JP2017186492A - Manufacturing method of foam molded body of carbon fiber reinforced modified polypropylene-based resin - Google Patents

Manufacturing method of foam molded body of carbon fiber reinforced modified polypropylene-based resin Download PDF

Info

Publication number
JP2017186492A
JP2017186492A JP2016085590A JP2016085590A JP2017186492A JP 2017186492 A JP2017186492 A JP 2017186492A JP 2016085590 A JP2016085590 A JP 2016085590A JP 2016085590 A JP2016085590 A JP 2016085590A JP 2017186492 A JP2017186492 A JP 2017186492A
Authority
JP
Japan
Prior art keywords
carbon fiber
weight
polypropylene
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085590A
Other languages
Japanese (ja)
Other versions
JP6843330B2 (en
Inventor
隆 藤巻
Takashi Fujimaki
隆 藤巻
工藤 真明
Masaaki Kudo
真明 工藤
康成 掛端
Yasunari Kakehata
康成 掛端
智美 高村
Tomomi Takamura
智美 高村
幸介 赤坂
Kosuke Akasaka
幸介 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFUTEKKUSU KK
Nakayashiki Carbon Tech Inc
Nakayashiki Carbon Technology Inc
Original Assignee
EFUTEKKUSU KK
Nakayashiki Carbon Tech Inc
Nakayashiki Carbon Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EFUTEKKUSU KK, Nakayashiki Carbon Tech Inc, Nakayashiki Carbon Technology Inc filed Critical EFUTEKKUSU KK
Priority to JP2016085590A priority Critical patent/JP6843330B2/en
Publication of JP2017186492A publication Critical patent/JP2017186492A/en
Application granted granted Critical
Publication of JP6843330B2 publication Critical patent/JP6843330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To overcome a situation that a polypropylene resin has light weight with specific gravity of 0.90 and is expected to have higher strength by carbon fiber reinforcement and to have weight reduction and recycle property, applications as a drone material, an ocean civil engineering material, a high rise building material, a railway vehicle material, an automobile material and other advanced materials are expected to expand by properties of light weight and high strength, however adoption in large amount is not achieved because carbon fiber is expensive and adhesiveness with nonpolar polypropylene is poor.SOLUTION: A polypropylene resin and a maleic acid compound are modified at high steep by a reaction extrusion method using organic peroxide as a catalyst and mixed with an inexpensive carbon fiber mass produced by a large tow method. Further an epoxy resin-based binder and an organic metal-based catalyst are used for increasing reduced molecular weight and melting viscosity and a thermoplastic composite material of a carbon fiber reinforced modified polypropylene resin is manufactured. Further especially a microcapsule foam body is developed for weight saving and increasing strength.SELECTED DRAWING: None

Description

本発明は、軽量化、高強度、リサイクル可能の炭素繊維強化・改質ポリプロピレン系樹脂の発泡成形体を製造する方法を提供することに関する。  The present invention relates to providing a method for producing a foam-molded article of carbon fiber reinforced / modified polypropylene resin that is lightweight, high-strength and recyclable.

従来、ポリプロピレン樹脂は、五大汎用性熱可塑性樹脂の一種としてその成形加工性の良さと軽量性、機械的強度、剛性等に優れた物性を有し、繊椎、フィルム、プラスチックス等として広範囲に使用されている。特に、プラスチックス分野では、成形品がボトル、シート、容器、日用品、自動車の内装材およびバンパー、機械部品、電気・電子材料、建材、土木材、各種工業用品等に広く活用されている。
また、ポリプロピレン樹脂は、更にガラス繊維または炭素繊維を混合して熱可塑性複合材にする事に依り、機械的強度や耐熱性等の諸特性が改善され、一層高級な用途に使用されて来ている。特に、ガラス繊維が安価であるので、これで強化された複合材が大量に使用されている。一方、炭素繊維は高強度であるがあまりにも高価格であるために用途が限定されており、ABS樹脂との複合材として特殊用途に少量にしか使用されて来なかった。
近年、土木・建築、自動車産業、新幹線車両業、宇宙航空産業、リニヤーモーターカー等の先端産業分野、特に航空飛翔体(ドローン)に於いては、構成材料の機械的強度の改善による一層の軽量化・省エネルギー化をはじめ、耐食性、電気特性、耐熱性、放熱性等の一層の性能改善が求められている。
Conventionally, polypropylene resin is one of the five general-purpose thermoplastic resins, and has excellent physical properties such as good moldability and light weight, mechanical strength, and rigidity. It is used. In particular, in the plastics field, molded products are widely used in bottles, sheets, containers, daily necessities, automotive interior materials and bumpers, machine parts, electrical / electronic materials, building materials, earthwork, various industrial products, and the like.
Polypropylene resin has been used for higher-grade applications because it has improved properties such as mechanical strength and heat resistance by further mixing glass fiber or carbon fiber into a thermoplastic composite material. Yes. In particular, since glass fibers are inexpensive, composite materials reinforced with this are used in large quantities. On the other hand, carbon fiber has high strength but is too expensive, so its use is limited, and it has been used only in a small amount for special purposes as a composite material with ABS resin.
In recent years, in the industrial fields such as civil engineering / architecture, automobile industry, Shinkansen vehicle industry, aerospace industry, linear motor car, etc. In addition to lightening and energy saving, further improvements in performance such as corrosion resistance, electrical characteristics, heat resistance, heat dissipation, etc. are required.

本発明者らは、先の先行発明として特許文献1および特許文献2に示される様に、ポリエステル樹脂で末端にカルボキシル基を保有する中分子量体を反応押出法を採用し、エポキシ樹脂系結合剤(鎖延長剤とも称す)および触媒に依り、ポリエステル同士を反応させて数分以下の短時間で高分子量化する高生産性を実現し、コンパクトで安価な設備を使用する反応押出法による製造法を提供した。また、本発明者らは、特許文献3に示される様に、ポリエチレンテレフタレート(PETと略称)に回収炭素繊維・6mm長の15および30重量%をエポキシ樹脂系結合剤(鎖延長剤)および触媒の存在下に二軸押出機で反応押出法にて反応させて、回収炭素繊維強化・改質ぺっと樹脂とし、それらの機械的強度を引張強度で約2倍から2.4倍および曲げ弾性率で約4倍から6.8倍に大幅改善している。また、本発明者は、特許文献4では、ラージトウ(Large Tow:LTと略称)のPAN系レーヨンを原糸とした安価な炭素繊維チョップ(6mm長、米国ZOLTEK社製、50,000本束:50K−LT)を使用し、同様にして炭素繊維強化・改質ぺっと樹脂とし、15%および30%含有物の機械的強度を引張強度で約3倍から4倍および曲げ弾性率で約6倍から10倍に一層大幅に改善している。
これらの先行発明により、カルボキシル基を含有する熱可塑性樹脂と炭素繊維とは、極めて密着性が良くて機械的強度が大幅に改善出来ることが実証された。しかしながら、耐衝撃強度の改善は不充分であった。その原因は、従来の押出装置では、炭素繊維チョップ(6mm長)とペット樹脂の加熱、混練物として製造されたペレットにおいて、その繊維長か約0.3mm長に激減したからであった。また一方、ぺっと樹脂は、その比重1.35がポリプロピレンの比重0.90に比べると約4割も大きく重いので、高強度ではあるが軽量化には必ずしも適しないことが指摘された。
As disclosed in Patent Document 1 and Patent Document 2 as the previous prior invention, the present inventors adopted a reactive extrusion method for a middle molecular weight body having a carboxyl group at the terminal with a polyester resin, and an epoxy resin binder. (Also called a chain extender) and a catalyst, a reaction extrusion method that uses polyester and reacts with each other to achieve high productivity of high molecular weight in a short time of several minutes or less, using compact and inexpensive equipment Provided. In addition, as disclosed in Patent Document 3, the present inventors used polyethylene terephthalate (abbreviated as PET), 15% and 30% by weight of recovered carbon fiber, 6 mm long, and epoxy resin binder (chain extender) and catalyst. In the presence of, the reaction is carried out by a reactive extrusion method using a twin-screw extruder to obtain a recovered carbon fiber reinforced / modified pet resin, the mechanical strength of which is about 2 to 2.4 times the tensile strength and the flexural modulus. This is a significant improvement from about 4 times to 6.8 times. In addition, in the Patent Document 4, the present inventor has disclosed an inexpensive carbon fiber chop (6 mm length, manufactured by ZOLTEK, USA), bundle of 50,000 pieces of PAN-based rayon of large tow (abbreviated as “LT”): 50K-LT) and carbon fiber reinforced / modified pat resin in the same manner. Mechanical strength of 15% and 30% content is about 3 to 4 times in tensile strength and about 6 times in flexural modulus. It has improved significantly by 10 times.
By these prior inventions, it was demonstrated that the thermoplastic resin and carbon fiber containing a carboxyl group have extremely good adhesion and can greatly improve the mechanical strength. However, the improvement in impact strength was insufficient. The reason for this is that in the conventional extrusion apparatus, the fiber length of the carbon fiber chop (6 mm length) and pet resin heated and pellets produced as a kneaded product was drastically reduced to about 0.3 mm length. On the other hand, it has been pointed out that the pet resin has a specific gravity of 1.35, which is about 40% larger and heavier than the specific gravity of polypropylene of 0.90.

ポリプロピレンについては、表面処理されたガラス繊維とは親和性が高いのでガラス繊維強化ポリプロピレンが以前から使用されて来た。しかしながら、ガラス繊維強化ポリプロピレンをペレットにする際に押出装置のスクリューで繊維長が1/10程度(3mm長チョップが0.3mmの残存長)にまで破砕・短縮される。従って、本来期待された機械的物性が得られなかった。
本発明者らは、ポリプロピレンを不飽和有機酸などで改質し、高強度、軽量の炭素繊碓強化・改質ポリプロピレン樹脂を開発し、先に出願している。
For polypropylene, glass fiber reinforced polypropylene has been used for a long time because of its high affinity with surface-treated glass fibers. However, when glass fiber reinforced polypropylene is formed into pellets, the fiber length is crushed and shortened to about 1/10 (3 mm long chop is 0.3 mm remaining length) with the screw of the extruder. Therefore, the mechanical properties expected originally were not obtained.
The inventors of the present invention developed a high-strength, lightweight carbon fiber reinforced / modified polypropylene resin by modifying polypropylene with an unsaturated organic acid or the like, and filed an application earlier.

第3503952号公告Notice No. 3503952 国際公開WO2009/004745 A1International Publication WO2009 / 004745 A1 特開2015−007212号JP2015-007212A 特開2015−157939号JP2015-157939A

土木・建築、自動車産業、新幹線車両業、リニヤーモーターカー等の先端産業分野に於ける構成材料の機械的強度の改善による一層の軽量化・省エネルギー化をはじめ、耐食性、電導性、耐熱性、放熱性等の一層の性能改善をすることが求められている。本発明は、強度の不足している合成木材の強度改善による住宅屋外の構造物、高層建築の軽量化資材、沿岸高速道路の高強度・耐食資材、海洋構築物の耐食・高強度資材などの耐食資材、特に、自動車用途等の用途開発を目的とする。
現在急速に発展している産業用飛翔体(ドローン)の機体資材用として、発泡によりさらなる軽量で高強度の新素材が求められている。
Corrosion resistance, electrical conductivity, heat resistance, as well as further weight reduction and energy saving by improving mechanical strength of structural materials in advanced industrial fields such as civil engineering / architecture, automobile industry, Shinkansen vehicle industry, linear motor car, etc. There is a demand for further improvement in performance such as heat dissipation. The present invention relates to corrosion resistance of outdoor structures by reducing the strength of synthetic timber lacking strength, light weight materials for high-rise buildings, high strength / corrosion resistant materials for coastal highways, corrosion resistance / high strength materials for marine structures, etc. The purpose is to develop materials, especially automotive applications.
There is a demand for new materials that are lighter and have higher strength due to foaming for use as airframe materials for industrial flying bodies (drones) that are rapidly developing.

課題を解決しょうとするための手段Means to try to solve the problem

本発明は、軽量で強度の改善された炭素繊維強化・改質ポリプロピレン樹脂の発泡体の製造法を提供するものである。特に、従来のガス発泡体よりも強度が強いマイクロカブセル(MC)発泡体とする製造方法を提供するものである。は、  The present invention provides a method for producing a lightweight and improved carbon fiber reinforced / modified polypropylene resin foam. In particular, the present invention provides a method for producing a micro cab cell (MC) foam having a higher strength than conventional gas foams. Is

本発明は、更に詳しくは下記の製造方法を提供するものである。
本発明は、第1に(A)ポリプロピレン系樹脂100重量部、(B)ポリプロピレン系粉体樹脂1−2 0重量部、(C)有機不飽和酸化合物0.1〜3重量部、(D)有機過酸化物0.01〜0.50重量部、(E)展着剤0.01〜1重量部から成る組成物を、反応押出法によりポリプロピレンの融点以上の温度で反応させ、更にこの改質ポリプロピレンと炭素繊維チョップ(F)5−50重量部とを加熱溶融し、JIS−K7210法に準拠したMFR(230℃、荷重2.16Kg)を0.5〜10g/10分とした複合材(G)を、発泡剤(H)の存在下に加熱溶融させて成形することを特徴とする炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法を提供するものである。
More specifically, the present invention provides the following production method.
In the present invention, (A) 100 parts by weight of a polypropylene resin, (B) 20 parts by weight of a polypropylene powder resin, (C) 0.1 to 3 parts by weight of an organic unsaturated acid compound, (D A composition comprising 0.01) to 0.50 parts by weight of an organic peroxide and (E) 0.01 to 1 part by weight of a spreading agent is reacted at a temperature higher than the melting point of polypropylene by a reactive extrusion method. A modified polypropylene and 5-50 parts by weight of a carbon fiber chop (F) are heated and melted, and an MFR (230 ° C., load 2.16 kg) based on the JIS-K7210 method is 0.5 to 10 g / 10 min. The present invention provides a method for producing a foamed article of carbon fiber reinforced / modified polypropylene resin, characterized in that the material (G) is heated and melted in the presence of a foaming agent (H).

本発明は、第2に前記の発泡剤(H)が、マイクロカプセル、化学発泡剤またはそれを包含するマスターバッチ、または炭酸ガスを含有することを特徴とする炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法を提供するものである。  The second aspect of the present invention is a carbon fiber reinforced / modified polypropylene resin characterized in that the foaming agent (H) contains a microcapsule, a chemical foaming agent or a masterbatch containing the microcapsule, or carbon dioxide. The manufacturing method of a foaming molding is provided.

本発明は、第3に前記の複合材(G)に、エポキシ系結合剤および有機金属系触媒からなる増粘剤(I)を加えて発泡剤(H)の存在下に加熱溶融させて成形することを特徴とする炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法を提供するものである。In the present invention, thirdly, a thickener (I) composed of an epoxy binder and an organometallic catalyst is added to the composite material (G) and melted by heating in the presence of a foaming agent (H). The present invention provides a method for producing a foamed article of carbon fiber reinforced / modified polypropylene resin.

発明の効果Effect of the invention

本発明によれば、炭素繊維との密着性が画期的に改善された改質ポリプロピレン系樹脂と大量生産とコストダウンが進行しているラージトウ方式の炭素繊維(ZOLTEKチョップ)とから成る複合材を使用し、高速度に高強度軽量の発泡体を成形できる。本発明による特にMC発泡成形体は、軽量で、高強度で、リサイクルも可能であるので、当面は産業用飛翔体(ドローン)、更なる将来の自動車用途の巨大市場に使用されるものと期待される。耐食性、耐熱性、伝熱性、導電性、耐油性、耐候性等の諸物性にも優れる。  According to the present invention, a composite material comprising a modified polypropylene resin whose adhesion to carbon fiber has been dramatically improved and a large tow type carbon fiber (ZOLTEK chop) whose mass production and cost reduction are progressing. Can be used to mold a foam with high strength and light weight at a high speed. In particular, the MC foam molded article according to the present invention is lightweight, high-strength, and can be recycled, so it is expected that it will be used for industrial vehicles (drone) and a huge market for future automobile applications for the time being. Is done. Excellent physical properties such as corrosion resistance, heat resistance, heat transfer, conductivity, oil resistance, and weather resistance.

以下、本発明について詳細に説明する。
[(A)成分のポリプロピレン系樹脂]
本発明における主原料としての(A)成分のポリプロピレン系樹脂は、ポリプロピレン・ホモポリマー、ポリプロピレン・エチレンブロックコポリマー、ポリプロピレン・エチレンランダムコポリマー、ポリプロピレン・エチレンスーパーランダムコポリマーまたはそれらの回収された成形品の再循環物を使用する事ができる。強度の大きい炭素繊維強化複合材を望む場合は、ポリプロピレン・ホモポリマーを選択する。耐衝撃強度の大きい炭素繊維強化複合材を望む場合は、ポリプロピレン・エチレンブロックコポリマーを選択する。本発明においては、D成分の有機過酸化物の触媒作用により、分子切断による分子量低下が起るので、主原料としては分子量が大きくMIの小さいグレードを選択することが好ましい。即ち、JIS−K7210法に準拠したMI(230℃、荷重2.16Kg)が0.5〜10g/10分であることが好ましい。中空成形グレードが好ましい、主原料につき、その配合量は、100重量部とする。
Hereinafter, the present invention will be described in detail.
[(A) component polypropylene resin]
The polypropylene resin of the component (A) as a main raw material in the present invention is a polypropylene homopolymer, a polypropylene / ethylene block copolymer, a polypropylene / ethylene random copolymer, a polypropylene / ethylene superrandom copolymer, or a recycled product of a recovered molded product thereof. Circulating products can be used. If a strong carbon fiber reinforced composite is desired, a polypropylene homopolymer is selected. When a carbon fiber reinforced composite material having high impact strength is desired, a polypropylene / ethylene block copolymer is selected. In the present invention, since the molecular weight is lowered by molecular cleavage due to the catalytic action of the organic peroxide of component D, it is preferable to select a grade having a large molecular weight and a small MI as the main raw material. That is, it is preferable that MI (230 degreeC, load 2.16Kg) based on JIS-K7210 method is 0.5-10 g / 10min. A hollow molding grade is preferable, and the blending amount of the main raw material is 100 parts by weight.

[(B)成分のポリプロピレン系粉体樹脂]
(B)成分は、微量の(C)成分の有機不飽和酸化合物0.1〜3重量部および(D)成分の有機過酸化物0.01〜0.50重量部を均一分散させる助材としての役割を持つ。ポリプロピレン・ホモポリマー、ポリプロピレン・エチレンブロックコポリマー、ポリプロピレン・エチレンランダムコポリマー、ポリプロピレン・エチレンスーパーランダムコポリマーまたはそれらの回収された成形品の再循環物を粉体状態で使用する事ができる。MIも、0.5〜10g/10分であることが好ましい。助材につき、その配合量は、1−2 0重量部とする。
[(B) Component Polypropylene Powder Resin]
Component (B) is an auxiliary that uniformly disperses 0.1 to 3 parts by weight of the organic unsaturated acid compound of component (C) and 0.01 to 0.50 parts by weight of organic peroxide of component (D). As a role. Polypropylene homopolymer, polypropylene / ethylene block copolymer, polypropylene / ethylene random copolymer, polypropylene / ethylene super random copolymer, or a recycled product of these recovered molded articles can be used in a powder state. MI is also preferably 0.5 to 10 g / 10 min. The amount of the auxiliary material is 1 to 20 parts by weight.

[(C)成分の有機不飽和酸化合物]
(C)成分は、無水マレイン酸およびその誘導体を使用できるが、無水マレイン酸であることが好ましい。その役割は、(D)成分の有機過酸化物がポリプロピレンを攻撃して分子鎖にラジカルを発生させた時に反応して、ポリプロピレンにカルボキシル基を賦与して止まり、本来無極性のポリプロピレンを改質ことにある。その配合量は、0.1〜3重量部であり、0.2〜1重量部が好ましい。0.1重量部以下では、ポリプロピレン系樹脂の改質効果が不充分である。3重量部を越えると反応押出時に未反応物が残留すると共に揮発して人体への障害を引き起こす恐れがあるからである。
[Organic unsaturated acid compound of component (C)]
As the component (C), maleic anhydride and derivatives thereof can be used, but maleic anhydride is preferable. Its role is to react when the organic peroxide of component (D) attacks the polypropylene to generate radicals in the molecular chain, and stops by giving a carboxyl group to the polypropylene, thereby modifying the originally nonpolar polypropylene. There is. The amount is 0.1 to 3 parts by weight, preferably 0.2 to 1 part by weight. If the amount is 0.1 parts by weight or less, the modification effect of the polypropylene resin is insufficient. If the amount exceeds 3 parts by weight, unreacted substances remain during reaction extrusion and volatilize to cause damage to the human body.

[(D)成分の有機過酸化物]
(D)成分の有機過酸化物は、樹脂のメルトフロー改質剤、マレイン化剤およびグラフト化剤として多種類の物、例えば日油(株)のパーヘキサ・シリーズ(HC、C、22、25Bなど)、パーブチル・シリーズ(C、D、Pなど)、パークミル・シリーズ(Dなど)が使用できる。また、有機過酸化物の保管安全対策のために、効力が40%のマスターバッチをより好適に使用することができる。市販品のジクミルジパーオキサイト(Aldrich製)を好適に使用することができる。配合量は、0.01〜0.50重量部である。0.01重量部以下では、ポリプロピレン系樹脂の改質効果が不充分である。0.50重量部以上では、ポリプロピレン系樹脂の低分子量化が過剰に進行してしまう。
[Organic peroxide of component (D)]
The component (D) organic peroxide can be used as a resin melt flow modifier, maleating agent, and grafting agent, such as Perhexa Series (HC, C, 22, 25B) from NOF Corporation. Etc.), perbutyl series (C, D, P etc.), park mill series (D etc.) can be used. In addition, a master batch having an efficacy of 40% can be more suitably used for storage safety measures for organic peroxides. Commercially available dicumyl diperoxide (manufactured by Aldrich) can be suitably used. The amount is 0.01 to 0.50 parts by weight. If the amount is 0.01 parts by weight or less, the modification effect of the polypropylene resin is insufficient. If it is 0.50 part by weight or more, the lowering of the molecular weight of the polypropylene resin proceeds excessively.

[(E)成分の展着剤]
(E)成分の展着剤の役割は、微量の(C)成分の有機不飽和酸化合物の微粉0.1〜3重量部および(D)成分の有機過酸化物の微粉0.01〜0.50重量部を(B)成分のポリプロピレン系粉体樹脂の表面に均一付着させる役割を持つ。流動パラフィンが好適である。パラフィンオイル、石油ワックスなども使用できる。配合量は、0.01〜1重量部である。
[(E) Component spreading agent]
The component (E) has a role of 0.1 to 3 parts by weight of a fine powder of the organic unsaturated acid compound (C) and a fine powder of the organic peroxide 0.01 to 0 as the component (D). .50 parts by weight have a role of uniformly adhering to the surface of the component (B) polypropylene powder resin. Liquid paraffin is preferred. Paraffin oil and petroleum wax can also be used. A compounding quantity is 0.01-1 weight part.

[(F)成分の炭素繊維]
本発明における(F)成分の炭素繊維は、高強度の工業製品を使用する事が好ましい。最優先候補としては、米国ZOLTEK社のラージトウ(Large Tow: フィラメント数50,000本/束)を高速焼成して量産できる安価な炭素繊維チョップ(米国・ZOLTEK社のLT‐レーヨン系炭素繊維「Panex35」6mm長)が特に好ましい。第2優先としては、東レ(株)の航空機機体用の高性能PAN系炭素繊維「トレカ」T500、T600、T700シリーズも使用できる。また、産業用途のカットファイバーのT008シリーズ、T010シリーズ、TS12−006(カット長 3−12mm)も原料として使用できる。しかしながら、このPAN系炭素繊維(Regular Tow: フィラメント数12,000−24,000本/束)は高性能ではあるが高価すぎるので、その製造法に依り将来のコストダウンが困難である。一方、「トレカ」ミルドファイバーのMLDシリーズ(繊維長 30−150μm)なども原料として使用できるが、複合材の強度は小さい。他方、一般的にこれらの炭素繊維工業製品は、カルボキシル基の含有量が比較的多く存在する。
第3優先として、(株)クレハおよび大阪ガスケミカル(株)のピッチ系炭素繊維の工業製品も使用することが出来る。これらは比較的に官能基の含有量が多いが、強度がかなり小さい。成形品の強度に等方性の利点を持つので、精密成形分野では、好ましく使用できる。
代表的な工業製品の炭素繊維の仕様を、ガラス繊維と比較して表1に示した。炭素繊維は、大量生産でコストダウン出来れば、安価なガラス繊維に比べても軽量化、高強度、リサイクル性の長所が大いに発揮出来るものと想定できる。
[Carbon fiber of component (F)]
It is preferable to use a high-strength industrial product as the (F) component carbon fiber in the present invention. As a top priority candidate, an inexpensive carbon fiber chop that can be mass-produced by high-speed firing of large tow (Large Tow: 50,000 filaments / bundle) manufactured by ZOLTEK, USA (LT-rayon carbon fiber “Panex35, manufactured by ZOLTEK, USA) "6 mm long) is particularly preferred. As a second priority, Toray Corp.'s high-performance PAN-based carbon fiber “Torayca” T500, T600, and T700 series for aircraft aircraft can also be used. Moreover, T008 series, T010 series, and TS12-006 (cut length 3-12 mm) of cut fibers for industrial use can be used as raw materials. However, this PAN-based carbon fiber (Regular Tow: 12,000-24,000 filaments / bundle) is high in performance but too expensive, and it is difficult to reduce the cost in the future depending on the production method. On the other hand, “Torayca” milled fiber MLD series (fiber length 30-150 μm) can also be used as a raw material, but the strength of the composite material is small. On the other hand, these carbon fiber industrial products generally have a relatively high carboxyl group content.
As a third priority, pitch-based carbon fiber industrial products of Kureha Co., Ltd. and Osaka Gas Chemical Co., Ltd. can also be used. These have a relatively high content of functional groups, but have a considerably low strength. Since the strength of the molded product has an isotropic advantage, it can be preferably used in the precision molding field.
Table 1 shows the specifications of carbon fibers of typical industrial products in comparison with glass fibers. If carbon fiber can be reduced in cost by mass production, it can be assumed that the advantages of weight reduction, high strength, and recyclability can be greatly exhibited compared to cheap glass fiber.

Figure 2017186492
Figure 2017186492

[(H)成分の発泡剤]
発泡剤(H)は、マイクロカプセル(MC)、化学発泡剤またはそれを包含するマスターバッチ、または炭酸ガス(超臨界ガスを含む)を使用する事ができる。
マイクロカプセルは、徳山積水工業(株)のアドバンセルシリーズ(例えば、P501E2など)を使用する事ができる。また、松本油脂製薬(株)のマツモトマイクロスフェアー:F、FNシリーズ(例えば、F−190Dなど)を使用する事ができる。
[(H) component foaming agent]
As the foaming agent (H), a microcapsule (MC), a chemical foaming agent or a masterbatch including the same, or carbon dioxide gas (including supercritical gas) can be used.
As the microcapsules, Tokuyama Sekisui Industry Co., Ltd. Advancel series (for example, P501E2 etc.) can be used. Matsumoto Microspheres: Matsumoto Yushi Seiyaku Co., Ltd .: F, FN series (for example, F-190D etc.) can be used.

[(I)成文の増粘剤]
本発明の増粘剤は、結合剤(A剤)と結合反応触媒(B剤)とから成る、A剤の結合剤は、重量平均分子量が1,000〜300,000であることが好ましく、該分子内に2〜100個のエポキシ基を含有する高分子型多官能エポキシ化合物を単独または2種類以上の混合体として使用することができる。高分子量の骨格を形成する樹脂にエポキシ環を含むグリシジル基をペンダント状に吊下げたものや分子内にエポキシ基を含むものの市販品、例えば、日油(株)の「マープルーフ」シリーズ、BASFジャパン(株)の「ジョンクリルADR」シリーズを使用することができる。
多官能エポキシ化合物の配合量は、(A)成分のポリエステル100重量部に対して0.1〜5重量部である。それは、((B)成分の増粘効果のある炭素繊維の種類と添加量に依っても大幅に異なる。一般的には、0.1重量部未満では分子量と溶融粘度の増加効果が不充分のため、成形加工性も不充分で成形品の基本物性や機械的特性が劣ることになる。2重量部を越えると逆に成形加工性が悪化し、樹脂の黄変・着色とゲルやフィッシュアイ(FE)が副生したりする。
[(I) Sungbun thickener]
The thickener of the present invention comprises a binder (agent A) and a binding reaction catalyst (agent B). The binder of agent A preferably has a weight average molecular weight of 1,000 to 300,000, The polymer polyfunctional epoxy compound containing 2 to 100 epoxy groups in the molecule can be used alone or as a mixture of two or more. A product in which a glycidyl group containing an epoxy ring is suspended in a resin that forms a high molecular weight skeleton in a pendant form, or a product containing an epoxy group in the molecule, such as NOF's "Murproof" series, BASF Japan Co., Ltd.'s “John Krill ADR” series can be used.
The compounding quantity of a polyfunctional epoxy compound is 0.1-5 weight part with respect to 100 weight part of polyester of (A) component. It varies greatly depending on the type and amount of carbon fiber that has a thickening effect on component (B) .In general, the effect of increasing molecular weight and melt viscosity is insufficient at less than 0.1 part by weight. Therefore, the molding processability is also insufficient and the basic physical properties and mechanical properties of the molded product are inferior.On the other hand, if it exceeds 2 parts by weight, the molding processability deteriorates, and the yellowing / coloring of the resin and the gel or fish Eye (FE) is a by-product.

[B剤の結合反応触媒]
B剤の結合反応触媒は、(1)アルカリ金属の有機酸塩、炭酸塩および炭酸水素塩、(2)アルカリ土類金属の有機酸塩、炭酸塩および炭酸水素塩からなる群から選ばれた少なくとも一種類以上を含有する触媒である。有機酸塩としては、カルボン酸塩、酢酸塩等が使用できるが、カルボン酸塩の中で特にステアリン酸塩が好ましい。カルボン酸の金属塩を形成する金属としては、リチウム、ナトリウムおよびカリウムのようなアルカリ金属;マグネシウム、カルシウム、ストロンチウムおよびバリウムのようなアルカリ土類金属を使用できる。
この結合反応触媒としてのカルボン酸塩の配合量は(A)成分のポリプロピレン100重量部に対して0.01〜1重量部である。特に、0.1〜0.5重量部であることが好ましい。0.01重量部未満では触媒効果が小さく、共重合反応が未達となって分子量が充分増大しないことがある。1重量部を超えると局部反応によるゲル生成や加水分解の促進による溶融粘度の急上昇による押出成形機内のトラブルなどを惹起させる。
[B reaction catalyst for agent B]
The binding reaction catalyst for agent B was selected from the group consisting of (1) alkali metal organic acid salts, carbonates and hydrogen carbonates, and (2) alkaline earth metal organic acid salts, carbonates and hydrogen carbonates. It is a catalyst containing at least one kind. As the organic acid salt, carboxylate, acetate and the like can be used, but stearates are particularly preferable among the carboxylates. The metal that forms the metal salt of the carboxylic acid can be an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as magnesium, calcium, strontium and barium.
The compounding amount of the carboxylate as the binding reaction catalyst is 0.01 to 1 part by weight with respect to 100 parts by weight of the component (A) polypropylene. In particular, the amount is preferably 0.1 to 0.5 part by weight. If the amount is less than 0.01 parts by weight, the catalytic effect is small, the copolymerization reaction is not achieved, and the molecular weight may not be sufficiently increased. If the amount exceeds 1 part by weight, problems such as gel generation due to local reactions and troubles in the extruder due to rapid increase in melt viscosity due to acceleration of hydrolysis are caused.

次に本発明を実施例に基づいて詳細に説明する。本発明のポリプロピレンおよび炭素繊維強化・改質ポリプロピレン樹脂についての評価方法は以下の通りである。
(1)メルトインデックス(MI)の測定法
JIS K7210(ISO1133、ASTM D1238)の条件に従い、温度230℃、荷重2.16kgの条件で測定した。但し、樹脂は予め80℃×2時間、熱風乾燥または真空乾燥したものを使用した。または、メーカーのカタログ値を採用した。
(2)比重の測定法
JIS K7112のA法(水中置換法)に従い、樹脂ペレットまたは成形体の小片についてメタノールを液体として測定した。または、JIS K7222の寸法測定法でも測定した。
(3)ペレットの機械的強度の測定法
▲1▼試作ペレットが1Kg以下の少量の場合は小型試験片を作成して実施した。
例えば、住友重機械工業(株)製の射出成形機SE18DUZ(型締め圧18トン、スクリュー径16mm)を使用し、成形温度270℃、金型温度35℃、冷却時間15−20秒の条件で成形した。
試験片の形状: 引張試験片 JIS K7162 5A型(厚み2mm)
曲げ試験片 短冊型 80mm×10mm(厚み4mm)
▲2▼試作ペレットが多量の場合(3Kg以上)は多目的試験片を作成して実施した。
試験片の形状:ISO20753、JIS K7139 A1型
全長さ120mm、厚み4mm、チャック部幅20mm、くびれ部幅1 0mm、同その長さ80mm(Zランナー方式)
引張試験:引張強度は、試験速度2mm/分にて実施し、3−5点の平均値で評価した。ヤング率は、最大荷重の25%と75%の直線回帰により算出した(JIS K7073ほか)。
曲げ試験:曲げ強度は、3点曲げを試験速度5mm/分にて実施し、3−5点の平均値で評価した。
曲げ弾性率は、最大荷重の25%と75%の直線回帰により算出した(JIS K7074ほか)。
(4)射出成形体の機械的強度の測定法
ペレットの射出成形体の機械的強度の測定法に準じて、成形体の各箇所を切抜いて実施した。
(5)発泡体の物性の測定法
発泡成形体から幅10mmに切出して測定した。
Next, the present invention will be described in detail based on examples. Evaluation methods for the polypropylene and the carbon fiber reinforced / modified polypropylene resin of the present invention are as follows.
(1) Measurement method of melt index (MI) The melt index (MI) was measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg according to the conditions of JIS K7210 (ISO 1133, ASTM D1238). However, the resin used was previously dried in hot air or vacuum at 80 ° C. for 2 hours. Or, the manufacturer's catalog value was adopted.
(2) Specific gravity measurement method According to JIS K7112 method A (submerged in water method), resin pellets or small pieces of molded articles were measured as methanol as a liquid. Or it measured also by the dimension measuring method of JISK7222.
(3) Measuring method of mechanical strength of pellets {circle around (1)} When the prototype pellets were a small amount of 1 kg or less, a small test piece was prepared and carried out.
For example, using an injection molding machine SE18DUZ manufactured by Sumitomo Heavy Industries, Ltd. (with a clamping pressure of 18 tons and a screw diameter of 16 mm), the molding temperature is 270 ° C., the mold temperature is 35 ° C., and the cooling time is 15-20 seconds. Molded.
Shape of test piece: Tensile test piece JIS K7162 5A type (thickness 2 mm)
Bending specimen strip type 80mm x 10mm (thickness 4mm)
(2) When a large amount of prototype pellets (3 kg or more), a multi-purpose test piece was prepared and carried out.
Shape of test piece: ISO20753, JIS K7139 A1 type
Length 120mm, thickness 4mm, chuck width 20mm, constriction width 10mm, length 80mm (Z runner method)
Tensile test: The tensile strength was measured at a test speed of 2 mm / min, and evaluated by an average value of 3-5 points. Young's modulus was calculated by linear regression of 25% and 75% of the maximum load (JIS K7073 and others).
Bending test: The bending strength was evaluated by an average value of 3 to 5 points by carrying out 3 point bending at a test speed of 5 mm / min.
The flexural modulus was calculated by linear regression of 25% and 75% of the maximum load (JIS K7074 et al.).
(4) Measuring method of mechanical strength of injection-molded body According to the measuring method of mechanical strength of the injection-molded body of pellets, each part of the molded body was cut out.
(5) Measuring method of physical properties of foam The measurement was performed by cutting out from the foamed molded product to a width of 10 mm.

製造例Production example

[改質ポリプロピレン系樹脂(以下PPと略称)P1、P2、P3およびP4の製造例]
[製造例1]改質PPのP1; A成分としてポリプロピレン・ホモポリマーのペレット(中空グレード、MI 0.5:曲げ弾性率1.8GPa、シャルピー衝撃強度9.0KJ/m)100重量部、B成分としてポリプロピレン・粉体(サンアロマー(株)製、MI 0.3)20重量部、C成分として無水マレイン酸(試薬1級)1重量部、D成分としてジクミルパーオキサイド(ALDLICH社製)0.100重量部、E成分として流動パラフィン0.2重量部を使用した。
まず、ポリプロピレン・粉体Bをタンブラーに投入し、ついで流動パラフィンEを追加して5分間攪拌してから微粉砕したジクミルパーオキサイドDを入れて更に5分間攪拌した。次いで、やはり微粉砕した無水マレイン酸Cを入れて更に5分間攪拌した。最後に、ポリプロピレン・ホモポリマーのペレットAを投入し、10分間攪拌することにより、均一混合した。
東芝機械(株)製の単軸押出機(口径65mm、L/D30、改造・1ベント式、改造・圧縮式スクリュー)を使用し、この押出機の7ブロックから成るシリンダーとダイスの設定温度を170−280℃とした前記のA、B、C、DおよびE成分の混合組成物を原料供給ホッパーに投入し、容量式計量フィーダーで計量しながら押出して反応押出を行うことにより、改質ポリプロピレン樹脂P1の製造を実施した。樹脂温度244℃、樹脂圧力10MPaであった。
ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッターで切断して半透明白色樹脂ペレットP1約20Kgを製造した。金型出口から水盤中へのストランドは弓なり状であり溶融張力が非常に低下していた。そのペレット形状は、円柱状で直径約2.5mm×長さ約3mmであった。
[Production Examples of Modified Polypropylene Resin (hereinafter referred to as PP) P1, P2, P3 and P4]
[Production Example 1] P1 of modified PP; 100 parts by weight of polypropylene homopolymer pellets (hollow grade, MI 0.5: flexural modulus 1.8 GPa, Charpy impact strength 9.0 KJ / m 2 ) as component A; B component 20 parts by weight of polypropylene powder (manufactured by Sun Allomer Co., Ltd., MI 0.3), C component 1 part by weight of maleic anhydride (reagent grade 1), D component dicumyl peroxide (manufactured by ALDICH) 0.100 parts by weight and 0.2 parts by weight of liquid paraffin as E component were used.
First, polypropylene powder P was charged into a tumbler, and then liquid paraffin E was added and stirred for 5 minutes, and then finely pulverized dicumyl peroxide D was added and stirred for another 5 minutes. Then, finely pulverized maleic anhydride C was added and stirred for another 5 minutes. Finally, the polypropylene homopolymer pellet A was added and stirred for 10 minutes for uniform mixing.
Using a single-screw extruder (65 mm diameter, L / D30, modified / single vent type, modified / compressed screw) manufactured by Toshiba Machine Co., Ltd., set the cylinder and die set temperature consisting of 7 blocks of this extruder. The modified polypropylene was prepared by putting the mixed composition of components A, B, C, D, and E at 170-280 ° C. into a raw material supply hopper and extruding it while measuring with a capacity-type measuring feeder to carry out reactive extrusion. Production of Resin P1 was carried out. The resin temperature was 244 ° C. and the resin pressure was 10 MPa.
The strand was continuously extruded into water from an obliquely downward nozzle having a diameter of 3 mm and cut with a rotary cutter to produce about 20 kg of translucent white resin pellets P1. The strand from the mold outlet to the water basin was bow-shaped and the melt tension was very low. The pellet shape was cylindrical and had a diameter of about 2.5 mm and a length of about 3 mm.

[製造例2]改質PPのP2; A成分のポリプロピレン・ホモポリマーのペレット、B成分のポリプロピレン・粉体、C成分の無水マレイン酸およびE成分の流動パラフィンは、同一物で同一比率であるが、D成分のジクミルパーオキサイドの比率のみを0.050重量部と半減させて、製造例1と同様条件にて改質ポリプロピレン樹脂P2の製造を実施した。樹脂温度241℃、樹脂圧力16MPaであった。ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッターで切断して半透明白色樹脂ペレットP2約20Kgを製造した。金型出口から水盤中へのストランドはほぼ直線状であり溶融張力がかなり保持されていた。そのペレット形状は、円柱状で直径約2.5mm×長さ約3mmであった。  [Production Example 2] P2 of modified PP; A component polypropylene homopolymer pellets, B component polypropylene powder, C component maleic anhydride and E component liquid paraffin are the same and in the same ratio. However, the modified polypropylene resin P2 was produced under the same conditions as in Production Example 1 by reducing only the ratio of the D component dicumyl peroxide to 0.050 parts by weight. The resin temperature was 241 ° C. and the resin pressure was 16 MPa. The strand was continuously extruded into water from a diagonally downward nozzle having a diameter of 3 mm and cut with a rotary cutter to produce about 20 kg of translucent white resin pellets P2. The strand from the mold outlet to the basin was almost linear, and the melt tension was fairly maintained. The pellet shape was cylindrical and had a diameter of about 2.5 mm and a length of about 3 mm.

[製造例3]改質PPのP3; A成分のポリプロピレン・ホモポリマーのペレット、B成分のポリプロピレン・粉体、およびE成分の流動パラフィンは、同一物で同一比率であるが、C成分の無水マレイン酸の比率を2重量部に倍増させ、またD成分のジクミルパーオキサイドの比率を0.075重量部と製造例1および2の中間とし、製造例1と同様条件にて改質ポリプロピレン樹脂P3の製造を実施した樹脂温度238℃、樹脂圧力14MPaであったストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ−で切断して半透明白色樹脂ペレットP3約20Kgを製造した。金型出口から水盤中へのストランドはやや弓なり状であり溶融張力がかなり低下したが、水冷されたストランドは未改質のポリプロピレンとは異なり、無水マレイン酸の倍増添加で保水性が著しく改善された。そのペレット形状は、円柱状で直径約2.5mm×長さ約3mmであった。  [Production Example 3] P3 of modified PP; A component polypropylene homopolymer pellet, B component polypropylene powder, and E component liquid paraffin are the same and in the same ratio, but the C component is anhydrous. The ratio of maleic acid is doubled to 2 parts by weight, and the ratio of the D component dicumyl peroxide is 0.075 parts by weight, intermediate between Production Examples 1 and 2, and modified polypropylene resin under the same conditions as in Production Example 1. The strand having a resin temperature of 238 ° C. and a resin pressure of 14 MPa was manufactured by continuously extruding into a water from a diagonally downward nozzle having a diameter of 3 mm, and cut with a rotary cutter to obtain a translucent white resin pellet P3 of about 20 kg. Manufactured. The strand from the mold outlet to the basin was somewhat bowed and melt tension was considerably reduced, but the water-cooled strand was significantly improved by double addition of maleic anhydride, unlike unmodified polypropylene. It was. The pellet shape was cylindrical and had a diameter of about 2.5 mm and a length of about 3 mm.

[製造例4]改質PPのP4; A成分としてポリプロピレン・ブロックコポリマーのペレット(中空グレード、MI 0.7: 曲げ弾性率1.1GPa、シャルピー衝撃強度91KJ/m)100重量部、B成分としてポリプロピレン・粉体(サンアロマー(株)製、MI 0.3)20重量部、C成分として無水マレイン酸(試薬1級)2重量部、D成分としてジクミルパーオキサイド0.075重量部、E成分として流動パラフィン0.2重量部を使用した。
製造例1と同様条件にて改質ポリプロピレン樹脂P4の製造を実施した。樹脂温度238℃、樹脂圧力16MPaであった。ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ−で切断して半透明白色樹脂ペレットP4約20Kgを製造した。金型出口から水盤中へのストランドはやや弓なり状であり溶融張力がかなり低下したが、水冷されたストランドは未改質のポリプロピレンとは異なり、無水マレイン酸の倍増添加に依り保水性が著しく改善された。そのペレット形状は、円柱状で直径約2.5mm×長さ約3mmであった。
[Production Example 4] P4 of modified PP; Polypropylene block copolymer pellets as component A (hollow grade, MI 0.7: flexural modulus 1.1 GPa, Charpy impact strength 91 KJ / m 2 ) 100 parts by weight, component B 20 parts by weight of polypropylene powder (manufactured by Sun Allomer Co., Ltd., MI 0.3), 2 parts by weight of maleic anhydride (reagent grade 1) as C component, 0.075 parts by weight of dicumyl peroxide as D component, E As a component, 0.2 parts by weight of liquid paraffin was used.
The modified polypropylene resin P4 was produced under the same conditions as in Production Example 1. The resin temperature was 238 ° C. and the resin pressure was 16 MPa. The strand was continuously extruded into water from an obliquely downward nozzle having a diameter of 3 mm and cut with a rotary cutter to produce about 20 kg of translucent white resin pellets P4. The strand from the mold outlet to the basin is slightly bowed and melt tension is considerably reduced, but the water-cooled strand is significantly improved in water-retaining properties due to the double addition of maleic anhydride, unlike unmodified polypropylene. It was done. The pellet shape was cylindrical and had a diameter of about 2.5 mm and a length of about 3 mm.

[改質PPのP1−P4にZOLTEK製炭素繊維チョップ(6mm長)の30%をサイドフィード方式で混合した短繊維ペレットNZP1−4の製造と物性評価]
この旧来法では、炭素繊維チョップ(6mm長)を使用しても、残存繊維長が0.3mmの短繊維ペレットしか製造できない。
[製造例5−8]短繊維ペレットNZP1−4; 日立造船(株)製の同方向2軸押出機(口径35mm、L/D30:サイドフィーダー付きに改造)を使用し、この押出機の8ブロックから成るシリンダ−とダイスの設定温度を150−260℃およびスクリュー回転数150rpmとした。
容量式計量フィーダーを使用し、第1ホッパーから改質ポリプロピレン系樹脂ペレットP1−P4をそれぞれのケースで押出し、また第2ホッパーからZOLTEK炭素繊維チョップを炭素繊維の含有量が30%になる速度で連続的にサイドフィードした。
ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ−で切断して黒色樹脂ペレットをそれぞれのケース約5Kgを製造した。金型出口から水盤中へのストランドはほぼ直線状であり溶融張力が増加していた。その形状は、円柱状で直径約3.4mm×長さ約6mmであった。また、短繊維ペレットNZP1−4のMFR(230℃、荷重2.16Kg)は、1.1−4.8g/10分であった。いずれも、押出成形に適している。
[射出成形片の成形例]この炭素繊維強化・改質ペット樹脂の黒色ペレットNZP1−4を80℃2時間熱風乾燥し、日精樹脂工業(株)製のハイブリッド式射出成形機FNZ140(型締め圧140トン、スクリュー径40mm)を使用し、成形温度230℃、金型温度67−68℃、射出圧力30−40MPa、射出速度160mm/s、スクリュー回転数80rpmおよび冷却時間15秒の条件にて、下記の射出成形体を成形した。
多目的試験片の形状:ISO 7139、JIS K7139 A1型
全長さ120mm、厚み4mm、チャック部の幅20mm、くびれ部の幅10mm、
同その長さ80mm(Zランナー方式)
[Production and property evaluation of short fiber pellet NZP1-4 in which 30% of ZOLTEK carbon fiber chop (6 mm length) is mixed with P1-P4 of modified PP by side feed method]
In this conventional method, even if a carbon fiber chop (6 mm length) is used, only short fiber pellets having a remaining fiber length of 0.3 mm can be produced.
[Production Example 5-8] Short fiber pellets NZP1-4; The same direction twin screw extruder (caliber 35 mm, L / D30: modified with side feeder) manufactured by Hitachi Zosen Co., Ltd. The set temperature of the cylinder and the die comprising the block was 150 to 260 ° C. and the screw rotation speed was 150 rpm.
Using a capacity-type weighing feeder, the modified polypropylene resin pellets P1-P4 were extruded from the first hopper in each case, and the ZOLTEK carbon fiber chop was extruded from the second hopper at a rate that the carbon fiber content was 30%. Side fed continuously.
The strand was continuously extruded into water from a diagonally downward nozzle having a diameter of 3 mm and cut with a rotary cutter to produce about 5 kg of black resin pellets in each case. The strand from the mold outlet to the basin was almost linear, and the melt tension increased. The shape was cylindrical and the diameter was about 3.4 mm × length was about 6 mm. Moreover, MFR (230 degreeC, load 2.16Kg) of the short fiber pellet NZP1-4 was 1.1-4.8g / 10min. Both are suitable for extrusion molding.
[Example of Injection Molding Piece] This carbon fiber reinforced / modified pet resin black pellet NZP1-4 was dried with hot air at 80 ° C. for 2 hours to produce a hybrid injection molding machine FNZ140 (mold clamping pressure) manufactured by Nissei Plastic Industry Co., Ltd. 140 tons, screw diameter 40 mm), molding temperature 230 ° C., mold temperature 67-68 ° C., injection pressure 30-40 MPa, injection speed 160 mm / s, screw rotation speed 80 rpm and cooling time 15 seconds, The following injection molded body was molded.
Multi-purpose test piece shape: ISO 7139, JIS K7139 A1 type, total length 120 mm, thickness 4 mm, chuck portion width 20 mm, constriction portion width 10 mm,
Same length 80mm (Z runner method)

これらのZOITEK炭素繊維(CF30%)強化・改質ペット樹脂ペレット4種は、バリの副生が少くて良好な射出成型性を示した。試験片の表面は平滑であった。引張速度2mm/分および曲げ速度5mm/分での機械的強度の試験等を実施した。このペレットの物性値を表4に示した。
本製造例4件は、ZOLTEK30%のサイド・フィード方式であり、射出成形片は炭素繊維が整列しやすいため、機械的強度が比較的大きく観測された。
製造例5のNZP1は、更に高い最高の機械的強度値を実証した。即ち、NZP1の引張強度94MPaは、比較例3のブレンドの2.4倍、比較例2のポリプロピレン・ホモポリマーの3.1倍である。また、曲げ弾性率15.8GPaは、比較例2のブレンドの1.1倍、比較例1のポリプロピレン・ホモポリマーの13.2倍である。また、その他のNZP2、NZP3およびNZP4も、比較例2のブレンドと比較例1のポリプロピレン・ホモポリマーに比べて優れた物性を示した
These four kinds of ZOITEK carbon fiber (CF 30%) reinforced / modified pet resin pellets showed good injection moldability with few by-products of burrs. The surface of the test piece was smooth. A test of mechanical strength at a tensile speed of 2 mm / min and a bending speed of 5 mm / min was performed. Table 4 shows the physical property values of the pellets.
The four production examples were a ZOLTEK 30% side-feed method, and the carbon fiber was easily aligned in the injection molded piece, so that a relatively large mechanical strength was observed.
NZP1 of Preparation Example 5 demonstrated a higher maximum mechanical strength value. That is, the tensile strength of 94 MPa of NZP1 is 2.4 times that of the blend of Comparative Example 3 and 3.1 times that of the polypropylene homopolymer of Comparative Example 2. The flexural modulus 15.8 GPa is 1.1 times that of the blend of Comparative Example 2 and 13.2 times that of the polypropylene homopolymer of Comparative Example 1. The other NZP2, NZP3 and NZP4 also showed superior physical properties compared to the blend of Comparative Example 2 and the polypropylene homopolymer of Comparative Example 1.

本発明の実施形態におけるシャルピー衝撃試験片の破断面のSEM写真(700倍)である。左側のAは、製造例5の炭素繊維強化・改質ポリプロピレン(NZP1)のシャルピー衝撃試験片の破断面を示す。炭素繊維と改質ポリプロピレンの密着性が良く、炭素繊維の切断が多い。右側のBは、比較例2の炭素繊維とポリプロピレンのブレンドのシャルピー衝撃試験片の破断面を示す。炭素繊維とポリプロピレンの密着性が悪く、炭素繊維がポリプロピレンから素抜けしている。It is a SEM photograph (700 times) of a fracture surface of a Charpy impact test piece in an embodiment of the present invention. A on the left side shows a fracture surface of a Charpy impact test piece of carbon fiber reinforced / modified polypropylene (NZP1) of Production Example 5. The adhesion between the carbon fiber and the modified polypropylene is good, and the carbon fiber is frequently cut. B on the right side shows a fracture surface of a Charpy impact test piece of the blend of carbon fiber and polypropylene of Comparative Example 2. The adhesion between the carbon fiber and the polypropylene is poor, and the carbon fiber is removed from the polypropylene.

Figure 2017186492
Figure 2017186492

比較例1Comparative Example 1

ポリプロピレン・ホモポリマーのカタログ値を使用している。  The catalog value of polypropylene homopolymer is used.

比較例2Comparative Example 2

製造例5−8とほぼ同じ操作にて、サイドフィード方式でZOLTEK炭素繊維(30%)とポリプロピレン・ホモポリマーのブレンドを製造した。但し、ポリプロピレン・ホモポリマー(MI1.5)とポリプロピレン・ホモポリマー(MI 30: ノバテック)の等量混合ペレットを使用した。また、ほぼ同じ操作にて、射出試験片を作製し、機械的評価等の試験を実施した。  A blend of ZOLTEK carbon fiber (30%) and polypropylene homopolymer was produced by the side feed method in substantially the same manner as in Production Example 5-8. However, mixed pellets of equal amounts of polypropylene homopolymer (MI1.5) and polypropylene homopolymer (MI 30: Novatec) were used. Moreover, the injection test piece was produced in substantially the same operation, and tests, such as mechanical evaluation, were implemented.

[ZOLTEK炭素繊維(30%)強化・改質ポリプロピレン樹脂ペレットNZP5とマイクロカプセル発泡剤の水平式押出法による細平板および発泡板の製造]
製造例6に準じて、ZOLTEK炭素繊維(30%)強化・改質ポリプロピレン樹脂の黒色ペレットNZP5(MFR 1.5g/10分: 260℃、荷重2.16Kg)約50Kgを製造した。
ZOLTEK炭素繊維(30%)強化・改質ポリプロピレン樹脂ペレットNZP5の100重量部、増粘剤マスターバッチ(エフテックス製5010E)ゼロまたは10重量部、マイクロカプセル発泡剤マスターバッチ(徳山積水化学製)8または12重量部を事前に混合し、ホッパーに投入し、発泡体の製造をした
(株)テクノベル製の2軸押出機(口径15mm、L/D30)に、原料供給機、異形金型、樹脂圧力測定センサー、空冷機、ステンレス製滑行板、水盤、引取り機を設置した。上記の配合物を、スクリュー温度180−250℃、回転数1150rpm、金型温度230−250℃において、ペレット等の配合物の供給速度1−2Kg/h、引取り速度1−2m/分にて水平方向に押出した。樹脂の溶融粘性、流動性および引け等を考慮して、異形金型は、矩形形(巾25mm: 中央部間隙2.5mm、両端部間隙1.5mm)を、また発泡板用には鼓形(巾25mm: 中央部間隙3.0mm、両端部R付き)を使用した。試験結果を表3にまとめて示した。
この水平式押出法による異形成形においては、樹脂圧力が高くなるほどに成形体の製造が安定し、また成形体が異形金型の巾(25mm)および間隙(3.0mm)に近づくほど、発泡成形が成功に近づく。本発明では、発泡倍率として1.5−2倍程度を企画した天然木材や合成木材の巨大市場の用途を想定している。
比較例3−S1の細平板の製造では、原料NZP5の樹脂圧力が0.1MPaであり、樹脂の溶融張力も低くて細平板の左右と上下にネックインが生じ、成形体が細くて薄くなった。比較例3−S2の細板製造では、増粘剤7.5部を添加したら巾と厚みが夫々大きくなり、かなり改善された。そこで、本例1−MC1〜本例1−MC4の発泡板製造では、増粘剤MBを10に増加して発泡試験を実施した。MC発泡剤による発泡板は、その巾(25mm)が異形金型の巾(25mm)と同一であり、ネックインがなくて成形加工が順調であった。一方、厚みが金型の厚み(3mm)よりもやや薄くなったが、吐出発泡体の冷却条件に依る。寸法調整用の雌型金型の設置で改善できる。で
[Manufacture of thin flat plates and foamed plates by horizontal extrusion of ZOLTEK carbon fiber (30%) reinforced / modified polypropylene resin pellets NZP5 and microcapsule foaming agent]
According to Production Example 6, approximately 50 kg of ZOLTEK carbon fiber (30%) reinforced / modified polypropylene resin black pellets NZP5 (MFR 1.5 g / 10 min: 260 ° C., load 2.16 kg) was produced.
100 parts by weight of ZOLTEK carbon fiber (30%) reinforced / modified polypropylene resin pellet NZP5, zero or 10 parts by weight of thickener masterbatch (5010E made by F-Tex), microcapsule foaming agent masterbatch (manufactured by Tokuyama Sekisui Chemical) 8 Alternatively, 12 parts by weight are mixed in advance and put into a hopper to produce a foam. A biaxial extruder (caliber: 15 mm, L / D30) manufactured by Technobel Co., Ltd. A pressure measurement sensor, air cooler, stainless steel sliding board, water basin, and take-up machine were installed. At the screw temperature of 180-250 ° C., the number of revolutions of 1150 rpm, the mold temperature of 230-250 ° C., the feed rate of the compound such as pellets is 1-2 kg / h, and the take-up speed is 1-2 m / min. Extruded horizontally. Taking into account the melt viscosity, fluidity, and shrinkage of the resin, the deformed mold has a rectangular shape (width 25 mm: center gap 2.5 mm, both ends gap 1.5 mm), and a drum shape for foam plates. (Width 25 mm: Center part gap 3.0 mm, with both ends R) was used. The test results are summarized in Table 3.
In the deformed shape by this horizontal extrusion method, as the resin pressure increases, the production of the molded body becomes more stable, and as the molded body approaches the width (25 mm) and the gap (3.0 mm) of the deformed mold, foam molding is performed. Approaches to success. In this invention, the use of the huge market of the natural wood and synthetic wood which planned about 1.5-2 times as expansion ratio is assumed.
In the manufacture of the thin flat plate of Comparative Example 3-S1, the resin pressure of the raw material NZP5 is 0.1 MPa, the melt tension of the resin is low, neck-in occurs on the left and right and top and bottom of the thin flat plate, and the compact is thin and thin. It was. In the manufacture of the thin plate of Comparative Example 3-S2, the width and thickness were increased by adding 7.5 parts of the thickener, which was considerably improved. Therefore, in the production of foamed plates of Example 1-MC1 to Example 1-MC4, the foaming test was performed with the thickener MB increased to 10. The foamed plate made of the MC foaming agent had the same width (25 mm) as that of the deformed mold, and there was no neck-in and the molding process was smooth. On the other hand, the thickness is slightly smaller than the thickness of the mold (3 mm), but it depends on the cooling conditions of the discharged foam. This can be improved by installing a female mold for dimensional adjustment. so

Figure 2017186492
Figure 2017186492

本発明の高強度・軽量の炭素繊維チョップ強化改質ペット樹脂のMC成形体の用途例としては、現在急速に発展している産業用飛翔体(ドローン)の機体資材用である。近未来の巨大市場の自動車分野が適用可能である。例えば、バックドア・インナーパネル、ラジエーターコアサポート、インストルメントパネルなど、あるいは電気自動車用のバッテリートレーおよびカバー、フェンダー、ルーフなどにも適用することができる。電気自動車を軽量化し、電池の搭載量をその分増加させて、電気自動車の弱点である航続距離を延ばすことができる。
本発明は、更に土木・建築資材の用途を対象とする。また、電波吸収性、導電性、耐熱性、放熱性等の一層の性能改善ができるので、この機能性材料分野の利用可能性も大きい。
An example of the use of the MC molded body of the high-strength and lightweight carbon fiber chop reinforced modified pet resin of the present invention is for aircraft materials for industrial flying bodies (drones) that are currently developing rapidly. Applicable to the automotive field of a huge market in the near future. For example, the present invention can also be applied to a back door / inner panel, a radiator core support, an instrument panel, or a battery tray and cover for an electric vehicle, a fender, a roof, and the like. It is possible to reduce the weight of the electric vehicle and increase the battery loading amount, thereby extending the cruising distance, which is a weak point of the electric vehicle.
The present invention is further directed to the use of civil engineering and building materials. In addition, since further performance improvements such as radio wave absorption, conductivity, heat resistance, and heat dissipation can be achieved, the applicability in the functional material field is also great.

Claims (3)

(A)ポリプロピレン系樹脂100重量部、(B)ポリプロピレン系粉体樹脂1−2 0重量部、(C)有機不飽和酸化合物0.1〜3重量部、(D)有機過酸化物0.01〜0.50重量部、(E)展着剤0.01〜1重量部から成る組成物を、反応押出法によりポリプロピレンの融点以上の温度で反応させ、更にこの改質ポリプロピレンと炭素繊維チョップ(F)5−50重量部とを加熱溶融し、JIS−K7210法に準拠したMFR(230℃、荷重2.16Kg)を0.5〜10g/10分とした複合材(G)を、発泡剤(H)の存在下に加熱溶融させて成形することを特徴とする炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法。(A) 100 parts by weight of a polypropylene resin, (B) 20 parts by weight of a polypropylene powder resin 1-2, (C) 0.1 to 3 parts by weight of an organic unsaturated acid compound, (D) 0. A composition comprising 01 to 0.50 parts by weight and (E) a spreading agent of 0.01 to 1 part by weight is reacted at a temperature equal to or higher than the melting point of polypropylene by a reactive extrusion method, and the modified polypropylene and carbon fiber chop are further reacted. (F) 5-50 parts by weight is heated and melted, and the composite material (G) in which MFR (230 ° C., load 2.16 Kg) based on JIS-K7210 method is 0.5 to 10 g / 10 min is foamed. A method for producing a foamed molded article of carbon fiber reinforced / modified polypropylene resin, which is molded by heating and melting in the presence of an agent (H). 前記の発泡剤(H)が、マイクロカプセル、化学発泡剤またはそれを包含するマスターバッチ、または炭酸ガスを含有することを特徴とする請求項1に記載の炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法。  2. The foaming of carbon fiber reinforced / modified polypropylene resin according to claim 1, wherein the foaming agent (H) contains a microcapsule, a chemical foaming agent or a masterbatch including the same, or carbon dioxide. Manufacturing method of a molded object. 前記の複合材(G)に、エポキシ系結合剤および有機金属系触媒からなる増粘剤(I)を加えて発泡剤(H)の存在下に加熱溶融させて成形することを特徴とする請求項1に記載の炭素繊維強化・改質ポリプロピレン樹脂の発泡成形体の製造方法。  A thickener (I) composed of an epoxy binder and an organometallic catalyst is added to the composite material (G), and the mixture is heated and melted in the presence of a foaming agent (H) to form. Item 2. A method for producing a foamed article of carbon fiber reinforced / modified polypropylene resin according to Item 1.
JP2016085590A 2016-04-05 2016-04-05 Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin Active JP6843330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085590A JP6843330B2 (en) 2016-04-05 2016-04-05 Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085590A JP6843330B2 (en) 2016-04-05 2016-04-05 Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin

Publications (2)

Publication Number Publication Date
JP2017186492A true JP2017186492A (en) 2017-10-12
JP6843330B2 JP6843330B2 (en) 2021-03-24

Family

ID=60045515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085590A Active JP6843330B2 (en) 2016-04-05 2016-04-05 Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin

Country Status (1)

Country Link
JP (1) JP6843330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868263A (en) * 2017-12-04 2018-04-03 深圳市博彩新材料科技有限公司 Modified polypropene Masterbatch and preparation method thereof
CN111621096A (en) * 2020-05-15 2020-09-04 济南泰德包装科技有限公司 Preparation method of modified polypropylene expanded bead (EPP) carbon fiber composite material
CN113150441A (en) * 2021-04-14 2021-07-23 华南理工大学 Carbon fiber reinforced polypropylene foam composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980453A (en) * 1982-10-29 1984-05-09 Mitsubishi Rayon Co Ltd Carbon-fiber-reinforced polyolefin resin composition
JP2001002946A (en) * 1999-06-24 2001-01-09 Idemitsu Petrochem Co Ltd Fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molded product consisting of the same composition
JP2014172916A (en) * 2013-03-06 2014-09-22 Japan Polypropylene Corp Fiber-reinforced polypropylene resin composition for foaming and molded body produced by foam molding the same
JP2017075290A (en) * 2015-10-14 2017-04-20 エフテックス有限会社 Manufacturing method of carbon fiber reinforced and modified polypropylene resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980453A (en) * 1982-10-29 1984-05-09 Mitsubishi Rayon Co Ltd Carbon-fiber-reinforced polyolefin resin composition
JP2001002946A (en) * 1999-06-24 2001-01-09 Idemitsu Petrochem Co Ltd Fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molded product consisting of the same composition
JP2014172916A (en) * 2013-03-06 2014-09-22 Japan Polypropylene Corp Fiber-reinforced polypropylene resin composition for foaming and molded body produced by foam molding the same
JP2017075290A (en) * 2015-10-14 2017-04-20 エフテックス有限会社 Manufacturing method of carbon fiber reinforced and modified polypropylene resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868263A (en) * 2017-12-04 2018-04-03 深圳市博彩新材料科技有限公司 Modified polypropene Masterbatch and preparation method thereof
CN111621096A (en) * 2020-05-15 2020-09-04 济南泰德包装科技有限公司 Preparation method of modified polypropylene expanded bead (EPP) carbon fiber composite material
CN113150441A (en) * 2021-04-14 2021-07-23 华南理工大学 Carbon fiber reinforced polypropylene foam composite material and preparation method thereof

Also Published As

Publication number Publication date
JP6843330B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2016117161A1 (en) Method for manufacturing carbon fiber reinforced/modified polyester resin
CN101693777B (en) Material for vehicle bumper and preparation method thereof
US20060264556A1 (en) Fiber reinforced polypropylene composite body panels
CN101024709A (en) Moulding-grade wood-plastic composite and processing process
CN101993563A (en) Preparation method of special polypropylene materials for automobile bumper
JP5297808B2 (en) Masterbatch and manufacturing method thereof
JP2017186492A (en) Manufacturing method of foam molded body of carbon fiber reinforced modified polypropylene-based resin
JP2015007212A (en) Manufacturing method of polyester-carbon fiber copolymer
JP6547253B2 (en) Carbon fiber reinforced polyester resin and method of manufacturing injection molded product thereof
CN113563667A (en) Light-weight modified polypropylene composite material for compound filled bumper and preparation method thereof
US8497333B2 (en) Polylactic acid composition for automobile parts
CN102558803A (en) Automobile bumper material and preparation method thereof
JP6707225B2 (en) Method for producing carbon fiber reinforced/modified polypropylene resin
KR101481218B1 (en) The Manufacturing Method of Direct Long Glass Fiber Thermoplastics Using In-line Compounding Process
CN104530739A (en) Thermotropic high-polymer liquid crystal reinforced/toughened polyolefin-base wood-plastic composite material and preparation method thereof
CN103571123A (en) Antishock polypropylene composition used for automobile bumper and preparation method of the composition
JP2016088073A (en) Manufacturing method of bolt/nut made of carbon fiber reinforced polyester resin
JP6892572B2 (en) Method for manufacturing injection foam molded product of carbon fiber reinforced / modified polyester resin
CN114181456B (en) High-hardness polypropylene composite material and preparation method thereof
JP6619150B2 (en) Method for producing expanded molded article of carbon fiber reinforced / modified polyethylene terephthalate resin
JP6552210B2 (en) Method for producing carbon fiber reinforced / modified polyethylene terephthalate resin
JP6889349B2 (en) Injection molding method of carbon fiber reinforced / modified polypropylene resin
JP2016079376A (en) Production method of carbon fiber-reinforced polyester resin and extrusion-molded article of the same
JPH1148317A (en) Hollow molding made of synthetic resin
CN114539664A (en) Low-linear-expansion-coefficient and easy-adhesion all-plastic tail door outer plate material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6843330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150