JP2017186295A - Organ preservation method and organ transplantation method - Google Patents

Organ preservation method and organ transplantation method Download PDF

Info

Publication number
JP2017186295A
JP2017186295A JP2016083198A JP2016083198A JP2017186295A JP 2017186295 A JP2017186295 A JP 2017186295A JP 2016083198 A JP2016083198 A JP 2016083198A JP 2016083198 A JP2016083198 A JP 2016083198A JP 2017186295 A JP2017186295 A JP 2017186295A
Authority
JP
Japan
Prior art keywords
organ
donor
coolant
lung
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016083198A
Other languages
Japanese (ja)
Inventor
俊宏 岡本
Toshihiro Okamoto
俊宏 岡本
佐藤 元彦
Motohiko Sato
元彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I-3c Corp
Original Assignee
I-3c Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-3c Corp filed Critical I-3c Corp
Priority to JP2016083198A priority Critical patent/JP2017186295A/en
Publication of JP2017186295A publication Critical patent/JP2017186295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0263Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving, e.g. cool boxes, blood bags or "straws" for cryopreservation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organ preservation method and organ transplantation method in which an organ can be properly preserved.SOLUTION: The organ preservation method is characterized by preserving an organ separated from a living body or a dead body within a range of -2.0°C ± 1.0°C. Further, it is preferable to preserve organs in supercooled state. Further, it is preferable to preserve organs by placing organs in a coolant which has been previously adjusted within a range of -2.0°C ± 1.0°C. Further, it is preferable to place organs in a coolant within 1 minute after separating from a living body or a dead body.SELECTED DRAWING: Figure 1

Description

本発明は、臓器保存方法および臓器移植方法に関するものである。  The present invention relates to an organ preservation method and an organ transplantation method.

生体または死体から取り出した(分離した)臓器の保存方法として、例えば、特許文献1に記載の保存方法が開示されている。特許文献1では、4℃〜20℃の保存液中で臓器を冷却保存し、さらに、冷却液を臓器に灌流させることで臓器を保存している。  As a method for storing an organ taken out (separated) from a living body or a dead body, for example, a storage method described in Patent Document 1 is disclosed. In Patent Document 1, an organ is stored in a cold storage solution at 4 ° C. to 20 ° C., and the organ is stored by perfusing the organ with a cooling solution.

特開2013−075888号公報JP 2013-075888 A

しかしながら、4℃の保存液中で臓器を冷却保存しても臓器を適切に保存することができない。  However, organs cannot be stored properly even if they are stored in a cold storage solution at 4 ° C.

本発明の目的は、臓器を適切に保存することができる臓器保存方法および臓器移植方法を提供することにある。  An object of the present invention is to provide an organ preservation method and an organ transplantation method that can appropriately preserve an organ.

本発明の臓器保存方法は、生体または死体から分離した臓器を−2.0℃±1.0℃の範囲内で保存することを特徴とする。  The organ preservation method of the present invention is characterized in that an organ separated from a living body or a cadaver is preserved within a range of −2.0 ° C. ± 1.0 ° C.

本発明の臓器保存方法では、前記臓器を過冷却状態で保存することが好ましい。  In the organ preservation method of the present invention, the organ is preferably preserved in a supercooled state.

本発明の臓器保存方法では、予め−2.0℃±1.0℃の範囲内に調整されている冷却材中に、前記臓器を配置することで前記臓器を保存することが好ましい。  In the organ preservation method of the present invention, it is preferable to preserve the organ by placing the organ in a coolant that has been adjusted in the range of −2.0 ° C. ± 1.0 ° C. in advance.

本発明の臓器保存方法では、前記臓器を前記生体または前記死体から分離して5分以内に前記冷却材中に配置することが好ましい。  In the organ preservation method of the present invention, it is preferable that the organ is separated from the living body or the corpse and placed in the coolant within 5 minutes.

本発明の臓器保存方法では、前記冷却材は、シャーベット状の氷であることが好ましい。  In the organ preservation method of the present invention, the coolant is preferably sherbet-like ice.

本発明の臓器移植方法は、本発明の臓器保存方法で保存した前記臓器を生体に移植することを特徴とする。  The organ transplantation method of the present invention is characterized in that the organ preserved by the organ preservation method of the present invention is transplanted into a living body.

本発明によれば、−2.0℃±1.0℃という低温が生体(臓器)の細胞の代謝を低下させ、生体機能を保持した状態での保存に貢献するため、臓器を適切に保存することができる。そのため、例えば、臓器を生体に移植可能な状態でより長時間保存することが可能となる。また、生体移植後の臓器機能の低下を低減することができる。  According to the present invention, the low temperature of −2.0 ° C. ± 1.0 ° C. reduces the metabolism of the cells of the living body (organ) and contributes to the storage in a state where the biological function is maintained. can do. Therefore, for example, it becomes possible to preserve | save for a long time in the state which can transplant an organ to a biological body. In addition, it is possible to reduce a decrease in organ function after living-body transplantation.

異なる温度の冷却材を用いた場合の臓器の温度変化を示すグラフである。It is a graph which shows the temperature change of the organ at the time of using the coolant of different temperature. 体外肺灌流装置を示す図である。It is a figure which shows an extracorporeal lung perfusion apparatus. ドナー肺の一回換気量を示すグラフである。It is a graph which shows the tidal volume of a donor lung. ドナー肺の酸素濃度を示すグラフである。It is a graph which shows the oxygen concentration of a donor lung. ドナー肺の重さを示すグラフである。It is a graph which shows the weight of a donor lung. ドナー肺のmRNA量を示すグラフである。It is a graph which shows the amount of mRNA of a donor lung. ED1陽性細胞を示す画像である。It is an image which shows ED1 positive cell. ED1陽性細胞の数を示すグラフである。It is a graph which shows the number of ED1 positive cells. ラットの生存率を示すグラフである。It is a graph which shows the survival rate of a rat. ドナー肺移植片を示す画像である。FIG. 6 is an image showing a donor lung graft. FIG.

以下、本発明の臓器保存方法および臓器移植方法について、添付図面を参照しつつ詳細に説明する。  Hereinafter, the organ preservation method and organ transplantation method of the present invention will be described in detail with reference to the accompanying drawings.

近年、過冷却技術の発達によって、臓器移植のためにドナー(生体または死体)から摘出(分離)した臓器を氷点(0℃)以下、具体的には−6℃〜−5℃で未凍結のままの過冷却状態で保存する技術が研究・開発されている。このような保存方法によれば、臓器を新鮮なまま長時間保存することが可能になると考えられている。そこで、本願発明者は、上記技術のさらなる向上のために研究を重ねた結果、臓器の保存により適した保存温度が存在することを見出した。そのことを以下に説明する。なお、本願明細書では、前記死体には心臓死の他、脳死、これらに類するもの(例えば、デッド・ドナー・ルールで死を判定されたもの)も含まれる。  In recent years, due to the development of supercooling technology, an organ removed (separated) from a donor (living body or cadaver) for organ transplantation has not been frozen at a freezing point (0 ° C.) or less, specifically −6 ° C. to −5 ° C. Research and development have been conducted on the technology for preserving in an uncooled state. According to such a storage method, it is considered that organs can be stored for a long time while being fresh. Therefore, the inventors of the present application have conducted research for further improvement of the above technique, and as a result, have found that there is a storage temperature that is more suitable for storage of organs. This will be described below. In the present specification, the dead body includes not only heart death but also brain death and the like (for example, death determined by the dead donor rule).

本願発明者は、ドナーから摘出した臓器を−2.0℃±1.0℃の範囲内において過冷却状態(氷点(0℃)以下で未凍結を保っている状態)で保存することにより、臓器を新鮮なまま、より長時間保存することが可能となり、さらには、患者への臓器移植後の臓器機能の低下を効果的に抑制することができることを見出した。これは、−2.0℃±1.0℃という低温が生体(臓器)の細胞の代謝を低下させ、生体機能を保持した状態での保存に貢献するためであると考えられる。なお、保存温度は、−2.0℃からの揺らぎが少ない程好ましい。具体的には、−2.0℃±0.5℃の範囲内において過冷却状態で保存することがより好ましく、−2.0℃±0.1℃の範囲内において過冷却状態で保存することがさらに好ましい。  The inventor of the present application preserves an organ extracted from a donor in a supercooled state (in a state where it is kept unfrozen below the freezing point (0 ° C.) within a range of −2.0 ° C. ± 1.0 ° C., It has been found that organs can be stored for a longer period of time while being fresh, and further, it is possible to effectively suppress a decrease in organ function after organ transplantation to a patient. This is considered to be because a low temperature of −2.0 ° C. ± 1.0 ° C. reduces the metabolism of cells in the living body (organ) and contributes to preservation in a state where the biological function is maintained. In addition, storage temperature is so preferable that there are few fluctuations from -2.0 degreeC. Specifically, it is more preferable to store in a supercooled state within a range of −2.0 ° C. ± 0.5 ° C., and store in a supercooled state within a range of −2.0 ° C. ± 0.1 ° C. More preferably.

なお、保存される臓器としては、特に限定されず、例えば、心臓、肺、胃、小腸、十二指腸、大腸、直腸、肝臓、腎臓、脾臓等(移植可能な全ての臓器)や、組織(角膜、気管、心臓弁、靭帯、骨等)が挙げられる。  The organ to be preserved is not particularly limited, and for example, heart, lung, stomach, small intestine, duodenum, large intestine, rectum, liver, kidney, spleen, etc. (all organs that can be transplanted) and tissues (cornea, Trachea, heart valve, ligament, bone, etc.).

ドナーから摘出した臓器は、例えば、コンプレッサー式、ペルチェ式等の冷却装置によって、予め−2.0℃±1.0℃の範囲内に調整(維持)されている冷却材(保存液)中に浸して(配置して)保存することが好ましい。このように、−2.0℃±1.0℃の範囲内に調整されている冷却材中に臓器を浸すことで、摘出してからより短時間で臓器を−2.0℃±1.0℃の範囲内まで冷却することができる。そのため、臓器をより新鮮なまま保存することができる。なお、冷却材の温度は、−2.0℃からの揺らぎが少ない程、臓器を−2.0℃付近で安定して保存することができる点で好ましい。具体的には、−2.0℃±0.5℃の範囲内に維持されていることがより好ましく、−2.0℃±0.1℃の範囲内に維持されていることがより好ましい。ただし、例えば、常温の冷却材中に臓器を浸して、それから冷却材を冷却してもよい。  The organ removed from the donor is, for example, in a coolant (preservation solution) that has been adjusted (maintained) within a range of −2.0 ° C. ± 1.0 ° C. by a cooling device such as a compressor type or a Peltier type. It is preferable to store it by immersing it. Thus, by immersing the organ in a coolant adjusted within the range of −2.0 ° C. ± 1.0 ° C., the organ is removed at −2.0 ° C. ± 1. It can be cooled to within the range of 0 ° C. Therefore, the organ can be preserved while being fresher. In addition, the temperature of the coolant is preferable in that the fluctuation from −2.0 ° C. is less, because the organ can be stably stored at around −2.0 ° C. Specifically, it is more preferable that the temperature is maintained within a range of −2.0 ° C. ± 0.5 ° C., and it is more preferable that the temperature is maintained within a range of −2.0 ° C. ± 0.1 ° C. . However, for example, the organ may be immersed in a normal temperature coolant, and then the coolant may be cooled.

冷却材としては、特に限定されず、例えば、生理食塩水やET京都(ET−Kyoto)液等の公知の臓器・組織保存液を用いることができる。  The coolant is not particularly limited, and for example, a known organ / tissue preservation solution such as physiological saline or ET-Kyoto solution can be used.

なお、冷却材としては、上述の臓器・組織保存液の他にも、例えば、シャーベット状の氷(すなわち水と氷の混合物)を用いてもよい。シャーベット状の氷は、塩水(生理食塩水)から製造されており、凝固点が−2.0℃程度に調整されている。また、シャーベット状の氷の氷濃度としては、特に限定されないが、例えば、40%以上、60%以下程度であることが好ましい。上述の臓器・組織保存液では冷却装置等によって温度を管理しなければならないため、例えば、温度揺らぎが生じやすい。また、冷却装置を駆動する電源が必要となるため、例えば、臓器の搬送に制約が生じることも考えられる。これに対して、シャーベット状の氷を冷却材として用いれば、電源が必要ないし、温度揺らぎを低減することもできる。  In addition to the above organ / tissue preservation solution, for example, sherbet-like ice (that is, a mixture of water and ice) may be used as the coolant. The sherbet-like ice is manufactured from salt water (physiological saline), and the freezing point is adjusted to about −2.0 ° C. Further, the ice concentration of the sherbet-like ice is not particularly limited, but is preferably about 40% or more and 60% or less, for example. In the organ / tissue preservation solution described above, the temperature must be controlled by a cooling device or the like, and thus, for example, temperature fluctuations are likely to occur. In addition, since a power source for driving the cooling device is required, for example, it is conceivable that restrictions on organ transportation occur. On the other hand, if sherbet-like ice is used as a coolant, a power source is not required and temperature fluctuations can be reduced.

また、ドナーから臓器を摘出してから、その臓器を冷却材に浸すまでの時間は、短い程好ましい。具体的には、5分以内であることが好ましく、3分以内であることがより好ましく、1分以内であることがさらに好ましい。このように、臓器を素早く冷却材に浸すことで、臓器をより新鮮なまま保存することができる。  Further, it is preferable that the time from the removal of the organ from the donor to the immersion of the organ in the coolant is as short as possible. Specifically, it is preferably within 5 minutes, more preferably within 3 minutes, and even more preferably within 1 minute. In this way, the organ can be stored fresher by quickly immersing the organ in the coolant.

また、ドナーから摘出した臓器は、なるべく短時間で0℃以下の過冷却状態とすることが好ましい。臓器は、冷却している最中にも細胞代謝が起こるため、なるべく短時間で過冷却状態とすることで、この細胞代謝を抑えることができ、臓器の劣化を効果的に抑制することができる。そのため、臓器をより新鮮なまま、かつより長時間保存することができる。  Moreover, it is preferable that the organ extracted from the donor is brought into a supercooled state of 0 ° C. or less in as short a time as possible. Since cell metabolism occurs while the organ is being cooled, this cell metabolism can be suppressed and the deterioration of the organ can be effectively suppressed by making it supercooled in as short a time as possible. . Therefore, the organ can be stored for a longer period of time while being fresher.

図1は、−2.0℃に調整されている冷却材中に臓器を浸した場合の臓器の温度変化と、0℃に調整されている冷却材中に臓器を浸した場合の臓器の温度変化とを比較するグラフである。この図からわかるように、−2.0℃に調整されている冷却材中に臓器を浸した場合では、20分以内に臓器が0℃以下に冷やされている。そのため、より短時間で臓器を過冷却状態とすることができ、臓器をより新鮮なまま、かつより長時間保存することができる。  FIG. 1 shows changes in the temperature of an organ when the organ is immersed in a coolant adjusted to −2.0 ° C., and the temperature of the organ when the organ is immersed in a coolant adjusted to 0 ° C. It is a graph which compares with a change. As can be seen from this figure, when the organ is immersed in a coolant adjusted to −2.0 ° C., the organ is cooled to 0 ° C. or less within 20 minutes. Therefore, the organ can be brought into a supercooled state in a shorter time, and the organ can be stored for a longer time while remaining fresher.

このようにして保存された臓器(ここでは肺を代表して説明する)は、例えば、後述する体外肺灌流装置100を用いて機能を確認し、移植可能と判断された場合にのみ、実際に患者に移植される。また、移植後に血液を灌流される際は、例えば、2分間隔で10ml/minずつ灌流量を高めていくことが好ましい。これにより、例えば、血管へのダメージを低減することができる。  The organs stored in this manner (herein described on behalf of the lungs) are actually used only when, for example, the function is confirmed using the extracorporeal lung perfusion device 100 described later and it is determined that transplantation is possible. Transplanted to the patient. Further, when blood is perfused after transplantation, for example, it is preferable to increase the perfusion rate by 10 ml / min at intervals of 2 minutes. Thereby, for example, damage to blood vessels can be reduced.

このような体外肺灌流装置100を用いることで、肺機能を確認することができると共に、肺機能を回復することもできる。具体的には、例えば、肺に溜まりすぎた水分を減らしたり、糖分、酸素等の栄養を供給したり、縮みきった部分を正常に戻すことができたりする。そのため、移植可能な肺を増やすことができ、より多くの患者に肺を移植することができるようになる。  By using such an extracorporeal lung perfusion apparatus 100, lung function can be confirmed and lung function can be recovered. Specifically, for example, water accumulated in the lungs can be reduced, nutrients such as sugar and oxygen can be supplied, and the contracted part can be returned to normal. Therefore, transplantable lungs can be increased and lungs can be transplanted to more patients.

以上、本発明の臓器保存方法および臓器移植方法について説明したが、本発明は、これに限定されるものではない。  As mentioned above, although the organ preservation | save method and the organ transplantation method of this invention were demonstrated, this invention is not limited to this.

[被験体]
個体差を小さくするために、被験体として近交性の雄ラットを用いた。
[Subject]
In order to reduce individual differences, inbred male rats were used as subjects.

≪実施例1≫
まず、−2.0℃に保たれた550mlのET京都液を用意し、次に、被験体の雄ラットからドナー肺および心臓(以下、「ドナー心肺ブロック」とも言う)を摘出し、摘出したドナー心肺ブロックを速やかにET京都液に浸した。そして、そのまま、ET京都液を−2.0℃±0.25℃の温度範囲に維持しつつ、過冷却状態を安定させ、ドナー心肺ブロックを17時間保存した。
Example 1
First, 550 ml of ET Kyoto liquid maintained at −2.0 ° C. was prepared, and then the donor lung and heart (hereinafter also referred to as “donor cardiopulmonary block”) were removed and removed from the male rat of the subject. Donor cardiopulmonary blocks were immediately immersed in ET Kyoto fluid. Then, while maintaining the ET Kyoto solution in the temperature range of −2.0 ° C. ± 0.25 ° C., the supercooled state was stabilized, and the donor cardiopulmonary block was stored for 17 hours.

≪比較例1≫
まず、−5.0℃に保たれたET京都液を用意し、次に、被験体の雄ラットからドナー心肺ブロックを摘出し、摘出したドナー心肺ブロックを速やかにET京都液に浸した。そして、そのまま、ET京都液を−5.0℃±0.25℃の温度範囲に維持しつつ、過冷却状態を安定させ、ドナー心肺ブロックを17時間保存した。
≪Comparative example 1≫
First, an ET Kyoto solution kept at −5.0 ° C. was prepared, and then a donor cardiopulmonary block was extracted from a male rat of the subject, and the extracted donor cardiopulmonary block was immediately immersed in the ET Kyoto solution. And the supercooled state was stabilized and the donor cardiopulmonary block was preserve | saved for 17 hours, maintaining ET Kyoto liquid in the temperature range of -5.0 degreeC +/- 0.25 degreeC as it was.

≪比較例2≫
まず、+4.0℃に保たれたET京都液を用意し、次に、被験体の雄ラットからドナー心肺ブロックを摘出し、摘出したドナー心肺ブロックを速やかにET京都液に浸した。そして、そのまま、+4.0℃±0.25℃の温度範囲を維持し、ドナー心肺ブロックをET京都液中で17時間保存した。
≪Comparative example 2≫
First, an ET Kyoto solution kept at + 4.0 ° C. was prepared, and then a donor cardiopulmonary block was extracted from the male rat of the subject, and the removed donor cardiopulmonary block was immediately immersed in the ET Kyoto solution. Then, the temperature range of + 4.0 ° C. ± 0.25 ° C. was maintained as it was, and the donor cardiopulmonary block was stored in ET Kyoto Solution for 17 hours.

≪比較例3≫
被験体の雄ラットから摘出した直後のドナー心肺ブロックを用意した。すなわち、この軍のドナー心肺ブロック(ラット肺)には一切の冷保存が行われていない。
«Comparative Example 3»
A donor cardiopulmonary block immediately after removal from the male rat of the subject was prepared. That is, no cold storage is performed in this military donor cardiopulmonary block (rat lung).

[評価]
まず、実施例1および比較例1、2で得られたドナー心肺ブロックについて、図2に示す体外肺灌流装置100(ex vivo)を用いて、灌流液を60分灌流させた。体外肺灌流装置100は、臓器を体外に取り出した状態で、人工的なポンプな人工呼吸器を用いて、血流や呼吸を維持して生体内と同様の状態に臓器を維持することのできる装置である。
[Evaluation]
First, the donor cardiopulmonary block obtained in Example 1 and Comparative Examples 1 and 2 was perfused for 60 minutes using the extracorporeal lung perfusion apparatus 100 (ex vivo) shown in FIG. The extracorporeal lung perfusion apparatus 100 can maintain the blood flow and respiration and maintain the organ in the same state as the living body using an artificial pump artificial respirator with the organ taken out of the body. Device.

このような体外肺灌流装置100は、心肺ブロックを収容するチャンバー110と、一端部が肺動脈(PA)に接続され、他端部が左心房(LA)に接続される灌流ライン120と、肺に空気を送り込む空気供給ライン130およびベンチレーター140と、灌流ライン120の途中に設けられたポンプ150と、灌流ライン120の途中に設けられ、左心房からの灌流液から酸素を除去する(減らす)酸素除去部160と、を有している。なお、灌流液は、ヘパリン添加ラット血液と、4%のウシ血清アルブミンを含む生理食塩水と、ヘモグロビンとで構成し、pHは7.25〜7.35に調整した。また、灌流中は、灌流液の温度をほぼ37℃に保ち、肺動脈に10ml/minで灌流液を供給した。また、同時に、肺には21%酸素を供給した。  Such an extracorporeal pulmonary perfusion apparatus 100 includes a chamber 110 for housing a cardiopulmonary block, a perfusion line 120 having one end connected to the pulmonary artery (PA) and the other end connected to the left atrium (LA), and a lung. Oxygen removal that removes (reduces) oxygen from the perfusate from the left atrium, air supply line 130 and ventilator 140 for feeding air, pump 150 provided in the middle of the perfusion line 120, and in the middle of the perfusion line 120 Part 160. The perfusate was composed of heparinized rat blood, physiological saline containing 4% bovine serum albumin, and hemoglobin, and the pH was adjusted to 7.25 to 7.35. During perfusion, the temperature of the perfusate was kept at approximately 37 ° C., and the perfusate was supplied to the pulmonary artery at 10 ml / min. At the same time, 21% oxygen was supplied to the lungs.

≪肺への空気換気量に関する評価≫
実施例1および比較例1、2について、上述の体外肺灌流装置100を用いてドナー肺への灌流液の灌流を開始してから15分後、30分後、45分後、60分後のタイミングで、ドナー肺の一回換気量(肺に入る空気の量)を測定した。その結果を図3のグラフに示す。なお、本測定は、比較例1、2についてそれぞれ4つ(n=4)のドナー心肺ブロックを用いて行った。図3のグラフから分かるように、比較例1、2の一回換気量は、互いに減少の仕方が異なっているものの、60分経過後では互いにほぼ同等の値まで大きく減少している。それに比較して、実施例1では、60分経過までほとんど低下しないままの状態であった。
≪Evaluation of air ventilation to lungs≫
About Example 1 and Comparative Examples 1 and 2, 15 minutes, 30 minutes, 45 minutes, and 60 minutes after the start of perfusion of the perfusate into the donor lung using the extracorporeal lung perfusion apparatus 100 described above At timing, the tidal volume of the donor lung (the amount of air entering the lung) was measured. The result is shown in the graph of FIG. In addition, this measurement was performed using 4 (n = 4) donor cardiopulmonary blocks for each of Comparative Examples 1 and 2. As can be seen from the graph of FIG. 3, the tidal volumes of Comparative Examples 1 and 2 are greatly reduced to substantially the same value after 60 minutes, although the ways of reduction are different from each other. In contrast, in Example 1, the state remained almost unchanged until the lapse of 60 minutes.

≪酸素濃度に関する評価≫
実施例1および比較例1、2について、上述の体外肺灌流装置100を用いてドナー肺への灌流液の灌流を開始してから15分後、30分後、45分後、60分後のタイミングで、ドナー肺の肺静脈から排出された灌流液中の酸素量を測定した。その結果を図4のグラフに示す。なお、本測定は、比較例1、2についてそれぞれ4つ(n=4)のドナー心肺ブロックを用いて行った。図4のグラフから分かるように、比較例1、2の灌流液中の酸素量は、互いに減少の仕方が異なっているものの、60分経過後では互いにほぼ同等の値まで大きく減少している。それに比較して、実施例1では、60分経過までほとんど低下しないままの状態であった。
≪Evaluation on oxygen concentration≫
About Example 1 and Comparative Examples 1 and 2, 15 minutes, 30 minutes, 45 minutes, and 60 minutes after the start of perfusion of the perfusate into the donor lung using the extracorporeal lung perfusion apparatus 100 described above At the timing, the amount of oxygen in the perfusate excreted from the pulmonary vein of the donor lung was measured. The result is shown in the graph of FIG. In addition, this measurement was performed using 4 (n = 4) donor cardiopulmonary blocks for each of Comparative Examples 1 and 2. As can be seen from the graph of FIG. 4, the amounts of oxygen in the perfusates of Comparative Examples 1 and 2 are greatly reduced to substantially the same value after 60 minutes, although the ways of reduction are different from each other. In contrast, in Example 1, the state remained almost unchanged until the lapse of 60 minutes.

≪ドナー肺の重さに関する評価≫
実施例1および比較例1、2について、上述の体外肺灌流装置100を用いてドナー肺への灌流液の灌流を開始してから15分後、30分後、45分後、60分後のタイミングで、ドナー肺の重さを測定した。その結果を図5のグラフに示す。なお、本測定は、比較例1、2についてそれぞれ4つ(n=4)のドナー心肺ブロックを用いて行った。図5のグラフから分かるように、比較例1、2のドナー肺は、互いに増加の仕方が異なっているものの、時間の経過と共に重くなっている。このように、比較例1、2では、時間経過と共に肺が重くなり、それに伴って肺機能が低下していることが分かった。それに比較して、実施例1では、60分経過までほとんど増加しないままの状態であった。
≪Evaluation of donor lung weight≫
About Example 1 and Comparative Examples 1 and 2, 15 minutes, 30 minutes, 45 minutes, and 60 minutes after the start of perfusion of the perfusate into the donor lung using the extracorporeal lung perfusion apparatus 100 described above At the timing, the donor lung was weighed. The results are shown in the graph of FIG. In addition, this measurement was performed using 4 (n = 4) donor cardiopulmonary blocks for each of Comparative Examples 1 and 2. As can be seen from the graph in FIG. 5, the donor lungs of Comparative Examples 1 and 2 are heavier with the passage of time, although the way of increase is different from each other. Thus, it was found that in Comparative Examples 1 and 2, the lungs became heavier with time and the lung function was reduced accordingly. In contrast, in Example 1, the state remained almost unchanged until the lapse of 60 minutes.

≪mRNA発現に関する評価≫
実施例1および比較例2、3について、サイバーグリーン(登録商標)を用いた2ステップリアルタイムRT−PCR法によってmRNA量を測定した。その結果を図6に示す。なお、本測定は、実施例1および比較例2、3についてそれぞれ7つのドナー心肺ブロックを用いて行った。図6に示すように、iNOS(誘導型一酸化窒素合成酵素)、COX−2(シクロオキシゲナーゼ−2)、IL−6(インターロイキン−6)、IL−1beta(インターロイキン−1ベータ)、TNFalpfa(腫瘍壊死因子α)の各mRNA量について、実施例1は、比較例2よりも大幅に少なく、かつ、比較例3とほぼ同等の少なさである。
≪Evaluation of mRNA expression≫
For Example 1 and Comparative Examples 2 and 3, the amount of mRNA was measured by a two-step real-time RT-PCR method using Cyber Green (registered trademark). The result is shown in FIG. In addition, this measurement was performed using 7 donor cardiopulmonary blocks for Example 1 and Comparative Examples 2 and 3, respectively. As shown in FIG. 6, iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), IL-6 (interleukin-6), IL-1beta (interleukin-1 beta), TNFalfa ( For each mRNA amount of tumor necrosis factor α), Example 1 is significantly less than Comparative Example 2 and almost as small as Comparative Example 3.

≪マクロファージの浸潤に関する評価≫
実施例1および比較例2、3について、マクロファージのマーカーとして抗ED1抗体を用いて免疫染色を行い、移植片でのマクロファージの浸潤を観察した。その結果を図7および図8に示す。図7および図8に示すように、実施例1のED1陽性細胞は、比較例2よりも大幅に少なく、かつ、比較例3とほぼ同等の少なさである。
≪Evaluation of macrophage infiltration≫
For Example 1 and Comparative Examples 2 and 3, immunostaining was performed using an anti-ED1 antibody as a macrophage marker, and macrophage infiltration in the graft was observed. The results are shown in FIGS. As shown in FIGS. 7 and 8, the number of ED1-positive cells in Example 1 is significantly smaller than that in Comparative Example 2 and almost the same as that in Comparative Example 3.

≪肺移植後の生存率≫
実施例1のドナー肺および比較例2のドナー肺をラットに移植し、その後の生存率を調べた。その結果を図9および図10に示す。図9は、7日間のラットの生存率を示すグラフであり、図10は、7日経過後の肺移植片の顕微鏡画像である。なお、本測定は、実施例1および比較例2についてそれぞれ7匹のラットを用いて行った。図9に示すように、実施例1では、7日後の生存率が100%であるのに対して、比較例2では、3日目から生存率が下がり始めている。また、図10に示すように、実施例1の移植片は、病理学的にほぼ正常であるのに対して、比較例2では、肺胞内出血や浮腫を伴う重度の線維症が現れている。
≪ Survival rate after lung transplantation ≫
The donor lung of Example 1 and the donor lung of Comparative Example 2 were transplanted into rats, and the survival rate thereafter was examined. The results are shown in FIG. 9 and FIG. FIG. 9 is a graph showing the survival rate of rats for 7 days, and FIG. 10 is a microscopic image of a lung graft after 7 days. This measurement was carried out using 7 rats for Example 1 and Comparative Example 2, respectively. As shown in FIG. 9, in Example 1, the survival rate after 7 days is 100%, whereas in Comparative Example 2, the survival rate starts to decrease from the third day. Further, as shown in FIG. 10, the graft of Example 1 is almost pathologically normal, whereas in Comparative Example 2, severe fibrosis with alveolar hemorrhage and edema appears. .

以上、肺についての実験結果について代表して説明したが、肺以外の臓器(例えば、心臓、胃、小腸、十二指腸、大腸、直腸、肝臓、腎臓、脾臓等)についても同様の効果を発揮することができる。また、実施例1に加えて、ET京都液を−2.0℃±1.0℃の温度範囲に維持しつつ、過冷却状態を安定させ、ドナー心肺ブロックを17時間保存したものについても同様の評価をしたところ、実施例1とほぼ同等の結果が得られた。  As described above, the experimental results on the lungs have been described as representatives, but the same effect can be exerted on organs other than the lungs (for example, heart, stomach, small intestine, duodenum, large intestine, rectum, liver, kidney, spleen, etc.). Can do. Further, in addition to Example 1, the same applies to those in which the ET Kyoto fluid was maintained in the temperature range of −2.0 ° C. ± 1.0 ° C., the supercooled state was stabilized, and the donor cardiopulmonary block was stored for 17 hours. As a result, almost the same result as in Example 1 was obtained.

100…体外肺灌流装置
110…チャンバー
120…灌流ライン
130…空気供給ライン
140…ベンチレーター
150…ポンプ
160…酸素除去部
DESCRIPTION OF SYMBOLS 100 ... Extracorporeal lung perfusion apparatus 110 ... Chamber 120 ... Perfusion line 130 ... Air supply line 140 ... Ventilator 150 ... Pump 160 ... Oxygen removal part

Claims (6)

生体または死体から分離した臓器を−2.0℃±1.0℃の範囲内で保存することを特徴とする臓器保存方法。  An organ preservation method, wherein an organ separated from a living body or a cadaver is preserved within a range of −2.0 ° C. ± 1.0 ° C. 前記臓器を過冷却状態で保存する請求項1に記載の臓器保存方法。  The organ preservation method according to claim 1, wherein the organ is preserved in a supercooled state. 予め−2.0℃±1.0℃の範囲内に調整されている冷却材中に、前記臓器を配置することで前記臓器を保存する請求項1または2に記載の臓器保存方法。  The organ preservation method according to claim 1 or 2, wherein the organ is preserved by placing the organ in a coolant that has been adjusted in a range of -2.0 ° C ± 1.0 ° C in advance. 前記臓器を前記生体または前記死体から分離して5分以内に前記冷却材中に配置する請求項3に記載の臓器保存方法。  The organ preservation method according to claim 3, wherein the organ is separated from the living body or the cadaver and placed in the coolant within 5 minutes. 前記冷却材は、シャーベット状の氷である請求項3または4に記載の臓器保存方法。  The organ preservation method according to claim 3 or 4, wherein the coolant is sherbet-like ice. 請求項1ないし5のいずれか1項に記載の臓器保存方法で保存した前記臓器を生体に移植することを特徴とする臓器移植方法。  An organ transplantation method, wherein the organ preserved by the organ preservation method according to any one of claims 1 to 5 is transplanted into a living body.
JP2016083198A 2016-04-01 2016-04-01 Organ preservation method and organ transplantation method Pending JP2017186295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083198A JP2017186295A (en) 2016-04-01 2016-04-01 Organ preservation method and organ transplantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083198A JP2017186295A (en) 2016-04-01 2016-04-01 Organ preservation method and organ transplantation method

Publications (1)

Publication Number Publication Date
JP2017186295A true JP2017186295A (en) 2017-10-12

Family

ID=60046074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083198A Pending JP2017186295A (en) 2016-04-01 2016-04-01 Organ preservation method and organ transplantation method

Country Status (1)

Country Link
JP (1) JP2017186295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384088A (en) * 2018-04-16 2019-10-29 李冰 A kind of whole eyeball preservation of cornea method
IT201900007446A1 (en) 2019-05-29 2020-11-29 Giuseppe Castellano COMPOSITION INCLUDING CITRATE AND CARNITINE ABLE TO ACTIVATE THE PRODUCTION OF KLOTHO PROTEIN

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127901A (en) * 1984-07-16 1986-02-07 Kanegafuchi Chem Ind Co Ltd Preservation of living specimen
JP2016039792A (en) * 2014-08-13 2016-03-24 学校法人関西医科大学 Preservation method for biological tissues or cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127901A (en) * 1984-07-16 1986-02-07 Kanegafuchi Chem Ind Co Ltd Preservation of living specimen
JP2016039792A (en) * 2014-08-13 2016-03-24 学校法人関西医科大学 Preservation method for biological tissues or cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. MATSUKAWA, T. YAGI, H. MATSUDA, H. KAWAHARA, I. YAMAMOTO, J. MATSUOKA, AND N. TANAKA: "Ascorbic Acid 2-Glucoside Prevents Sinusoidal Endothelial Cell Apoptosis in Supercooled Preserved Gr", TRANSPLANTATION PROCEEDINGS, vol. 32, 2, JPN6020014640, 2000, pages 313 - 317, ISSN: 0004420644 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384088A (en) * 2018-04-16 2019-10-29 李冰 A kind of whole eyeball preservation of cornea method
IT201900007446A1 (en) 2019-05-29 2020-11-29 Giuseppe Castellano COMPOSITION INCLUDING CITRATE AND CARNITINE ABLE TO ACTIVATE THE PRODUCTION OF KLOTHO PROTEIN
WO2020239459A1 (en) 2019-05-29 2020-12-03 Iperboreal Pharma Srl Composition comprising citrate and carnitine able to activate the production of the protein klotho

Similar Documents

Publication Publication Date Title
AU2019246828B2 (en) Administration and monitoring of nitric oxide in ex vivo fluids
US20220369624A1 (en) Modified donor organs
AU2006312293B2 (en) Compositions and methods for the evaluation and resuscitation of cadaveric hearts for transplant
US7029839B2 (en) Methods and solutions for storing donor organs
US20190141988A1 (en) Perfusion device for liver graft, and liver removal method and liver transplantation method using the device
BR112013031607B1 (en) METHOD OF DETERMINING PARAMETERS TO MAINTAIN THE VIABILITY OF A LIVER OR A KIDNEY AND METHOD OF TRANSPORTING AND/OR STORING AT LEAST ONE LIVER
WO2010049996A1 (en) Method of preserving mammalian organ
JP2008120713A (en) Method for preservation, resuscitation and transplantation of extracted organ
US20210259241A1 (en) Systems and methods to perfuse isolated tissue
US20200245613A1 (en) Administration and monitoring of nitric oxide in ex vivo fluids
Okamoto et al. Successful sub-zero non-freezing preservation of rat lungs at− 2° C utilizing a new supercooling technology
JP2017186295A (en) Organ preservation method and organ transplantation method
WO2019064443A1 (en) Organ preservation method and organ transplantation method
CA2609776C (en) Preservation solution for organs and biological tissues
RU2777097C1 (en) Method for reconditioning a donor heart
Nassar et al. Establishing an Ex-Vivo Pancreas Perfusion Model On Discarded Human Grafts.: Abstract# C2072
Greenland et al. Mast Cells in a Murine Lung Ischemia-Reperfusion Model of Primary Graft Dysfunction.: Abstract# C2074

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210106