scale removal method of the heat exchanger of the present invention, in the heat exchanger of the iron removal process for removing iron from the nickel chloride aqueous solution containing iron, the heat exchanger adheres to the heat exchanger without much effort and time. The scale can be removed, and there is no possibility of a reduction in the production of electronickel due to a decrease in the flow rate.

本発明に係る脱鉄工程の概略フロー図である。It is a schematic flowchart of the iron removal process which concerns on this invention. 実施例および比較例におけるチタン試験片の重量変化を示した図である。It is the figure which showed the weight change of the titanium test piece in an Example and a comparative example.

本発明は、鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却する熱交換器のスケール除去方法であって、5〜10重量%の濃度の塩酸水溶液を前記熱交換器に通液することにより、前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去することを特徴とするものである。   The present invention relates to a deironation process obtained from a deironation step in which an iron (III) hydroxide precipitate is produced from a nickel chloride aqueous solution containing iron and the nickel chloride aqueous solution slurry containing the iron (III) hydroxide is solid-liquid separated. A method for removing scale from a heat exchanger for cooling a final liquid, wherein the final heat removal liquid is provided in the heat exchanger by passing an aqueous hydrochloric acid solution having a concentration of 5 to 10% by weight through the heat exchanger. The scale adhering to the de-iron final liquid flow channel side of the heat transfer surface made of pure titanium or corrosion-resistant titanium alloy for cooling the steel is removed.

そこで、ここでは、本発明の一実施形態として、ニッケルを回収する湿式製錬法である、塩素ガスの酸化作用を利用してニッケルマットや混合硫化物を浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する塩素浸出プロセスにおいて、脱鉄工程から得られる脱鉄終液を冷却するために用いられる熱交換器への適用を例にとって、以下に説明する。 Therefore, here, as one embodiment of the present invention, nickel matte and mixed sulfides are leached using the oxidizing action of chlorine gas, which is a hydrometallurgical method for recovering nickel, and leached nickel ions and cobalt are leached. In the chlorine leaching process in which ions are commercialized as electrolytic nickel and electrolytic cobalt by electrowinning, the following description will be given by taking as an example an application to a heat exchanger used to cool the final iron removal liquid obtained from the iron removal process. .

1.塩素浸出プロセス
塩素浸出プロセスにおいて、原料とされるニッケルマットとは、乾式製錬から産出されたニッケル硫化物を指し、混合硫化物とは、低品位ラテライト鉱石から硫酸浸出によって産出されたニッケル・コバルト混合硫化物を指している。塩素浸出プロセスのうちの塩素浸出工程では、混合硫化物と後述するセメンテーション残渣を塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケルおよびコバルトを塩化物水溶液中に浸出する。
1. Chlorine Leaching Process In the chlorine leaching process, the nickel matte used as raw material refers to nickel sulfide produced from dry smelting, and mixed sulfide refers to nickel / cobalt produced from low-grade laterite ore by sulfuric acid leaching. Refers to mixed sulfides. In the chlorine leaching process of the chlorine leaching process, the mixed sulfide and cementation residue described later are repulped into an aqueous chloride solution, and then nickel and cobalt are leached into the aqueous chloride solution by blowing chlorine gas into the slurry. .

次に、セメンテーション工程では、塩素浸出工程で得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したNiと金属ニッケルを主成分とするニッケルマットを接触させて銅とニッケルの置換反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され、銅イオンはCuSまたはCu(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。 Next, in the cementation process, a nickel matte mainly composed of pulverized Ni 3 S 2 and metallic nickel is added to a chlorine leaching solution containing divalent copper chloro complex ions as an oxidizing agent obtained in the chlorine leaching process. By carrying out a substitution reaction between copper and nickel by contact, nickel in the nickel mat is substituted and leached into the liquid, and the copper ions become a solid (cementation residue) in the form of Cu 2 S or Cu 0 (metallic copper). Part).

そのセメンテーション終液と、ニッケルマットの置換浸出残渣と前記CuSまたはCu(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、セメンテーション終液は次の浄液工程へ、固体のセメンテーション残渣は前記塩素浸出工程へ送られる。 The cementation residue comprising the cementation final solution, the substitution leaching residue of nickel matte, and the solid precipitated in the form of Cu 2 S or Cu 0 (metal copper) is solid-liquid separated, and then cemented. The final liquid is sent to the next cleaning process, and the solid cementation residue is sent to the chlorine leaching process.

ここで、セメンテーション終液には、回収対象金属であるニッケルやコバルトの他にも、銅、鉄、鉛、亜鉛等の不純物が含有されているため、コバルトを分離回収し、不純物を除去し、電解採取に適した高純度塩化ニッケル水溶液を得るために、浄液工程が構成されている。 Here, the cementation final solution contains impurities such as copper, iron, lead, zinc, etc. in addition to nickel and cobalt, which are the metals to be collected, so cobalt is separated and recovered to remove the impurities. In order to obtain a high-purity nickel chloride aqueous solution suitable for electrowinning, a liquid purification process is configured.

セメンテーション終液は、脱鉄工程、コバルト分離工程、脱鉛工程、脱亜鉛工程を経て処理されることにより不純物が除去され、電解採取工程に供給される。 The cementation final solution is processed through a deironing process, a cobalt separation process, a deleading process, and a dezincing process to remove impurities, and is supplied to the electrowinning process.

2.脱鉄工程の概要
図1は、本発明に係る脱鉄工程の概略フロー図である。脱鉄工程は、セメンテーション終液に、塩素ガスを吹き込んで酸化還元電位(Ag/AgCl電極基準)を900〜1000mVに調整し、炭酸ニッケルを添加してpHを1.5〜3.0に調整して、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離することによって、脱鉄終液と脱鉄澱物を得るものである。
2. Overview of Deironing Process FIG. 1 is a schematic flow diagram of a deironing process according to the present invention. In the iron removal step, chlorine gas was blown into the final cementation solution to adjust the oxidation-reduction potential (Ag / AgCl electrode standard) to 900 to 1000 mV, and nickel carbonate was added to adjust the pH to 1.5 to 3.0. By adjusting to produce an iron (III) hydroxide precipitate, and solid-liquid separation of the aqueous nickel chloride slurry containing the iron (III) hydroxide, a deiron-free final solution and a deironized starch are obtained. is there.

脱鉄工程で処理されるセメンテーション終液の温度は約70℃と高温であり、脱鉄後の脱鉄終液も65〜70℃となる。 The temperature of the cementation final solution treated in the deironing step is as high as about 70 ° C., and the deironing final solution after deironing is also 65 to 70 ° C.

脱鉄工程の次工程であるコバルト分離工程では、高温の脱鉄終液が送液されると有機溶媒の蒸発量が増加して保有有機溶媒量が減少する。保有有機溶媒量の減少によって、油水分離性の悪化によるコバルトを抽出した有機溶媒へのニッケル混入量の増加等のプロセス上の問題や、有機溶媒の補充量の増加等のコスト上の問題が発生する。さらには、有機溶媒の蒸発量が増加すると、臭気の発生のような安全、保安上の問題も発生する。また、高温の脱鉄終液が送液されると有機溶媒の分解が促進されるため、逆抽出液に分解生成物が混入することによる排水のCOD負荷上昇の懸念も生じる。また、溶媒抽出設備には、ポリ塩化ビニルやFRP等の樹脂材料が多用されているため、高温による軟化、変形等、さらにはそのことによる液漏れの問題も発生する。 In the cobalt separation process, which is the next process of the iron removal process, when the high-temperature iron removal final solution is fed, the amount of organic solvent evaporated increases and the amount of retained organic solvent decreases. Due to the decrease in the amount of organic solvent retained, process problems such as an increase in the amount of nickel mixed in the organic solvent from which cobalt was extracted due to deterioration in oil-water separation, and cost problems such as an increase in the replenishment amount of the organic solvent occurred. To do. Furthermore, when the amount of evaporation of the organic solvent increases, safety and security problems such as odor generation also occur. Moreover, since decomposition | disassembly of an organic solvent will be accelerated | stimulated when a high temperature deiron removal final solution is sent, there also exists a possibility of the COD load increase of the waste_water | drain by mixing a decomposition product into a back extract. In addition, since resin materials such as polyvinyl chloride and FRP are frequently used in the solvent extraction equipment, problems such as softening and deformation due to high temperatures and liquid leakage due to the softening and deformation occur.

そこで、脱鉄終液は、熱交換器によって約55℃まで冷却される必要がある。熱交換方式については、例えばシェルアンドチューブ方式の熱交換器等、脱鉄終液を冷却することができるものであれば、特に制限されない。その中では、プレート式熱交換器であることが好ましい。そのために、本発明の一実施形態として、プレートクーラーによる水を冷媒とした冷却を行う。また、冷媒についても、手近で冷却効率も高い水が最適であるが、例えば冷風を用いても、エチレングリコール等の特殊な冷媒を用いても、特に制限されない。 Therefore, the iron removal final solution needs to be cooled to about 55 ° C. by a heat exchanger. The heat exchange method is not particularly limited as long as it can cool the deiron-free final solution, such as a shell-and-tube heat exchanger. Among them, a plate heat exchanger is preferable. Therefore, as one embodiment of the present invention, cooling is performed using water as a refrigerant by a plate cooler. As for the refrigerant, water that is close and has high cooling efficiency is optimal, but there is no particular limitation even if, for example, cold air or a special refrigerant such as ethylene glycol is used.

3.熱交換器のスケール除去方法
上記したように、水等を冷媒としてプレートクーラーによる、脱鉄終液の冷却を継続すると、このプレートクーラーの伝熱面の脱鉄終液流路側に、カルシウムを含んだスケールが徐々に析出、成長してくる。このスケールによって、脱鉄終液の通液量の減少が引き起され、操業の継続が困難となるため、定期的に熱交換器への通液を停止して、付着したスケールの除去作業を行う必要があった。
3. As described above, when the cooling of the deironing final liquid is continued by the plate cooler using water or the like as a refrigerant, calcium is contained in the deironing final liquid flow path side of the heat transfer surface of the plate cooler. The scale gradually precipitates and grows. This scale causes a decrease in the flow rate of the final iron removal liquid and makes it difficult to continue the operation.Therefore, periodically stop the liquid flow to the heat exchanger and remove the adhered scale. There was a need to do.

そのために、通常、複数基の熱交換器を並列に配置することで、スケールの除去作業時でも残りの熱交換器を稼働させ脱鉄終液の通液を継続できる構成としているが、それでもスケールの除去作業時間が長引けば、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性もあった。図1では、2基のプレートクーラーが並列に配置されており、スケールの除去作業時は、スケールの除去作業を行っていない1基のみに脱鉄終液を通液するようにしている。 For this purpose, normally, multiple heat exchangers are arranged in parallel, so that the remaining heat exchanger can be operated even during scale removal work, and the flow of the final iron removal liquid can be continued. If the removal work time of the iron is prolonged, there is a possibility that the production of electronickel may be reduced due to a decrease in the flow rate of the iron removal final solution. In FIG. 1, two plate coolers are arranged in parallel, and at the time of removing the scale, only one iron that has not undergone the removing work of the scale is made to pass the final iron removal solution.

従来のスケールの除去作業では、プレートクーラーを分解して、1枚1枚のプレートを丹念に掃除していたため、多大な手間と時間を要すると共に、高度な整備技術も要していた。また、プレートクーラーを分解するため、プレート間をシールしているガスケットを、分解の都度、更新する必要があり、その整備コストも高いものとなっていた。さらに、プレートクーラーの分解整備作業には、分解したプレートクーラーを再度組立てる作業を伴うため、常に通液開始時の液漏れリスクが付きまとっていた。 In the conventional removal work of the scale, since the plate cooler is disassembled and each plate is carefully cleaned, it requires a lot of labor and time and also requires advanced maintenance techniques. Further, in order to disassemble the plate cooler, it is necessary to renew the gasket that seals between the plates every time it is disassembled, and the maintenance cost is high. Furthermore, since the work for disassembling the plate cooler involves reassembling the disassembled plate cooler, there is always a risk of liquid leakage at the start of liquid flow.

ところで、調査の結果、このスケールの主成分は石膏(CaSO・2HO)であることが分かった。そこで、本発明では、塩酸を用いてスケールの溶解を行う。 By the way, as a result of investigation, it was found that the main component of this scale is gypsum (CaSO 4 .2H 2 O). Therefore, in the present invention, the scale is dissolved using hydrochloric acid.

本発明のスケール除去作業は、脱鉄終液および冷却水の通液を停止して、脱鉄終液流路側に5〜10重量%の塩酸水溶液を通液する。また、この時、上記塩酸水溶液は循環使用することが好ましい。必要な設備としては、塩酸タンクと塩酸をプレートクーラーに送り込むためのポンプ、および行きと帰りの配管や切替えバルブとなる。塩酸タンクにて通液する塩酸水溶液の塩酸濃度を調整し、塩酸濃度が低下した場合には、再調整を行えば良い。 In the descaling operation of the present invention, the deironation final solution and cooling water flow are stopped, and a 5 to 10% by weight hydrochloric acid aqueous solution is passed through the deiron final solution flow path side. At this time, the aqueous hydrochloric acid solution is preferably recycled. Necessary facilities include a hydrochloric acid tank, a pump for feeding hydrochloric acid to the plate cooler, and a return and return pipe and a switching valve. The hydrochloric acid concentration of the aqueous hydrochloric acid solution passed through the hydrochloric acid tank is adjusted, and when the hydrochloric acid concentration decreases, readjustment may be performed.

塩酸によるスケールの溶解は、(式1)で示した反応に従う。
CaSO・2HO+2HCl→CaCl+HSO+2HO (式1)
Dissolution of the scale with hydrochloric acid follows the reaction shown in (Formula 1).
CaSO 4 .2H 2 O + 2HCl → CaCl 2 + H 2 SO 4 + 2H 2 O (Formula 1)

プレートクーラーの伝熱面をなすプレートは純チタンであるため、高濃度の塩酸を使用した場合、プレートの腐食による減耗が生じる。プレートは極めて薄く作られており、そのことが高い伝熱係数を担保するものとなるが、プレートに穴が開いてしまうと、冷却水側に塩化ニッケル水溶液がリークしてしまい、環境上の問題も発生する。 Since the plate that forms the heat transfer surface of the plate cooler is pure titanium, when high-concentration hydrochloric acid is used, wear due to corrosion of the plate occurs. The plate is made extremely thin, which guarantees a high heat transfer coefficient. However, if a hole is made in the plate, nickel chloride aqueous solution leaks to the cooling water side, causing environmental problems. Also occurs.

そこで、プレートクーラー伝熱面の脱鉄終液流路側に通液する塩酸水溶液の濃度は、5〜10重量%とする。5重量%未満ではスケール除去効果が低下し、10重量%を超えるとチタン材が腐食する恐れがある。さらに、塩酸水溶液の濃度は、5〜6重量%であることがより好ましい。   Then, the density | concentration of the hydrochloric acid aqueous solution which permeate | transmits the iron removal final liquid flow path side of a plate cooler heat-transfer surface shall be 5-10 weight%. If it is less than 5% by weight, the effect of removing the scale is lowered, and if it exceeds 10% by weight, the titanium material may be corroded. Furthermore, the concentration of the aqueous hydrochloric acid solution is more preferably 5 to 6% by weight.

本発明の熱交換器のスケール除去方法によれば、熱交換器を分解掃除する必要が無いため、多大な手間と時間を要さずに熱交換器に付着したスケールの除去を行うことができ、脱鉄終液の流量低下によって電気ニッケルが減産となる可能性も無くなる。また、分解した熱交換器を再度組立てる作業が発生しないため、脱鉄終液の通液開始時の液漏れリスクも無い。さらに、プレート式熱交換器の場合、分解、再組立ての作業が無いため、ガスケットを交換する必要も無く、コストが掛からない。 According to the scale removal method of the heat exchanger of the present invention, since it is not necessary to disassemble and clean the heat exchanger, it is possible to remove the scale attached to the heat exchanger without much effort and time. In addition, there is no possibility that the production of electronickel will be reduced due to a decrease in the flow rate of the final iron removal solution. In addition, since there is no need to reassemble the disassembled heat exchanger, there is no risk of liquid leakage at the start of the passing of the final iron removal liquid. Furthermore, in the case of a plate heat exchanger, since there is no work of disassembly and reassembly, there is no need to replace the gasket, and there is no cost.

以下、実施例および比較例により、本発明を詳細に説明するが、本実施例および比較例の記載により本発明の範囲が特別に限定されるものでは無い。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, the range of this invention is not specifically limited by description of a present Example and a comparative example.

(実施例1)
実操業における脱鉄工程の脱鉄終液冷却用のプレートクーラーに付着したスケールを採取し、10gのスケールを、塩酸濃度5重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
Example 1
Collect the scale attached to the plate cooler for the final iron removal cooling in the deironing process in actual operation, put 10 g of scale into 200 mL of hydrochloric acid aqueous solution adjusted to 5% by weight of hydrochloric acid, and soak at room temperature for 20 hours. The calcium concentration in the aqueous hydrochloric acid solution was measured.

(実施例2)
実施例1と同じスケール10gを、塩酸濃度10重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
(Example 2)
10 g of the same scale as in Example 1 was put into 200 mL of an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 10% by weight, and the calcium concentration in the aqueous hydrochloric acid solution when immersed for 20 hours at room temperature was measured.

(比較例1)
実施例1と同じスケール10gを、塩酸濃度18重量%に調整した塩酸水溶液200mL中に投入し、常温で20時間浸漬した時の塩酸水溶液中のカルシウム濃度を測定した。
(Comparative Example 1)
10 g of the same scale as in Example 1 was put into 200 mL of an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 18% by weight, and the calcium concentration in the aqueous hydrochloric acid solution when immersed for 20 hours at room temperature was measured.

実施例1、実施例2、比較例1では、カルシウム濃度の測定は、ICP発光分光分析装置により行った。実施例1、実施例2、比較例1の結果を表1に示した。

Figure 2017186611




In Example 1, Example 2, and Comparative Example 1, the calcium concentration was measured using an ICP emission spectroscopic analyzer. The results of Example 1, Example 2, and Comparative Example 1 are shown in Table 1.
Figure 2017186611




実施例1、実施例2、比較例1より、常温で20時間浸漬することにより、5重量%塩酸および10重量%塩酸では、約4gのスケールを溶解することができた。18重量%塩酸では、逆にスケールの溶解量は減少した。18重量%塩酸では、石膏の溶解によって生成した硫酸による逆反応が生じた可能性がある。   From Example 1, Example 2, and Comparative Example 1, approximately 4 g of scale could be dissolved with 5 wt% hydrochloric acid and 10 wt% hydrochloric acid by dipping for 20 hours at room temperature. On the other hand, with 18 wt% hydrochloric acid, the dissolution amount of the scale decreased. At 18% by weight hydrochloric acid, there may be a reverse reaction due to sulfuric acid produced by the dissolution of gypsum.

(実施例3)
約21.8gの純チタンの試験片を、塩酸濃度5重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。
(Example 3)
About 21.8 g of a pure titanium test piece was immersed in an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 5% by weight and left at room temperature for 60 days to examine the change in weight.

(実施例4)
約21.8gの純チタンの試験片を、塩酸濃度10重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。
Example 4
About 21.8 g of a pure titanium test piece was immersed in an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 10% by weight and allowed to stand at room temperature for 60 days to examine the change in weight.

(比較例2)
約21.7gの純チタンの試験片を、塩酸濃度35重量%に調整した塩酸水溶液に浸漬し、常温下で60日間放置して、重量変化について調査した。実施例3、実施例4、比較例2の結果を図2に示した。
(Comparative Example 2)
About 21.7 g of a pure titanium test piece was immersed in an aqueous hydrochloric acid solution adjusted to a hydrochloric acid concentration of 35% by weight and left at room temperature for 60 days to examine the change in weight. The results of Example 3, Example 4, and Comparative Example 2 are shown in FIG.

図2より、5重量%塩酸および10重量%塩酸では、60日間浸漬しても大きな重量変化は無かったが、35重量%塩酸では約1g減少した。   From FIG. 2, 5 wt% hydrochloric acid and 10 wt% hydrochloric acid did not change significantly even when immersed for 60 days, but 35 wt% hydrochloric acid decreased by about 1 g.

これにより、純チタン製の伝熱面の脱鉄終液流路側に付着したスケールを除去する場合、5〜10重量%の濃度の塩酸水溶液を用いれば、チタン材の腐食がないことが確認された。
As a result, when removing the scale adhering to the deironation final liquid flow channel side of the heat transfer surface made of pure titanium, it was confirmed that there was no corrosion of the titanium material if a hydrochloric acid aqueous solution having a concentration of 5 to 10% by weight was used. It was.

Claims (4)

鉄を含む塩化ニッケル水溶液から、水酸化鉄(III)沈澱を生成させ、該水酸化鉄(III)を含有した塩化ニッケル水溶液スラリーを固液分離する脱鉄工程から得られる脱鉄終液を冷却する熱交換器のスケール除去方法であって、
5〜10重量%の濃度の塩酸水溶液を前記熱交換器に通液することにより、前記熱交換器が備える、前記脱鉄終液を冷却するための、純チタン製もしくは耐食チタン合金製の伝熱面の脱鉄終液流路側に付着したスケールを除去する、
ことを特徴とする熱交換器のスケール除去方法。
An iron (III) hydroxide precipitate is produced from an iron-containing nickel chloride aqueous solution, and the final iron-free solution obtained from the deironing step of solid-liquid separation of the nickel chloride aqueous solution slurry containing the iron (III) hydroxide is cooled. A heat exchanger descaling method that comprises:
By passing an aqueous hydrochloric acid solution having a concentration of 5 to 10% by weight through the heat exchanger, pure titanium or a corrosion-resistant titanium alloy for cooling the deiron-free final solution provided in the heat exchanger is provided. Remove the scale adhering to the hot iron desulfurization final flow path side,
The scale removal method of the heat exchanger characterized by the above-mentioned.
前記塩酸水溶液は循環使用することを特徴とする請求項1に記載の熱交換器のスケール除去方法。 The scale removal method for a heat exchanger according to claim 1, wherein the hydrochloric acid aqueous solution is circulated. 前記塩酸水溶液の濃度は5〜6重量%であることを特徴とする請求項1または2に記載の熱交換器のスケール除去方法。 The method for removing a scale from a heat exchanger according to claim 1 or 2, wherein the concentration of the hydrochloric acid aqueous solution is 5 to 6% by weight. 前記熱交換器はプレート式熱交換器であることを特徴とする請求項1ないし請求項3のいずれかに記載の熱交換器のスケール除去方法。
The scale removal method for a heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is a plate heat exchanger.
JP2016076011A 2016-04-05 2016-04-05 Heat exchanger descaling method Expired - Fee Related JP6728906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076011A JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076011A JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Publications (3)

Publication Number Publication Date
JP2017186611A true JP2017186611A (en) 2017-10-12
JP2017186611A5 JP2017186611A5 (en) 2019-05-16
JP6728906B2 JP6728906B2 (en) 2020-07-22

Family

ID=60046311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076011A Expired - Fee Related JP6728906B2 (en) 2016-04-05 2016-04-05 Heat exchanger descaling method

Country Status (1)

Country Link
JP (1) JP6728906B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028051A (en) * 1973-07-19 1975-03-22
JPS60262984A (en) * 1984-06-11 1985-12-26 Mitsubishi Heavy Ind Ltd Chemical cleaning liquid for titanium heat exchanger
JP2012026027A (en) * 2010-06-21 2012-02-09 Sumitomo Metal Mining Co Ltd Method for removing copper ions from copper-containing nickel chloride solution, and method for producing electrolytic nickel
JP2014012884A (en) * 2012-06-04 2014-01-23 Kobe Steel Ltd Titanium alloy material having excellent scale adhesion-suppressing property and moldability, method for producing the same, and heat exchanger or seawater evaporator
JP2015031458A (en) * 2013-08-02 2015-02-16 東北電力株式会社 Plate heat exchanger washing apparatus and plate heat exchanger washing method
JP2015183282A (en) * 2014-03-26 2015-10-22 住友金属鉱山株式会社 Copper removal method for aqueous nickel chloride solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028051A (en) * 1973-07-19 1975-03-22
JPS60262984A (en) * 1984-06-11 1985-12-26 Mitsubishi Heavy Ind Ltd Chemical cleaning liquid for titanium heat exchanger
JP2012026027A (en) * 2010-06-21 2012-02-09 Sumitomo Metal Mining Co Ltd Method for removing copper ions from copper-containing nickel chloride solution, and method for producing electrolytic nickel
JP2014012884A (en) * 2012-06-04 2014-01-23 Kobe Steel Ltd Titanium alloy material having excellent scale adhesion-suppressing property and moldability, method for producing the same, and heat exchanger or seawater evaporator
JP2015031458A (en) * 2013-08-02 2015-02-16 東北電力株式会社 Plate heat exchanger washing apparatus and plate heat exchanger washing method
JP2015183282A (en) * 2014-03-26 2015-10-22 住友金属鉱山株式会社 Copper removal method for aqueous nickel chloride solution

Also Published As

Publication number Publication date
JP6728906B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CN102286759B (en) Method for preparing electrodeposited zinc from high-fluorine high-chlorine secondary zinc oxide powder
JP6799160B2 (en) How to recover iron from zinc sulphate solution
CN103555945B (en) Method for removing arsenic and antimony of metallurgical dust pickle liquor through melt slag
CN105648214B (en) It is a kind of to control the method that current potential vulcanization separates valuable metal in solution
JP5439997B2 (en) Method for recovering copper from copper-containing iron
CN101457295A (en) Dechlorination method in zinc hydrometallurgy circulation solution system
JP6168000B2 (en) Method for producing nickel sulfate solution
RU2726618C1 (en) Method of producing solutions containing nickel or cobalt
JP6386407B2 (en) Steel slag treatment method
CN102732722A (en) Zinc hydrometallurgy method for removing fluorine and chlorine by extraction
JP2005015272A (en) Recovery method of nickel salt from nickel-containing waste solution sludge
CN109735850A (en) A kind of method of pickling iron and steel and water circulation use
CN100554453C (en) A kind of leaching method of materials after nickelous oxide mine chloridization oxidation treatment
JP6233478B2 (en) Purification method of bismuth
JPS62188791A (en) Electrowinning method for ni, co, zn, cu, mn and cr
WO2018138917A1 (en) Bismuth purification method
AU2015384689B2 (en) Wet smelting method for nickel oxide ore
CN112429888A (en) Method for recycling cadmium-containing heavy metal wastewater
JP6728906B2 (en) Heat exchanger descaling method
AU2019290870B2 (en) Nickel sulfate compound manufacturing method
CN111485119A (en) Method and device for treating new wet-process zinc smelting liquid
CN107777735B (en) A method of ammonium nickel sulfate is prepared with nickel sulfide ore normal pressure
CN104775040A (en) Comprehensive recycling process for acid leaching residues
Jandova et al. Treatment of sulphate leach liquors to recover cobalt from waste dusts generated by the glass industry
CN102978418A (en) Processing method of casting zinc dross

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees