JP2017186536A - Photoreactive polymer - Google Patents

Photoreactive polymer Download PDF

Info

Publication number
JP2017186536A
JP2017186536A JP2017054433A JP2017054433A JP2017186536A JP 2017186536 A JP2017186536 A JP 2017186536A JP 2017054433 A JP2017054433 A JP 2017054433A JP 2017054433 A JP2017054433 A JP 2017054433A JP 2017186536 A JP2017186536 A JP 2017186536A
Authority
JP
Japan
Prior art keywords
group
photoreactive polymer
except
contact angle
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054433A
Other languages
Japanese (ja)
Other versions
JP6890883B2 (en
Inventor
茉由加 鈴木
Mayuka Suzuki
茉由加 鈴木
英一 東郷
Hidekazu Togo
英一 東郷
透朗 常藤
Sukiaki Tsunefuji
透朗 常藤
井上 洋
Hiroshi Inoue
洋 井上
井上 宗宣
Munenobu Inoue
宗宣 井上
雅宏 潮崎
Masahiro Shiozaki
雅宏 潮崎
礼文 貴志
Ayafumi Kishi
礼文 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Publication of JP2017186536A publication Critical patent/JP2017186536A/en
Application granted granted Critical
Publication of JP6890883B2 publication Critical patent/JP6890883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoreactive polymer capable of effectively and simply conducting a hydrophilization treatment of a hydrophobic substrate surface with less damage to a substrate.SOLUTION: The photoreactive polymer is a polymer having a functional group having hydrophilicity and a functional group high in photoreactivity in a side chain.SELECTED DRAWING: None

Description

本発明は、疎水性基材の表面を親水化する光反応性ポリマーに関する。   The present invention relates to a photoreactive polymer that hydrophilizes the surface of a hydrophobic substrate.

表面へ防曇性又は防汚性、帯電防止性、生体適合性といった機能を付与するために、疎水性基材の表面親水化が広く用いられている。その手法として、プラズマ処理、グロー放電処理、イオンエッチング等のような、疎水性ポリマー基材の表面に親水性の官能基を発生させる方法や、基材表面への界面活性剤の塗布もしくは基材への直接混練といった方法が用いられてきた(例えば、非特許文献1参照)。しかしながら、それらの方法は、厳しい条件で処理を行うため基材へダメージを与える点や、恒久的に親水性表面を保持することが難しい点といった問題点があった。   In order to impart functions such as antifogging or antifouling properties, antistatic properties, and biocompatibility to the surface, surface hydrophilization of hydrophobic substrates is widely used. As the method, a method of generating a hydrophilic functional group on the surface of a hydrophobic polymer substrate, such as plasma treatment, glow discharge treatment, ion etching, etc., or coating of a surfactant on the substrate surface or a substrate A method such as direct kneading has been used (for example, see Non-Patent Document 1). However, these methods have problems in that the substrate is damaged under severe conditions and it is difficult to permanently retain the hydrophilic surface.

一方、光反応性ポリマーを用いて疎水性ポリマー基材表面を親水化する方法も提案されている(特許文献1、2参照。)。これらの方法は効率的かつ簡便であるが、用いている光反応性基の反応性が低く、高強度かつ比較的長時間紫外線を照射しないと均一な親水化が達成できないため、基材が紫外線に弱い場合、紫外線照射により基材がダメージを受けるといった問題点を有していた。   On the other hand, a method of hydrophilizing a hydrophobic polymer substrate surface using a photoreactive polymer has also been proposed (see Patent Documents 1 and 2). These methods are efficient and simple. However, the reactivity of the photoreactive group used is low, and uniform hydrophilicity cannot be achieved unless ultraviolet rays are irradiated with high intensity for a relatively long time. If it is weak, it has a problem that the substrate is damaged by ultraviolet irradiation.

特表平3−505979号公報Japanese Patent Publication No. 3-505979 特開2010−59346号公報JP 2010-59346 A

越智 光一、表面解析・改質の化学(日本接着学会編)、日刊工業新聞社、2003年、97〜145頁Koichi Ochi, Surface Analysis / Modification Chemistry (Edited by the Adhesion Society of Japan), Nikkan Kogyo Shimbun, 2003, 97-145

本発明の目的は、効率的かつ簡便であり、基材へのダメージが少ない、疎水性(基材の)表面を親水化することが可能な光反応性ポリマーおよびこれを含む表面改質剤を提供することにある。   An object of the present invention is to provide a photoreactive polymer capable of hydrophilizing a hydrophobic (base material) surface, which is efficient and simple, has little damage to the base material, and a surface modifier containing the same. It is to provide.

本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、親水性を有する官能基と、光反応性が高い官能基とを側鎖に有する、光反応性ポリマーを見出し、また該光反応性ポリマーを用いることで、疎水性ポリマー基材の表面を親水化できることを見出し、本発明を完成するに至った。   The present inventor has intensively studied to solve the above problems. As a result, by finding a photoreactive polymer having a functional group having hydrophilicity and a functional group having high photoreactivity in the side chain, and using the photoreactive polymer, the surface of the hydrophobic polymer substrate is obtained. Has been found to be hydrophilic, and the present invention has been completed.

すなわち、本発明は、以下のとおりである。
[1]下記一般式(1)で示される構造を有し、数平均分子量が1,000〜1,000,000である光反応性ポリマー。
That is, the present invention is as follows.
[1] A photoreactive polymer having a structure represented by the following general formula (1) and having a number average molecular weight of 1,000 to 1,000,000.

Figure 2017186536
(式中、m及びnは互いに独立して1以上の整数を表し、Xは置換基を有しても良いフェニレン基、又は、エステル結合若しくはアミド結合で示される基を表し、Yはベタイン性基、アルコキシアルキル基、アルコキシポリオキシエチレン基、ヒドロキシポリオキシエチレン基から選ばれた親水性基を表し、Zは−O−又は−N(R)−で示される基を表し、Aは−O−又は−CH−で示される基を表し、R、R及びRは互いに独立して水素原子又はC〜Cの炭化水素基を表し、RはC〜Cの2価の炭化水素基を表し、Rはフッ素原子を表し、pは0〜4の整数を表す。)
[2]下記一般式(2)で示される構造を有する[1]に記載の光反応性ポリマー。
Figure 2017186536
(In the formula, m and n each independently represent an integer of 1 or more, X represents a phenylene group which may have a substituent, or a group represented by an ester bond or an amide bond, and Y represents a betaine property. Represents a hydrophilic group selected from a group, an alkoxyalkyl group, an alkoxypolyoxyethylene group, and a hydroxypolyoxyethylene group, Z represents a group represented by —O— or —N (R 3 ) —, and A represents — Represents a group represented by O— or —CH 2 —, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a C 1 to C 6 hydrocarbon group, and R 4 represents C 3 to C 6. And R 5 represents a fluorine atom, and p represents an integer of 0 to 4.)
[2] The photoreactive polymer according to [1], which has a structure represented by the following general formula (2).

Figure 2017186536
(式中、m、n、Z、A、R、R、R、R及びpは前記と同じ意味を表す。rの値は2〜90の整数を表す。)
[3]下記一般式(3)で示される構造を有する[1]に記載の光反応性ポリマー。
Figure 2017186536
(In the formula, m, n, Z, A, R 1 , R 2 , R 4 , R 5 and p represent the same meaning as described above. The value of r represents an integer of 2 to 90.)
[3] The photoreactive polymer according to [1], which has a structure represented by the following general formula (3).

Figure 2017186536
(式中、m及びnは互いに独立して1以上の整数を表し、rの値は2〜90の整数を表し、RはC〜Cの2価の炭化水素基を表す。)
[4]m/(m+n)の値が0.02〜0.7である[1]〜[3]のいずれか1項に記載の光反応性ポリマー。
Figure 2017186536
(In the formula, m and n each independently represent an integer of 1 or more, r represents an integer of 2 to 90, and R 4 represents a C 3 to C 6 divalent hydrocarbon group.)
[4] The photoreactive polymer according to any one of [1] to [3], wherein a value of m / (m + n) is 0.02 to 0.7.

以下、本発明を詳細に説明する。
Xで表される置換基を有しても良いフェニレン基の置換基として、特に限定されないが、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボキシ基、アミノ基、ヒドロキシ基等が例示される。Xとしては、エステル結合が好ましい。
Hereinafter, the present invention will be described in detail.
Although it does not specifically limit as a substituent of the phenylene group which may have a substituent represented by X, For example, an alkyl group (For example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, sec- Butyl group, tert-butyl group etc.), alkoxy group (eg methoxy group, ethoxy group, propoxy group, isopropoxy group etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), carboxy group , Amino group, hydroxy group and the like. X is preferably an ester bond.

Yで示される親水性基としては、ベタイン性基、アルコキシアルキル基、アルコキシポリオキシエチレン基、ヒドロキシポリオキシエチレン基を挙げることができる。なお、本発明において「ベタイン性」とは、電離状態で正電荷を持つ部分と負電荷を持つ部分を同一基内の隣り合わない位置に有し、正電荷を有する原子には解離し得る水素原子が結合しておらず、全体としては中性である(電荷を持たない)ことをいうものとする。ベタイン性基としては特に限定されないが、カルボベタイン性基、スルホベタイン性基、ホスホベタイン性基、アミドベタイン性基等が例示される。アルコキシアルキル基としては特に限定されないが、2−メトキシエチル基、3−メトキシプロピル基、4−メトキシブチル基が例示される。アルコキシポリオキシエチレン基としては特に限定されないが、例えば、メトキシポリオキシエチレン基、エトキシポリオキシエチレン基、ノルマルプロポキシポリオキシエチレン基、イソプロポキシポリオキシエチレン基が挙げられ、親水性の点でメトキシポリオキシエチレン基が好ましい。   Examples of the hydrophilic group represented by Y include a betaine group, an alkoxyalkyl group, an alkoxypolyoxyethylene group, and a hydroxypolyoxyethylene group. In the present invention, the term “betaine” means that a portion having a positive charge and a portion having a negative charge in an ionized state are not adjacent to each other in the same group and can be dissociated into atoms having a positive charge. It means that the atoms are not bonded and are neutral as a whole (has no charge). The betaine group is not particularly limited, and examples thereof include a carbobetaine group, a sulfobetaine group, a phosphobetaine group, and an amide betaine group. Although it does not specifically limit as an alkoxyalkyl group, 2-methoxyethyl group, 3-methoxypropyl group, 4-methoxybutyl group is illustrated. The alkoxy polyoxyethylene group is not particularly limited, and examples thereof include a methoxy polyoxyethylene group, an ethoxy polyoxyethylene group, a normal propoxy polyoxyethylene group, and an isopropoxy polyoxyethylene group. An oxyethylene group is preferred.

、R及びRで表されるC〜Cの炭化水素基としては特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、ネオペンチル基、イソペンチル基、1−メチルブチル基、1−エチルプロピル基、シクロブチルメチル基、シクロペンチル基、ヘキシル基、1−メチルペンチル基、4−メチルペンチル基、1−エチルブチル基、2−エチルブチル基、シクロヘキシル基、フェニル基が例示される。 R 1, R 2 and is not particularly restricted but includes hydrocarbon groups C 1 -C 6 represented by R 3, methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, neopentyl group, isopentyl group, 1-methylbutyl group, 1-ethylpropyl group, cyclobutylmethyl group, cyclopentyl group, hexyl group, 1-methylpentyl group, Examples include 4-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, cyclohexyl group, and phenyl group.

で表されるC〜Cの2価の炭化水素基としては特に限定されないが、−(CH−、−(CH−、−(CH−、−(CH−、フェニレン基等が例示される。Rで示される2価の炭化水素基の炭素数が2以下であると、光反応性ポリマーのガラス転移温度が上昇し側鎖の分子運動性が低下するためか、アジド基から生成するニトレンが基材との反応より光反応性ポリマー間の架橋反応に消費され、基材表面への光反応性ポリマー固定化率が低下してしまうため好ましくない。一方、Rで示される2価の炭化水素基の炭素数が6を越えると、光反応性ポリマー中のアジド基濃度が低下し、架橋点が減少して基材表面への光反応性ポリマー固定化率が低下してしまうため好ましくない。 The C 3 to C 6 divalent hydrocarbon group represented by R 4 is not particularly limited, but — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 5 —, — Examples include (CH 2 ) 6- , a phenylene group, and the like. If the carbon number of the divalent hydrocarbon group represented by R 4 is 2 or less, the glass transition temperature of the photoreactive polymer is increased and the molecular mobility of the side chain is decreased. Is consumed in the crosslinking reaction between the photoreactive polymers rather than the reaction with the base material, and the photoreactive polymer immobilization rate on the surface of the base material is decreased. On the other hand, when the carbon number of the divalent hydrocarbon group represented by R 4 exceeds 6, the concentration of the azide group in the photoreactive polymer is lowered, the number of crosslinking points is reduced, and the photoreactive polymer on the substrate surface is reduced. Since the immobilization rate is lowered, it is not preferable.

上記一般式(1)で示される構造を有する光反応性ポリマーにおいて、m及びnは互いに独立して1以上の整数を表す。ここで、m/(m+n)の値は、0.02〜0.7であることが好ましく、より好ましくは、0.05〜0.5である。この範囲であれば、基材への接着性とタンパク質の吸着抑制効果の両立という点で優れる。   In the photoreactive polymer having the structure represented by the general formula (1), m and n each independently represent an integer of 1 or more. Here, the value of m / (m + n) is preferably 0.02 to 0.7, and more preferably 0.05 to 0.5. If it is this range, it is excellent at the point of coexistence of the adhesiveness to a base material, and the protein adsorption | suction suppression effect.

一般式(1)中に含まれる、下記一般式(4)   The following general formula (4) included in the general formula (1)

Figure 2017186536
(式中、R、X、Y及びnは前記と同じ意味を表す。)で表される構造単位としては、特に限定されないが、ポリエチレングリコールメチルエーテルメタクリレート、ポリエチレングリコールメタクリレート、ポリエチレングリコールメチルエーテルアクリレート、ポリエチレングリコールアクリレート、2−ヒドロキシエチルメタクリレート、2−メタクリロイルオキシエチルホスホリルコリン、2−アクリロイルオキシエチルホスホリルコリン、[2−(メタクリロイルオキシ)エチル]ジメチル−(3−スルホプロピル)アンモニウムヒドロキシド、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン等のモノマーに由来する構造単位が例示され、タンパク質吸着抑制効果の点から、ポリエチレングリコールメチルエーテルメタクリレートや2−メタクリロイルオキシエチルホスホリルコリン、[2−(メタクリロイルオキシ)エチル]ジメチル−(3−スルホプロピル)アンモニウムヒドロキシド、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタインに由来する構造単位が好ましい。
Figure 2017186536
The structural unit represented by (wherein R 1 , X, Y and n represent the same meaning as described above) is not particularly limited, but polyethylene glycol methyl ether methacrylate, polyethylene glycol methacrylate, polyethylene glycol methyl ether acrylate , Polyethylene glycol acrylate, 2-hydroxyethyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine, [2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide, N-methacryloyloxy Examples of structural units derived from monomers such as ethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, etc. Polyethylene glycol methyl ether methacrylate, 2-methacryloyloxyethyl phosphorylcholine, [2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide, N-methacryloyloxyethyl-N, N-dimethylammonium-α A structural unit derived from -N-methylcarboxybetaine is preferred.

一般式(1)中に含まれる、下記一般式(5)   The following general formula (5) included in the general formula (1)

Figure 2017186536
(式中、R、R、R、A、Z、m及びpは前記と同じ意味を表す。)で表される構造単位としては、特に限定されないが、3−(4−アジドフェノキシ)プロピルメタクリレート、4−(4−アジドフェノキシ)ブチルメタクリレート、5−(4−アジドフェノキシ)ペンチルメタクリレート、6−(4−アジドフェノキシ)ヘキシルメタクリレート、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレート、4−(4−アジドフェニル)ブチルメタクリレート、4−(4−アジド−2,3,5,6−テトラフルオロフェニル)ブチルメタクリレート、3−(4−アジドフェノキシ)プロピルアクリレート、4−(4−アジドフェニル)ブチルアクリレート、3−(4−アジドフェノキシ)プロピルメタクリルアミド、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリルアミド、3−(4−アジドフェノキシ)プロピルアクリルアミド、4−(4−アジドフェニル)ブチルメタクリルアミド、4−(4−アジドフェニル)ブチルアクリルアミド等のモノマーに由来する構造単位が例示され、アジドの光分解速度の点から、3−(4−アジドフェノキシ)プロピルメタクリレートに由来する構造単位が好ましい。
Figure 2017186536
The structural unit represented by (wherein R 2 , R 4 , R 5 , A, Z, m and p have the same meaning as described above) is not particularly limited, but 3- (4-azidophenoxy) ) Propyl methacrylate, 4- (4-azidophenoxy) butyl methacrylate, 5- (4-azidophenoxy) pentyl methacrylate, 6- (4-azidophenoxy) hexyl methacrylate, 3- (4-azido-2,3,5, 6-tetrafluorophenoxy) propyl methacrylate, 4- (4-azidophenyl) butyl methacrylate, 4- (4-azido-2,3,5,6-tetrafluorophenyl) butyl methacrylate, 3- (4-azidophenoxy) Propyl acrylate, 4- (4-azidophenyl) butyl acrylate, 3- (4-azidophenoxy) pro Methacrylamide, 3- (4-azido-2,3,5,6-tetrafluorophenoxy) propyl methacrylamide, 3- (4-azidophenoxy) propyl acrylamide, 4- (4-azidophenyl) butyl methacrylamide, Examples include structural units derived from monomers such as 4- (4-azidophenyl) butylacrylamide, and structural units derived from 3- (4-azidophenoxy) propyl methacrylate are preferred from the viewpoint of the photodegradation rate of azide.

一般式(4)で表される構造単位と一般式(5)で表される構造単位との配列は特に限定されず、ランダム、ブロック、交互のいずれの順序であっても良い。   The arrangement of the structural unit represented by the general formula (4) and the structural unit represented by the general formula (5) is not particularly limited, and may be any order of random, block, and alternating.

一般式(1)で示される構造を有する光反応性ポリマーの数平均分子量は1,000〜1,000,000の範囲で選択できるが、コーティング時の粘度や溶解性、ポリマー層の機械的強度の観点から10,000〜500,000の範囲が好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される多分散度(Mw/Mn)は、特に限定されるものではないが、例えば疎水性基材への接着性や塗膜の安定性の観点から1〜5程度が好ましい。   The number average molecular weight of the photoreactive polymer having the structure represented by the general formula (1) can be selected in the range of 1,000 to 1,000,000, but the viscosity and solubility during coating, and the mechanical strength of the polymer layer In view of the above, the range of 10,000 to 500,000 is preferable. Further, the polydispersity (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is not particularly limited, but for example, adhesion to a hydrophobic substrate. From the viewpoint of the stability of the coating film, about 1 to 5 is preferable.

上記一般式(1)で示される構造を有する光反応性ポリマーは、本発明の効果を逸脱しない範囲において、他のモノマー由来の構造単位を有してもかまわない。他のモノマー由来の構造単位としては、特に限定されないが、ポリスチレン、ポリ(α−メチルスチレン)、ポリビニルベンジルクロライド、ポリビニルアニリン、ポリスチレンスルホン酸ナトリウム、ポリビニル安息香酸、ポリビニルリン酸、ポリビニルピリジン、ポリジメチルアミノメチルスチレン、ポリビニルベンジルトリメチルアンモニウムクロライド等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、ポリブタジエン、ポリブテン、ポリイソプレン等のポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン等のポリ(ハロゲン化オレフィン);ポリ酢酸ビニル、ポリプロピオン酸ビニル等のポリビニルエステルやそのケン化物であるポリビニルアルコール;ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸、ポリパーフルオロアルキルメタクリレート、ポリアクリル酸エチル、ポリアクリル酸、ポリジメチルアミノエチルアクリレート等の(メタ)アクリル系ポリマー;ポリアクリルアミド、ポリメタクリルアミド、ポリジメチルアミノプロピルアクリルアミド、等の(メタ)アクリルアミド系ポリマー等が例示される。   The photoreactive polymer having the structure represented by the general formula (1) may have a structural unit derived from another monomer without departing from the effect of the present invention. The structural units derived from other monomers are not particularly limited, but polystyrene, poly (α-methylstyrene), polyvinyl benzyl chloride, polyvinyl aniline, sodium polystyrene sulfonate, polyvinyl benzoic acid, polyvinyl phosphoric acid, polyvinyl pyridine, polydimethyl. Styrenic polymers such as aminomethylstyrene and polyvinylbenzyltrimethylammonium chloride; polyolefins such as polyethylene, polypropylene, polybutadiene, polybutene, and polyisoprene; poly (halogenated olefins) such as polyvinyl chloride, polyvinylidene chloride, and polytetrafluoroethylene; Polyvinyl esters such as polyvinyl acetate and polyvinyl propionate, and saponified polyvinyl alcohol, such as polyacrylonitrile (Meth) acrylic polymers such as polymethacrylic acid, polyperfluoroalkyl methacrylate, polyethyl acrylate, polyacrylic acid, polydimethylaminoethyl acrylate; polyacrylamide, polymethacrylamide, polydimethylaminopropyl acrylamide, And (meth) acrylamide polymers and the like.

本発明の光反応性ポリマーは、例えば、一般式(6)で示される構造を有する光反応性ポリマーであるものが挙げられる。   As for the photoreactive polymer of this invention, what is a photoreactive polymer which has a structure shown by General formula (6) is mentioned, for example.

Figure 2017186536
(式中、m、n、r及びRは前記と同じ意味を表す。)
rの値は、重合の進行しやすさから、2〜20の範囲の整数が好ましい。Rは、−(CH−または−(CH−であることが好ましく、更に好ましくは−(CH−である。
Figure 2017186536
(In the formula, m, n, r and R 4 have the same meaning as described above.)
The value of r is preferably an integer in the range of 2 to 20 from the ease of polymerization. R 4 is preferably — (CH 2 ) 3 — or — (CH 2 ) 4 —, more preferably — (CH 2 ) 3 —.

上記一般式(1)で示される構造を有する光反応性ポリマーは、モノマー化合物の調製及びそれらの重合を含め、基本的には当業者の技術水準に基づき、常法により製造することができる。例えば、使用するモノマーとしては特に限定されないが、ポリエチレングリコールメチルエーテルメタクリレート、ポリエチレングリコールメタクリレート、ポリエチレングリコールメチルエーテルアクリレート、ポリエチレングリコールアクリレート、2−ヒドロキシエチルメタクリレート、2−メタクリロイルオキシエチルホスホリルコリン、2−アクリロイルオキシエチルホスホリルコリン、[2−(メタクリロイルオキシ)エチル]ジメチル−(3−スルホプロピル)アンモニウムヒドロキシド、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン等の親水性基を有するモノマーと、3−(4−アジドフェノキシ)プロピルメタクリレート、4−(4−アジドフェノキシ)ブチルメタクリレート、5−(4−アジドフェノキシ)ペンチルメタクリレート、6−(4−アジドフェノキシ)ヘキシルメタクリレート、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレート、4−(4−アジドフェニル)ブチルメタクリレート、4−(4−アジド−2,3,5,6−テトラフルオロフェニル)ブチルメタクリレート、3−(4−アジドフェノキシ)プロピルアクリレート、4−(4−アジドフェニル)ブチルアクリレート、3−(4−アジドフェノキシ)プロピルメタクリルアミド、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリルアミド、3−(4−アジドフェノキシ)プロピルアクリルアミド、4−(4−アジドフェニル)ブチルメタクリルアミド、4−(4−アジドフェニル)ブチルアクリルアミド等の光反応性基を有するモノマーを用いる。   The photoreactive polymer having the structure represented by the general formula (1) can be produced by a conventional method basically based on the technical level of those skilled in the art, including preparation of monomer compounds and polymerization thereof. For example, the monomer used is not particularly limited, but polyethylene glycol methyl ether methacrylate, polyethylene glycol methacrylate, polyethylene glycol methyl ether acrylate, polyethylene glycol acrylate, 2-hydroxyethyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl. Has a hydrophilic group such as phosphorylcholine, [2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide, N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine Monomer, 3- (4-azidophenoxy) propyl methacrylate, 4- (4-azidophenoxy) butyl Tacrylate, 5- (4-azidophenoxy) pentyl methacrylate, 6- (4-azidophenoxy) hexyl methacrylate, 3- (4-azido-2,3,5,6-tetrafluorophenoxy) propyl methacrylate, 4- (4 -Azidophenyl) butyl methacrylate, 4- (4-azido-2,3,5,6-tetrafluorophenyl) butyl methacrylate, 3- (4-azidophenoxy) propyl acrylate, 4- (4-azidophenyl) butyl acrylate , 3- (4-azidophenoxy) propyl methacrylamide, 3- (4-azido-2,3,5,6-tetrafluorophenoxy) propyl methacrylamide, 3- (4-azidophenoxy) propyl acrylamide, 4- ( 4-Azidophenyl) butylmethacrylamide Monomer having a photoreactive group such as 4- (4-azidophenyl) butylacrylamide is used.

重合については特に制約はなく、例えば、ラジカル重合、イオン重合、配位重合例示され、操作の簡便性の点から、ラジカル重合、特にフリーラジカル重合または、リビングラジカル重合が好ましく用いられる。重合開始剤としては、特に限定されないが、例えば、2,2’−アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル、ジイソプロピルペルオキシジカーボネート、tert−ブチルペルオキシ−2−エチルヘキサノエート、tert−ブチルペルオキシピバレート、tert−ブチルペルオキシジイソブチレート、過硫酸塩または過硫酸−亜硫酸水素塩等の公知のラジカル開始剤を用いることができる。重合溶媒としては、例えば、水、THF、ジオキサン、アセトン、2−ブタノン、酢酸エチル、酢酸イソプロピル、ベンゼン、トルエン、DMF、DMSO、メタノール、エタノール、イソプロパノールやその混合物等の公知のラジカル重合溶媒を使用すればよく、例えば、モノマー濃度が0.01〜5mol/L、重合開始剤濃度が1〜100mmol/Lになるように希釈し、0〜80℃で1〜72時間反応を行うことにより製造できる。また、重合形態としては特に制約はなく、例えば、バルク重合、溶液重合、懸濁重合、乳化重合、分散重合、沈殿重合が例示され、操作の簡便性から溶液重合が好ましく用いられる。   The polymerization is not particularly limited, and examples thereof include radical polymerization, ionic polymerization, and coordination polymerization. From the viewpoint of ease of operation, radical polymerization, particularly free radical polymerization or living radical polymerization is preferably used. The polymerization initiator is not particularly limited. For example, 2,2′-azobisisobutyronitrile (AIBN), benzoyl peroxide, diisopropyl peroxydicarbonate, tert-butylperoxy-2-ethylhexanoate, tert Known radical initiators such as -butyl peroxypivalate, tert-butyl peroxydiisobutyrate, persulfate or persulfate-bisulfite can be used. As a polymerization solvent, for example, a known radical polymerization solvent such as water, THF, dioxane, acetone, 2-butanone, ethyl acetate, isopropyl acetate, benzene, toluene, DMF, DMSO, methanol, ethanol, isopropanol or a mixture thereof is used. For example, it can be manufactured by diluting the monomer concentration to 0.01 to 5 mol / L and the polymerization initiator concentration to 1 to 100 mmol / L and reacting at 0 to 80 ° C. for 1 to 72 hours. . Moreover, there is no restriction | limiting in particular as a superposition | polymerization form, For example, bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization is illustrated, and solution polymerization is preferably used from the simplicity of operation.

本発明の光反応性ポリマーは、表面親水化およびタンパク質吸着抑制等の各種表面改質に使用することができる。本発明の光反応性ポリマーの使用方法の詳細については後述する。   The photoreactive polymer of the present invention can be used for various surface modifications such as surface hydrophilization and protein adsorption suppression. Details of the method of using the photoreactive polymer of the present invention will be described later.

本発明によれば、効率的且つ簡便であり、耐久性に優れた、疎水性基材表面の親水化およびタンパク質吸着抑制できる光反応性ポリマーを提供することができる。   According to the present invention, it is possible to provide a photoreactive polymer that is efficient and simple and excellent in durability and capable of suppressing hydrophilicity and protein adsorption on the surface of a hydrophobic substrate.

本発明の光反応性ポリマーは、各種疎水性ポリマー基材の表面を効率的且つ簡便に親水化することができる。   The photoreactive polymer of the present invention can hydrophilize the surface of various hydrophobic polymer substrates efficiently and simply.

以下に、本発明を更に詳細に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

以下の実施例において、各物性の測定及び評価は次の方法で行った。
(1)光反応性ポリマー組成比
核磁気共鳴測定装置(日本電子製、JNM−ECZ400S)を用いたプロトン核磁気共鳴分光(H−NMR)スペクトル分析により求めた。重溶媒としてd−クロロホルムを用いて測定した。
In the following examples, each physical property was measured and evaluated by the following methods.
(1) Obtained by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) spectrum analysis using a photoreactive polymer composition ratio nuclear magnetic resonance measuring apparatus (manufactured by JEOL, JNM-ECZ400S). It measured using d-chloroform as a heavy solvent.

(2)光反応性ポリマーの物性
光反応性ポリマーの重量平均分子量(Mw)、数平均分子量(Mn)および重量平均分子量(Mw)と多分散度(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては東ソー製 HLC−8320GPCを用い、カラムとしては、東ソー製 TSKgel GMHHR−Lを用い、カラム温度を40℃に設定し、溶離液としてTHFを用いて測定した。標準サンプルとして東ソー製単分散ポリスチレンを用いて、ポリスチレン換算にて分子量換算を行った。
(2) Physical properties of the photoreactive polymer The weight average molecular weight (Mw), number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity (Mw / Mn) of the photoreactive polymer are determined by gel permeation. Measured by chromatography (GPC). Tosoh HLC-8320GPC was used as the GPC device, Tosoh TSKgel GMH HR- L was used as the column, the column temperature was set to 40 ° C., and THF was used as the eluent. Using Tosoh monodisperse polystyrene as a standard sample, the molecular weight was converted in terms of polystyrene.

(3)光反応性ポリマーの固定化量分析
フーリエ変換赤外分光光度計(FT−IR)(Perkin Elmer社製、SPECTRUM ONE)を用いて測定した。光反応性ポリマー由来のエステルカルボニルピーク(1730cm−1前後)強度÷PVDF由来の870cm−1前後のピーク強度で算出した相対強度を求めた。
(3) Immobilization amount analysis of photoreactive polymer It measured using the Fourier-transform infrared spectrophotometer (FT-IR) (The product made by Perkin Elmer, SPECTRUM ONE). The relative intensity calculated from the photocarbonyl - derived ester carbonyl peak (around 1730 cm −1 ) intensity ÷ PVDF-derived peak intensity around 870 cm −1 was determined.

(4)親水性
光反応性ポリマーを固定化することによる、基材の親水性に及ぼす影響を、水中接触角測定により評価した。この接触角測定は、水中でフィルム表面に気泡を接触させるcaptive bubble法を用いて測定した接触角θから求めた対水接触角(180−θ)にて評価した。実際の測定は、測定サンプルを一晩純水中に浸漬したのち、接触角計を用い、室温、常圧のもとで気泡を水中で表面に接触させ、接触角を測定した。
(4) The effect of immobilizing the hydrophilic photoreactive polymer on the hydrophilicity of the substrate was evaluated by measuring the underwater contact angle. This contact angle measurement was evaluated by a water contact angle (180-θ) obtained from a contact angle θ measured using a captive bubble method in which bubbles are brought into contact with the film surface in water. In actual measurement, after the measurement sample was immersed in pure water overnight, a contact angle meter was used to bring bubbles into contact with the surface in water at room temperature and normal pressure, and the contact angle was measured.

参考例1 [3−(4−アジドフェノキシ)プロピルメタクリレートの合成]
500mLナス型フラスコに4−ブロモフェノール(51.9g,0.30mol)と炭酸カリウム(97.6g,0.75mol)を入れアルゴン置換した。脱水DMF(300mL)を加え、80℃で30分間加熱撹拌した。そこに3−ブロモ−1−プロパノール(50.0g,0.36mol)を加え80℃で20時間加熱撹拌した。TLC(ヘキサン:酢酸エチル=2:1)で4−ブロモフェノールの消費を確認後、室温まで冷却した。水(400mL)を加え、有機相を酢酸エチルで抽出した(300mLx3)。有機相を硫酸マグネシウムで乾燥後、溶媒を留去することで3−(4−ブロモフェニル)−1−プロパノールを茶色オイルとして得た(66.4g,0.29mol,96%)。
H NMR(400MHz, CDCl,r.t.): δ 1.72(s,1H),2.00−2.07(m,2H), 3.83−3.89(m,2H),4.09(t,2H,J=6.0Hz),6.75−6.81(m,2H),7.35−7.39(m,2H)。
Reference Example 1 [Synthesis of 3- (4-azidophenoxy) propyl methacrylate]
4-Bromophenol (51.9 g, 0.30 mol) and potassium carbonate (97.6 g, 0.75 mol) were placed in a 500 mL eggplant-shaped flask and purged with argon. Dehydrated DMF (300 mL) was added, and the mixture was stirred with heating at 80 ° C. for 30 min. 3-Bromo-1-propanol (50.0 g, 0.36 mol) was added thereto, and the mixture was stirred with heating at 80 ° C. for 20 hours. After confirming the consumption of 4-bromophenol by TLC (hexane: ethyl acetate = 2: 1), the mixture was cooled to room temperature. Water (400 mL) was added and the organic phase was extracted with ethyl acetate (300 mL × 3). The organic phase was dried over magnesium sulfate, and then the solvent was distilled off to obtain 3- (4-bromophenyl) -1-propanol as a brown oil (66.4 g, 0.29 mol, 96%). 1
1 H NMR (400 MHz, CDCl 3 , rt): δ 1.72 (s, 1H), 2.00-2.07 (m, 2H), 3.83-3.89 (m, 2H), 4.09 (t, 2H, J = 6.0 Hz), 6.75-6.81 (m, 2H), 7.35-7.39 (m, 2H).

500mLナス型フラスコに3−(4−ブロモフェニル)−1−プロパノール(68.6g,0.30mol)、ヨウ化銅(5.64g,29.6mmol)、L−アスコルビン酸ナトリウム(2.95g 14.9mmol)、N,N’−ジメチルエチレンジアミン(4.80mL,44.7mmol)を加え、エタノール(210mL)、水(90mL)に溶解させた。反応容器をAr置換後、アジ化ナトリウム(34.6g,0.54mol)を加え5時間加熱還流した。TLC(ヘキサン:酢酸エチル=1:1)で3−(4−ブロモフェニル)−1−プロパノールの消費を確認後、室温まで冷却した。飽和食塩水(200mL)加えた後にエバポレーターで有機溶媒を留去した。有機相を酢酸エチルで抽出した(200mLx3)。有機相を硫酸マグネシウムで乾燥後、溶媒を留去した。得られた黒色オイルをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製することで3−(4−アジドフェニル)−1−プロパノールを茶色オイルとして得た(42.3g,0.22mol,73%)。H NMR(400MHz,CDCl,r.t.):δ 1.67−1.72(br,1H),2.05(quint like tt,2H,J=6.0,6.0Hz),3.83−−3.91(m,2H),4.11(t,2H,J=6.0Hz),6.87−6.92(m,2H),6.93−6.98(m,2H)。
500mLナス型フラスコに3−(4−アジドフェニル)−1−プロパノール(42.3g,0.22mol)、メタクリル酸(22.7g,0.26mol)、4−ジメチルアミノピリジン(26.8g,0.22mol)を加え、アルゴン置換後に塩化メチレン(400mL)に溶解させた。反応容器を氷浴中0℃で30分間撹拌した後に、DCC(56.2g,0.27mol)を加え、そのまま0℃で30分間撹拌した。氷浴を取り除き、室温で21時間撹拌した。TLC(ヘキサン:酢酸エチル=3:1)で3−(4−アジドフェニル)−1−プロパノールの消費を確認後、セライトろ過によって、析出したジシクロヘキシル尿素を取り除き、固体を酢酸エチル(500mL)で洗浄した。ろ液を濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製することで3−(4−アジドフェノキシ)プロピルメタクリレートを茶色オイルとして得た(29.9g,0.11mol,52%)。H NMR(400MHz,CDCl,r.t.): δ 1.94(s,3H),2.16(quint like tt,2H,J=6.0,6.0 Hz),4.04(t,2H,J=6.0Hz),4.34(t,2H, J=6.0 Hz),5.57(t,1H,J=1.6Hz),6.09−6.12(br,1H),6.85−6.91(m,2H),6.9
2−6.97(m,2H)。
In a 500 mL eggplant-shaped flask, 3- (4-bromophenyl) -1-propanol (68.6 g, 0.30 mol), copper iodide (5.64 g, 29.6 mmol), sodium L-ascorbate (2.95 g 14) 0.9 mmol), N, N′-dimethylethylenediamine (4.80 mL, 44.7 mmol) was added and dissolved in ethanol (210 mL) and water (90 mL). After replacing the reaction vessel with Ar, sodium azide (34.6 g, 0.54 mol) was added and the mixture was heated to reflux for 5 hours. After confirming the consumption of 3- (4-bromophenyl) -1-propanol by TLC (hexane: ethyl acetate = 1: 1), the mixture was cooled to room temperature. After adding saturated brine (200 mL), the organic solvent was distilled off with an evaporator. The organic phase was extracted with ethyl acetate (200 mL × 3). The organic phase was dried over magnesium sulfate and the solvent was distilled off. The resulting black oil was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to give 3- (4-azidophenyl) -1-propanol as a brown oil (42.3 g, 0. 22 mol, 73%). 1 H NMR (400 MHz, CDCl 3 , rt): δ 1.67-1.72 (br, 1H), 2.05 (quant like tt, 2H, J = 6.0, 6.0 Hz), 3.83--3.91 (m, 2H), 4.11 (t, 2H, J = 6.0 Hz), 6.87-6.92 (m, 2H), 6.93-6.98 ( m, 2H).
In a 500 mL eggplant-shaped flask, 3- (4-azidophenyl) -1-propanol (42.3 g, 0.22 mol), methacrylic acid (22.7 g, 0.26 mol), 4-dimethylaminopyridine (26.8 g, 0) .22 mol) was added, and the mixture was dissolved in methylene chloride (400 mL) after argon substitution. The reaction vessel was stirred in an ice bath at 0 ° C. for 30 minutes, DCC (56.2 g, 0.27 mol) was added, and the mixture was stirred as it was at 0 ° C. for 30 minutes. The ice bath was removed and stirred at room temperature for 21 hours. After confirming the consumption of 3- (4-azidophenyl) -1-propanol by TLC (hexane: ethyl acetate = 3: 1), the precipitated dicyclohexylurea was removed by Celite filtration, and the solid was washed with ethyl acetate (500 mL). did. The filtrate was concentrated, and the resulting crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to give 3- (4-azidophenoxy) propyl methacrylate as a brown oil (29 .9 g, 0.11 mol, 52%). 1 H NMR (400 MHz, CDCl 3 , rt): δ 1.94 (s, 3H), 2.16 (quant like tt, 2H, J = 6.0, 6.0 Hz), 4.04 (T, 2H, J = 6.0 Hz), 4.34 (t, 2H, J = 6.0 Hz), 5.57 (t, 1H, J = 1.6 Hz), 6.09-6.12 (Br, 1H), 6.85-6.91 (m, 2H), 6.9
2-6.97 (m, 2H).

参考例2 [3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレートの合成]
4−ブロモフェノールに代えてペンタフルオロフェノール(55.2g、0.3mol)を用いたことを除いて、参考例1と同様に反応を行い、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレートを黄色オイルとして得た(30.1g,0.09mol,Total収率30%)。H−NMR(400MHz,CDCl,r.t.): δ 1.94(s,3H),2.16(quint like tt,2H,J=6.0,6.0 Hz),4.04(t,2H,J=6.0Hz),4.34(t,2H, J=6.0 Hz),5.57(t,1H,J=1.6Hz),6.09−6.12(br,1H)。
Reference Example 2 [Synthesis of 3- (4-azido-2,3,5,6-tetrafluorophenoxy) propyl methacrylate]
The reaction was conducted in the same manner as in Reference Example 1 except that pentafluorophenol (55.2 g, 0.3 mol) was used instead of 4-bromophenol, and 3- (4-azido-2,3,5, 6-Tetrafluorophenoxy) propyl methacrylate was obtained as a yellow oil (30.1 g, 0.09 mol, Total yield 30%). 1 H-NMR (400 MHz, CDCl 3 , rt.): Δ 1.94 (s, 3H), 2.16 (quant like tt, 2H, J = 6.0, 6.0 Hz), 4. 04 (t, 2H, J = 6.0 Hz), 4.34 (t, 2H, J = 6.0 Hz), 5.57 (t, 1H, J = 1.6 Hz), 6.09-6. 12 (br, 1H).

参考例3 [4−(4−アジドフェニル)ブチルメタクリレートの合成]
4−ブロモベンジルマグネシウムブロミドの0.25Mジエチルエーテル溶液(300ml、0.075mol)を500mlナス型フラスコに窒素下で注入し、−30℃に冷却後オキセタン(13.1g、0.225mol)とヨウ化銅(I)(1.5g、0.008mol)を加えた。その後徐々に昇温し、室温にて20時間反応させた。反応終了後水を加え、有機層を酢酸エチルで抽出し、抽出した有機層を硫酸マグネシウムで乾燥させた後、有機層を留去して茶色オイル状の目的物を得た(8.9g、0.039mol、52%)。H−NMR(400MHz, CDCl,r.t.): δ 1.56−1.68(m,5H),2.62(m,2H), 3.62(m,2H),6.75−6.81(m,2H),7.35−7.39(m,2H)。
Reference Example 3 [Synthesis of 4- (4-azidophenyl) butyl methacrylate]
A 0.25M diethyl ether solution (300 ml, 0.075 mol) of 4-bromobenzylmagnesium bromide was poured into a 500 ml eggplant-shaped flask under nitrogen, cooled to −30 ° C., and then oxetane (13.1 g, 0.225 mol) and iodine. Copper (I) chloride (1.5 g, 0.008 mol) was added. Thereafter, the temperature was gradually raised and the reaction was allowed to proceed at room temperature for 20 hours. After completion of the reaction, water was added, the organic layer was extracted with ethyl acetate, and the extracted organic layer was dried over magnesium sulfate, and then the organic layer was distilled off to obtain a brown oily target product (8.9 g, 0.039 mol, 52%). 1 H-NMR (400 MHz, CDCl 3 , rt): δ 1.56-1.68 (m, 5H), 2.62 (m, 2H), 3.62 (m, 2H), 6. 75-6.81 (m, 2H), 7.35-7.39 (m, 2H).

3−(4−ブロモフェニル)−1−プロパノールに代えて4−(4−ブロモフェニル)−1−ブタノールを用いたことを除いて、参考例1と同様に反応を行い、茶色オイル状の目的物を得た(5.5g、0.029mol、75%)。H−NMR(400MHz,CDCl,r.t.):δ 1.56−1.68(m,5H),2.62(m,2H),3.62(m,2H),6.87−6.92(m,2H),6.93−6.98(m,2H)。 The reaction was carried out in the same manner as in Reference Example 1 except that 4- (4-bromophenyl) -1-butanol was used instead of 3- (4-bromophenyl) -1-propanol. Product was obtained (5.5 g, 0.029 mol, 75%). 1 H-NMR (400 MHz, CDCl 3 , rt): δ 1.56-1.68 (m, 5H), 2.62 (m, 2H), 3.62 (m, 2H), 6. 87-6.92 (m, 2H), 6.93-6.98 (m, 2H).

3−(4−アジドフェノキシ)−1−プロパノールに代えて4−(4−アジドフェニル)−1−ブタノールを用いたことを除いて、参考例1と同様に反応を行い、茶色オイル状の目的物を得た(4.1g、0.016mol、55%)。H−NMR(400MHz,CDCl,r.t.): δ1.2−1.85(m,4H), 1.94(s,3H),2.62(m,2H),4.14(m,2H),5.57(t,1H,J=1.6Hz),6.09−6.12(br,1H),6.85−6.91(m,2H),6.92−6.97(m,2H)。 The reaction was carried out in the same manner as in Reference Example 1 except that 4- (4-azidophenyl) -1-butanol was used instead of 3- (4-azidophenoxy) -1-propanol. Product was obtained (4.1 g, 0.016 mol, 55%). 1 H-NMR (400 MHz, CDCl 3 , rt): δ 1.2-1.85 (m, 4H), 1.94 (s, 3H), 2.62 (m, 2H), 4.14 (M, 2H), 5.57 (t, 1H, J = 1.6 Hz), 6.09-6.12 (br, 1H), 6.85-6.91 (m, 2H), 6.92. -6.97 (m, 2H).

実施例1 [光反応性ポリマーの合成]
ガラス製のシュレンクフラスコにポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)(5.4g)および参考例1で製造した3−(4−アジドフェノキシ)プロピルメタクリレート(0.52g)、重合開始剤として、2,2’−アゾビスイソブチロニトリル(AIBN)(15mg)を秤量した。THFを用いてモノマー濃度0.8mol/L、開始剤濃度3.75mmol/Lとなるように希釈した。十分に溶液中の酸素を窒素で除去後、反応はウォーターバスを用いて60度で8時間行った。反応終了後、ヘキサンを用いて再沈殿法により未反応のモノマーを除去した。減圧乾燥により、褐色の粘性体の光反応性ポリマーを得た。得られたポリマーは、Mn=72,000、Mw/Mn=3.5であった。組成比は、H NMRにて、PEGMA由来の−OCHピーク(3.36−3.40,br,3H)と、3−(4−アジドフェノキシ)プロピルメタクリレート由来の芳香環ピーク(6.86−6.71,br,4H)の積分比によって決定し、下記構造式(7)において、m/(m+n)の値が0.09であった。
Example 1 [Synthesis of Photoreactive Polymer]
Polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) (5.4 g) and 3- (4-azidophenoxy) propyl methacrylate (0.52 g) produced in Reference Example 1 in a glass Schlenk flask, polymerization started As an agent, 2,2′-azobisisobutyronitrile (AIBN) (15 mg) was weighed. It was diluted with THF to a monomer concentration of 0.8 mol / L and an initiator concentration of 3.75 mmol / L. After sufficiently removing oxygen in the solution with nitrogen, the reaction was carried out at 60 ° C. for 8 hours using a water bath. After completion of the reaction, unreacted monomers were removed by reprecipitation using hexane. By drying under reduced pressure, a brown viscous photoreactive polymer was obtained. The obtained polymer was Mn = 72,000 and Mw / Mn = 3.5. The composition ratio was determined by 1 H NMR as follows: —OCH 3 peak derived from PEGMA (3.36-3.40, br, 3H) and aromatic ring peak derived from 3- (4-azidophenoxy) propyl methacrylate (6. 86-6.71, br, 4H). In the following structural formula (7), the value of m / (m + n) was 0.09.

光反応性ポリマーの構造式(7)   Structural formula of photoreactive polymer (7)

Figure 2017186536
(rは、前記と同じ意味を表す。)
実施例2 [疎水性ポリマーフィルム表面への固定化]
4cm×4cmに切り出したポリフッ化ビニリデン(PVDF)フィルム(GLサイエンス製、スマートバッグ2F)に、実施例1で合成した光反応性ポリマーの2質量%含有溶液(溶媒:THF)を調製することにより作製した表面改質剤を、2000rpmで一分間スピンコートした後、高圧水銀灯(東芝ライテック製H400P)により、2秒間UV照射(21mJ/cm)を行った。その後、THFを用いて掛け洗いし、表面が改質されたフィルム基材を得た。掛け洗い前後でのフィルム表面におけるエステルカルボニルピークの相対強度を比較し、光反応性ポリマーの固定化率を算出したところ、95%であった。
Figure 2017186536
(R represents the same meaning as described above.)
Example 2 [Immobilization on the surface of a hydrophobic polymer film]
By preparing a solution containing 2% by mass of the photoreactive polymer synthesized in Example 1 (solvent: THF) on a polyvinylidene fluoride (PVDF) film cut out to 4 cm × 4 cm (manufactured by GL Science, Smart Bag 2F). The prepared surface modifier was spin-coated at 2000 rpm for 1 minute, and then subjected to UV irradiation (21 mJ / cm 2 ) for 2 seconds using a high-pressure mercury lamp (H400P manufactured by Toshiba Lighting & Technology Corp.). Thereafter, it was washed with THF to obtain a film base having a modified surface. The relative intensity of the ester carbonyl peak on the film surface before and after washing was compared, and the immobilization rate of the photoreactive polymer was calculated to be 95%.

実施例3 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例2で調製した光反応性ポリマーが固定化されたフィルム基材の接触角は約43°であり、親水性が高かった。これは、光反応性ポリマーに含まれるPEGMAユニットの親水性に由来するものであると考えられた。
Example 3 [Evaluation of surface hydrophilicity (wetability) by measuring contact angle in water]
The contact angle of the film base material on which the photoreactive polymer prepared in Example 2 was immobilized was about 43 °, and the hydrophilicity was high. This was considered to originate from the hydrophilicity of the PEGMA unit contained in the photoreactive polymer.

実施例4 [PVDF製多孔質膜への固定化]
PVDF製多孔質膜(マイクロダイン・ナディア社製MV020)を実施例1で合成した光反応性ポリマーの2質量%含有溶液(溶媒:メタノール)に5分間浸漬させた後、室温下、窒素雰囲気下で2時間放置し乾燥させた。次いで、高圧水銀灯(東芝ライテック製H400P)により、2秒間UV照射(21mJ/cm)を行った。その後、室温下、超純水、メタノール中で各2秒間超音波を照射することにより洗浄した。これにより、表面が改質されたPVDF製多孔質膜を得た。
Example 4 [Immobilization to PVDF porous membrane]
A PVDF porous membrane (MV020 manufactured by Microdyne Nadia) was immersed in a solution containing 2% by mass of the photoreactive polymer synthesized in Example 1 (solvent: methanol) for 5 minutes, and then at room temperature in a nitrogen atmosphere. And left to dry for 2 hours. Subsequently, UV irradiation (21 mJ / cm 2 ) was performed for 2 seconds with a high-pressure mercury lamp (H400P manufactured by Toshiba Lighting & Technology). Then, it wash | cleaned by irradiating an ultrasonic wave for 2 second each in ultrapure water and methanol at room temperature. Thus, a PVDF porous film having a modified surface was obtained.

実施例5 [タンパク質吸着量抑制効果の確認]
インスリン(和光純薬製)をサンプルタンパク質として使用した。実施例4で調製した表面改質した多孔質膜を1cm×1cmに切り出した。インスリン溶液(0.1mg/mL、PBSで希釈、5mL)中、室温下で2時間振とう(80rpm)させた後、PBSで洗浄した。φ12×105の試験管に試料を入れ、Thermo scientific製のBCA試薬を1mL、ドデシル硫酸ナトリウムの4重量%PBS溶液を1mL加え、1時間60℃で加熱した。その後、分光光度計(株式会社日立ハイテクサイエンス製、UH5300)を用いて波長562nmにおける抽出液の吸光度を測定することにより、膜へ吸着したインスリンの量を定量したところ、0.6μg/cmだった。表面改質した多孔質膜表面では、PEGMAユニットのタンパク質吸着抑制能が効果的に機能していることが示された。
Example 5 [Confirmation of protein adsorption amount suppression effect]
Insulin (manufactured by Wako Pure Chemical Industries) was used as a sample protein. The surface-modified porous membrane prepared in Example 4 was cut into 1 cm × 1 cm. In an insulin solution (0.1 mg / mL, diluted with PBS, 5 mL), the mixture was shaken (80 rpm) at room temperature for 2 hours, and then washed with PBS. A sample was placed in a φ12 × 105 test tube, 1 mL of Thermo Scientific BCA reagent and 1 mL of 4 wt% PBS solution of sodium dodecyl sulfate were added, and heated at 60 ° C. for 1 hour. Thereafter, the amount of insulin adsorbed on the membrane was quantified by measuring the absorbance of the extract at a wavelength of 562 nm using a spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd., UH5300), and was 0.6 μg / cm 2. It was. It was shown that the protein adsorption inhibiting ability of the PEGMA unit is functioning effectively on the surface of the surface-modified porous membrane.

実施例6 [ポリエチレンへの固定化]
ポリフッ化ビニリデン(PVDF)フィルムをポリエチレン(東ソー製、ペトロセンをフィルム状に成形したもの)に変えた以外は、実施例2と同様にしてフィルムの表面改質を行ったところ、光反応性ポリマーの固定化率は92%だった。
Example 6 [Immobilization to polyethylene]
The surface of the film was modified in the same manner as in Example 2 except that the polyvinylidene fluoride (PVDF) film was changed to polyethylene (manufactured by Tosoh Corp., formed from petrocene into a film shape). The immobilization rate was 92%.

実施例7 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例6で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は46°であった。
Example 7 [Evaluation of hydrophilicity (wetability) of surface by measuring contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 6 was used, the contact angle with water was 46 °.

実施例8 [多孔質膜への固定化]
PVDF製多孔質膜をポリエチレン製多孔質膜に変えた以外は実施例4と同様の操作により、表面が改質されたポリエチレン製多孔質膜を得た。
Example 8 [Immobilization to a porous membrane]
A polyethylene porous membrane whose surface was modified was obtained in the same manner as in Example 4 except that the PVDF porous membrane was changed to a polyethylene porous membrane.

実施例9 [タンパク質吸着量抑制効果の確認]
実施例8で表面を改質したポリエチレン製多孔質膜を用いた以外は実施例6と同様の操作によりインスリン吸着量を測定したところ、0.8μg/cmだった。
Example 9 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 6 except that the polyethylene porous membrane whose surface was modified in Example 8 was used, and it was 0.8 μg / cm 2 .

実施例10 [疎水性ポリマー基材表面への固定化]
ポリフッ化ビニリデン(PVDF)フィルムをポリアミドフィルム(東レ製、ミクトロン)に変えた以外は、実施例2と同様にしてフィルムの表面改質を行ったところ、光反応性ポリマーの固定化率は90%だった。
Example 10 [Immobilization on the surface of a hydrophobic polymer substrate]
The surface of the film was modified in the same manner as in Example 2 except that the polyvinylidene fluoride (PVDF) film was changed to a polyamide film (Mittron, manufactured by Toray Industries, Inc.). The immobilization rate of the photoreactive polymer was 90%. was.

実施例11 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例10で表面を改質したフィルムを用いた以外は実施例4と同様にして接触角の測定を行ったところ、対水接触角は54°であった。
Example 11 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 4 except that the film whose surface was modified in Example 10 was used, the contact angle with water was 54 °.

実施例12 [多孔質膜への固定化]
PVDF製多孔質膜をポリアミド製多孔質膜に変えた以外は実施例4と同様の操作により、表面が改質されたポリアミド製多孔質膜を得た。
Example 12 [Immobilization to a porous membrane]
A polyamide porous membrane having a modified surface was obtained in the same manner as in Example 4 except that the PVDF porous membrane was changed to a polyamide porous membrane.

実施例13 [タンパク質吸着量抑制効果の確認]
実施例12で調製したポリアミド製多孔質膜を用いた以外は実施例6と同様の操作によりインスリン吸着量を測定したところ、1.0μg/cmだった。
Example 13 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 6 except that the polyamide porous membrane prepared in Example 12 was used, and it was 1.0 μg / cm 2 .

実施例14 [疎水性ポリマー基材表面への固定化]
UV照射時間を2秒(21mJ/cm)から5秒(52.5mJ/cm)に変えた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は100%だった。
Example 14 [Immobilization on the surface of a hydrophobic polymer substrate]
The film was surface-modified in the same manner as in Example 2 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 5 seconds (52.5 mJ / cm 2 ). The immobilization rate of the polymer was 100%.

実施例15 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例14で表面を改質したフィルムを用いた以外は実施例4と同様にして接触角の測定を行ったところ、対水接触角は43°であった。
Example 15 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 4 except that the film whose surface was modified in Example 14 was used, the contact angle with water was 43 °.

実施例16 [多孔質膜への固定化]
UV照射時間を2秒(21mJ/cm)から5秒(52.5mJ/cm)に変えた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 16 [Immobilization to porous membrane]
A PVDF porous membrane whose surface was modified by the same operation as in Example 4 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 5 seconds (52.5 mJ / cm 2 ). Obtained.

実施例17 [タンパク質吸着量抑制効果の確認]
実施例16で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 17 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 16 was used, and it was 0.4 μg / cm 2 .

実施例18 [疎水性ポリマー基材表面への固定化]
UV照射時間を2秒(21mJ/cm)から30秒(315mJ/cm)に変えた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は100%だった。
Example 18 [Immobilization on the surface of a hydrophobic polymer substrate]
The film was surface modified in the same manner as in Example 2 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 30 seconds (315 mJ / cm 2 ). The immobilization rate was 100%.

実施例19 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例18で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は42°であった。
Example 19 [Evaluation of hydrophilicity (wetting) of a surface by measuring a contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 18 was used, the contact angle with water was 42 °.

実施例20 [多孔質膜への固定化]
UV照射時間2秒(21mJ/cm)から30秒(315mJ/cm)に変えた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 20 [Immobilization to porous membrane]
A PVDF porous film having a modified surface was obtained by the same operation as in Example 4 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 30 seconds (315 mJ / cm 2 ).

実施例21 [タンパク質吸着量抑制効果の確認]
実施例20で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 21 [Confirmation of protein adsorption suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 20 was used, and it was 0.4 μg / cm 2 .

実施例22 [光反応性ポリマーの合成]
用いたAIBNの重量を15mgから30mgに変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=33,000、Mw/Mn=2.1であり、m/(m+n)の値が0.09であった。
Example 22 Synthesis of photoreactive polymer
A photoreactive polymer was synthesized in the same manner as in Example 1 except that the weight of AIBN used was changed from 15 mg to 30 mg. The obtained polymer was Mn = 33,000, Mw / Mn = 2.1, and the value of m / (m + n) was 0.09.

実施例23 [疎水性ポリマー基材表面への固定化]
実施例23で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は92%だった。
Example 23 [Immobilization to hydrophobic polymer substrate surface]
Except for using the photoreactive polymer synthesized in Example 23, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 92%.

実施例24 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例23で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は40°であった。
Example 24 [Evaluation of hydrophilicity (wetting) of a surface by measuring a contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 23 was used, the contact angle with water was 40 °.

実施例25 [多孔質膜への固定化]
実施例22で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 25 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 22 was used.

実施例26 [タンパク質吸着量抑制効果の確認]
実施例25で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.8μg/cmだった。
Example 26 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 25 was used, and it was 0.8 μg / cm 2 .

実施例27 [光反応性ポリマーの合成]
ポリエチレングリコールメチルエーテルメタクリレートの数平均分子量を300から950に変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=93,000、Mw/Mn=3.0であり、m/(m+n)の値が0.09であった。
Example 27 Synthesis of photoreactive polymer
A photoreactive polymer was synthesized in the same manner as in Example 1 except that the number average molecular weight of polyethylene glycol methyl ether methacrylate was changed from 300 to 950. The obtained polymer was Mn = 93,000, Mw / Mn = 3.0, and the value of m / (m + n) was 0.09.

実施例28 [疎水性ポリマー基材表面への固定化]
実施例27で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は95%だった。
Example 28 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 27, surface modification was performed on the film in the same manner as in Example 2, and the immobilization rate of the photoreactive polymer was 95%.

実施例29 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例28で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は45°であった。
Example 29 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 28 was used, the contact angle with water was 45 °.

実施例30 [多孔質膜への固定化]
実施例27で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 30 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 27 was used.

実施例31 [タンパク質吸着量抑制効果の確認]
実施例30で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.5μg/cmだった。
Example 31 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 30 was used, and it was 0.5 μg / cm 2 .

実施例32 [光反応性ポリマーの合成]
用いたポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)の重量を5.4gから4.2gに変え、光反応性モノマーの重量を0.52gから0.16gに変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=44,000、Mw/Mn=2.6であり、m/(m+n)の値が0.3であった。
Example 32 [Synthesis of Photoreactive Polymer]
Except that the weight of polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) used was changed from 5.4 g to 4.2 g, and the weight of the photoreactive monomer was changed from 0.52 g to 0.16 g. The photoreactive polymer was synthesized in the same manner as in 1. The obtained polymer was Mn = 44,000, Mw / Mn = 2.6, and the value of m / (m + n) was 0.3.

実施例33 [疎水性ポリマー基材表面への固定化]
実施例32で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は97%だった。
Example 33 [Immobilization to hydrophobic polymer substrate surface]
Except for using the photoreactive polymer synthesized in Example 32, surface modification was performed on the film in the same manner as in Example 2, and the immobilization rate of the photoreactive polymer was 97%.

実施例34 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例33で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は45°であった。
Example 34 [Evaluation of hydrophilicity (wetting) of a surface by measuring a contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 33 was used, the contact angle with water was 45 °.

実施例35 [多孔質膜への固定化]
実施例32で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 35 [Immobilization to porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 32 was used.

実施例36 [タンパク質吸着量抑制効果の確認]
実施例34で調製した光反応性ポリマーを固定化したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、15μg/cmだった。
Example 36 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 5 except that the PVDF porous membrane on which the photoreactive polymer prepared in Example 34 was immobilized was measured and found to be 15 μg / cm 2 .

実施例37 [光反応性ポリマーの合成]
用いたポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)の重量を5.4gから3.0gに変え、光反応性モノマーの重量を0.52gから2.6gに変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=30,000、Mw/Mn=3.0であり、m/(m+n)の値が0.5であった。
Example 37 [Synthesis of Photoreactive Polymer]
Example except that the weight of polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) used was changed from 5.4 g to 3.0 g and the weight of the photoreactive monomer was changed from 0.52 g to 2.6 g. The photoreactive polymer was synthesized in the same manner as in 1. The obtained polymer had Mn = 30,000, Mw / Mn = 3.0, and the value of m / (m + n) was 0.5.

実施例38 [疎水性ポリマー基材表面への固定化]
実施例37で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は98%だった。
Example 38 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 37, surface modification was performed on the film in the same manner as in Example 2, and the immobilization rate of the photoreactive polymer was 98%.

実施例39 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例38で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は47°であった。
Example 39 [Evaluation of hydrophilicity (wetting) of a surface by measuring a contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 38 was used, the contact angle with water was 47 °.

実施例40 [多孔質膜への固定化]
実施例37で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 40 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 37 was used.

実施例41 [タンパク質吸着量抑制効果の確認]
実施例40で調製した光反応性ポリマーを固定化したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、22μg/cmだった。
Example 41 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 5 except that the PVDF porous membrane on which the photoreactive polymer prepared in Example 40 was immobilized was measured and found to be 22 μg / cm 2 .

実施例42 [光反応性ポリマーの合成]
用いたポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)の重量を5.4gから5.94gに変え、光反応性モノマーの重量を0.52gから0.052gに変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=70,000、Mw/Mn=2.7であり、m/(m+n)の値が0.01であった。
Example 42 [Synthesis of Photoreactive Polymer]
Except that the weight of polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) used was changed from 5.4 g to 5.94 g and the weight of the photoreactive monomer was changed from 0.52 g to 0.052 g. The photoreactive polymer was synthesized in the same manner as in 1. The obtained polymer was Mn = 70,000, Mw / Mn = 2.7, and the value of m / (m + n) was 0.01.

実施例43 [疎水性ポリマー基材表面への固定化]
実施例42で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は20%だった。
Example 43 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 42, surface modification was performed on the film in the same manner as in Example 2, and the immobilization rate of the photoreactive polymer was 20%.

実施例44 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例43で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は62°であった。
Example 44 [Evaluation of hydrophilicity (wetting) of a surface by measuring a contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 43 was used, the contact angle with water was 62 °.

実施例45 [多孔質膜への固定化]
実施例42で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 45 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 42 was used.

実施例46 [タンパク質吸着量抑制効果の確認]
実施例45で調製した光反応性ポリマーを固定化したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、45μg/cmだった。
Example 46 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 5 except that the PVDF porous membrane on which the photoreactive polymer prepared in Example 45 was immobilized was measured and found to be 45 μg / cm 2 .

実施例47 [光反応性ポリマーの合成]
用いたポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)の重量を5.4gから0.6gに変え、光反応性モノマーの重量を0.52gから4.7gに変えた以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=68,000、Mw/Mn=3.7であり、m/(m+n)の値が0.9であった。
Example 47 [Synthesis of Photoreactive Polymer]
Except that the weight of polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) used was changed from 5.4 g to 0.6 g and the weight of the photoreactive monomer was changed from 0.52 g to 4.7 g. The photoreactive polymer was synthesized in the same manner as in 1. The obtained polymer had Mn = 68,000, Mw / Mn = 3.7, and the value of m / (m + n) was 0.9.

実施例48 [疎水性ポリマー基材表面への固定化]
実施例47で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は100%だった。
Example 48 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 47, surface modification was performed on the film in the same manner as in Example 2, and the immobilization rate of the photoreactive polymer was 100%.

実施例49 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例48で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は58°であった。
Example 49 [Evaluation of hydrophilicity (wetability) of surface by measuring contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 48 was used, the contact angle with water was 58 °.

実施例50 [多孔質膜への固定化]
実施例47で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 50 [Immobilization to a porous membrane]
Except for using the photoreactive polymer synthesized in Example 47, a PVDF porous membrane having a modified surface was obtained by the same operation as in Example 4.

実施例51 [タンパク質吸着量抑制効果の確認]
実施例50で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、55μg/cmだった。
Example 51 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 50 was used, and it was 55 μg / cm 2 .

実施例52 [光反応性ポリマーの合成]
ガラス製のシュレンクフラスコに、ポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量=300)(5.4g)および参考例1で製造した3−(4−アジドフェノキシ)プロピルメタクリレート(0.52g)、臭化銅(I)(14.4mg)、臭化銅(II)(5.7mg)、2,2‘−ビピリジン(39.1mg)を秤量した。3mLのアセトンを用いて希釈し、十分に溶液中の酸素を窒素で除去後、ウォーターバスを用いて50度に昇温した後、重合開始剤として2−ブチルイソ酪酸エチル(19.5mg)を加え、反応は50度で6時間行った。反応終了後、ヘキサンを用いて再沈殿法により未反応のモノマーを除去した。減圧乾燥により、褐色の粘性体の光反応性ポリマーを得た。得られたポリマーは、Mn=33,000、Mw/Mn=1.6であり、組成比はm/(m+n)の値が0.07であった。
Example 52 [Synthesis of Photoreactive Polymer]
In a glass Schlenk flask, polyethylene glycol methyl ether methacrylate (PEGMA, number average molecular weight = 300) (5.4 g) and 3- (4-azidophenoxy) propyl methacrylate (0.52 g) produced in Reference Example 1, odor Copper (I) chloride (14.4 mg), copper (II) bromide (5.7 mg), and 2,2′-bipyridine (39.1 mg) were weighed. After diluting with 3 mL of acetone and thoroughly removing oxygen in the solution with nitrogen, the temperature was raised to 50 degrees using a water bath, and then ethyl 2-butylisobutyrate (19.5 mg) was added as a polymerization initiator. The reaction was carried out at 50 degrees for 6 hours. After completion of the reaction, unreacted monomers were removed by reprecipitation using hexane. By drying under reduced pressure, a brown viscous photoreactive polymer was obtained. The obtained polymer had Mn = 33,000 and Mw / Mn = 1.6, and the composition ratio had a value of m / (m + n) of 0.07.

実施例53 [疎水性ポリマー基材表面への固定化]
実施例52で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は96%だった。
Example 53 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 52, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 96%.

実施例54 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例53で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は44°であった。
Example 54 [Evaluation of hydrophilicity (wetability) of surface by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 53 was used, the contact angle with water was 44 °.

実施例55 [多孔質膜への固定化]
実施例52で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 55 [Immobilization to a porous membrane]
Except for using the photoreactive polymer synthesized in Example 52, a PVDF porous membrane having a modified surface was obtained by the same operation as in Example 4.

実施例56 [タンパク質吸着量抑制効果の確認]
実施例55で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 56 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 55 was used, and it was 0.4 μg / cm 2 .

実施例57 [光反応性ポリマーの合成]
参考例1で製造した3−(4−アジドフェノキシ)プロピルメタクリレートの代わりに参考例2で製造した3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレートを用いた以外は実施例1と同様にして下記構造式(7)に示す光反応性ポリマーを合成した。得られたポリマーは、Mn=109,000、Mw/Mn=5.2だった。組成比は、H NMRにて、PEGMA由来の−OCHピーク(3.36−3.40,br,3H)と、3−(4−アジド−2,3,5,6−テトラフルオロフェノキシ)プロピルメタクリレート由来のメチレンピーク(2.00−2.17,br,2H)の積分比によって決定し、下記構造式(8)において、m/(m+n)の値が0.05であった。
Example 57 [Synthesis of photoreactive polymer]
The 3- (4-azido-2,3,5,6-tetrafluorophenoxy) propyl methacrylate produced in Reference Example 2 was used in place of the 3- (4-azidophenoxy) propyl methacrylate produced in Reference Example 1. In the same manner as in Example 1, a photoreactive polymer represented by the following structural formula (7) was synthesized. The obtained polymer was Mn = 109,000 and Mw / Mn = 5.2. The compositional ratio was determined by 1 H NMR, PEGMA-derived -OCH 3 peak (3.36-3.40, br, 3H) and 3- (4-azido-2,3,5,6-tetrafluorophenoxy). ) Determined by the integral ratio of methylene peaks derived from propyl methacrylate (2.00-2.17, br, 2H), and the value of m / (m + n) in the following structural formula (8) was 0.05.

光反応性ポリマーの構造式(8)   Structural formula of photoreactive polymer (8)

Figure 2017186536
(rは、前記と同じ意味を表す。)
実施例58 [疎水性ポリマー基材表面への固定化]
実施例57で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は92%だった。
Figure 2017186536
(R represents the same meaning as described above.)
Example 58 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 57, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 92%.

実施例59 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例58で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は47°であった。
Example 59 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 58 was used, the contact angle with water was 47 °.

実施例60 [多孔質膜への固定化]
実施例57で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 60 [Immobilization to a porous membrane]
Except for using the photoreactive polymer synthesized in Example 57, a PVDF porous membrane having a modified surface was obtained by the same operation as in Example 4.

実施例61 [タンパク質吸着量抑制効果の確認]
実施例60で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 61 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 60 was used, and it was 0.4 μg / cm 2 .

実施例62 [光反応性ポリマーの合成]
参考例1で製造した3−(4−アジドフェノキシ)プロピルメタクリレートの代わりに参考例3で製造した4−(4−アジドフェニル)ブチルメタクリレートを用いた以外は実施例1と同様にして下記構造式(8)に示す光反応性ポリマーを合成した。得られたポリマーは、Mn=61,000、Mw/Mn=2.5だった。組成比は、H NMRにて、PEGMA由来の−OCHピーク(3.36−3.40,br,3H)と、4−(4−アジドフェニル)ブチルメタクリレート由来の芳香環ピーク(6.86−6.71,br,4H)の積分比によって決定し、下記構造式(8)において、m/(m+n)の値が0.09であった。
Example 62 Synthesis of photoreactive polymer
The following structural formula was obtained in the same manner as in Example 1 except that 4- (4-azidophenyl) butyl methacrylate produced in Reference Example 3 was used instead of 3- (4-azidophenoxy) propyl methacrylate produced in Reference Example 1. The photoreactive polymer shown in (8) was synthesized. The obtained polymer was Mn = 61,000 and Mw / Mn = 2.5. The composition ratio was determined by 1 H NMR as follows: —OCH 3 peak derived from PEGMA (3.36-3.40, br, 3H) and aromatic ring peak derived from 4- (4-azidophenyl) butyl methacrylate (6. 86-6.71, br, 4H). In the following structural formula (8), the value of m / (m + n) was 0.09.

光反応性ポリマーの構造式(9)   Structural formula of photoreactive polymer (9)

Figure 2017186536
(rは、前記と同じ意味を表す。)
実施例63 [疎水性ポリマー基材表面への固定化]
実施例62で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は94%だった。
Figure 2017186536
(R represents the same meaning as described above.)
Example 63 [Immobilization to hydrophobic polymer substrate surface]
Except for using the photoreactive polymer synthesized in Example 62, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 94%.

実施例64 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例63で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は44°であった。
Example 64 [Evaluation of surface hydrophilicity (wetting) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 63 was used, the contact angle with water was 44 °.

実施例65 [多孔質膜への固定化]
実施例62で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 65 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 62 was used.

実施例66 [タンパク質吸着量抑制効果の確認]
実施例65で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 66 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 65 was used, and it was 0.4 μg / cm 2 .

実施例67 [光反応性ポリマーの合成]
ポリエチレングリコールメチルエーテルメタクリレート(数平均分子量=300)の代わりに2−メタクリロイルオキシエチルホスホリルコリン(MPC)を用いたこと以外は実施例1と同様にして下記構造式(9)に示す光反応性ポリマーを合成した。得られたポリマーは、Mn=44,000、Mw/Mn=2.6だった。組成比は、H NMRにて、MPC由来の−N(CHピーク(3.20−3.45,br,9H)と、3−(4−アジドフェノキシ)プロピルメタクリレート由来の芳香環ピーク(6.86−6.71,br,4H)の積分比によって決定し、下記構造式(9)において、m/(m+n)の値が0.08であった。
Example 67 [Synthesis of Photoreactive Polymer]
A photoreactive polymer represented by the following structural formula (9) was obtained in the same manner as in Example 1 except that 2-methacryloyloxyethyl phosphorylcholine (MPC) was used instead of polyethylene glycol methyl ether methacrylate (number average molecular weight = 300). Synthesized. The obtained polymer was Mn = 44,000 and Mw / Mn = 2.6. The composition ratio is 1 H NMR, MPC-derived —N (CH 3 ) 3 peak (3.20-3.45, br, 9H) and 3- (4-azidophenoxy) propyl methacrylate-derived aromatic ring It was determined by the integration ratio of the peak (6.86-6.71, br, 4H). In the following structural formula (9), the value of m / (m + n) was 0.08.

光反応性ポリマーの構造式(10)   Structural formula of photoreactive polymer (10)

Figure 2017186536
実施例68 [疎水性ポリマー基材表面への固定化]
実施例67で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は95%だった。
Figure 2017186536
Example 68 [Immobilization to Hydrophobic Polymer Substrate Surface]
Except for using the photoreactive polymer synthesized in Example 67, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 95%.

実施例69 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例68で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は32°であった。
Example 69 [Evaluation of hydrophilicity (wetability) of surface by measuring contact angle in water]
The contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Example 68 was used. The contact angle with water was 32 °.

実施例70 [多孔質膜への固定化]
実施例67で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 70 [Immobilization to porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 67 was used.

実施例71 [タンパク質吸着量抑制効果の確認]
実施例70で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 71 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 70 was used, and it was 0.4 μg / cm 2 .

実施例72 [光反応性ポリマーの合成]
ポリエチレングリコールメチルエーテルメタクリレートの数平均分子量を300から4000に換え、仕込み量を72gとしたこと、重合時間を24時間にしたこと以外は実施例1と同様にして光反応性ポリマーを合成した。得られたポリマーは、Mn=11,000、Mw/Mn=1.3であり、m/(m+n)の値が0.10であった。
Example 72 Synthesis of photoreactive polymer
The photoreactive polymer was synthesized in the same manner as in Example 1 except that the number average molecular weight of polyethylene glycol methyl ether methacrylate was changed from 300 to 4000, the charged amount was 72 g, and the polymerization time was 24 hours. The obtained polymer was Mn = 11,000, Mw / Mn = 1.3, and the value of m / (m + n) was 0.10.

実施例73 [疎水性ポリマー基材表面への固定化]
実施例72で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は93%だった。
Example 73 [Immobilization on the surface of a hydrophobic polymer substrate]
Except for using the photoreactive polymer synthesized in Example 72, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 93%.

実施例74 [水中接触角測定による表面の親水性(ぬれ性)評価]
実施例73で調製した表面改質フィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は42°であった。
Example 74 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the surface-modified film prepared in Example 73 was used, the contact angle with water was 42 °.

実施例75 [多孔質膜への固定化]
実施例72で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Example 75 [Immobilization to a porous membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Example 72 was used.

実施例76 [タンパク質吸着量抑制効果の確認]
実施例75で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、0.4μg/cmだった。
Example 76 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Example 75 was used, and it was 0.4 μg / cm 2 .

比較例1 [水中接触角測定による表面の親水性(ぬれ性)評価]
未処理のPVDFフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は82°であった。
Comparative Example 1 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that an untreated PVDF film was used, the contact angle with water was 82 °.

比較例2 [タンパク質吸着量抑制効果の確認]
未処理のPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、63μg/cmだった。
Comparative Example 2 [Confirmation of protein adsorption amount suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that an untreated PVDF porous membrane was used, and it was 63 μg / cm 2 .

比較例3 [光反応性ポリマーの合成]
3−(4−アジドフェノキシ)プロピルメタクリレートの代わりに3−(4−アジドフェニルカルボキシ)エチルメタクリレートを用いた以外は実施例1と同様にして下記構造式(9)に示す光反応性ポリマーを合成した。得られたポリマーは、Mn=72,000、Mw/Mn=3.5だった。組成比は、H NMRにて、PEGMA由来の−OCHピーク(3.36−3.40,br,3H)と、3−(4−アジドフェニルカルボキシ)エチルメタクリレート由来の芳香環ピーク(8.00−8.11,7.09−7.17,br,2H)の積分比によって決定し、下記構造式(10)において、m/(m+n)の値が0.09であった。光反応性ポリマーの構造式(11)
Comparative Example 3 [Synthesis of Photoreactive Polymer]
A photoreactive polymer represented by the following structural formula (9) was synthesized in the same manner as in Example 1 except that 3- (4-azidophenylcarboxy) ethyl methacrylate was used instead of 3- (4-azidophenoxy) propyl methacrylate. did. The obtained polymer was Mn = 72,000 and Mw / Mn = 3.5. The composition ratio was determined by 1 H NMR as follows: —OCH 3 peak derived from PEGMA (3.36-3.40, br, 3H) and aromatic ring peak derived from 3- (4-azidophenylcarboxy) ethyl methacrylate (8 .00-8.11, 7.09-7.17, br, 2H). In the following structural formula (10), the value of m / (m + n) was 0.09. Structural formula of photoreactive polymer (11)

Figure 2017186536
(rは、前記と同じ意味を表す。)
比較例4 [疎水性ポリマー基材表面への固定化]
比較例3で合成した光反応性ポリマーを用いた以外は、実施例3と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は11%だった。
Figure 2017186536
(R represents the same meaning as described above.)
Comparative Example 4 [Immobilization to Hydrophobic Polymer Substrate Surface]
Except that the photoreactive polymer synthesized in Comparative Example 3 was used, surface modification was performed on the film in the same manner as in Example 3. As a result, the immobilization rate of the photoreactive polymer was 11%.

比較例5 [水中接触角測定による表面の親水性(ぬれ性)評価]
比較例3で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は62°であった。
Comparative Example 5 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Comparative Example 3 was used, the contact angle with water was 62 °.

比較例6 [多孔質膜への固定化]
比較例3で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Comparative Example 6 [Immobilization to Porous Membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Comparative Example 3 was used.

比較例7 [タンパク質吸着量抑制効果の確認]
比較例6で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、47μg/cmだった。
Comparative Example 7 [Confirmation of protein adsorption suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Comparative Example 6 was used, and it was 47 μg / cm 2 .

比較例8 [疎水性ポリマー基材表面への固定化]
UVの照射時間を2秒(21mJ/cm)から5秒(52.5mJ/cm)に変えた以外は、比較例4と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は23%だった。
Comparative Example 8 [Immobilization to Hydrophobic Polymer Substrate Surface]
The film was surface-modified in the same manner as in Comparative Example 4 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 5 seconds (52.5 mJ / cm 2 ). The immobilization rate of the functional polymer was 23%.

比較例9 [水中接触角測定による表面の親水性(ぬれ性)評価]
比較例8で表面を改質したフィルムを用いた以外は比較例5と同様にして接触角の測定を行ったところ、対水接触角は59°であった。
Comparative Example 9 [Evaluation of hydrophilicity (wetting) of the surface by measuring the contact angle in water]
When the contact angle was measured in the same manner as in Comparative Example 5 except that the film whose surface was modified in Comparative Example 8 was used, the contact angle with water was 59 °.

比較例10 [多孔質膜への固定化]
UVの照射時間を2秒(21mJ/cm)から5秒(52.5mJ/cm)に変えた以外は、比較例6と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Comparative Example 10 [Immobilization to Porous Membrane]
A PVDF porous membrane whose surface was modified by the same operation as in Comparative Example 6 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 5 seconds (52.5 mJ / cm 2 ). Got.

比較例11 [タンパク質吸着量抑制効果の確認]
比較例10で調製したPVDF製多孔質膜を用いた以外は比較例7と同様の操作によりインスリン吸着量を測定したところ、38μg/cmだった。
Comparative Example 11 [Confirmation of protein adsorption amount suppression effect]
The amount of adsorbed insulin was measured by the same operation as in Comparative Example 7 except that the PVDF porous membrane prepared in Comparative Example 10 was used, and it was 38 μg / cm 2 .

比較例12 [疎水性ポリマー基材表面への固定化]
UVの照射時間を2秒(21mJ/cm)から30秒(315mJ/cm)に変えた以外は、比較例4と同様にしてフィルムへの光反応性ポリマーの固定化を行ったところ、固定化率は42%だった。
Comparative Example 12 [Immobilization to Hydrophobic Polymer Substrate Surface]
Except for changing the UV irradiation time from 2 seconds (21 mJ / cm 2 ) to 30 seconds (315 mJ / cm 2 ), the photoreactive polymer was immobilized on the film in the same manner as in Comparative Example 4, The immobilization rate was 42%.

比較例13 [水中接触角測定による表面の親水性(ぬれ性)評価]
比較例12で表面を改質したフィルムを用いた以外は比較例5と同様にして接触角の測定を行ったところ、対水接触角は57°であった。
Comparative Example 13 [Evaluation of hydrophilicity (wetting) of the surface by measuring the contact angle in water]
When the contact angle was measured in the same manner as in Comparative Example 5 except that the film whose surface was modified in Comparative Example 12 was used, the contact angle with water was 57 °.

比較例14 [多孔質膜への固定化]
UVの照射時間を2秒(21mJ/cm)から30秒(315mJ/cm)に変えた以外は、比較例6と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Comparative Example 14 [Immobilization to Porous Membrane]
A PVDF porous membrane having a modified surface was obtained by the same operation as in Comparative Example 6 except that the UV irradiation time was changed from 2 seconds (21 mJ / cm 2 ) to 30 seconds (315 mJ / cm 2 ). It was.

比較例15 [タンパク質吸着量抑制効果の確認]
比較例14で調製したPVDF製多孔質膜を用いた以外は比較例7と同様の操作によりインスリン吸着量を測定したところ、29μg/cmだった。
Comparative Example 15 [Confirmation of protein adsorption suppression effect]
The amount of insulin adsorbed was measured by the same operation as in Comparative Example 7 except that the PVDF porous membrane prepared in Comparative Example 14 was used, and it was 29 μg / cm 2 .

比較例16 [光反応性ポリマーの合成]
3−(4−アジドフェノキシ)プロピルメタクリレートの代わりに2−(4−アジドフェノキシ)エチルメタクリレート(参考例1において3−ブロモ−1−プロパノールに代えて2−ブロモ−1−エタノールを用い、同様の方法で製造)を用いた以外は実施例1と同様にして下記構造式(12)に示す光反応性ポリマーを合成した。得られたポリマーは、Mn=60,000、Mw/Mn=2.7だった。組成比は、H NMRにて、PEGMA由来の−OCHピーク(3.36−3.40,br,3H)と、2−(4−アジドフェノキシ)エチルメタクリレート由来の芳香環ピーク(6.86−6.71,br,4H)の積分比によって決定し、m/(m+n)の値が0.08であった。
Comparative Example 16 [Synthesis of Photoreactive Polymer]
Instead of 3- (4-azidophenoxy) propyl methacrylate, 2- (4-azidophenoxy) ethyl methacrylate (in Reference Example 1, 2-bromo-1-ethanol was used instead of 3-bromo-1-propanol, and A photoreactive polymer represented by the following structural formula (12) was synthesized in the same manner as in Example 1 except that the production method was used. The obtained polymer was Mn = 60,000 and Mw / Mn = 2.7. The composition ratio was determined by 1 H NMR as follows: —OCH 3 peak derived from PEGMA (3.36-3.40, br, 3H) and aromatic ring peak derived from 2- (4-azidophenoxy) ethyl methacrylate (6. 86-6.71, br, 4H), and the m / (m + n) value was 0.08.

光反応性ポリマーの構造式(12)   Structural formula of photoreactive polymer (12)

Figure 2017186536
比較例17 [疎水性ポリマーフィルム表面への固定化]
比較例16で合成した光反応性ポリマーを用いた以外は、実施例2と同様にしてフィルムへの表面改質を行ったところ、光反応性ポリマーの固定化率は55%だった。
Figure 2017186536
Comparative Example 17 [Immobilization to Hydrophobic Polymer Film Surface]
Except that the photoreactive polymer synthesized in Comparative Example 16 was used, surface modification was performed on the film in the same manner as in Example 2. As a result, the immobilization rate of the photoreactive polymer was 55%.

比較例18 [水中接触角測定による表面の親水性(ぬれ性)評価]
比較例17で表面を改質したフィルムを用いた以外は実施例3と同様にして接触角の測定を行ったところ、対水接触角は57°であった。
Comparative Example 18 [Evaluation of surface hydrophilicity (wetability) by measurement of contact angle in water]
When the contact angle was measured in the same manner as in Example 3 except that the film whose surface was modified in Comparative Example 17 was used, the contact angle with water was 57 °.

比較例19 [多孔質膜への固定化]
比較例16で合成した光反応性ポリマーを用いた以外は、実施例4と同様の操作により、表面が改質されたPVDF製多孔質膜を得た。
Comparative Example 19 [Immobilization to Porous Membrane]
A PVDF porous membrane with a modified surface was obtained in the same manner as in Example 4 except that the photoreactive polymer synthesized in Comparative Example 16 was used.

比較例20 [タンパク質吸着量の測定]
比較例19で調製したPVDF製多孔質膜を用いた以外は実施例5と同様の操作によりインスリン吸着量を測定したところ、27μg/cmだった。
Comparative Example 20 [Measurement of protein adsorption amount]
The amount of insulin adsorbed was measured by the same operation as in Example 5 except that the PVDF porous membrane prepared in Comparative Example 19 was used, and it was 27 μg / cm 2 .

Figure 2017186536
Figure 2017186536

Claims (4)

下記一般式(1)で示される構造を有し、数平均分子量が1,000〜1,000,000である光反応性ポリマー。
Figure 2017186536
(式中、m及びnは互いに独立して1以上の整数を表し、Xは置換基を有しても良いフェニレン基、又は、エステル結合若しくはアミド結合で示される基を表し、Yはベタイン性基、アルコキシアルキル基、アルコキシポリオキシエチレン基、ヒドロキシポリオキシエチレン基から選ばれた親水性基を表し、Zは−O−又は−N(R)−で示される基を表し、Aは−O−又は−CH−で示される基を表し、R、R及びRは互いに独立して水素原子又はC〜Cの炭化水素基を表し、RはC〜Cの2価の炭化水素基を表し、Rはフッ素原子を表し、pは0〜4の整数を表す。)
A photoreactive polymer having a structure represented by the following general formula (1) and having a number average molecular weight of 1,000 to 1,000,000.
Figure 2017186536
(In the formula, m and n each independently represent an integer of 1 or more, X represents a phenylene group which may have a substituent, or a group represented by an ester bond or an amide bond, and Y represents a betaine property. Represents a hydrophilic group selected from a group, an alkoxyalkyl group, an alkoxypolyoxyethylene group, and a hydroxypolyoxyethylene group, Z represents a group represented by —O— or —N (R 3 ) —, and A represents — Represents a group represented by O— or —CH 2 —, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a C 1 to C 6 hydrocarbon group, and R 4 represents C 3 to C 6. And R 5 represents a fluorine atom, and p represents an integer of 0 to 4.)
下記一般式(2)で示される構造を有する請求項1に記載の光反応性ポリマー。
Figure 2017186536
(式中、m、n、Z、A、R、R、R、R及びpは前記と同じ意味を表す。rの値は2〜90の整数を表す。)
The photoreactive polymer of Claim 1 which has a structure shown by following General formula (2).
Figure 2017186536
(In the formula, m, n, Z, A, R 1 , R 2 , R 4 , R 5 and p represent the same meaning as described above. The value of r represents an integer of 2 to 90.)
下記一般式(3)で示される構造を有する請求項1に記載の光反応性ポリマー。
Figure 2017186536
(式中、m及びnは互いに独立して1以上の整数を表し、rの値は2〜90の整数を表し、RはC〜Cの2価の炭化水素基を表す。)
The photoreactive polymer of Claim 1 which has a structure shown by following General formula (3).
Figure 2017186536
(In the formula, m and n each independently represent an integer of 1 or more, r represents an integer of 2 to 90, and R 4 represents a C 3 to C 6 divalent hydrocarbon group.)
m/(m+n)の値が0.02〜0.7である請求項1〜3のいずれか1項に記載の光反応性ポリマー。 The photoreactive polymer according to any one of claims 1 to 3, wherein a value of m / (m + n) is 0.02 to 0.7.
JP2017054433A 2016-03-31 2017-03-21 Photoreactive polymer Active JP6890883B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072994 2016-03-31
JP2016072994 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186536A true JP2017186536A (en) 2017-10-12
JP6890883B2 JP6890883B2 (en) 2021-06-18

Family

ID=60045486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054433A Active JP6890883B2 (en) 2016-03-31 2017-03-21 Photoreactive polymer

Country Status (1)

Country Link
JP (1) JP6890883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172816A (en) * 2018-03-28 2019-10-10 東ソー株式会社 Block copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005280076A (en) * 2004-03-29 2005-10-13 Kazunori Kataoka Polymer composite
JP2006213861A (en) * 2005-02-04 2006-08-17 Kazuhiko Ishihara Coating agent for fluid contact surface and material body equipped with coating agent for fluid contact surface
JP2010059346A (en) * 2008-09-05 2010-03-18 Univ Of Tokyo Method for photo-modification of surface of hydrophobic polymer material
CN103408692A (en) * 2013-08-08 2013-11-27 中科院广州化学有限公司 Aqueous dispersion crosslinkable random fluoropolymer and constructed super-amphiphobic coat through aqueous dispersion crosslinkable random fluoropolymer
JP2017177754A (en) * 2016-03-31 2017-10-05 東ソー株式会社 Surface decorative film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005280076A (en) * 2004-03-29 2005-10-13 Kazunori Kataoka Polymer composite
JP2006213861A (en) * 2005-02-04 2006-08-17 Kazuhiko Ishihara Coating agent for fluid contact surface and material body equipped with coating agent for fluid contact surface
JP2010059346A (en) * 2008-09-05 2010-03-18 Univ Of Tokyo Method for photo-modification of surface of hydrophobic polymer material
CN103408692A (en) * 2013-08-08 2013-11-27 中科院广州化学有限公司 Aqueous dispersion crosslinkable random fluoropolymer and constructed super-amphiphobic coat through aqueous dispersion crosslinkable random fluoropolymer
JP2017177754A (en) * 2016-03-31 2017-10-05 東ソー株式会社 Surface decorative film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172816A (en) * 2018-03-28 2019-10-10 東ソー株式会社 Block copolymer
JP7206612B2 (en) 2018-03-28 2023-01-18 東ソー株式会社 block copolymer

Also Published As

Publication number Publication date
JP6890883B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6645324B2 (en) Surface modified film
JP6949099B2 (en) Manufacturing method using polymer material and controlled radical initiator
JP6496318B2 (en) Block copolymer
JP2017500396A (en) Monomers and block copolymers
Escalé et al. Highly structured pH-responsive honeycomb films by a combination of a breath figure process and in situ thermolysis of a polystyrene-block-poly (ethoxy ethyl acrylate) precursor
He et al. Low-fluorinated homopolymer from heterogeneous ATRP of 2, 2, 2-trifluoroethyl methacrylate mediated by copper complex with nitrogen-based ligand
WO2003042222A1 (en) Monomer, polymer, and ocular lens comprising the same
Tao et al. Synthesis and characterization of well-defined thermo-and light-responsive diblock copolymers by atom transfer radical polymerization and click chemistry
JP6890883B2 (en) Photoreactive polymer
CN103582672A (en) Hydrophilizing agent composition, hydrophilization method, hydrophilized resin porous body, and method for producing hydrophilized resin porous body
JP6855797B2 (en) Surface-modified porous membrane and its manufacturing method
JP4123648B2 (en) Polymer and ophthalmic lens using the same
JP2004300313A (en) Water-repellent and oil-repellent block copolymer and method for producing the same
KR101598250B1 (en) Polymers, preparation thereof, compositions and films comprising the same
JP6956403B2 (en) Porous surface treatment polymer
Lin et al. Grafting well-defined polymers onto unsaturated PVDF using thiol-ene reactions
CN110869442B (en) Neutral layer composition
JP7206612B2 (en) block copolymer
JP2019063783A (en) Surface modification porous film, and manufacturing method thereof
JPH08503011A (en) Polymer having oxidative functional group or its derivative
JP5110184B2 (en) Phosphonic acid polymer, method for producing the same, and electrolyte membrane for fuel cell
KR102484629B1 (en) Compositon for neural layer
KR102484628B1 (en) Compositon for neural layer
CN110799589A (en) Neutral layer composition
KR102522251B1 (en) Compositon for neural layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150